
W3.0
Component Software Engineering

 User’s Guide

 Revision 4.0, January 2003

Part Number
82-000410-01

Analog Devices, Inc.
Digital Signal Processor Division
One Technology Way
Norwood, Mass. 02062-9106 a

Copyright Information
© 2003 Analog Devices, Inc., ALL RIGHTS RESERVED. This docu-
ment may not be reproduced in any form without prior, express written
consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice
The Analog Devices logo, VisualDSP, the VisualDSP logo, SHARC, the
SHARC logo, TigerSHARC, and the TigerSHARC logo are registered
trademarks of Analog Devices, Inc.

VisualDSP++, the VisualDSP++ logo, CROSSCORE, the CROSSCORE
logo, Blackfin, the Blackfin logo, and EZ-KIT Lite are trademarks of Ana-
log Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

VisualDSP++ 3.0 Component Software Engineering User’s Guide iii

CONTENTS

PREFACE

Purpose of This Manual ... xix

Intended Audience .. xx

Manual Contents .. xx

What’s New in This Manual ... xxi

Technical or Customer Support ... xxii

Supported Processors ... xxii

Product Information ... xxiii

MyAnalog.com .. xxiii

DSP Product Information .. xxiii

Related Documents .. xxiv

Online Documentation ... xxv

From VisualDSP++ ... xxv

From Windows .. xxvi

From the Web .. xxvi

Printed Manuals ... xxvi

VisualDSP++ Documentation Set xxvii

Hardware Manuals .. xxvii

Data Sheets ... xxvii

CONTENTS

iv VisualDSP++ 3.0 Component Software Engineering User’s Guide

Contacting DSP Publications ... xxviii

Notation Conventions ... xxviii

INTRODUCTION TO VCSE

Origin of Components ... 1-1

Software Components ... 1-4

Benefits of Components .. 1-6

VCSE Components .. 1-7

Component Software Engineering Concepts 1-8

VCSE Interfaces ... 1-8

Interface Example ... 1-9

VCSE Components .. 1-11

Component Example .. 1-13

Binary Standard Interface ... 1-15

Interface Definition Language and Compiler 1-17

Integration With VisualDSP++ ... 1-18

Component Projects ... 1-19

New Interface and Component Wizards 1-19

Component Packaging Wizard 1-20

Component Manager .. 1-21

Software Architecture ... 1-21

Rules and Guidelines .. 1-23

DEVELOPING AND USING VCSE COMPONENTS

Defining Interface .. 2-3

VisualDSP++ 3.0 Component Software Engineering User’s Guide v

CONTENTS

Creating Interface Implementation .. 2-11

C Component Instance Structure ... 2-14

C Interface Method Functions ... 2-17

C++ Interface Methods .. 2-19

Assembly Interface Methods .. 2-22

Documenting Components ... 2-24

Testing Components ... 2-27

Packaging Components ... 2-30

Using Modifiable Sections ... 2-31

Component Factory Source File ... 2-32

Component Methods Source File ... 2-33

Component Instance Header File for C/Assembly 2-34

Component Instance Header File for C++ 2-34

Component Factory Header File .. 2-35

Component Package Manifest File ... 2-35

Using Components ... 2-35

Creating Component Instances .. 2-36

Using Interface Pointers in C or Assembly 2-39

Using Interface Pointers in C++ ... 2-40

Destroying Components ... 2-41

Implementation of GetInterface Method 2-42

Aggregating Components .. 2-43

Implementation of Aggregation .. 2-45

Company Namespace Registration ... 2-50

CONTENTS

vi VisualDSP++ 3.0 Component Software Engineering User’s Guide

STANDARD INTERFACES

IMemory Interface .. 3-2

IMemory and Component Instance Creation 3-2

IMemory Interface Definition ... 3-5

Type and Enumeration Descriptions .. 3-7

MemRequest .. 3-7

TypeFlags ... 3-7

LifetimeFlags .. 3-11

Context .. 3-11

Method Descriptions .. 3-12

Allocate .. 3-12

Free .. 3-13

IAlgorithm Interface ... 3-14

IAlgorithm Interface Definition ... 3-15

Method Descriptions .. 3-16

Reset .. 3-16

Activate .. 3-16

Deactivate .. 3-17

SetAlgorithmErrorInterface ... 3-17

Valid Sequence of Method Calls .. 3-18

IError Interface .. 3-18

IError Interface Definition .. 3-18

Method Descriptions .. 3-20

Error .. 3-20

VisualDSP++ 3.0 Component Software Engineering User’s Guide vii

CONTENTS

IName Interface .. 3-22

IName Interface Definition .. 3-22

Method Descriptions ... 3-23

SetName ... 3-23

GetName .. 3-24

GetLength .. 3-24

VIDL LANGUAGE REFERENCE

Understanding Syntax Diagrams .. 4-2

Lexical Elements ... 4-3

Character Sequences .. 4-4

White Space .. 4-4

Comments .. 4-5

Preprocessing ... 4-5

VIDL Language Tokens ... 4-7

Names .. 4-7

Keywords .. 4-8

Punctuation .. 4-8

Operators ... 4-8

Numeric Literals ... 4-9

Integer Literals .. 4-9

Real Literals .. 4-10

String Literals ... 4-10

Named Elements ... 4-12

Element Attributes .. 4-15

CONTENTS

viii VisualDSP++ 3.0 Component Software Engineering User’s Guide

Constant Expressions .. 4-16

Types ... 4-19

Base Types .. 4-20

Enum Types .. 4-20

Structure Types ... 4-22

Interface Types .. 4-25

Type Specifiers and Definitions ... 4-25

Declarators ... 4-26

Interfaces .. 4-28

Methods ... 4-31

Method Parameters ... 4-31

Parameter Attributes ... 4-32

in Attribute .. 4-33

out Attribute .. 4-34

size_is Attribute .. 4-34

string Attribute ... 4-37

shared Attribute .. 4-38

alias Attribute ... 4-39

bank Attribute .. 4-40

align Attribute .. 4-40

Components ... 4-41

Component Attributes .. 4-44

aggregatable Attribute ... 4-45

category Attribute ... 4-45

VisualDSP++ 3.0 Component Software Engineering User’s Guide ix

CONTENTS

common Attribute .. 4-46

company Attribute .. 4-47

distinct Attribute .. 4-47

info Attribute .. 4-49

 requires Attribute ... 4-49

singleton Attribute .. 4-51

title Attribute .. 4-51

version Attribute ... 4-52

Namespaces .. 4-53

use Attribute ... 4-55

Auto-doc Comments ... 4-57

Specifications .. 4-60

VIDL COMPILER COMMAND LINE INTERFACE

Running VIDL Compiler .. 5-1

VIDL Compiler Switches ... 5-4

-@ filename .. 5-7

-21532 .. 5-8

-21535 .. 5-8

-21k ... 5-8

-211xx .. 5-8

-TS101 ... 5-9

-accept-any-include-file ... 5-9

-all-idl .. 5-9

-asm ... 5-9

CONTENTS

x VisualDSP++ 3.0 Component Software Engineering User’s Guide

-c++ ... 5-10

-copyright filename ... 5-10

-cppflags flags ... 5-10

-Dmacro[=definition] ... 5-10

-dryrun .. 5-11

-generic .. 5-11

-harness .. 5-11

-hdr ... 5-12

-h[elp] .. 5-12

-Idirectory [{,|;} directory…] ... 5-12

-M ... 5-12

-MM .. 5-13

-mcd .. 5-13

-no-adoc ... 5-13

-no-vla ... 5-13

-no-xml .. 5-14

-overwrite ... 5-14

-path-[cpp|fe|pr|be] path ... 5-14

-path-def path .. 5-14

-path-html directory ... 5-14

-path-install directory ... 5-15

-path-output directory .. 5-15

-path-temp directory ... 5-15

-proc processorID ... 5-15

VisualDSP++ 3.0 Component Software Engineering User’s Guide xi

CONTENTS

-save-temps ... 5-16

-trace .. 5-16

-Umacro ... 5-16

-v[ersion] .. 5-17

-verbose .. 5-17

Processing VIDL Files ... 5-18

File Organization ... 5-18

File Names .. 5-19

Start-of-File Comments ... 5-19

End-of-File Comments .. 5-19

Header Files Guards .. 5-20

Language Identifications ... 5-20

Standard Files .. 5-20

Contents of vcse.h ... 5-21

Contents of vcse_asm.h ... 5-23

Contents of VCSE_IBase.h ... 5-24

Generating Source Files ... 5-24

Interface Definitions ... 5-25

Component Definitions .. 5-27

C Based Components .. 5-28

C++ Based Components .. 5-29

Assembly Based Components .. 5-30

Component Documentation Files 5-31

Component Manifest File .. 5-32

CONTENTS

xii VisualDSP++ 3.0 Component Software Engineering User’s Guide

VCSE RULES AND GUIDELINES

Summary .. 6-2

Programming ... 6-6

Resource Allocation .. 6-6

Processor Usage ... 6-9

Registers and Stack ... 6-9

Interrupt System and Reentrancy 6-10

Processor Modes ... 6-13

Core Peripherals ... 6-14

Packaging ... 6-14

Name Clashes ... 6-14

Address Clashes ... 6-15

Memory and Processing Characteristics 6-16

Memory ... 6-16

Processing .. 6-17

Non-memory Resource Requirements 6-17

Code and Data Elimination ... 6-18

Addressing Models .. 6-18

VCSE ASSEMBLER MACROS

General Overview of Macro Definitions .. A-1

Method Result Macros .. A-2

VCSE_MRESULT .. A-2

MR_ICONSTRUCT(F,I) ... A-2

VisualDSP++ 3.0 Component Software Engineering User’s Guide xiii

CONTENTS

MR_FAILURE(mr) .. A-2

MR_SUCCESS(mr) ... A-2

__CHECK_VCSE_RESPONSE(handler) A-2

Accessing Factory Functions ... A-3

__CREATOR(C) ... A-3

__DESTROYER(C) ... A-3

__SIZEOF(C) ... A-3

Invoking Interface Methods .. A-3

__INVOKE(P,T,M) ... A-4

__GET_METHOD(P,T,M) ... A-4

Function Writing Macros .. A-4

__STARTFUNC(Name,Visibility) A-4

__ENDFUNC(Name) ... A-5

__LINK(N) ... A-5

__PUSH(Reg) ... A-5

__POP(Reg) .. A-5

__ALLOCSTACK(N) .. A-6

__FREESTACK(N) ... A-6

__arg0 to __arg9 .. A-6

__STORE_ARG(n,Reg) ... A-6

__EXIT ... A-6

__LEAF_EXIT .. A-7

__RETURN(Value) ... A-7

__LEAF_RETURN(Value) .. A-7

CONTENTS

xiv VisualDSP++ 3.0 Component Software Engineering User’s Guide

Miscellaneous ... A-7

__LA(R,V) ... A-7

__VCSE_ASM_TRACE(A1,A2) ... A-8

__VCSE_PRINT_VAR(A1,A2,V) A-8

Implementation of Macros on ADSP-2153x DSPs A-9

C Run-Time Model .. A-9

Method Result Macros .. A-9

VCSE_MRESULT .. A-9

MR_ICONSTRUCT(F,I) ... A-9

MR_FAILURE(mr) and MR_SUCCESS(mr) A-10

__CHECK_VCSE_RESPONSE(handler) A-10

Accessing Factory Functions .. A-11

Invoking Interface Methods ... A-11

Function Writing Macros .. A-13

__STARTFUNC(Name,Visibility) and __ENDFUNC(Name) A-13

__LINK(N) .. A-13

__PUSH(Reg) and __POP(Reg) A-14

__ALLOCSTACK(N) and __FREESTACK(N) A-14

__arg0 to __arg9 .. A-14

__EXIT and __LEAF_EXIT ... A-15

__RETURN(Value) and __LEAF_RETURN(Value) A-15

Miscellaneous ... A-15

__LA(R,V) ... A-15

__VCSE_ASM_TRACE(A1,A2) A-15

VisualDSP++ 3.0 Component Software Engineering User’s Guide xv

CONTENTS

__VCSE_PRINT_VAR(A1,A2,V) A-16

Implementation of Macros on ADSP-21xx DSPs A-16

C Run-Time Model .. A-16

Method Result Macros .. A-17

VCSE_MRESULT ... A-17

MR_ICONSTRUCT(F,I) .. A-17

MR_FAILURE(mr) and MR_SUCCESS(mr) A-18

__CHECK_VCSE_RESPONSE(handler) A-18

Accessing Factory Functions ... A-19

Invoking Interface Methods .. A-19

Function Writing Macros .. A-20

__STARTFUNC(Name,Visibility) and __ENDFUNC(Name) A-21

__LINK(N) ... A-22

__PUSH(Reg) and __POP(Reg) A-22

__ALLOCSTACK(N) and __FREESTACK(N) A-22

__arg0 to __arg9 (ADSP-219x DSPs only) A-22

__STORE_ARG(n,Reg) (ADSP-218x only) A-23

__EXIT and __LEAF_EXIT .. A-24

__RETURN(Value) and __LEAF_RETURN(Value) A-24

Miscellaneous Macros ... A-24

__LA(R,V) .. A-24

__VCSE_ASM_TRACE(A1,A2) A-24

__VCSE_PRINT_VAR(A1,A2,V) A-25

Implementation of Macros on TigerSHARC DSPs A-25

CONTENTS

xvi VisualDSP++ 3.0 Component Software Engineering User’s Guide

C Run-Time Model .. A-25

Method Result Macros .. A-26

VCSE_MRESULT .. A-26

MR_ICONSTRUCT(F,I) ... A-26

MR_FAILURE(mr) and MR_SUCCESS(mr) A-27

__CHECK_VCSE_RESPONSE(handler) A-27

Accessing Factory Functions .. A-28

Invoking Interface Methods .. A-28

Function Writing Macros .. A-30

__STARTFUNC(Name,Visibility) and __ENDFUNC(Name)
A-30

__LINK(N) .. A-30

__JPUSH(q,Reg) and __JPOP(q,Reg) A-31

__KPUSH(q,Reg) and __KPOP(q,Reg) A-31

__JKPUSH(q,jReg,kReg) and __KPOP(q,jReg,kReg) A-31

__PUSH(Reg) and __POP(Reg) A-31

__JALLOCSTACK(N) and __JFREESTACK(N) A-32

__KALLOCSTACK(N) and __KFREESTACK(N) A-32

__JKALLOCSTACK(N,M) and __JKFREESTACK(N,M) A-32

__ALLOCSTACK(N) and __FREESTACK(N) A-32

__arg(n) ... A-32

__arg0 to __arg9 .. A-33

__arg0_int to __arg3_int .. A-33

__arg0_float to __arg3_float ... A-33

__arg0_mem to __arg3_mem A-33

VisualDSP++ 3.0 Component Software Engineering User’s Guide xvii

CONTENTS

__EXIT(Cond) and __LEAF_EXIT(Cond) A-33

__RETURN(Value,Cond) and __LEAF_RETURN(Value,Cond)
A-34

Miscellaneous .. A-34

__LA(Reg,V) ... A-34

__VCSE_ASM_TRACE(A1,A2) A-34

__VCSE_PRINT_VAR(A1,A2,V) A-34

Implementation of Macros on SHARC DSPs A-35

C Run-Time Model .. A-35

Method Result Macros .. A-35

VCSE_MRESULT ... A-36

MR_ICONSTRUCT(F,I) .. A-36

MR_FAILURE(mr) and MR_SUCCESS(mr) A-37

__CHECK_VCSE_RESPONSE(handler) A-37

Accessing Factory Functions ... A-37

Invoking Interface Methods .. A-38

Function Writing Macros .. A-40

__STARTFUNC(Name,Visibility) and __ENDFUNC(Name) A-40

__LINK(N) ... A-40

__PUSH(Reg) and __POP(Reg) A-40

__ALLOCSTACK(N) and __FREESTACK(N) A-41

__arg(n) .. A-41

__arg0 to __arg9 .. A-41

__EXIT and __LEAF_EXIT .. A-41

__RETURN(Value) and __LEAF_RETURN(Value) A-42

CONTENTS

xviii VisualDSP++ 3.0 Component Software Engineering User’s Guide

Miscellaneous ... A-42

__LA(Reg,V) .. A-42

__VCSE_ASM_TRACE(A1,A2) A-42

__VCSE_PRINT_VAR(A1,A2,V) A-42

VCSE MRESULT CODES

MRESULT Structure .. B-1

MRESULT Codes ... B-2

INDEX

VisualDSP++ 3.0 Component Software Engineering User’s Guide xix

PREFACE

Thank you for purchasing Analog Devices (ADI) development software
for Digital Signal Processor (DSP) applications.

Purpose of This Manual
The VisualDSP++ 3.0 Component Software Engineering User’s Guide
describes development tools and programming guidelines for creating
VisualDSP++™ reusable software components and building embedded
DSP applications that exploit such components.

VisualDSP++ Component Software Engineering (VCSE) is designed for
effective operations on Analog Devices DSP architectures: ADSP-218x,
ADSP-219x, ADSP-2153x Blackfin™, ADSP-21xxx SHARC®, and
ADSP-TSxxx TigerSHARC® DSPs.

The majority of the information in this manual is generic. Information
applicable to only a particular target processor, or to a particular processor
family, is provided in Appendix A, “VCSE Assembler Macros” on
page A-1.

This manual is designed so that you can quickly learn about the VCSE
internal structure and operation.

Intended Audience

xx VisualDSP++ 3.0 Component Software Engineering User’s Guide

Intended Audience
The primary audience for this manual is DSP programmers who are famil-
iar with Analog Devices DSPs. This manual assumes the audience has a
working knowledge of the appropriate DSP architecture and instruction
set. Programmers who are unfamiliar with Analog Devices DSPs can use
this manual but should supplement it with other texts, such as Hardware
Reference and Programming Reference manuals, that describe your target
architecture.

Manual Contents
The manual consists of:

• Chapter 1, “Introduction to VCSE”

Concentrates on concepts, evolution, and general architectural
principals of VisualDSP++ Component Software Engineering.

• Chapter 2, “Developing and Using VCSE Components”

Demonstrates how a VCSE component, which provides an imple-
mentation of a typical DSP algorithm, is defined and developed
and how an application incorporates such components.

• Chapter 3, “Standard Interfaces”

Describes VCSE standard interfaces, which provide a set of stan-
dard services for components’ developers and users.

• Chapter 4, “VIDL Language Reference”

Provides reference information about the syntax and semantics of
the VisualDSP++ Interface Definition Language (VIDL), a
descriptive notation used to specify VCSE components and
interfaces.

VisualDSP++ 3.0 Component Software Engineering User’s Guide xxi

Preface

• Chapter 5, “VIDL Compiler Command Line Interface”

Explains the operation of the VIDL compiler as it is invoked from
the command line to process a VIDL specification. The various
types of generated files and switches, which are used to tailor the
compiler operation, are also described in this chapter.

• Chapter 6, “VCSE Rules and Guidelines”

Documents the rules, guidelines, and best programming practices
associated with the software components’ successful development
and inclusion into DSP applications.

• Appendix A, “VCSE Assembler Macros”

Documents the processor-specific information, such as assembly
macros, for ADSP-2153x Blackfin, ADSP-21xx DSPs,
ADSP-21xxx SHARC, and ADSP-TSxxx TigerSHARC DSPs.

• Appendix B, “VCSE MRESULT Codes”

Documents the MSRESULT codes.

What’s New in This Manual
This is the fourth edition of the VisualDSP++ 3.0 Component Software
Engineering User’s Guide . The manual documents the newly added VCSE
support for ADSP-21xxx and ADSP-211xx SHARC DSPs.

The manual describes the current release of the VCSE software. Future
releases may include support for additional Analog Devices DSP
architectures.

Technical or Customer Support

xxii VisualDSP++ 3.0 Component Software Engineering User’s Guide

Technical or Customer Support
You can reach DSP Tools Support in the following ways.

• Visit the DSP Development Tools website at

www.analog.com/technology/dsp/developmentTools/index.html

• Email questions to dsptools.support@analog.com

• Phone questions to 1-800-ANALOGD

• Contact your ADI local sales office or authorized distributor

• Send questions by mail to

Analog Devices, Inc.

DSP Division

One Technology Way

P.O. Box 9106

Norwood, MA 02062-9106

USA

Supported Processors
VisualDSP++ 3.0 Component Software Engineering currently supports
the following Analog Devices DSPs.

• ADSP-21532 and ADSP-21535

• ADSP-2191, ADSP-2192-12, ADSP-2195, and ADSP-2196

• ADSP-TS101

• ADSP-21060/60L, ADSP-21061/61L, ADSP-21062/62L,
ADSP-21065L, ADSP-21160, and ADSP-21161N

VisualDSP++ 3.0 Component Software Engineering User’s Guide xxiii

Preface

Product Information
You can obtain product information from the Analog Devices website,
from the product CD-ROM, or from the printed publications (manuals).

Analog Devices is online at www.analog.com. Our website provides infor-
mation about a broad range of products—analog integrated circuits,
amplifiers, converters, and digital signal processors.

MyAnalog.com
MyAnalog.com is a free feature of the Analog Devices website that allows
customization of a webpage to display only the latest information on
products you are interested in. You can also choose to receive weekly email
notification containing updates to the webpages that meet your interests.
MyAnalog.com provides access to books, application notes, data sheets,
code examples, and more.

Registration:

Visit www.myanalog.com to sign up. Click Register to use MyAnalog.com.
Registration takes about five minutes and serves as means for you to select
the information you want to receive.

If you are already a registered user, just log on. Your user name is your
email address.

DSP Product Information
For information on digital signal processors, visit our website at
www.analog.com/dsp, which provides access to technical publications, data
sheets, application notes, product overviews, and product announcements.

Product Information

xxiv VisualDSP++ 3.0 Component Software Engineering User’s Guide

You may also obtain additional information about Analog Devices and its
products in any of the following ways.

• Email questions or requests for information to
dsp.support@analog.com

• Fax questions or requests for information to 1-781-461-3010
(North America) or +49 (0) 89 76903-157 (Europe)

• Access the Digital Signal Processing Division’s FTP website at
ftp.analog.com or ftp 137.71.23.21 or ftp://ftp.analog.com

Related Documents
For information on product related development software, see the follow-
ing publications for the appropriate processor family.

For hardware information, refer to your DSP’s Hardware Reference,
Programming Reference, and data sheet.

All documentation is available online. Most documentation is available in
printed form.

VisualDSP++ 3.0 Getting Started Guide

VisualDSP++ 3.0 User’s Guide

VisualDSP++ 3.0 C/C++ Compiler and Library Manual

VisualDSP++ 3.0 Assembler and Preprocessor Manual

VisualDSP++ 3.0 Linker and Utilities Manual

VisualDSP++ 3.0 Kernel (VDK) User’s Guide

VisualDSP++ 3.0 Product Bulletin

Quick Installation Reference Card

VisualDSP++ 3.0 Component Software Engineering User’s Guide xxv

Preface

Online Documentation
Online documentation comprises Microsoft HTML Help (.CHM), Adobe
Portable Documentation Format (.PDF), and HTML (.HTM and .HTML)
files. A description of each file type is as follows.

Access the online documentation from the VisualDSP++ environment,
Windows Explorer, or Analog Devices website.

From VisualDSP++

VisualDSP++ provides access to online Help. It does not provide access to
.PDF files or the supplemental reference documentation (Dinkum
Abridged C++ library and FlexLM network licence). Access Help by:

• Choosing Contents, Search, or Index from the VisualDSP++ Help
menu

• Invoking context-sensitive Help on a user interface item
(toolbar button, menu command, or window)

File Description

.CHM VisualDSP++ online Help system files and VisualDSP++ manuals are provided in
Microsoft HTML Help format. Installing VisualDSP++ automatically copies these
files to the VisualDSP\Help folder. Online Help is ideal for searching the entire
tools manual set. Invoke Help from the VisualDSP++ Help menu or via the
Windows Start button.

.PDF Manuals and data sheets in Portable Documentation Format are located in the
installation CD’s Docs folder. Viewing and printing a .PDF file requires a PDF
reader, such as Adobe Acrobat Reader (4.0 or higher). Running setup.exe on the
installation CD provides easy access to these documents. You can also copy .PDF
files from the installation CD onto another disk.

.HTM
 or
.HTML

Dinkum Abridged C++ library and FlexLM network license manager software
documentation is located on the installation CD in the Docs\Reference folder.
Viewing or printing these files requires a browser, such as Internet Explorer 4.0 (or
higher). You can copy these files from the installation CD onto another disk.

Product Information

xxvi VisualDSP++ 3.0 Component Software Engineering User’s Guide

From Windows

In addition to shortcuts you may construct, Windows provides many ways
to open VisualDSP++ online Help or the supplementary documentation.

Help system files (.CHM) are located in the VisualDSP\Help folder.
Manuals and data sheets in PDF format are located in the Docs folder of
the installation CD. The installation CD also contains the Dinkum
Abridged C++ library and FlexLM network license manager software doc-
umentation in the \Reference folder.

Using Windows Explorer

• Double-click any file that is part of the VisualDSP++ documenta-
tion set.

• Double-click vdsp-help.chm, the master Help system, to access all
the other .CHM files.

From the Web

To download the tools manuals, point your browser at
www.analog.com/technology/dsp/developmentTools/gen_purpose.html.

Select a DSP family and book title. Download archive (.ZIP) files, one for
each manual. Use any archive management software, such as WinZip, to
decompress downloaded files.

Printed Manuals
For general questions regarding literature ordering, call the Literature
Center at 1-800-ANALOGD (1-800-262-5643) and follow the prompts.

VisualDSP++ 3.0 Component Software Engineering User’s Guide xxvii

Preface

VisualDSP++ Documentation Set

Printed copies of VisualDSP++ manuals may be purchased through Ana-
log Devices Customer Service at 1-781-329-4700; ask for a Customer
Service representative. The manuals can be purchased only as a kit. For
additional information, call 1-603-883-2430.

If you do not have an account with Analog Devices, you will be referred to
Analog Devices distributors. To get information on our distributors, log
onto www.analog.com/salesdir/continent.asp.

Hardware Manuals

Printed copies of hardware reference and instruction set reference manuals
can be ordered through the Literature Center or downloaded from the
Analog Devices website. The phone number is 1-800-ANALOGD
(1-800-262-5643). The manuals can be ordered by a title or by product
number located on the back cover of each manual.

Data Sheets

All data sheets can be downloaded from the Analog Devices website. As a
general rule, printed copies of data sheets with a letter suffix (L, M, N, S)
can be obtained from the Literature Center at 1-800-ANALOGD
(1-800-262-5643) or downloaded from the website. Data sheets without
the suffix can be downloaded from the website only—no hard copies are
available. You can ask for the data sheet by part name or by product
number.

If you want to have a data sheet faxed to you, the phone number for that
service is 1-800-446-6212. Follow the prompts and a list of data sheet
code numbers will be faxed to you. Call the Literature Center first to find
out if requested data sheets are available.

Notation Conventions

xxviii VisualDSP++ 3.0 Component Software Engineering User’s Guide

Contacting DSP Publications
Please send your comments and recommendations on how to improve our
manuals and online Help. You can contact us by:

• Emailing dsp.techpubs@analog.com

• Filling in and returning the attached Reader’s Comments Card
found in our manuals

Notation Conventions
The following table identifies and describes text conventions used in this
manual.

Additional conventions, which apply only to specific chapters, may
appear throughout this document.

Example Description

Close command
(File menu) or OK

Text in bold style indicates the location of an item within the
VisualDSP++ environment’s menu system and user interface items.

{this | that} Alternative required items in syntax descriptions appear within curly
brackets separated by vertical bars; read the example as this or that.

[this | that] Optional items in syntax descriptions appear within brackets and sepa-
rated by vertical bars; read the example as an optional this or that.

[this,…] Optional item lists in syntax descriptions appear within brackets
delimited by commas and terminated with an ellipsis; read the example
as an optional comma-separated list of this.

.SECTION Commands, directives, keywords, code examples, and feature names
are in text with letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

VisualDSP++ 3.0 Component Software Engineering User’s Guide xxix

Preface

A note providing information of special interest or identifying a
related topic. In the online version of this book, the word Note appears
instead of this symbol.

A caution providing information about critical design or programming
issues that influence operation of a product. In the online version of
this book, the word Caution appears instead of this symbol.

Example Description

Notation Conventions

xxx VisualDSP++ 3.0 Component Software Engineering User’s Guide

VisualDSP++ 3.0 Component Software Engineering User’s Guide 1-1

1 INTRODUCTION TO VCSE

This chapter concentrates on concepts, evolution, and general architec-
tural principals of component software engineering. It also provides an
overview of the benefits of using VisualDSP++ Component Software
Engineering (VCSE) on a DSP.

This chapter contains the following sections.

• “Origin of Components” on page 1-1

• “Software Components” on page 1-4

• “VCSE Components” on page 1-7

Origin of Components
The idea of creating programs from reusable parts is not new and can be
traced back to the earliest days of computing. The original objective was
to provide additions to the user’s program to allow it to execute on a par-
ticular computer. Typically, each program was supplemented with a fixed
set of routines for interfacing to hardware and operating system kernels or
providing support for early programming languages.

Interestingly, most of the programming devices that we associate with
reusable code were invented almost half a century ago. Callable subrou-
tines were present in the Fortran language designed by John Backus in
1954, though the idea had been implemented in assembly language even
earlier. Subroutines had evolved in stack-based procedures by the time
Algol 60 was introduced a few years later.

Origin of Components

1-2 VisualDSP++ 3.0 Component Software Engineering User’s Guide

Most remarkably, a construct called a class and a related mechanism called
inheritance were developed in the mid-sixties and incorporated into the
language Simula 67 by O.-J. Dahl and co-workers at the Norwegian Com-
puter Center. Classes languished in obscurity for twenty years until a
Danish computer scientist Bjarne Stroustrup developed a variant of C
called “C with Classes”, which subsequently evolved into the C++
language.

Two other advances that enabled software to be reused were the emer-
gence of libraries of useful subroutines and the related development of
relocatable linkers, which allowed the precompiled versions to be com-
bined with a user’s program. Many important scientific applications were
created in this way and distributed as library packages for use on main-
frame computers.

Despite these very early innovations, there was little attempt to apply reuse
in the way that we aspire to today. The early days of computing were
dominated by large mainframes shared by many users. Application pro-
grams were small—a few hundred lines—mostly because they were stored
on physical media like cards or tapes. Programs were written in propri-
etary assembly languages or fairly primitive programming languages for
very locale-specific purposes.

Consequently, there was very little need for portability (beyond the
requirement to carry a tray of cards from one building to another!). If
there was any demand for reusability, then it usually arose within a single
company or organization. However, by the mid-sixties, certain groups of
users—particularly, researchers in universities and government agencies—
started to develop requirements for exchanging and moving software from
one computer to another.

VisualDSP++ 3.0 Component Software Engineering User’s Guide 1-3

Introduction to VCSE

The current interest in reusable software components derives from a num-
ber of important developments in computer hardware and software that
have occurred over the last thirty years. These developments include:

1. The use of digital media for secondary storage, allowing programs
to grow dramatically in size.

2. The development of computer networks and mini-computers,
which led to greater demand for program portability. It also
increased the use of high level languages with “standard” defini-
tions distinguishing implementation-dependent and portable
features.

3. The emergence of platforms, such as PC/Windows and
Unix/WorkStations, which created two distinct markets for appli-
cation developers using the C programming language. The
possibilities for building interoperating applications that straddled
process or platform boundaries began to be explored.

4. Finally, the emergence of the public internet and the world wide
web, which revived the fortunes of Oak, a little-known language
invented by James Gosling at Sun MicroSystems. The language,
now called Java, carries the “write once – run anywhere” marketing
claim.

Embedded systems, by their very nature, have been insulated from many
of the developments described above. But next generation systems are
growing now in size and complexity. For example, they may have multi-
function capability or are required to run on multiple platforms or
processor families. In certain market sectors, requirements are beginning
to emerge for applications to function in networked environments; or to
be downloaded or dynamically modified and reconfigured. In turn, this
has led to the gradual adoption of high level programming languages like
C or C++, where the compiler effectively automates code generation and
where assembly code can be reinserted to match performance
requirements.

Software Components

1-4 VisualDSP++ 3.0 Component Software Engineering User’s Guide

Increases in size and complexity are also leading software developers to
reconsider how embedded systems should be developed in the future. In
particular, how long will the “build from scratch” approach remain viable?
Equally, are newer component-based approaches relevant—and what are
components anyway?

Software Components
Modern software components usually conform to one of two industry
platforms: Microsoft Component Object Model (COM) or the Object
Management Group’s Common Object Request Broker Architecture
(CORBA). Both standards promote an “object-based” approach to reus-
able software that embraces certain key aspects of object-oriented software
development without committing to any particular programming lan-
guage. The same approach has been incorporated into the design of
VCSE.

Now let us look at components in greater detail. First, a software compo-
nent is designed to function as a reusable part of a larger program.
Usually, it is not the whole program, but at the same time, it is larger and
more powerful than a single subroutine. It is also useful to bear in mind
that component developers and component users are usually different
groups of people.

A component provides a service that is specified through a set of function
declarations called an interface; the functions are called the methods of the
interface. The algorithms and implementation details employed by the
methods are hidden from the component user and are said to be encapsu-
lated by the component.

A user interacts with a component by calling the methods of its interface
and passing in parameters. The way in which the call is implemented must
allow the component user and the component developer to use different
programming languages. Because components may be written in C, C++,

VisualDSP++ 3.0 Component Software Engineering User’s Guide 1-5

Introduction to VCSE

or assembly, their interfaces are specified using a special notation called
Interface Definition Language, or IDL. IDL resembles the declarative parts
of C, but it is not a full programming language.

In addition to its methods, a component contains a set of private variables
that hold its state. For example, a component implementing a time-of-day
clock stores the current time as part of its state. The variables that com-
prise a component’s state normally hold values that must be preserved
across calls to its method functions.

A user can create multiple instances of a component. Each instance shares
the same methods but has a distinct state. This is arranged by storing the
state variables for each instance in a separate region of memory. For exam-
ple, to build an application recognizing international time zones, we
might create several instances of the clock component whose separate
states store different regional times. The memory used to store the state of
a component is sometimes referred to as instance storage.

Component instances are created and destroyed by special factory func-
tions called Create and Destroy. When an instance is created, the factory
function ensures that storage is allocated and returns a handle to the com-
ponent. The user must retain the handler for as long as the component is
required. When a component instance is destroyed, the instance storage is
released by passing the handle to the Destroy function.

In the case of workstations and PCs, components are usually distributed in
a standard format and installed by creating an entry in a component data-
base on the host machine. Systems that support the interaction of
components across networks use the database to activate the component
when a request to create a new instance is received.

Software Components

1-6 VisualDSP++ 3.0 Component Software Engineering User’s Guide

Benefits of Components
Software components offer a number of benefits that derive directly from
the properties described in “Software Components” on page 1-4.

1. Components are easy to maintain because they hide all their imple-
mentation details. Consequently, a developer can make internal
changes to a component provided its external interface stays the
same. Many component based applications on PCs and worksta-
tions access components using dynamic link and call mechanisms.
These mechanisms allow new component versions to be installed
without requiring the application programs to be reinstalled.

2. Components are flexible and reusable because they are language
neutral. Both the component user and component implementor are
free to choose the most appropriate language for development. In
addition, there is no difference, other than in performance,
between using a component locally (on the same machine) and
remotely (on a different machine).

3. Components are extensible because they may provide new methods
that are packaged as an extension of an older interface. When an
extended version of a component is deployed, users access the new
methods by requesting access to the extended interface. Note that
the component still provides the non-extended version of the inter-
face, so that existing applications continue to work with the new
component.

VisualDSP++ 3.0 Component Software Engineering User’s Guide 1-7

Introduction to VCSE

VCSE Components
Components developed with VisualDSP++ share a common set of
attributes that are determined by the VCSE Component Model. These
include:

1. Interfaces and encapsulation. Components provide encapsulated
implementations of one or more interfaces.

2. Instance creation. Component instances are created and destroyed
dynamically. A component that is created dynamically may be sup-
plied with memory that is allocated statically.

3. Flexibility. Components can be implemented and deployed using
any combination of C, C++, and assembly programming languages.

4. Automation. VisualDSP++ provides support for semiautomatic
generation of component and interface specifications and for the
deployment, installation, and documentation of completed
components.

5. Interoperability. Components from different vendors can interop-
erate without the risk of resource issues, such as name clashes or
memory management conflicts.

The VCSE Component Model also ensures that components are tailored
for embedded DSP applications, in particular:

• The overhead associated with components—particularly code size
and execution time—is minimized. The overhead in learning how
to develop and use components is minimized by the VCSE devel-
opment tools provided with VisualDSP++.

• There is no dependence on any particular run-time environment.
VCSE components may be used in standalone applications or in
conjunction with a variety of multithreaded kernels.

VCSE Components

1-8 VisualDSP++ 3.0 Component Software Engineering User’s Guide

• Components delegate the allocation of resources, such as memory,
to the application framework in which they are deployed. Applica-
tions can supply statically allocated memory to a component rather
than rely on the less efficient heap-based mechanisms that are
invoked from C or C++.

• The Component Model specifies a hierarchical namespace that
enables all components and their related files to be identified. Each
organization may reserve a portion of the namespace by registering
a unique namespace tag. The management of names within a
tagged namespace is delegated to the organization registering the
tag. See “Company Namespace Registration” on page 2-50 for
more information on registering namespaces.

• VCSE allows the eventual deployment of components on simple
homogeneous multiprocessor systems. Interprocessor communica-
tion is provided in a way that is transparent to both the developer
and user of a component.

Component Software Engineering Concepts
The two key concepts provided by the VCSE Component Model are
interfaces and components. Broadly speaking, an interface specifies what
is to be done, while a component determines how it is to be done. More
formally, we say the component provides an implementation of the
interface.

VCSE Interfaces

An interface is a collection of functionally related operations that provide
a service. The operations are specified by a list of functions called methods
that an application may invoke. The methods by themselves may not pro-
vide a complete definition of the service and may require supplemental

VisualDSP++ 3.0 Component Software Engineering User’s Guide 1-9

Introduction to VCSE

documentation, which specifies additional operational details, such as the
order in which methods are to be invoked or the range of values a parame-
ter is permitted to take.

An interface is completely abstract—it is not tied to any particular imple-
mentation. For example, you can define a sorting interface that specifies
methods for entering and retrieving data, as well as for triggering the sort,
but which does not contain any elements that oblige the sort to be per-
formed by a particular algorithm.

An interface must not be changed once it has been published (made avail-
able to users). However, it is possible to define a new interface as an
extension of an existing interface by supplying a list of additional meth-
ods. For example, we might extend a “sort” interface into an “ordered
sort” interface by adding a new method that controls the order (ascending
or descending) of the sort. The “sort” interface continues to exist as a part
of the “ordered sort” interface.

In VCSE, an interface name must start with an ‘I’. Thus, a sorting inter-
face is called ISort rather than Sort.

Interface Example

Interfaces are specified using a notation called the VCSE Interface Defini-
tion Language (VIDL). A simplified version of the VIDL definition of an
interface supporting image compression is as follows.

 [iid("a988bd82-e306064b-a9938513-3ced0fa8")]

 interface IImageCmp extends IBase {

 MRESULT SetSNR(

 [in] int snr);

 MRESULT CompressImage(

 [in] int length,

 [out] int CompressedLength,

 [in, out] int image[256]);

 MRESULT DecompressImage(

VCSE Components

1-10 VisualDSP++ 3.0 Component Software Engineering User’s Guide

 [in] int Compressedlength,

 [out] int Length,

 [in, out] int image[256]);

 };

The IImageCmp interface consists of three methods: SetSNR, CompressIm-
age, and DecompressImage. Collectively, they provide the functional
specification of the image compression service. Each method is described
by a declaration specifying the types of parameters and return result. Vari-
ous attributes, supplied to each parameter, describe how the parameter is
used.

SetSNR takes an “in parameter” snr, which supplies the minimum accept-
able signal to noise ratio. CompressImage takes an “in parameter” length,
which specifies the number of supplied image elements, and returns an
“out parameter” CompressedLength, which holds the corresponding num-
ber of elements in the compressed image. The array image is an “in-out
parameter” that supplies the uncompressed elements and returns the com-
pressed elements to the caller.

The description of an image compression service provided by a particular
implementation of the IImageCmp interface may require extra information
concerning usability, performance, and quality of service. This informa-
tion, which is referred to as the operational specification of the interface, is
provided by inserting special comments at appropriate points in the
VIDL. As described later in this manual, VCSE provides a feature called
auto-doc, which allows the contents of these comments to be extracted and
converted into HTML.

IImageCmp is defined as an extension of a predefined interface IBase,
which provides a single method called GetInterface. This method allows
an application to request an interface by specifying its iid (interface iden-
tifier). If the component implements the interface, the request returns a
pointer that allows the interface’s methods to be called. If the interface is
not implemented, GetInterface returns an error. VCSE requires every
interface to be extended directly or indirectly from IBase, so GetInter-

VisualDSP++ 3.0 Component Software Engineering User’s Guide 1-11

Introduction to VCSE

face is always available as a method. This means that an application may
use GetInterface to navigate through all the interfaces provided by each
component.

VCSE Components

A component provides the implementation of one or more interfaces by
supplying the code for their method functions. However, the methods are
encapsulated within the component, so their internal working variables
and utility procedures cannot be accessed from outside the component. In
fact, the only way an application can interact with the component is by
calling its interface methods. These constraints help to protect compo-
nents from misuse and improve their ability to be deployed in different
operational contexts.

VCSE allows components the freedom to reuse or leverage other compo-
nent implementations. However, a component must document its
dependencies, so that installation may be managed consistently. The
VIDL notation allows the dependencies between components to be
recorded without revealing the nature of the interactions between them.

Interfaces make it easy to exchange and upgrade the components installed
in an application. If the new version of a component continues to provide
the same interfaces, no changes to the application code are required. If the
new version provides additional methods in an extension to a previous
interface, applications can choose whether to use the extended or original
interface. If the new interface is required, the application must be modi-
fied accordingly, recompiled, and linked with the component. But if the
old interface is still adequate, the application needs only be relinked to the
component. Interface extension is a very useful way of providing new
functionality while preserving existing interfaces.

Components conform to naming conventions to make them easy to
deploy without risk of name clashes with other components already in use.
For more information, see “File Names” on page 5-19.

VCSE Components

1-12 VisualDSP++ 3.0 Component Software Engineering User’s Guide

An application may create one or more instances of components, each
with a private set of instance variables. The methods of the component
may store and retrieve the values of the instance variables, so that collec-
tively they represent the state of the instance. In the case of the clock
component referred to earlier, the state may be represented by a single
instance variable that contains the current time. Component instances
provide a very convenient way to model real-world objects. For example,
an application that uses multiple data channels may represent each chan-
nel by an instance of a “channel component”. Each instance holds the
state of its channel privately, so there is no possibility of interference
between them.

Applications may create and destroy component instances dynamically
during execution. When an instance is created, an area of memory called
instance storage is allocated for the instance variables and retained until
the instance is destroyed. VCSE allows considerable flexibility in the way
in which instance storage is managed. Components may choose to allocate
memory internally or to acquire it from an external memory manager.
Memory managers may themselves supply memory using static or
dynamic allocation strategies.

It is worth noting that the idea of instances helps distinguish components
from other reusable software entities, such as program libraries. Although
the functions within a library may require state to be preserved, it is the
responsibility of the library user to preserve the state information and to
supply it explicitly on each call. In addition, components allow more than
one implementation of an interface or service within one program,
whereas there can be only one version of a library per program.

It is unusual to find true dynamic linking in embedded DSP applications
because of the run-time overhead involved. In VCSE, components are
statically linked to programs, and the run-time cost of instantiation is
minimized.

VisualDSP++ 3.0 Component Software Engineering User’s Guide 1-13

Introduction to VCSE

Component Example

The following example shows a slightly simplified VIDL description of
two components offering different implementations of the generic IIm-
ageCmp interface.

 [iid("a988bd82-e306064b-a9938513-3ced0fa8")]

 interface IImageCmp extends IBase

 {

 MRESULT SetSNR(

 [in] int snr);

 MRESULT CompressImage(

 [in] int length,

 [out] int CompressedLength,

 [in, out] int image[256]);

 MRESULT DecompressImage(

 [in] int Compressedlength,

 [out] int Length,

 [in, out] int image[256]);

 };

 component CJpeg implements IImageCmp;

 component CGif implements IImageCmp;

The CJpeg component provides support for JPEG compression, which is
most effective for images with smooth color changes, while the second
component CGif uses GIF compression, which is much more effective for
images with sharp edges. The relative effectiveness of the two components,
therefore, depends on the type of image to be compressed, although both
offer the same functional interface. The performance of the two compo-
nents is also quite different since they use distinct algorithms. The user of
either component, therefore, relies on its operational specification to
choose a suitable component implementation of the IImageCmp interface
for a particular task.

VCSE Components

1-14 VisualDSP++ 3.0 Component Software Engineering User’s Guide

Applications using the IImageCmp interface can switch between the two
implementations simply by invoking the Create functions of one or other
of the components. The method calls required to invoke compression or
decompression do not need to change because each component provides
the same interface. Consequently, switching between components only
requires a small change to the name of the function used to create the
component instance. This makes it easy to evaluate and select the compo-
nent that is best suited to the image processing required.

The second example shows the VIDL description of two components
offering different implementations of a generic sorting interface ISort.
The ISort interface consists of three methods: SetData, GetData, and
Sort. Collectively, they provide the functional specification of a sorting
service. Each method is described by a declaration specifying the types of
parameters and the result returned. The description is sufficiently general
to permit several possible implementations. For instance, GetData and
SetData may physically copy the data or may note the address of the data,
so that sorting is performed “in place”.

 [iid("dfa1bd82-e306064b-a9938513-de440fa8")]

 interface ISort extends IBase {

 MRESULT SetData(

 [in] long int N,

 [in, size_is(N)] float data[]);

 MRESULT GetData(

 [in] long int N,

 [out, size_is(N)] float data[]);

 MRESULT Sort(void)

 };

 component CBubbleSort implements ISort;

 component CQuickSort implements ISort;

The CBubbleSort component uses the bubble-sort algorithm and, there-
fore, has the performance characteristics typical for that method of
sorting. The CQuickSort component uses the quick-sort algorithm, which

VisualDSP++ 3.0 Component Software Engineering User’s Guide 1-15

Introduction to VCSE

is usually faster but may require additional memory to achieve the
increased performance. Naturally, each instance of CBubbleSort and
CQuickSort applies the appropriate sorting method to the instance data
supplied by SetData.

Once again, the provision of a common interface makes it easy for applica-
tions to switch between the two components and to evaluate them with
appropriate test data.

Binary Standard Interface

The VCSE Component Model defines a binary standard that specifies a
mechanism for invoking interface methods. The standard is independent
of the language in which the component or its application environment is
written. The two most important features of the standard are:

• The methods of an interface and the application environment in
which they are invoked must support the C language run-time
model for function calls.

• The methods of an interface are called indirectly through a binary
structure called a method table.

A component provides a method table for each supplied interface; each
entry in the table contains the address of the component function that
implements the method. Figure 1-1 on page 1-16 shows the method table
for the ISort interface as implemented by the CQuickSort component.
The table has an entry for each interface method (including those in its
base interfaces) to reference the corresponding function in the CQuickSort
component implementation.

Each instance of an interface is represented by an interface pointer, which
refers to a structure containing the address of the interface method table.
The method table, in conjunction with the use of the C run-time model,
provides a standard mechanism to ensure VCSE components and applica-
tions work together, irrespective of the language in which they are written.

VCSE Components

1-16 VisualDSP++ 3.0 Component Software Engineering User’s Guide

It also allows interfaces to be decoupled from specific implementations.
For example, we can provide access to an ISort implemented by a CBub-
bleSort component by creating a method table whose entries reference
the corresponding method functions in CBubbleSort.

Method tables allow different implementations of the same interface to
coexist within the same application. In the previous example, the ISort
interface pointers returned by CQuickSort and CBubbleSort refer to the
separate method tables provided by these components. It follows, calling
the Sort method with an ISort pointer returned by CQuickSort will
invoke the function CQuickSort_Sort, while calling the Sort method with
an ISort pointer provided by CBubbleSort will invoke the function
CBubbleSort_Sort.

Separate instances of the same component return different interface
pointers, which nevertheless refer to the same method table. In
general, all instances of a component share the same method code
and method tables.

Figure 1-1. ISort Interface Method Table

methods

Interface
pointer

ISort *
GetInterface
SetData
GetData
Sort

Method
table

CQuickSort_GetInterface(){
...
}

CQuickSort_SetData(...){
...
}

CQuickSort_GetData(...){
...
}

CQuickSort_Sort(...){
...
}

Component
implementation

VisualDSP++ 3.0 Component Software Engineering User’s Guide 1-17

Introduction to VCSE

Interface Definition Language and Compiler

The VisualDSP++ Interface Definition Language allows you to specify
interfaces and components that conform to the VCSE Component Model.

VIDL specifications are contained in text files, which are created with an
editor or by invoking the dialog-driven VCSE wizards within the Visu-
alDSP++ Integrated Development and Debugging Environment (IDDE).
The VIDL files are processed by a translator called the VIDL compiler,
which generates a framework or implementation shell for each component
using C, C++, or assembly language. The shell is normally completed by
the component developer before submitting it to the language compiler or
assembler.

VIDL is a language-neutral way to specify components and interfaces. It
favors neither C, C++ or assembly and, therefore, allows developers to
choose between implementation languages. For information on the VIDL
syntax, see “VIDL Language Reference” on page 4-1; for information on
how to create interfaces, see “Developing and Using VCSE Components”
on page 2-1.

Figure 1-2 on page 1-18 illustrates how a VIDL specification is trans-
formed by the VIDL compiler into sets of program source files. Note that
this is a simplified example since the number of generated files and their
names normally depend upon the entities defined in the .IDL file being
processed and not on the name of this file.

If the specification for an interface and a component is held in the file
example.idl, the VIDL compiler generates a header file example.h for the
interface together with corresponding C, C++, or assembly component
implementation files, depending upon the setting of a command line
switch.

The header file contains the declarations of the method functions for the
interfaces defined in the VIDL file, and the .C, .CPP, or .ASM files contain
the shells for the components. Each shell contains a set of method func-

VCSE Components

1-18 VisualDSP++ 3.0 Component Software Engineering User’s Guide

tion “stubs” that are completed by the component developer. The
operation of the VIDL compiler is described in detail in “VIDL Compiler
Command Line Interface” on page 5-1.

Integration With VisualDSP++

The VisualDSP++ IDDE provides comprehensive support for creating and
using VCSE components, which includes the following elements.

• Wizards to create initial VIDL descriptions for interfaces and com-
ponents using intuitive, dialog-driven interfaces.

• A VisualDSP++ project type to develop VCSE components and to
incorporate the VIDL compiler into the build process.

• A VisualDSP++ Component Manager to maintain a database of
VCSE components. The component manager supports installing
new components, browsing for existing components and importing
them into development projects, and uninstalling obsolete
components.

Figure 1-2. VIDL Compiler Operation

ex a m p le .h ex a m p le .c

v id l -c++ exam ple.idlv id l examp le .id l v id l -a sm examp le .id l

cc e x am p le .c

e xa m ple .h example.cpp ex a m p le .h ex a m p le .a s m

c c+ + e x am p le .c pp ea s e xa m ple .as m

e x am p le .id l

VisualDSP++ 3.0 Component Software Engineering User’s Guide 1-19

Introduction to VCSE

• A wizard to manage the process of packaging component files into
a compressed file for distribution.

The following sections provide summary descriptions of each IDDE facil-
ity. For detailed instructions on how to use them, see the VisualDSP++
online Help.

Component Projects

A component project automatically incorporates the extra steps required
to manage the development of a VCSE component within a VisualDSP++
project.

In the first step of the build process, the VIDL compiler processes the
VIDL file and generates the implementation and header files. If the imple-
mentation files already exist, the VIDL compiler preserves all the code in
user supplied areas, such as the bodies of interface method functions. In
addition, if a method has been removed, the user supplied method body is
still kept and accumulated in a holding area at the end of each file.

The C/C++ compiler or assembler is then invoked on the project’s source
files, and a library is created. Additional source files can be added to the
project to be compiled and included into the library as part of the compo-
nent implementation.

New Interface and Component Wizards

The New Interface Wizard guides you, step by step, through the process
of generating a VIDL interface specification.

In the first step, supply the name of the interface, the namespace in which
it is defined, and the interface it extends. Also provide a short description
of the service that the interface provides. In the following steps, specify
and describe the methods and supply the names and types of their param-
eters. The wizard propagates the interface and method descriptions into
auto-doc comments that are generated in the VIDL file.

VCSE Components

1-20 VisualDSP++ 3.0 Component Software Engineering User’s Guide

The process of specifying a new component and creating a VisualDSP++
component project is managed by the New Component Project Wizard.
The wizard allows you to specify the name of the project and the location
of its development directory. Then you supply the component’s company
tag, name, title, and category and set its attributes. When all the informa-
tion is gathered, the wizard creates the component’s development project
and generates a VIDL file containing the component definition.

Component Packaging Wizard

Once a component is fully developed, it must be packaged into a com-
pressed VisualDSP++ component package file (.VCP) for distribution. The
packaging is primarily controlled by the component manifest file (.XML),
which is created by the VIDL compiler. The New Component Package
Wizard combines information from the manifest file with information
from the wizard and generates the .VCP file for distribution.

First, the wizard requests the name for the .XML manifest files. If you ini-
tiate the wizard while a component development project is active, the
wizard defaults to suggesting the .XML file for the project. In the next step,
the wizard shows various attributes of the component and allows specifica-
tion of the version number and status. The distributed component can be,
for example, the full version, a demonstration version, or may only con-
tain the documentation.

The package wizard allows the addition or removal of files from the list of
files in the manifest, enabling complete control over the distributed file
contents. You can also specify which files are to be automatically added to
a project when you add the component to that project. Finally, the wizard
enables you to specify the directory in which the packaged file is to be
stored.

VisualDSP++ 3.0 Component Software Engineering User’s Guide 1-21

Introduction to VCSE

Component Manager

The Component Manager provides a comprehensive set of facilities
enabling you to browse, download, and install components onto your sys-
tem. Once installed, the components can be easily added to VisualDSP++
projects.

View either the list of components installed on your system or those that
are available from the Analog Devices web site. Each component is dis-
played with a brief description of its function and application domain.
The list of components can be sorted by various properties, such as the
component name, supported interface, component category, status, and
the target processor.

Once you have identified a component that meets your needs, the Com-
ponent Manager can download and install it on your system, making the
component available for your development projects.

The Component Manager also can be used to uninstall components from
your system.

Adding a component to a VisualDSP++ project does not copy the
component files into the project’s directory but adds references to
the installed files. Installing a new version of a component, there-
fore, impacts all projects using that component.

Software Architecture

The VCSE software architecture, which controls the interaction between
the application and its components, is based on the client-server model,
where the application is the client and the component is the server provid-
ing the client with certain well-defined services.

The VCSE architecture is platform independent and does not specify any
particular run-time environment. Components can be used in a single
threaded or multithreaded environment, although VCSE itself provides

VCSE Components

1-22 VisualDSP++ 3.0 Component Software Engineering User’s Guide

no support for the interactions between threads. The architecture assumes
resource synchronization is handled directly by the application client and
its components.

The VCSE architecture has also been designed to cater for multiprocessor
systems, where a component and its client application may execute on dif-
ferent processors. Multiprocessor support will be available in future
versions of VCSE.

On a typical system, a client application may use components from more
than one vendor. The structure of an application, where the client and its
components execute on the same processor, is shown in Figure 1-3.

When the client application and the server components reside on the same
processor, VCSE forms a very thin layer that provides essential services for
creating and destroying component instances and for acquiring compo-
nent interfaces. The application interacts directly with the component
whenever it calls an interface method.

When the application and its components reside on different processors,
the VCSE architecture allows them to remain unaware of their relative
separation. In this case, the VCSE layer is responsible for providing a
remote method invocation mechanism that enables the method calls to be

Figure 1-3. Simple Application Model

Client Application

Component-1 Component-2 Component-3

VCSE Support Layer

VisualDSP++ 3.0 Component Software Engineering User’s Guide 1-23

Introduction to VCSE

transported from the application to the target component’s processor. The
VIDL attributes attached to the declaration of each method parameter
ensure that their values are passed correctly.

Rules and Guidelines

The VCSE Component Model specifies how re-usable components may
be constructed for applications running on Analog Devices DSP proces-
sors. The VCSE development tools provided within VisualDSP++ help to
create application frameworks in which components operate irrespective
of the implementation language. Although the Component Model ensures
interoperability between applications and components can be met, it can-
not guarantee this will always be the case, particularly when assembly
language is involved. For this reason, the Component Model and the
development tools are supplemented with a set of rules and guidelines,
which are designed to ensure that VCSE components will interoperate
successfully.

The rules and guidelines cover two broad areas—programming and pack-
aging—although these two sometimes overlap. Issues concerning the
correct operation of a component, considered in isolation, come under
programming, while issues concerning a component’s inclusion in an
application that may use other components come under packaging.

The rules and guidelines for VCSE components and interfaces are
described in “VCSE Rules and Guidelines” on page 6-1.

Rules and guidelines are grouped in two sets: a core set applicable to all
components and a set applicable to components that implement VCSE
algorithms. A VCSE algorithm is a component supporting an interface that
is extended from the standard interface VCSE::IAlgorithm.

The rules describe mandatory actions or practices that application and
component developers must follow. Applications may fail to build or run
properly if they, or any component they include, fail to obey a rule.

VCSE Components

1-24 VisualDSP++ 3.0 Component Software Engineering User’s Guide

The guidelines describe actions or practices that Analog Devices strongly
recommends application and component developers to follow. Applica-
tions may build or run if a guideline is not heeded, but they may be harder
to debug or deploy. In addition to the rules and guidelines, Chapter 6
includes notes and tips regarding the VCSE component software.

VisualDSP++ 3.0 Component Software Engineering User’s Guide 2-1

2 DEVELOPING AND USING
VCSE COMPONENTS

In this chapter, you will learn how a component that provides an imple-
mentation of the mu-law encoding scheme from the ITU
recommendation G.711 is created. The algorithm needed to effect encod-
ing or decoding is very straightforward and enables to concentrate on the
process of definition and creation of the component that implements the
algorithm.

The chapter contains:

• “Defining Interface” on page 2-3

• “Creating Interface Implementation” on page 2-11

• “Documenting Components” on page 2-24

• “Testing Components” on page 2-27

• “Packaging Components” on page 2-30

• “Using Modifiable Sections” on page 2-31

• “Using Components” on page 2-35

• “Destroying Components” on page 2-41

• “Implementation of GetInterface Method” on page 2-42

• “Aggregating Components” on page 2-43

2-2 VisualDSP++ 3.0 Component Software Engineering User’s Guide

The first and most important step in developing a component is to decide
on the functionality that the component is to provide; in particular:

• What services the component is to provide

• How the user of the component should request the services pro-
vided by the component

• How the available services are to be implemented and tested

The VCSE Component Model can help to structure and guide these deci-
sions since a key part of developing a component is deciding the interfaces
that it will offer. Each interface specifies a service provided by a set of pro-
gramming language functions called “methods”.

The interface itself does not contain the body or definition of the method
function; it only contains the declaration or description of the methods.
The interfaces provided by a component represent a contract between the
component and the applications in which it is used, and they should not
be changed once an interface has been issued for use.

VCSE interfaces are expressed using the VCSE Interface Definition Lan-
guage (VIDL). The creation of a suitable description of the interface using
VIDL can clarify the specification of the offered services. Structuring the
development into one or more interfaces can also create the appropriate
structure for the implementation even though the details of the imple-
mentation should remain hidden behind the published interfaces.

VCSE defines some standard interfaces, which component developers may
consider providing support for. The standard interfaces, documented in
“Standard Interfaces” on page 3-1, define service interfaces for capabilities
that many components may wish to provide. The two main standard
interfaces are: IAlgorithm, which defines a common subset of methods
supported by algorithms and IMemory, which defines the standard mecha-
nism for allocating memory resources.

VisualDSP++ 3.0 Component Software Engineering User’s Guide 2-3

Developing and Using VCSE Components

Defining Interface
The mu-law compression algorithm converts a 16-bit value in the range
–8192 to 8191 to a more compact 8-bit value in the range 0 to 255; the
decompress function reverses the compression.

To minimize the overhead arising from invoking the interface methods,
the interface is designed to ensure the most commonly used methods have
a reasonable amount of processing on each method call. In the case of
G.711, the interface design guarantees an array of data elements is passed
into and returned from each invocation of both the compress and decom-
press methods.

The prototypes for the compress and decompress functions in C language
are shown in Listing 2-1.

Listing 2-1. G.711 Function Prototypes

 int Compress(int N, const short *inData, short *outData);

 int Decompress(int N, const short *inData, short *outData);

where the first parameter N specifies the number of values supplied in the
input arrays inData and returned in the output arrays outData. The array
is to be either compressed or decompressed, and the processed values are
returned in the corresponding elements of the output array outData. The
return value indicates whether the whole operation is successful.

To provide this mu-law encoding service as a VCSE component interface,
specify the corresponding interface as follows.

 [iid("e42dec41-1936ff4e-9b392d02-7d5f3731")]

 interface IG711 extends IBase

 {

 MRESULT Compress(

 [in] unsigned N,

 [in] short inData[256],

Defining Interface

2-4 VisualDSP++ 3.0 Component Software Engineering User’s Guide

 [out] short outData[256]);

 MRESULT Decompress(

 [in] unsigned N,

 [in] short inData[256],

 [out] short outData[256]);

 };

The VIDL definition defines the name of the interface to be IG711 and
specifies that this interface extends the IBase interface. Every interface
name must start with an ‘I’ and must extend directly or indirectly from
IBase, the VCSE root interface. Every VCSE interface must also be given
a totally unique identifier, so different interfaces can be distinguished
while executing. The [iid(“e42dec41-1936ff4e-9b392d02-7d5f3731”)]
attribute specifies the unique interface identifier that allows the avoidance
of name clashes with other interfaces. VisualDSP++ provides a tool to gen-
erate a unique identifier in the above format ready for incorporation in the
specification of an interface.

The IG711 interface has two methods, Compress and Decompress, which
correspond to the two C function prototypes in Listing 2-1 on page 2-3.
Every VCSE method must return a value of type MRESULT, a short integer
(16-bit) indicating if the method call is successful or not.

The VIDL method definitions provide more information about each of
the parameters than their prototypes. This additional information is pro-
vided in the form of attributes, which are enclosed in square brackets and
precede the definition of each parameter.

In IG711, the attribute [in] specifies that the value of the parameter N is
being passed into each of the methods. In the case of the inData parame-
ter, the VIDL explicitly specifies the parameter is an array of 256 short
integers whose values are passed into the method. Similarly, the [out]
attribute specifies the outData parameter is an array of 256 short integers
whose values are returned from the method.

VisualDSP++ 3.0 Component Software Engineering User’s Guide 2-5

Developing and Using VCSE Components

Although the VIDL specification provides the information about the
number of elements in the array and the direction the data values are
transferred, only a pointer to the start of the array is actually passed when
a method is being invoked.

If the [out] attribute is specified for a scalar parameter, such as an int, a
pointer to an int is actually passed when the method is invoked. A param-
eter can also be qualified with the attribute combination [in, out], which
implies the value is passed into the method and a possibly different value
is returned. A scalar parameter qualified with the [in, out] attribute is
also actually passed as a pointer when the method is invoked.

For more information about the VIDL syntax, see “VIDL Language Refer-
ence” on page 4-1.

The interface specification restricts to 256 elements the maximum num-
ber of elements that can be passed to either method. Any implementation
must obey the restriction that it can only access a maximum of 256 ele-
ments in any of the passed arrays.

When an array parameter is qualified with the attribute [in], the corre-
sponding parameter of a C or C++ method is qualified with the const
keyword since a parameter marked as [in] should not be changed by the
invoked method. In addition, the use of the const qualifier gives the C
and C++ compiler optimizer a better opportunity to optimize access to the
array within the method since the optimizer knows the values of the array
cannot be changed.

Since the number of elements to be processed is passed as the first param-
eter, the interface definition can be rewritten to provide a much greater
degree of flexibility to the users of the interface. The number of elements
of a passed array can be specified dynamically by rewriting the interface as
follows.

 [iid(“e42dec41-1936ff4e-9b392d02-7d5f3731”)]

 interface IG711 extends IBase

 {

Defining Interface

2-6 VisualDSP++ 3.0 Component Software Engineering User’s Guide

 MRESULT Compress(

 [in] unsigned N,

 [in, size_is(N)] short inData[],

 [out, size_is(N)] short outData[]);

 MRESULT Decompress(

 [in] unsigned N,

 [in, size_is(N)] short inData[],

 [out, size_is(N)] short outData[]);

 };

The size_is attribute specifies that the number of array elements for the
qualified array is determined by the value of the passed parameter N. The
size_is attribute allows the caller to control the maximum size of the
array that is allocated and to notify the method of the number of elements
of the array that it can access. An interface that handles arrays of different
sizes is generally much more useful than an interface that only handles
arrays with a fixed size.

On ADSP-2153x DSPs, the C/C++ compiler optimizer cannot vectorize
access to arrays of short integers unless it ensures that such arrays are word
aligned rather than half-word aligned as required by the C or C++ lan-
guage. The VIDL language allows you to specify such a requirement for
the parameters being passed to the interface. When you do so, the VIDL
compiler generates the appropriate C and C++ language structures to
notify the optimizer that the parameters are in fact aligned. Adding the
necessary align attribute for each of the short arrays provides the
improved version of the interface definition for the IG711 interface. For
example,

 [iid(“e42dec41-1936ff4e-9b392d02-7d5f3731”)]

 interface IG711 extends IBase

 {

 MRESULT Compress(

 [in] unsigned N,

 [in, size_is(N), align(4)] short inData[],

VisualDSP++ 3.0 Component Software Engineering User’s Guide 2-7

Developing and Using VCSE Components

 [out, size_is(N), align(4)] short outData[]);

 MRESULT Decompress(

 [in] unsigned N,

 [in, size_is(N), align(4)] short inData[],

 [out, size_is(N), align(4)] short outData[]);

 };

The align(4) attribute attached to each of the array parameters specifies
that the arguments passed to these methods must have at least word align-
ment on ADSP-2153x DSPs.

On ADSP-2153x DSPs, the data layout generated by the C and
C++ compilers for static data normally satisfies this word alignment
requirement.

On ADSP-218x, ADSP-219x, ADSP-21xxx, and ADSP-TSxxx
DSPs, the align attribute is not normally required since these pro-
cessors are word-addressed architectures. However, on ADSP-218x
DSPs, the align attribute may be used where arrays are to be
accessed as circular buffers since these arrays must be correctly
aligned to correspond to the size of the buffer.

The name of the interface, IG711, is derived from a reference standard for
voice compression and decompression, so it is possible that another devel-
oper might choose the same name but define the interface differently. In
order to avoid name clashes, VCSE provides namespaces that allow identi-
cally named interfaces and components to be distinguished. Namespaces
are themselves assigned names that identify the company or organization
that owns the names that it contains.

For example, Analog Devices, Inc. has reserved the ADI namespace for its
components. The EXAMPLES namespace has been reserved for ADI’s exam-
ple interfaces and components used in the VCSE documentation and
tutorials. The LOCAL namespace has also been reserved for interfaces and
components that will not be distributed outside of creating environment.

Defining Interface

2-8 VisualDSP++ 3.0 Component Software Engineering User’s Guide

Analog Devices maintains a registry of namespace names to ensure they
are unique. See “Company Namespace Registration” on page 2-50 for
more information on registering namespaces.

To define the above IG711 interface within the EXAMPLES namespace, the
full definition of the interface is re-written as follows.

 namespace EXAMPLES {

 [iid(“e42dec41-1936ff4e-9b392d02-7d5f3731”)]

 interface IG711 extends IBase

 {

 MRESULT Compress

 [in] unsigned N,

 [in, size_is(N), align(4)] short inData[],

 [out, size_is(N), align(4)] short outData[]);

 MRESULT Decompress(

 [in] unsigned N,

 [in, size_is(N), align(4)] short inData[],

 [out, size_is(N), align(4)] short outData[]);

 };

 };

The VIDL compiler does not accept any definitions that are placed out-
side of a namespace. Since the IG711 interface is defined within the
EXAMPLES namespace, the fully qualified name for the interface is EXAM-
PLES::IG711. The full name of the interface includes the namespace prefix
to ensure its uniqueness. For example, a different interface called IG711
may be defined within the ADI namespace and identified by its full name
ADI::IG711.

Although the previous VIDL definition incorporates significantly more
information than a C or C++ prototype, the interface definition by itself is
not sufficient to use the interface. To use the services offered by an inter-
face, further information, such as the operational specification of the

VisualDSP++ 3.0 Component Software Engineering User’s Guide 2-9

Developing and Using VCSE Components

interface, is needed. The operational specification covers such aspects as
the order in which the methods of the interface are called or ranges of val-
ues that are valid for each parameter.

The VIDL language supports a formalized comment notation, called
auto-doc comments, which allows specification of operational details
along with the formal definition of the interface and its methods.
Auto-doc comments are translated into HTML text and can contain any
HTML constructs necessary to format the translated text. For more infor-
mation, see “Auto-doc Comments” on page 4-57. Listing 2-2 shows the
definition of the interface completed with the auto-doc comments.

Listing 2-2. EXAMPLES::IG.711 VIDL Specification

namespace EXAMPLES {

/**

 * G.711 is the international standard for encoding telephone

 * audio on a 64 Kbps channel. It is a pulse code modulation

 * (PCM) scheme operating at a 8 kHz sample rate, with 8 bits

 * per sample. There are two different variants of G.711:

 * A-law and mu-law. A-law is the standard for international

 * circuits.

 * <p>

 * The IG711 interface defines a service that allows values to

 * be compressed or de-compressed using either variant.

 */

 [iid(“e42dec41-1936ff4e-9b392d02-7d5f3731”)]

 interface IG711 extends IBase

 {

 /**

 * The Compress function is used to compress a block of

 * data. The function compresses each of the values supplied

 * in the inData array and stores the 8-bit compressed

 * value in the corresponding element of the outData array.

 * @param N is the number of values held in the inData

Defining Interface

2-10 VisualDSP++ 3.0 Component Software Engineering User’s Guide

 * array.

 * @param inData is the array of input values each of which

 * is to be compressed.

 * @param outData is the array which will receive the

 * compressed values.

 */

 MRESULT Compress(

 [in] unsigned N,

 [in, size_is(N), align(4)] short inData[],

 [out, size_is(N), align(4)] short outData[]);

 /**

 * The Decompress function is used to de-compress a block of

 * data. The function de-compresses each of the 8-bit values

 * supplied in the inData array and stores the uncompressed

 * 16-bit value in the corresponding element of the

 * outData array.

 *

 * @param N is the number of values held in the inData array.

 * @param inData is the array of input values each of which is

 * to be de-compressed.

 * @param outData is the array which will receive the

 * de-compressed values.

 */

 MRESULT Decompress(

 [in] unsigned N,

 [in, size_is(N), align(4)] short inData[],

 [out, size_is(N), align(4)] short outData[]);

 };

};

An application cannot directly use the VIDL specification for the service
offered by the IG711 interface. The VIDL compiler does, however, process
the VIDL specification and generate a header file EXAMPLES_IG711.h. The
header provides definitions of the interface that can be used in C, C++, or
assembly language source modules to access the interface.

VisualDSP++ 3.0 Component Software Engineering User’s Guide 2-11

Developing and Using VCSE Components

Assuming the VIDL specification (Listing 2-2 on page 2-9) is held in a file
ig711.idl, invoke the VIDL compiler that is appropriate for your target
DSP:

 vidlblkfn ig711.idl

 vidl218x ig711.idl

 vidl219x ig711.idl

 vidlts ig711.idl

 vidl21k ig711.idl

The compiler generates the EXAMPLES_IG711.h file. The generated header
file can be included by any application or component that wishes to use
the interface.

Although “::” separates the namespace and simple name parts of a
full interface name, you must use an underscore to separate the
same elements in file names.

The VIDL compiler also produces a set of .HTML files, which document
the interface and combine information from the VIDL statements and any
auto-doc comments. These files are stored in an html subdirectory. If you
open the html\EXAMPLES_IG711.html file, a page similar to that in
Figure 2-1 on page 2-12 appears.

Creating Interface Implementation
Once we have created the VIDL interface definition and generated the
interface header file, VCSE can automatically create the framework for a
component that can be used to implement the interface. The VIDL
needed to create the framework of an implementation of the EXAM-
PLES::IG711 interface is shown in Listing 2-3 on page 2-12.

Creating Interface Implementation

2-12 VisualDSP++ 3.0 Component Software Engineering User’s Guide

Listing 2-3. Component Implementing EXAMPLES::IG711 Interface

#include “ig711.idl”

namespace EXAMPLES {

 /**

 * The CULaw component provides an implementation of the

 * EXAMPLES::IG711 interface and implements the mu-law

 * encoding as specified in the ITU B.711 specification.

 */

 [

 category(“Examples\Telephony”),

Figure 2-1. Examples::IG711 Interface Documentation Files

VisualDSP++ 3.0 Component Software Engineering User’s Guide 2-13

Developing and Using VCSE Components

 company(“Analog Devices Inc”),

 title(“Example component for G711 which implements mu-law

 encoding”)]

 component CULaw implements IG711;

};

To generate the framework needed to implement this component in C,
issue a command that corresponds to your target DSP family:

 vidlblkfn g711.idl

 vidl218x g711.idl

 vidl219x g711.idl

 vidlts g711.idl

 vidl21k g711.idl

The VIDL compiler processes the supplied VIDL and generates a set of C
files needed to create the component. A C based implementation is the
default. To generate a set of C++ files, add the -c++ switch to the com-
mand line; add the -asm switch to generate the methods of the component
in assembly language. The set of generated C files is outlined in Table 2-1.

Table 2-1. EXAMPLES::IG711 Interface Implementation Files

File Name Description

EXAMPLES_CULaw.c Contains the code needed to create and destroy the component.

EXAMPLES_CULaw.h Contains the definition of the structure that holds the instance
data for the component.

EXAMPLES_CULaw.rbld Deleting this file triggers a complete rebuild within a Visu-
alDSP++ project that creates the component.

EXAMPLES_CULaw.xml Controls the packaging of a component when it is being pre-
pared for distribution.

EXAMPLES_CULaw_factory.h Contains the prototypes for the Create and Destroy func-
tions for the component.

EXAMPLES_CULaw_methods.c Contains the method functions used to actually implement the
interfaces.

Creating Interface Implementation

2-14 VisualDSP++ 3.0 Component Software Engineering User’s Guide

A component is built as a library of objects; the name of the library should
be EXAMPLES_CULaw.dlb to avoid clashes with other components. The gen-
erated files are complete and ready to be compiled. The library can be
created by issuing a command that corresponds to your design DSP fam-
ily, such as:

ccblkfn -build-lib -o EXAMPLES_CULaw.dlb EXAMPLES_CULaw.c

EXAMPLES_CULaw_methods.c

cc219x -build-lib -o EXAMPLES_CULaw.dlb EXAMPLES_CULaw.c

EXAMPLES_CULaw_methods.c

cc218x -2184 -build-lib -o EXAMPLES_CULaw.dlb EXAMPLES_CULaw.c

EXAMPLES_CULaw_methods.c

ccts -TS101 -build-lib -o EXAMPLES_CULaw.dlb EXAMPLES_CULaw.c

EXAMPLES_CULaw_methods.c

cc21k -21160 -build-lib -o EXAMPLES_CULaw.dlb EXAMPLES_CULaw.c

EXAMPLES_CULaw_methods.c

The command creates a library containing the executable code for the
component. A distributed component is expected to provide header files,
documentation files, and other files along with the actual library. The
packaging of a component is primarily controlled by the contents of the
.XML file and the Component Packaging Wizard used to create the distri-
bution package.

In order to effect the actual implementation of the component, modify
two of the files, EXAMPLES_CULaw.h and EXAMPLES_CULaw_methods.c.

C Component Instance Structure
The VCSE Component Model is designed to enable each component to
have more than one instance simultaneously. The data associated with
each instance of the component is known as the instance data and is held
in a structure that is defined by the VIDL compiler. Each instance of the

VisualDSP++ 3.0 Component Software Engineering User’s Guide 2-15

Developing and Using VCSE Components

component has its own copy of the instance data. When the implementa-
tion language is C, the file EXAMPLES_CULaw.h contains the definition of
the instance structure as follows.

component EXAMPLES_CULaw {

 struct EXAMPLES_IG711_methods *EXAMPLES_IG711;

 VCSE_IBase_ptr m_penv;
 VCSE_HANDLE m_token;
 VCSE_ADDRESS m_addr;

 //##

 //####SCF Start of component private members, EXAMPLES_CULaw

 // Any user specific members for instance data of the compo-

 // nent, CULaw, should be inserted here

 //####ECF End of component private members, EXAMPLES_CULaw

 //###

};

Note that component is a macro defined as struct when the VIDL
compiler target language is C. This increases the readability of gen-
erated code by making it as close as possible to the VIDL
component definition.

The name of the structure is generated from the combination of the
namespace and the component name separated by an underscore. This is
the standard way to make C names unique. Normally, a name is also
appended to indicate the function or use of the name, such as the name of
a method function. The VCSE framework controls and uses the fields at
the start of the component structure. Any data needing different values for
each instance is defined by replacing the comment

 // Any user specific members for instance data of the compo-

 // nent, CULaw, should be inserted here

with the data definitions.

Creating Interface Implementation

2-16 VisualDSP++ 3.0 Component Software Engineering User’s Guide

Any changes made within the

 //##

markers are automatically preserved by the VIDL compiler and restored
when it regenerates the implementation shell. For example, if you want to
add an int field to hold the count of the number of times the Compress
method is called, change the above block as follows.

component EXAMPLES_CULaw {

 struct EXAMPLES_IG711_methods *EXAMPLES_IG711;

 VCSE_IBase_ptr m_penv;
 VCSE_HANDLE m_token;
 VCSE_ADDRESS m_addr;

 //##

 //####SCF Start of component private members, EXAMPLES_CULaw

 /* count the no. of times Compress is invoked */

 int m_CompressCt;

 /* count the no. of times Decompress is invoked */

 int m_DecompressCt;

 //####ECF End of component private members, EXAMPLES_CULaw

 //##

};

The factory functions, which are used to create and destroy instances of
the component, are generated in the file EXAMPLES_CULaw.c and are
described in “Component Factory Header File” on page 2-35.

When an instance of a component is created, an instance of the compo-
nent structure has to be allocated and initialized. The component Create
function generated by the VIDL compiler uses the passed IMemory inter-
face to allocate this instance structure, using a request for instance

VisualDSP++ 3.0 Component Software Engineering User’s Guide 2-17

Developing and Using VCSE Components

memory with default alignment and of any type and any lifetime. For
details of the memory allocation requests, see “IMemory Interface” on
page 3-2.

C Interface Method Functions
The file EXAMPLES_CULaw_methods.c contains the definitions of the two
methods defined in the interface IG711 (see Listing 2-2 on page 2-9). The
principal modification is to provide the actual body of these two func-
tions. The code generated by the compiler for the Compress method is as
follows.

static __VCSEMETHOD VCSE_MRESULT EXAMPLES_CULaw_Compress(

 VCSE_IBase_ptr base,

 unsigned int N,

 const short inData[N],

 short outData[N])

{

 __ASSIGN_THIS_POINTER(__this,EXAMPLES_CULaw);

 __builtin_aligned(inData,4);

 __builtin_aligned(outData,4);

 //###

 //####SCF Start of interface member function, EXAMPLES_CULaw_Compress

 {

 // Any user specific code needed within the interface member

 // function, EXAMPLES_CULaw_Compress, should be inserted here.

 return (VCSE_MRESULT)MR_OK;

 }

 //####ECF End of interface member function, EXAMPLES_CULaw_Compress

 //###

}

Creating Interface Implementation

2-18 VisualDSP++ 3.0 Component Software Engineering User’s Guide

The main points to be noticed:

• The first parameter passed to each method is a pointer to the com-
ponent instance data structure. By convention, it is assigned to a
variable called __this, whose type is a pointer to the component
structure (using the macro __ASSIGN_THIS_POINTER).

• When the interface definition marks the array parameters with the
align attribute, this information is supplied to the compiler using
the __builtin_aligned intrinsic.

• The actual body of the method is placed within the user modifiable
block markers.

• The method function is defined as static and, therefore, cannot
be directly referenced outside this file. Access to the methods of an
interface is always indirect via the interface instance pointer.

A possible implementation of the Compress method is as follows.

static __VCSEMETHOD VCSE_MRESULT EXAMPLES_CULaw_Compress(

 VCSE_IBase_ptr base,

 unsigned int N,

 const short inData[N],

 short out Data[N])

{

 __ASSIGN_THIS_POINTER(__this,EXAMPLES_CULaw);

 __builtin_aligned(inData,4);

 __builtin_aligned(outData,4);

 //##

 //####SCF Start of interface member function, EXAMPLES_CULaw_Compress

 {

 int calcVal;

 int seg;

 unsigned i;

 short inVal;

 /* Increment the count in the inst.data */

VisualDSP++ 3.0 Component Software Engineering User’s Guide 2-19

Developing and Using VCSE Components

 __this->m_CompressCt++;

 for(i = 0; i < N; ++i)

 {

 /* Handle negative input with sign bit below */

 inVal = inData[i];

 calcVal = abs_(inVal);

 calcVal += 33;

 calcVal = min_(calcVal, 8159); /* bound input */

 seg = signbits_(calcVal);

 calcVal <<= seg; /* normalize input */

 calcVal ^= 0x4000; /* strip off the high bit */

 calcVal >>= 10; /* get the position */

 if (inVal < 0) /* add the sign bit to the output */

 calcVal |= 0x80;

 seg = 9 - seg; /* we need to change segment */

 calcVal |= (seg << 4); /* add the segment ID */

 outData[i] = ~calcVal; /* invert the output */

 }

 return (VCSE_MRESULT)MR_OK;

 }

 //####ECF End of interface member function, EXAMPLES_CULaw_Compress

 //##

}

A component must always access its instance data via the __this pointer.
It is valid for the component to read global data, but all normal data
updates should be via the instance pointer.

C++ Interface Methods
When a C++ implementation is selected, the component is created as a
C++ class whose members are the instance data, and the interface methods
are the methods of the class. The component class is defined in a C++

Creating Interface Implementation

2-20 VisualDSP++ 3.0 Component Software Engineering User’s Guide

namespace, which has the same name as the component name. This
namespace is further embedded in C++ namespaces with the same name as
the VIDL namespaces that the component is defined in. Hence, the com-
ponent class for the CULaw component is effectively defined in C++ as:

 namespace EXAMPLES {

 namespace CULaw {

 component CULaw {

 }

 }

 }

Note that component is a macro defined as class when the VIDL
compiler target language is C++. This increases the readability of
generated code by making it as close as possible to the VIDL com-
ponent definition.

The component CULaw is defined within an enclosing EXAMPLES::CULaw
namespace to ensure that any global variables are defined in the EXAM-
PLES::CULaw namespace and, thereby, guarantee uniqueness between
components. The factory functions that Create and Destroy the compo-
nent are declared as friends of the component class in a C++ source file.

If a C++ implementation shell is generated using a command line that cor-
responds to your design DSP family1,

 vidlblkfn -c++ g711.idl

 vidl219x -c++ g711.idl

 vidlts -c++ g711.idl

 vidl21k -c++ g711.idl

then the interface IG711 is defined as an abstract class derived from the
::VCSE::IBase class as follows.

1 There is no C++ support for ADSP-218x DSPs.

VisualDSP++ 3.0 Component Software Engineering User’s Guide 2-21

Developing and Using VCSE Components

interface IG711 :

 public ::VCSE::IBase

{

public:

 virtual __VCSEMETHOD VCSE::MRESULT GetInterface(

 const VCSE::RefIID iid,

 VCSE::IBase_ptr *iptr) = 0;

 virtual __VCSEMETHOD VCSE::MRESULT Decompress(

 unsigned int N,

 const short *inData,

 short *outData) = 0;

 virtual __VCSEMETHOD VCSE::MRESULT Compress(

 unsigned int N,

 const short *inData,

 short *outData) = 0;

 };

Note that interface is a macro defined as class when the VIDL
compiler target language is C++. This increases the readability of
generated code by making it as close as possible to the VIDL inter-
face definition.

The component instance data is then defined as a class derived from the
abstract classes, which represent the interfaces supported by the compo-
nent, as follows.

 namespace EXAMPLES {

 namespace CULaw {

 component CULaw:

 public ::EXAMPLES::IG711

 {

 ...

 }

 }

 }

Creating Interface Implementation

2-22 VisualDSP++ 3.0 Component Software Engineering User’s Guide

The shell generated for the Compress method is:

namespace EXAMPLES {

 namespace CULaw {

 __VCSEMETHOD VCSE::MRESULT CULaw::Compress(

 unsigned int N,

 const short *inData,

 short *outData)

 {

 __builtin_aligned(inData,4);

 __builtin_aligned(outData,4);

 //##

 //####SCF Start of interface member function, EXAMPLES::CULaw::Compress

 {

 //Any user specific code needed within the interface member

 //function, EXAMPLES::CULaw::Compress, should be inserted here.

 return (VCSE_MRESULT)MR_OK;

 }

 //####ECF End of interface member function, EXAMPLES::CULaw::Compress

 //##

}

…

The instance data within the method can be accessed directly since C++
uses the this pointer implicitly. For example,

 m_CompressCt++; /* increment the count in the instance data */

Assembly Interface Methods
When an assembly implementation is selected, the methods are created as
assembly based shells, while the factory functions that create and destroy
the component are created as C functions that do not use the C run-time

VisualDSP++ 3.0 Component Software Engineering User’s Guide 2-23

Developing and Using VCSE Components

library. The names of the functions for the methods are the same as those
used in the C implementation, but the assembly functions are defined as
global since the method table is created within the C factory function file.

If an assembly implementation shell is generated using one of the follow-
ing command lines,

 vidlblkfn -asm -trace g711.idl
 vidl219x -asm -trace g711.idl
 vidl218x -asm -trace g711.idl
 vidlts -asm -trace g711.idl

 vidl21k -asm -trace g711.idl

then the shell generated for the Compress method is:

//

// VCSE_MRESULT EXAMPLES_CULaw_Compress(

// VCSE_IBase_ptr base,

// unsigned int N,

// const short inData[N],

// short outData[N])

__STARTFUNC(_EXAMPLES_CULaw_Compress, __GLOBAL)

//##

//####SCF Start of interface member function, EXAMPLES_CULaw_Compress

__LINK(0)

__DEBUG_TRACE_ENTRY(‘EXAMPLES_CULaw_Compress')

//Any user specific code needed within the interface member

//function,EXAMPLES_CULaw_Compress, should be inserted here.

__DEBUG_TRACE_EXIT('EXAMPLES_CULaw_Compress')

__RETURN(MR_OK)

//####SCF End of interface member function, EXAMPLES_CULaw_Compress

Documenting Components

2-24 VisualDSP++ 3.0 Component Software Engineering User’s Guide

//##

__ENDFUNC(_EXAMPLES_CULaw_Compress)

It should be noted that the function entry trace
__DEBUG_TRACE_ENTRY('EXAMPLES_CULaw_Compress') and corresponding
exit trace are only generated if -trace is used when the assembler source is
generated for the first time because the line is within the user-modifiable
block.

VCSE provides various macros for use within an assembly source file by
#include <vcse.h>, as described in “VCSE Assembler Macros” on
page A-1.

Documenting Components
The use of VIDL to define component interfaces that each component
supports allows a lot of information about a component to be specified
formally. However, a component also needs to provide information that
describes how it is to be used and the kind of operating environment that
it expects. This is the “operational specification” for the component, and
it is provided by auto-doc comments embedded in the VIDL.

In the example below, the auto-doc comment provides a description of the
CDSM2150F5V component. Notice that the auto-doc comment body con-
tains HTML items, such as paragraph tags and an HTML link.

namespace EXAMPLES {

 /**

 * This component is an ADSP-21535 implementation of the

 * EXAMPLES::IFlash interface for the ST DSM2150F5V DSP System

 * Memory device. This device is used on the ADSP-21535 EZ-Kit

 * board, but it is suitable for many other ADI processors too.

 * Consult the

 *

 * ST data sheet for full details of this part <p>.

VisualDSP++ 3.0 Component Software Engineering User’s Guide 2-25

Developing and Using VCSE Components

 **/

 [

 title("Flash Programmer for ST DSM2150F5V DSP System Memory"),

 info("www.analog.com"),

 category("Example\Non-algorithm"),

 company("Analog Devices Inc"),

 version(1.0.0),

 aggregatable

]

 component CDSM2150F5V implements EXAMPLES::IFlash {};

Auto-doc supports tags that allow specific features of an interface (or a
method) to be clearly documented and tabulated in HTML. Each tag is
prefixed with an @ character. The supported tags include @param, @return,
@example, and @keyword. In the following example, the auto-doc comment
provides a summary description of the SetDeviceAddresses method from
the IFlash interface and additional information on each of its parameters.

/**

* Tells the IFlash component how the flash device's sectors

* are mapped into the general address space. It also ensures

* the device is in its default state. This method must be

* invoked before any others and may only be invoked once.

*

* @param NumRanges Specifies the number of address ranges in

* the address range table. Must be a positive value.

*

* @param AddressRanges Array of address range descriptors.

* Each descriptor specifies a starting address in the

* DSP's memory map, the length in bytes of the address

* range andinformation about the substructure (if any)

* of the range.The elements of the array need not be in

* any particular order.

*

Documenting Components

2-26 VisualDSP++ 3.0 Component Software Engineering User’s Guide

* @return MRESULT MR_IFLASH_BAD_RANGES, MR_IFLASH_INCOMPLETE_RANGES,

* MR_IFLASH_RANGES_ALREADY_SET or MR_OK (see IFlash_Results).

**/

MRESULT SetDeviceAddresses(

 [in] int NumRanges,

 [in,size_is(NumRanges)] AddressRange AddressRanges[]);

When you compile the VIDL definition for a component, the compiler
generates a set of .HTML files that document the component and all the ref-
erenced interfaces. The generated HTML documentation for the
component and all its supported interfaces includes a table of contents as
well as an automatically generated index.

If you open the file html\EXAMPLES_CDSM2150F5V.html in a browser, click
on the Index button, select the SetDeviceAddresses method entry, and
then the item EXAMPLES::IFlash interface — SetDevicesAdresses, a
screen similar to that in Figure 2-2 appears.

Figure 2-2. SetDeviceAddresses Component Documentation Files

VisualDSP++ 3.0 Component Software Engineering User’s Guide 2-27

Developing and Using VCSE Components

Testing Components
When generating the implementation shell of a component, you can
request some tracing code be added to the generated methods by specify-
ing the -trace switch to the VIDL compiler. For example, if you specify
one of the following commands,

 vidlblkfn -trace g711.idl

 vidl219x -trace g711.idl

 vidl218x -trace g711.idl

 vidlts -trace g711.idl

 vidl21k -trace g711.idl

the generated shell for the Compress method contains the code:

static __VCSEMETHOD VCSE_MRESULT EXAMPLES_CULaw_Compress(

 VCSE_IBase_ptr base,

 unsigned int N,

 const short inData[N],short outData[N]

 {

 __ASSIGN_THIS_POINTER(__this,EXAMPLES_CULaw);

 __builtin_aligned(inData,4);

 __builtin_aligned(outData,4);

 __DEBUG_TRACE_ENTRY("EXAMPLES_CULaw_Compress");

 //###

 //####SCF Start of interface member function, EXAMPLES_CULaw_Compress

 {

 // Any user specific code needed within the interface

 // member function, EXAMPLES_CULaw_Compress, should be

 // inserted here.

 __DEBUG_TRACE_EXIT("EXAMPLES_CULaw_Compress");

 return (VCSE_MRESULT)MR_OK;

Testing Components

2-28 VisualDSP++ 3.0 Component Software Engineering User’s Guide

 }

 //####SCF End of interface member function, EXAMPLES_CULaw_Compress

 //###

}

The default __DEBUG_TRACE_ENTRY and __DEBUG_TRACE_EXIT macros use
the VCSE_printf function to display a message on entry to and exit from
the method.

If you generate an initial set of component shell source files with-
out specifying -trace but specify -trace in a subsequent call on
the compiler, the compiler only adds the entry trace macro since
the exit trace is within a user defined block.

The VCSE support library contains a specialized version of printf called
VCSE_printf (and a corresponding VCSE_fprintf), which supports a lim-
ited number of format specifications but can be used independently of the
standard C/C++ run-time library. The only format specifications sup-
ported are %s, %x, %p, %c, %d, and %i. There is no support for field widths
or padding either.

The VIDL compiler also generates a simple test program for a component
if you supply the -harness switch. The generated test program for the
CULaw component would be EXAMPLES_CULaw_test.c. The test program
creates an instance of the component and then invokes each of its methods
before destroying the component instance.

A VCSE component is not expected to allocate memory directly itself;
instead, it uses an IMemory interface instance supplied by the application
to allocate memory on request. The generated test program includes the
source for a simple memory allocation component VCSE::CSimpleMemory,
which allocates memory from the system heap.

VisualDSP++ 3.0 Component Software Engineering User’s Guide 2-29

Developing and Using VCSE Components

Once you have created the component library, compile and build the test
program using the appropriate command for your target DSP family:

ccblkfn EXAMPLES_CULaw_test.c -L. EXAMPLES_CULaw.dlb -lvcse21532

cc219x EXAMPLES_CULaw_test.c -L. EXAMPLES_CULaw.dlb -lvcse219x

cc218x -2184 EXAMPLES_CULaw_test.c -L. EXAMPLES_CULaw.dlb -lvcse218x

ccts -TS101 EXAMPLES_CULaw_test.c -L. EXAMPLES_CULaw.dlb -lvcse_TS101

cc21k -21160 EXAMPLES_CULaw_test.c -L EXAMPLES_CULaw.dlb -lvcse211xx

The -L. switch specifies that the current directory is to be searched for the
specified libraries, such as the component library EXAMPLES_CULaw.dlb.
The -lvcse21532, -lvcse219x, -lvcse218x, -lvcse211xx, or
-lvcse_TS101 is needed to enable the linker to find the VCSE support
library for the respective processor family, as summarized in Table 2-2.

When adding components to projects using the VisualDSP++ Component
Manager, the necessary libraries are automatically added to the project by
the Component Manager.

Table 2-2. VCSE Support Libraries

Processor Family Switch VCSE Library

ADSP-218x DSP1

1 If the component must avoid registers reserved for auto-buffering, use -lvcse218xab.dlb.

-lvcse218x libvcse218x.dlb

ADSP-219x PSP2

2 If the component is compiled for the ADSP-2192-12 DSP, use
-lvcse219x_type32aworkaround to avoid ADSP-2192-12 DSP hardware anomalies.

-lvcse219x libvcse219x.dlb

ADSP-21532 DSP -lvcse21532 libvcse21532.dlb

ADSP-21535 DSP -lvcse21535 libvcse21535.dlb

ADSP-TS101 DSP -lvcse_TS101 libvcse_TS101.dlb

ADSP-210xx DSP -lvcse21k libvcse21k.dlb

ADSP-211xx DSP -lvcse211xx libvcse211xx.dlb

Packaging Components

2-30 VisualDSP++ 3.0 Component Software Engineering User’s Guide

Packaging Components
Once a component has been developed and tested, it needs to be packaged
in a standard format ready for distribution. The component package man-
ifest is generated by the VIDL compiler. The package contains the
essential information needed to describe the component and to specify the
files that are to be incorporated in the packaged component.

The distributed package normally contains at least the following files.

• The library containing the component implementation, in the pre-
vious example, EXAMPLES_CULaw.dlb. This file is added to the
VisualDSP++ project when the component is added to the project.

• The header file containing the declarations of the component Cre-
ate and Destroy functions, in the previous example,
EXAMPLES_CULaw_factory.h. This file is added to the VisualDSP++
project when the component is added to the project.

• The header files for any interface that has been defined or is refer-
enced in the VIDL specification. The C representation for the
IG711 interface is generated in EXAMPLES_IG711.h. These files are
added to the VisualDSP++ project when the component is added
to the project.

• The set of .HTML documentation files for the component, which are
all contained in the html directory. The main component file,
EXAPLES_CULaw.html in the previous example, is the only file added
to the VisualDSP++ project when the component is added to the
project.

The VIDL compiler automatically includes these files in the manifest list.
You can add further files to the manifest, such as data files or images refer-
enced from the updated .HTML documentation files. The manifest .XML file

VisualDSP++ 3.0 Component Software Engineering User’s Guide 2-31

Developing and Using VCSE Components

has a section where additional files can be specified and which are pre-
served when the VIDL compiler is re-run. The user modifiable section of
the manifest is as follows.

 <!--

 ##

 //####SCF Start of package manifest, EXAMPLES_CULaw

 -->

 <!--

 Any User specific manifests should be added here.

 -->

 <!--

 //####ECF End of package manifest, EXAMPLES_CULaw

 //##

 -->

Start the New Component Package Wizard by clicking the Tools menu
and choosing VCSE, New Component Package. The step by step wizard
guides you through the process of preparing a component for distribution.
See “Component Packaging Wizard” on page 1-20 as well as the online
Help for detailed descriptions of the wizard.

Using Modifiable Sections
The VIDL compiler automatically inserts several user-modifiable sections
in each component it generates. All the changes that you make to the gen-
erated files must be confined to these sections. If you add material outside
a section, it will be lost next time the VIDL compiler regenerates the
source file.

Using Modifiable Sections

2-32 VisualDSP++ 3.0 Component Software Engineering User’s Guide

Component Factory Source File
Table 2-3 summarizes user-modifiable sections that may be used in the
component factory source file.

Table 2-3. Component Factory Source File

Modifiable Section Description

Component Global Settings Provide global definitions required for component imple-
mentation or any definitions required by the factory func-
tions. For example, you may redefine macros, such as
__VCSE_malloc, to provide private memory allocation
procedures that the component may use if no IMemory
implementation is passed to the Create function. If the
component factory functions require access to any library
functions, this is the appropriate place to include the nec-
essary header files.

Component Class Factory-Create Provides an opportunity in the component Create func-
tion to either modify or replace the standard generated
code used to allocate the component instance data using
the VCSE::IMemory interface.

Component Class Factory-Create.1 Provides an opportunity in the component Create func-
tion to initialize any private instance data fields irrespec-
tive of how the instance data itself is allocated. If the
component also requires any working storage to be avail-
able throughout its lifetime, this is a suitable point to
arrange for its allocation.

Component Class Sizeof Provides the opportunity to override the size of the compo-
nent returned by the component SizeOf function.

VisualDSP++ 3.0 Component Software Engineering User’s Guide 2-33

Developing and Using VCSE Components

Component Methods Source File
Table 2-4 summarizes user-modifiable sections that may be used in the
component methods source file.

Component Class Factory-Destroy Provides the opportunity in the component Destroy func-
tion to either modify or replace the standard generated
code used to free the component instance data using the
VCSE::IMemory interface. If changes were made in the
Create function, the appropriate changes to effect the
freeing of the allocated memory should be made here.

Component Class Factory-Cleanup Provides the opportunity in the component Destroy func-
tion to release any resources that the instances owns or to
carry out any other tidy up action before the instance
memory is freed.

Table 2-4. Method Source File

Modifiable Section Description

Component Global Settings Provide any specific global definitions required for the
component implementation or any definitions required by
the method functions. If the method functions require
access to any library functions, then this is the appropriate
place to include the necessary header files.

Component Global Settings.1 Provides an opportunity to redefine the automatically gen-
erated macros that can be used to trace function entry and
exit etc. For example, the component may wish to use a
VCSE::IError interface that has been provided for error
reporting

Interface Member Function Provides an opportunity to supply the actual body of each
member function. Each member function of every inter-
face supported by the component will have such a section.

Table 2-3. Component Factory Source File

Using Modifiable Sections

2-34 VisualDSP++ 3.0 Component Software Engineering User’s Guide

Component Instance Header File for C/Assembly
Table 2-5 summarizes user-modifiable sections that may be used in the
component instance header file.

Component Instance Header File for C++
Table 2-6 summarizes user-modifiable sections that may be used in the
component instance header file.

Table 2-5. C Component Instance Header

Modifiable Section Description

Component Global Settings Provide any specific global declarations or preprocessor def-
initions required for component implementation.

Component Private Members Specify any component specific private members for the
instance data structure of the component.

Table 2-6. C++ Component Instance Header

Modifiable Section Description

Component Global Settings-Include Provides an opportunity to include any standard header
files that may be required by the component implemen-
tation

Component Global Settings Provide any specific global declarations or preprocessor
definitions required for component implementation.
This section occurs within a nested namespace that
ensures uniqueness across all component definitions.

Component Private Members Specify any component specific private members for the
instance data class of the component.

VisualDSP++ 3.0 Component Software Engineering User’s Guide 2-35

Developing and Using VCSE Components

Component Factory Header File
Table 2-7 summarizes user-modifiable sections that may be used the com-
ponent factory header file.

Component Package Manifest File
Table 2-8 summarizes user modifiable sections that may be used in the
component package manifest file (.XML).

Using Components
Once a component is installed on a system, the VCSE Component Man-
ager is used to add the component to a VisualDSP++ project. After a
component is added to the project, you can access the component’s header
file and HTML documentation. The libraries needed for the component
to use at link time are also automatically added to the project. Once the
component is added to the project, you are ready to create an instance of
the component and use the services offered by its supported interfaces.

Table 2-7. Component Factory Header

Modifiable Section Description

Component Size Definition Allows you to specify a preprocessor macro that defines
the maximum amount of memory that the component
instance data may require.

Table 2-8. Component Manifest File

Modifiable Section Description

Package Manifest Provides the opportunity to specify which additional
files should be packaged with the component by the
packaging wizard.

Using Components

2-36 VisualDSP++ 3.0 Component Software Engineering User’s Guide

Creating Component Instances
To create an instance of the component, use the component’s Create
function. The function prototype of the Create function for each compo-
nent expects the same parameters. The Create function for the
EXAMPLES_CULaw component (Listing 2-3 on page 2-12) has the following
prototype.

 VCSE_MRESULT EXAMPLES_CULaw_Create(

 const VCSE_IBase_ptr outer,

 const VCSE_RefIID iid,

 VCSE_IBase_ptr *iptr,

 const VCSE_IBase_ptr ienvp,

 const VCSE_HANDLE token);

The main points to be noticed:

• The name of the Create function is obtained by prefixing _Create
with the concatenation of the defining namespace, an underscore,
and the component name.

• The first parameter (outer) is normally a NULL pointer. If the com-
ponent instance is being aggregated into an existing component,
this parameter is an IBase interface pointer for the aggregating
component.

Aggregation and its effects are described in “Aggregating Compo-
nents” on page 2-43.

• The second parameter (iid) specifies the unique interface identifier
for an interface supported by the new component. The correspond-
ing interface pointer is returned via the third parameter (*iptr) if
the component instance is created successfully.

VisualDSP++ 3.0 Component Software Engineering User’s Guide 2-37

Developing and Using VCSE Components

• Components do not allocate memory and other resources; instead,
they request resources from the application. The fourth parameter
(ienvp) is used to pass an interface pointer to the component. The
pointer allows the component to request needed resources, includ-
ing memory from a resource allocator component.

The standard interface for allocating memory for use by a compo-
nent is called VCSE::IMemory and is described in “IMemory
Interface” on page 3-2. Examples of memory allocator components
that implement this interface are provided; one example offers sim-
ple allocation from the standard heap, another provides some
additional debugging and statistical support.

If the fourth parameter is NULL, the instance creation fails unless the
component has been designed to employ its own memory alloca-
tion in such a situation.

• The final parameter that can be passed into the Create function is a
token, which the component simply passes back to any resource
allocation interface it invokes. The component is not expected to
directly use or understand the significance of the token but simply
pass it back when it is allocating or freeing a resource.

The Create function prototype of a component is defined in the factory
header file distributed with this component. The name of the factory
header file for the EXAMPLES_CULaw component is
EXAMPLES_CULaw_factory.h.

Assuming there is a pointer p_VCSE_IMemory to the VCSE::IMemory inter-
face (described in “IMemory Interface” on page 3-2), an instance of the
EXAMPLES_CULaw component (defined in Listing 2-3 on page 2-12) can be
created as follows.

Using Components

2-38 VisualDSP++ 3.0 Component Software Engineering User’s Guide

Listing 2-4. Instantiating EXAMPLES_CULaw Component

 mr = EXAMPLES_CULaw_Create(NULL, VCSE_IBase_IID, &p_VCSE_IBase,

 p_VCSE_IMemory, NULL);

 if (MR_FAILURE(mr)) {

 ... /* if the instantiation fails */

 }

Access to the simple memory allocator VCSE::CSimpleMemory is obtained
by including the header file VCSE_CSimpleMemory.h. Internally, the
VCSE::CsimpleMemory component always uses the heap for memory alloca-
tion. An instance of the VCSE::IMemory interface can be obtained as
follows.

Listing 2-5. Examples_CULaw_Create Function

 VCSE_IBase_ptr p_VCSE_IMemory;

 mr = VCSE_CSimpleMemory_Create(NULL, VCSE_IMemory_IID,

 &p_VCSE_IMemory, NULL, NULL);

 if (MR_FAILURE(mr)) {

 ... /* if the instantiation fails */

 }

A component instance is accessed by invoking a method function on one
of the interfaces that the component supports. The Create function of a
component returns one specified interface pointer for the created instance.
Each interface provides the GetInterface method to obtain an interface
pointer for any other interface that the component supports.

In the EXAMPLES_CULaw_Create function, the initial interface pointer
obtained is the VCSE::IBase pointer. A VCSE::IBase pointer is available
for any component or interface since the interface of the same name is
provided by all components. The interface pointer returned in the third
parameter is specific to the component instance that has been created.

VisualDSP++ 3.0 Component Software Engineering User’s Guide 2-39

Developing and Using VCSE Components

If you create two instances of CSimpleMemory and specify
VCSE_IMemory_IID in each, then the interface pointers returned by each
call will be different. Each interface provides a method called GetInter-
face that can be used to obtain an interface pointer for any other interface
that the component supports.

The allocator VCSE::CSimpleMemory uses the system heap to allocate mem-
ory. That may be acceptable during the early stages of development, but a
more application-specific approach is likely to be required for production
purposes. The IMemory allocation interface is capable of supporting a wide
variety of memory allocation strategies.

Using Interface Pointers in C or Assembly
In C or assembly, an interface pointer is in effect a pointer to a structure
that represents an instance of the component. The methods of the inter-
face are invoked through macros that allow the method calling mechanism
to be hidden. There is a macro for each interface method whose name is
formed by concatenating the namespace, the interface name, and the
method name with an underscore character as the separator. The interface
pointer that identifies the instance of the invoked component is always
passed explicitly as the first parameter to the macro.

The following code example can be used to obtain an EXAMPLES::IG711
(Listing 2-2 on page 2-9) interface pointer from the VCSE::IBase interface
pointer returned by the Create function in Listing 2-4 on page 2-38.

Listing 2-6. C Interface Pointer

 EXAMPLES_IG711_ptr p_IG711;

 mr = VCSE_IBase_GetInterface(p_VCSE_Ibase, EXAMPLES_IG711_IID,

 (VCSE_IBase_ptr*)&p_IG711);

 if (MR_FAILURE(mr)) {

 ... /* if the instantiation fails */

 }

Using Components

2-40 VisualDSP++ 3.0 Component Software Engineering User’s Guide

Once an interface pointer to the desired interface is obtained, you can call
the methods of the interface to obtain the services it offers. Given the
interface pointer is obtained successfully (see Listing 2-6), the following C
code example shows how to use the macro that calls the Compress method.
The Compress method converts 128 values to their equivalent mu-law
encoding values:

 mr = EXAMPLES_IG711_Compress(p_IG711, 128, rawData, muData);

Each interface method returns an MRESULT value, which indicates the suc-
cess or failure of the invocation. MRESULT values can be tested with the
MSUCCESS and MFAILURE macros. The macro MSUCCESS is passed an MRESULT
value and returns a nonzero value if the call was successful or a zero value
if the call failed. Similarly, the macro MFAILURE is passed an MRESULT value
and returns a nonzero value if the method invocation failed or a zero value
if the invocation was successful. The value returned by a method should
always be tested to ensure the invocation is successful.

Using Interface Pointers in C++
In C++, an interface pointer is in fact a pointer to a C++ class whose mem-
ber functions are the methods of the interface. It follows that a method
can be invoked directly by a call to the C++ member function. The C++
calling mechanism passes the ‘this’ pointer for the component instance
automatically.

The code example in Listing 2-7 can be used to obtain an EXAM-
PLES::IG711 interface pointer from the VCSE::IBase interface pointer
returned by the Create function in Listing 2-4 on page 2-38.

Listing 2-7. C++ Interface Pointer

 EXAMPLES_IG711_ptr p_IG711;

 mr = p_VCSE_IBase->GetInterface (EXAMPLES_IG711_IID,

 (VCSE_IBase_ptr*)&p_IG711);

VisualDSP++ 3.0 Component Software Engineering User’s Guide 2-41

Developing and Using VCSE Components

 if (MR_FAILURE(mr)) {

 ... /* if the instantiation fails */

 }

Once an interface pointer to the desired interface is obtained, you can
invoke the methods of the interface to obtain the services it offers directly
in C++. Given the interface pointer is obtained successfully (Listing 2-7),
the following code example shows how to invoke the Compress method in
C++. The Compress method converts 128 values to their equivalent
mu-law encoding values:

 mr = p_IG711->Compress(128,rawData,muData);

In C++, the interface pointer type implicitly specifies the invoked inter-
face, and the invoked method implicitly receives the appropriate ‘this’
pointer, which identifies the instance of the component.

Each interface method returns an MRESULT value to indicate the success or
failure of the method invocation. MRESULT values can be tested with the
MSUCCESS and MFAILURE macros. The macro MSUCCESS is passed an MRESULT
value and returns a nonzero value if the method was successful or a zero
value if the invocation failed. Similarly, the macro MFAILURE is passed an
MRESULT value and returns a nonzero value if the method invocation failed
or a zero value if the invocation was successful. The value returned by a
method should always be tested to ensure that the invocation is successful.

Destroying Components
The Create function for a component creates an instance of the compo-
nent; each interface pointer obtained from an instance refers to the same
instance of this component. When an instance of a component is no
longer required, you can destroy it by invoking the Destroy function for
the component. The name of the Destroy function is obtained by prefix-

Implementation of GetInterface Method

2-42 VisualDSP++ 3.0 Component Software Engineering User’s Guide

ing _Destroy with the concatenation of the defining namespace, an
underscore, and the component name. The Destroy function for the
EXAMPLES_CULaw component has the following prototype.

Listing 2-8. Examples_CULaw_Destroy Function

 VCSE_MRESULT EXAMPLES_CULaw_Destroy(const VCSE_IBase_ptr iptr);

The main points to be noticed:

• Any interface pointer obtained from an instance of a component
can be passed as the first parameter to the Destroy function to
specify the component instance to be destroyed.

• When a component instance is destroyed, all the interface pointers
for the instance become obsolete, and no method functions should
be invoked via any of these interface pointers.

Implementation of GetInterface Method
All the interfaces supported by a component share a single implementa-
tion of the GetInterface method, which is used to provide on request
interface pointers for all supported interfaces. The GetInterface method
is always automatically generated by the VIDL compiler. The following
example illustrates the implementation of GetInterface, automatically
generated by the VIDL compiler for the C version of EXAMPLES_CULaw
component (defined in Listing 2-3 on page 2-12).

Listing 2-9. Implementing GetInterface Method

VCSE_MRESULT EXAMPLES_CULaw_GetInterface(

 VCSE_IBase_ptr base,

 const VCSE_RefIID iid,

 VCSE_IBase_ptr *iptr)

VisualDSP++ 3.0 Component Software Engineering User’s Guide 2-43

Developing and Using VCSE Components

{

 /*

 * GetInterface method for supplying the requested interface

 */

 __ASSIGN_THIS_POINTER(__this,EXAMPLES_CULaw);

 if (!iidcmp(iid, VCSE_IBase_IID))

 *iptr = REINTERPRET_CAST(VCSE_IBase_ptr,

 STATIC_CAST(EXAMPLES_IG711,__this));

 else if (!iidcmp(iid,EXAMPLES_IG711_IID))

 *iptr = (VCSE_IBase_ptr)STATIC_CAST(EXAMPLES_IG711,__this);

 else if (!iidcmp(iid,VCSE_IAlgorithm_IID))

 *iptr = (VCSE_IBase_ptr)STATIC_CAST(EXAMPLES_IG711,__this);

 else

 return (VCSE_MRESULT)MR_NOT_SUPPORTED;

 return (VCSE_MRESULT)MR_OK;

}

Essentially, GetInterface checks the identifier of the requested interface
against the interfaces that are supported and performs the necessary cast-
ing to convert the interface pointer to the appropriate structure.

Aggregating Components
Although components are primarily intended for application develop-
ment, they can also be used in component implementation. For example,
the developer of a component that requires the use of mu-law encoding
and decoding could simply use the CULaw component discussed earlier
rather than re-implement the algorithm from scratch. Since component
implementations are encapsulated, internal use of the CULaw component
remains hidden from the application.

Aggregating Components

2-44 VisualDSP++ 3.0 Component Software Engineering User’s Guide

There are two techniques for component reuse that are normally referred
to as delegation and aggregation. When delegation is used, the outer com-
ponent acts as a wrapper around the inner component. Calls to any of the
methods of the inner component are made via corresponding methods in
the outer component. Normally, the inner component needs to provide
significant functionality to make the overhead of the extra method call
insignificant by comparison.

Aggregation is a different technique that allows an interface from an exist-
ing or inner component to be combined with the interfaces in the outer
component. It has the advantage that when the aggregated interface meth-
ods are called, the original methods in the existing component are
executed directly without any overhead.

Aggregation can be difficult to implement correctly since the combined
components must appear to the user of the outer component as a single
entity that obeys all the rules of the Component Model seamlessly. The
VIDL compiler automatically generates the support necessary, so compo-
nents can be aggregated automatically without the developer being aware
of how aggregation operates in detail.

The usefulness of aggregation can be seen by examining a real world exam-
ple. Suppose we have an MP3 component with an IMp3 interface, which
allows MP3 encoded music to be played. Suppose you wish to create a
component for use in MP3 players that responds to voice commands
through an IVoice interface. You can either implement support for both
the voice interface and the MP3 support from scratch, or you can decide
to use the existing MP3 component and concentrate on the new software
needed to support voice commands.

Aggregation allows you to incorporate the existing MP3 component into
your new component, so that it offers both the IMp3 and the IVoice inter-
faces. By doing this, you are giving the user of the component full access
to the IMp3 interface with no additional overhead involved in its use. You
do not require the source for the MP3 component in order to exploit it
within your component by use of aggregation.

VisualDSP++ 3.0 Component Software Engineering User’s Guide 2-45

Developing and Using VCSE Components

Implementation of Aggregation
To explain how aggregation operates, we have two components CRed and
CBlue that implement interfaces IRed and IBlue, respectively. We wish to
make a new component CRedGreenBlue that provides the three interfaces
IBlue, IRed, and IGreen by implementing IGreen directly and aggregating
the implementations of IBlue and IRed from CBlue and CRed.

The three components and their interfaces can be represented as shown in
Figure 2-3.

A simplified version of the VIDL definition for these components is in
Listing 2-10.

Listing 2-10. Aggregation Example

namespace EXAMPLES {

 [iid(“24e7d634-d6c8444c-b66c91fa-92fc4cf1”)]

 interface IRed extends IBase {};

Figure 2-3. Aggregation Example

IRedIRed

IGreen

CRed

CBlue

CRedGreenBlue

IBlue IBlue

Aggregating Components

2-46 VisualDSP++ 3.0 Component Software Engineering User’s Guide

 [iid(“5bf3a04f-a541fe42-a9741ad9-43d85370”)]

 interface IBlue extends IBase {};

 [iid("72c53695-c7d4d843-a21f074b-bdba49fb")]

 interface IGreen extends IBase {};

 [aggregatable,

 company(“ADI”),

 title(“RED”),

 category(“EXAMPLES”)]

 component CRed implements IRed;

 [aggregatable,

 company(“ADI”),

 title(“BLUE”),

 category(“EXAMPLES”)]

 component CBlue implements IBlue;

 company(“ADI”),

 title(“REDGREENBLUE”),

 category(“EXAMPLES”)]

 component CRedGreenBlue implements IRed,IGreen,IBlue {

 aggregates IRed from CRed;

 aggregates IBlue from CBlue;

 };

};

When a component provides an interface, the Component Model requires
that a call to its GetInterface method must be capable of returning every
other interface provided by the component. When the IRed and IBlue are
aggregated into CRedGreenBlue, their GetInterface methods, which are
provided by CRed and CBlue components, must somehow be able to return
the IGreen interface.

VisualDSP++ 3.0 Component Software Engineering User’s Guide 2-47

Developing and Using VCSE Components

The problem of handling requests for IBlue and IGreen within CRed, and
requests for IRed and IGreen within CBlue, is solved by having each aggre-
gated component handle interface requests with an additional variant of
IBase, called INonDelegatingBase, that has a method called NonDelegat-
ingGetInterface. All components that support aggregation, such as the
CRed and CBlue components, must implement this interface in addition to
IBase. The NonDelegatingGetInterface method of INonDelegatingBase
handles all requests for interfaces implemented directly by the aggregated
component. Consequently, it is referred to as the non-delegating version
of GetInterface. By contrast, the GetInterface method of IBase in the
aggregated components CRed and CBlue handles all interface requests by
re-calling the GetInterface method in the aggregating component
CRedGreenBlue. Consequently, it is referred to as the delegating version of
GetInterface.

The methods CRed_GetInterface and CBlue_GetInterface both delegate
their requests back to CRedGreenBlue_GetInterface. In turn,
CRedGreenBlue_GetInterface handles any request for IGreen directly, but
hands requests for IRed and IBlue back to
CRed_NonDelegatingGetInterface and
CBlue_NonDelegatingGetInterface, where they can be handled correctly.

To see how the interaction between the GetInterface and the NonDele-
gatingGetInterface methods operates, the following examples show
simplified versions of the CRedGreenBlue_GetInterface,
CRed_GetInterface, and CRed_NonDelegatingGetInterface functions.

In Listing 2-11 on page 2-48, the CRedGreenBlue_GetInterface handles
requests for IGreen directly but forwards requests for IRed to
CRed_NonDelegatingGetInterface and requests for IBlue to
CBlue_NonDelegatingGetInterface. The two NonDelegatingGetInter-
face methods are called via two INonDelegatingBase interface pointers,
_this->m_CRed and _this->m_CBlue.

Aggregating Components

2-48 VisualDSP++ 3.0 Component Software Engineering User’s Guide

Listing 2-11. GetInterface Method Example

VCSE_MRESULT EXAMPLES_CRedGreenBlue_GetInterface(

 VCSE_IBase_ptr base,

 const VCSE_RefIID iid,

 VCSE_IBase_ptr *iptr)

{

 /*

 * GetInterface method for supplying the requested interface

 */

 EXAMPLES_CredGreenBlue *_this = (EXAMPLES_CredGreenBlue *)base;

 if (!iidcmp(iid, VCSE_IBase_IID))

 *iptr = REINTERPRET_CAST(VCSE_IBase_ptr,

 STATIC_CAST(EXAMPLES_IGreen,_this));

 else if (!iidcmp(iid,EXAMPLES_IGreen_IID))

 *iptr = VCSE_IBase_ptr)STATIC_CAST(EXAMPLES_IGreen,_this);

 else if (!iidcmp(iid,EXAMPLES_IRed_IID))

 VCSE_INonDelegatingBase_NonDelegatingGetInterface

 (_this->m_CRed,iid,iptr);

 else if (!iidcmp(iid,EXAMPLES_IBlue_IID))

 VCSE_INonDelegatingBase_NonDelegatingGetInterface

 (_this->m_CBlue,iid,iptr);

 else

 return (VCSE_MRESULT)MR_NOT_SUPPORTED;

 return (VCSE_MRESULT)MR_OK;

}

The non-delegating CRed_NonDelegatingGetInterface shown in
Listing 2-12 on page 2-49 handles requests for IBase and IRed directly
since these are both implemented by CRed. Note that the request for IBase
is satisfied by returning the INonDelegatingBase interface pointer.

VisualDSP++ 3.0 Component Software Engineering User’s Guide 2-49

Developing and Using VCSE Components

Listing 2-12. Non-Delegating GetInterface Example

VCSE_MRESULT EXAMPLES_CRed_NonDelegatingGetInterface(

 VCSE_IBase_ptr base,

 const VCSE_RefIID iid,

 VCSE_IBase_ptr *iptr)

{

 /*

 * GetInterface method for supplying the requested interface

 */

 EXAMPLES_CRed *_this = (EXAMPLES_CRed *)base;

 if (!iidcmp(iid, VCSE_IBase_IID))

 *iptr = REINTERPRET_CAST(VCSE_IBase_ptr,

 STATIC_CAST(VCSE_INonDelegatingBase,_this));

 else if (!iidcmp(iid,EXAMPLES_IRed_IID))

 *iptr = (VCSE_IBase_ptr, STATIC_CAST(EXAMPLES_IRed,_this);

 else

 return (VCSE_MRESULT)MR_NOT_SUPPORTED;

 return (VCSE_MRESULT)MR_OK;

}

The delegating CRed_GetInterface, shown in Listing 2-13, simply hands
all requests back to CRedGreenBlue_GetInterface using the cached inter-
face pointer for the outer component held in this->m_pIBase_outer. If
the request is for IRed, it will subsequently get handled by
CRed_NonDelegatingGetInterface. Otherwise, it will be handled by
CBlue_NonDelegatingGetInterface or directly by
CRedGreenBlue_GetInterface.

Listing 2-13. Delegating GetInterface Example

VCSE_MRESULT EXAMPLES_CRed_GetInterface(

 VCSE_IBase_ptr base,

 const VCSE_RefIID iid,

 VCSE_IBase_ptr *iptr)

Aggregating Components

2-50 VisualDSP++ 3.0 Component Software Engineering User’s Guide

{

 /*

 * GetInterface method for supplying the requested interface.

 * Aggregated component delegates the responsibility to

 * the outermost aggregating component

 */

 EXAMPLES_CRed *_this = (EXAMPLES_CRed *)base;

 return

VCSE_IBase_GetInterface(_this->m_pIBase_outer,iid,iptr);

}

To enable the three components to call each other’s GetInterface
method, they have to maintain interface pointers to each other. In the
examples above, these are represented by m_CRed and m_pIBase_outer.
These pointers are established as the aggregating component creates the
aggregated components as part of its own creation process.

The VIDL compiler automatically generates the correct versions of the
delegating and non-delegating implementations of GetInterface for com-
ponents that support aggregation, and the entire mechanism outlined
above is effected by the automatically generated code. The actual code
generated by the VIDL compiler differs in detail from the code in the pre-
vious example since it, for example, caches interface pointers to optimize
the execution of the component.

Company Namespace Registration
The registration and use of a company namespace or tag is a key element
of the approach taken to ensure the names of global entities, such as inter-
faces and components that are developed by various companies, remain
unique. Each organization involved in developing and distributing VCSE
components must register a unique namespace and ensure that all their
components and interfaces are named within that namespace.

VisualDSP++ 3.0 Component Software Engineering User’s Guide 2-51

Developing and Using VCSE Components

Each global name must be defined within the originating company
namespace to ensure that no name clashes can occur. The organization
that registers a company namespace is responsible for ensuring that all
names defined within the company namespace are unique. An organiza-
tion is at liberty to define subsidiary namespaces if that simplifies the task
of ensuring that all names defined within the company namespace are
unique.

An organization that wishes to register the use of a company namespace
should send a request to vcse.register@analog.com, specifying the
desired namespace tag and providing information, such as the full name of
the organization and contact information for the person making the
request. In general, namespace tags will be registered on a first come first
served basis. Analog Devices, Inc. has already registered the ADI namespace
for its components. The EXAMPLES namespace has been reserved for ADI’s
example interfaces and components used in the VCSE documentation and
tutorials.

The LOCAL namespace has also been reserved for interfaces and compo-
nents that will not be distributed outside of creating environment.

Aggregating Components

2-52 VisualDSP++ 3.0 Component Software Engineering User’s Guide

VisualDSP++ 3.0 Component Software Engineering User’s Guide 3-1

3 STANDARD INTERFACES

VCSE defines some standard interfaces offering an essential set of services
that any component can exploit as well as a consistent environment for
component developers and users.

The standard interfaces are defined within the VCSE namespace. The cur-
rent set of defined interfaces consists of:

• The IMemory interface, which allocates and frees memory as
required by a component. An application implements IMemory and
supplies it to a component. The component exploits this interface
to allocate and free memory. For more information, see “IMemory
Interface” on page 3-2.

• The IAlgorithm interface, which defines a consistent set of services
that all VCSE compliant algorithms must provide. All VCSE algo-
rithms are expected to extend the IAlgorithm interfaces; therefore,
the methods of IAlgorithm are available in each VCSE algorithm.
For more information, see “IAlgorithm Interface” on page 3-14.

• The IError interface, which provides a set of services that enable
an application to have centralized error handling across multiple
components. The IError interface is normally implemented by the
application and passed to components, allowing them to report
errors in a unified way. For more information, see “IError Inter-
face” on page 3-18.

IMemory Interface

3-2 VisualDSP++ 3.0 Component Software Engineering User’s Guide

• The IName interface, which can be supported by a component to
provide user-friendly names to be obtained for the instances of a
component. For more information, see “IName Interface” on
page 3-22.

IMemory Interface
The allocation of resources to the various sections of a DSP program often
is one of the most difficult aspects of application building. While VCSE
supplies a means of formalizing the structure of an application into com-
ponents performing specific algorithmic or device handling tasks, it does
not seek to impose any particular policy regarding resource allocation.

There is one area, however, in which the needs of the application and the
needs of the VCSE model are likely to interact—memory allocation. The
application will probably need to allocate, either statically or dynamically,
working buffers for various purposes, while the VCSE model requires the
allocation of memory areas to hold the management and user data associ-
ated with each created component instance.

In order to meet these needs, VCSE provides a standard memory alloca-
tion interface, VCSE::IMemory, to support the VCSE model and to provide
application builders considerable freedom in meeting their applications’
memory allocation requirements. In addition, VCSE::IMemory allows the
allocation paradigm to be extended to other resources or to more sophisti-
cated memory allocators.

IMemory and Component Instance Creation
There are two aspects of memory allocation associated with a VCSE com-
ponent: the storage required to hold the fixed-sized per-instance
component data, including VCSE management data; and the dynamic

VisualDSP++ 3.0 Component Software Engineering User’s Guide 3-3

Standard Interfaces

storage requirements of the instance’s processing. The component’s client
can provide an IMemory interface to satisfy both needs when a new
instance of the component is being created.

A VCSE component is not usually expected to allocate and free memory
directly, but instead, to invoke an allocation mechanism provided by its
client to carry out such services on its behalf. The VCSE::IMemory interface
provides such a mechanism allowing a component to request the alloca-
tion of specified amounts of various types of memory and their subsequent
freeing. The IMemory interface is:

• used to obtain memory for the component’s instance data as well as
the instance data for any aggregated component

• stored in each component’s instance as well as in any aggregated
component’s

• used by the component’s methods to obtain and free working
memory

• used during instance destruction to free the component instance as
well as the instance data for any aggregated component

If desired, an application is free to provide different IMemory interfaces,
which may implement different allocation strategies, to different compo-
nents or to different instances of the same component.

To see how a client supplies an IMemory instance when creating a compo-
nent instance, consider the signature of the creation function that VCSE
generates for a component C1 defined within namespace NS1:

VCSE_MRESULT NS1_C1_Create(const VCSE_IBase_ptr outer,

 VCSE_RefIID iid,

 VCSE_IBase_ptr* iptr,

 VCSE_IBase_ptr ienvp,
 VCSE_HANDLE token);

IMemory Interface

3-4 VisualDSP++ 3.0 Component Software Engineering User’s Guide

Parameters ienvp and token are associated with resource allocation. The
ienvp argument is an interface pointer obtained from a component that
implements VCSE::IMemory and possibly other resource allocation inter-
faces. If an application wishes to control the allocation of memory for a
particular component instance, then it should supply a non-NULL ienvp
argument. The allocation component may also implement interfaces that
support the allocation of other resources or may implement a more sophis-
ticated memory allocation interface. However, if the client wishes to have
control over placement of the component instance’s data, then the ienvp
pointer must provide support for the VCSE::IMemory interface.

The second allocation parameter, token, is provided as a means of passing
an arbitrary value into the methods defined in VCSE::IMemory or other
resource allocation interfaces. The token value is stored in the newly cre-
ated component instance’s data and is provided to each Allocate or Free
call made by the instance. The component providing the IMemory interface
may not require specific token values, but if it does, then it must describe
in its documentation what these values are or how to obtain them. For
example, an allocator can use token values to implement a strategy of allo-
cating predefined resources to specific component instances.

When an IMemory is not supplied at the instance creation time because
ienvp is NULL, memory for the instance’s data is obtained and freed
entirely under control of the component. If ienvp is not NULL and calling
GetInterface on it does not find a VCSE::IMemory interface, then the
_Create function returns an error and the component is not created. The
VIDL generated shell uses the macros __VCSE_malloc and __VCSE_free to
allocate and free the instance data, and the component’s methods may use
these mechanisms for working memory as well.

The default implementations of these macros cause a NULL to be returned
from Allocate and take no action when Free is invoked. By default, com-
ponent creation fails if an IMemory is not supplied and VCSE_MEM_ALLOC is

VisualDSP++ 3.0 Component Software Engineering User’s Guide 3-5

Standard Interfaces

invoked instead. If the component developer wishes to use the macros as a
fall-back, they should be given appropriate definitions in a user-modifi-
able section of the component header file.

The signature of the first macro is:

 #define __VCSE_malloc(S)

where S is the size of the required storage area in the same units as the ones
used in C library function malloc. The macro returns a valid
VCSE::ADDRESS value or the NULL error indicator.

The second macro’s signature is:

 #define __VCSE_free(ADDR)

where ADDR is a VCSE::ADDRESS value previously obtained from
__VCSE_malloc. The macro does not return a value.

IMemory Interface Definition
The interface contains only two methods: one for requesting the alloca-
tion of a block of memory that meets specified requirements for
placement, lifetime, length, and alignment; and one for freeing up a previ-
ously obtained block.

The VisualDSP++ Interface Definition Language file that defines IMemory
also contains the definition of a struct type whose members quantify a
request for a block of memory in terms of its context, placement, lifetime,
length, and alignment. The context member of the structure provides an
indication of the use of the requested memory rather than a requirement it
must meet. A suitably initialized variable of this type is passed as an argu-
ment to the allocation method. Constants denoting valid values for some
of the memory request structure’s members are specified in enumeration
definitions.

IMemory Interface

3-6 VisualDSP++ 3.0 Component Software Engineering User’s Guide

The IMemory interface definition is shown in Listing 3-1. The interface’s
methods are described later in this section.

Listing 3-1. IMemory Interface Definition

namespace VCSE {

 enum MemType {

 MemAnyType = 0,

 MemPrimary = 1,

 MemSecondary = 2,

 MemExternal = 4,

 MemBank = 8

 };

 enum MemLifetime {

 MemAnyLifetime = 0,

 MemScratch = 1,

 MemPersistent = 2

 };

 enum MemContext {

 MemInstance = 1,

 MemWorking = 2

 };

 struct _MemRequest {

 unsigned int Length;

 unsigned short Alignment;

 unsigned short TypeFlags;

 unsigned short LifetimeFlags;

 unsigned short Context;

 char BankName[32];

 };

 typedef struct _MemRequest MemRequest;

VisualDSP++ 3.0 Component Software Engineering User’s Guide 3-7

Standard Interfaces

 interface IMemory extends IBase {

 MRESULT Allocate([in] MemRequest Request,

 [in] HANDLE Token,

 [out] ADDRESS Allocation);

 MRESULT Free ([in] ADDRESS Allocation,

 [in] HANDLE Token);

 };

}

Type and Enumeration Descriptions

MemRequest

A client of IMemory uses a MemRequest structure to describe the attributes
of a region of memory that it needs. All the attributes are mandatory: a cli-
ent must provide valid values for each of them, and a conforming
implementation of IMemory must satisfy each of them. Some of the
attributes can be multivalued. An implementation that does not satisfy
each attribute does not conform to the interface, but may be useful during
application or component development for testing, sizing, or tracing
purposes.

The following table lists the members of the MemRequest structure and
describes their use.

TypeFlags

The TypeFlags member of the struct is a bit-significant enumeration of
the types of memory from which a client of IMemory can request an alloca-
tion. The MemType enumeration defines the different types of memory that
can be requested along with the corresponding bit pattern. The names and
general descriptions of the memory types are presented in Table 3-2 on
page 3-9. The following supplementary tables give a more precise defini-
tion on a per-architecture basis.

IMemory Interface

3-8 VisualDSP++ 3.0 Component Software Engineering User’s Guide

Table 3-1. MemRequest Structure Members

Member Description

Length The length of the region of memory being requested. The length is mea-
sured in addressable units:
• on a byte-addressable architecture, a value of 1 means one byte
• on a word-addressable architecture, a value of 1 means one word

Alignment The minimum alignment the allocated region must have. Alignment val-
ues are measured in addressable units.
For example, on a byte-addressable architecture, a value of 4 means the
allocated memory must begin at an address that is a whole multiple of 4
bytes. A value of 0 signifies the same alignment that Standard C library
function malloc supplies—the maximum alignment requirement of the
standard C scalar types on the target architecture.
There are architectures on which certain algorithms are considerably more
efficient if their data is aligned more strictly than their basic type requires.
A conforming IMemory implementation must document the maximum
alignment that it can guarantee.

TypeFlags A bitmask specifying the types of memory which can be used to satisfy the
allocation request. The meaning of each bit position is defined in the
description of the MemType enumeration. The bits are examined in the
same order that the nonzero members of MemType are defined. The first
requested type from which memory can be allocated that also satisfies the
other request attributes is used. If no bits are set, then an implementation
can supply any type of memory.

LifetimeFlags A bitmask specifying the expected duration of the allocation. The mean-
ing of each bit position is defined in the description of the MemLifetime
enumeration. The bits are examined in the same order that the nonzero
members of MemLifetime are defined. The first requested lifetime from
which memory can be allocated that also satisfies the other request
attributes is used. If no bits are set, then an implementation can assume
any duration is acceptable. In allocation requests that specify multiple val-
ues for both type and lifetime, the type takes priority.

VisualDSP++ 3.0 Component Software Engineering User’s Guide 3-9

Standard Interfaces

A component using IMemory to allocate and free memory must document
which memory types it requires. If a component requires an allocation
from named banks (MemBank), it must document what steps the user must
take during the building or linking of his/her application in order to com-
ply with memory bank requests.

Context One of the two values defined by the MemContext enumeration. The
Context is not a requirement, which the allocation must meet, but pro-
vides additional information to the memory allocator on the use of the
allocated memory.

BankName A C string of up to 31 characters plus a terminating zero byte specifying a
named memory bank from which the allocation must be made. The string
must be empty (BankName[0]==0) unless TypeFlags includes the Memo-
ryBank flag. In the latter case, BankName must contain the name of a
memory bank from which the requested memory can be allocated.

Table 3-2. MemType Enumeration Members

Memory Type Description

MemPrimary The fastest (non-register) memory, internal to the processor core, suit-
able for data placement

MemSecondary An alternative internal memory for data placement

MemExternal A memory region, external to the processor core data memory

MemBank A named memory region

Table 3-3. ADSP-2153x Blackfin DSP Memory Types

Memory Type ADSP-2153x Memory

MemPrimary L1 data memory

MemSecondary L2 SRAM

Table 3-1. MemRequest Structure Members (Cont’d)

Member Description

IMemory Interface

3-10 VisualDSP++ 3.0 Component Software Engineering User’s Guide

MemExternal External memory

MemBank Named memory bank

Table 3-4. ADSP-21xx DSP Memory Types

Memory Type ADSP-21xx Memory

MemPrimary dm memory

MemSecondary pm memory

MemExternal External memory

MemBank Named memory bank

Table 3-5. ADSP-TSxxx TigerSHARC DSP Memory Types

Memory Type ADSP-TSxxx Memory

MemPrimary Internal memory

MemSecondary Internal memory

MemExternal External memory

MemBank Named memory bank

Table 3-6. ADSP-21xxx SHARC DSP Memory Types

Memory Type ADSP-21xxx Memory

MemPrimary dm memory

MemSecondary pm memory

MemExternal External memory

MemBank Named memory bank

Table 3-3. ADSP-2153x Blackfin DSP Memory Types (Cont’d)

Memory Type ADSP-2153x Memory

VisualDSP++ 3.0 Component Software Engineering User’s Guide 3-11

Standard Interfaces

LifetimeFlags

The LifetimeFlags member of the structure is a bit-significant enumera-
tion, which lists the expected lifetimes associated with a memory
allocation. The MemLifetime enumeration defines the different life times
of memory that can be requested along with the corresponding bit pat-
tern. An allocator may use the value of this attribute to select between
different allocation strategies.

Table 3-7 describes the members of the enumeration.

Context

The Context member specifies the context the memory is to be used in
and is of type MemContext. The MemContext is an enumeration, which
defines two constants to describe the context in which a memory alloca-
tion request is made, as described in Table 3-8.

Table 3-7. MemLifetime Enumeration Members

Memory Lifetime Description

MemScratch The allocation will have a relatively short lifetime and may, for exam-
ple, be freed when the Deactivate method of an algorithm is
invoked.

MemPersist The allocation will have a long lifetime and may, for example, only be
freed when the associated component is destroyed.

Table 3-8. MemContext Enumeration Members

Allocation Context Description

MemInstance The allocation request is for memory in which to place a component
instance record.

MemWorking The allocation request is for other purposes; for example, a workspace
buffer for an algorithm or device handler.

IMemory Interface

3-12 VisualDSP++ 3.0 Component Software Engineering User’s Guide

Method Descriptions

Allocate

The Allocate method is invoked to supply memory as specified in the
MemRequest structure passed as its first argument. If a non-NULL IMemory
interface is available to a component’s Create function, then its Allocate
method is used by the VCSE generated factory code to obtain memory to
hold the new instance of the component. The IMemory interface is stored
in the component instance’s data; therefore, the component methods may
also invoke Allocate to obtain working memory.

A component’s Create function has a value of type VCSE::HANDLE passed
to it. This value must be passed as the Token argument to all Allocate and
Free calls made by the component instance, so it is stored in the compo-
nent’s instance data as well. The Token argument is a general-purpose
mechanism for passing an arbitrary value to the memory allocation meth-
ods and its use is optional. The documentation for a component
implementing IMemory must state whether or not it uses the Token value
and, if it does, what the valid values are. In the generated C/C++ code,
VCSE::HANDLE is represented as void* on ADSP-2153x, ADSP-21xxx, and
ADSP-TSxxx and long int on ADSP-21xx DSP architectures.

The method’s parameters and possible return values are described in
Table 3-9 on page 3-13.

The standard VCSE type VCSE::ADDRESS is used to convey the start
address of the allocated memory area back to the Allocate’s caller. In the
generated C/C++ code, VCSE::ADDRESS is represented as void* on
ADSP-2153x, ADSP-21xxx, and ADSP-TSxxx and long int on
ADSP-21xx DSP architectures, so the returned value must be cast to an
appropriate pointer type before the allocated memory can be accessed.

VisualDSP++ 3.0 Component Software Engineering User’s Guide 3-13

Standard Interfaces

Free

All memory obtained by calling Allocate must be released by a corre-
sponding call to Free when the memory is no longer required. The request
to Free an allocation obtained by a call to Allocate must be made on the

Table 3-9. Allocate Method Parameters and Return Values

Parameter Type Description

Request MemoryRequest Contains the values of the attributes that the allocated
region of memory must satisfy.

Token HANDLE If called from a component, must contain the HANDLE
value passed to the instance’s Create function; otherwise,
must contain a suitable value as described in the memory
allocation component’s documentation.

Allocation ADDRESS Returns the start address of the allocation if the allocation
has been successful.

Returned value MRESULT Indicates the success or failure of the request.
A value of MR_OK indicates the complete success, while the
following values denote various failure conditions.
• MR_NO_MEMORY

All the memory requirements are met except the
length.

• MR_BAD_ALIGNMENT
The alignment requirement is out of range.

• MR_BAD_MEMTYPE
The requested memory type is not valid or is not sup-
ported.

• MR_BAD_MEMLIFE
The requested memory lifetime is not valid or is not
supported.

• MR_BAD_CONTEXT
The supplied context is not a valid value.

• MR_BAD_MEMBANK
The requested memory bank name is not valid or is
not supported.

• MR_BAD_HANDLE
The value supplied in Token is not valid.

IAlgorithm Interface

3-14 VisualDSP++ 3.0 Component Software Engineering User’s Guide

same instance of the IMemory interface as the allocation was made. The
Token parameter must have the same value as the corresponding argument
to Allocate had when requesting the memory.

The result code values that Free may return are: MR_OK if the action is
completed without an error; MR_NOT_ALLOCATED_MEM if the implementation
can detect that it is asked to free memory that this instance of the IMemory
implementation has not allocated; and MR_NOT_COMPLETED if any other
error condition has occurred.

Under no circumstances should the client attempt to access the
freed memory again—no matter what result code Free returns.

IAlgorithm Interface
The VCSE::IAlgorithm interface represents a set of methods, which must
be supported by all VCSE based algorithms. Although each algorithm
component must have an implementation of each method, the actual
implementation can be very simple; for example, it can return MR_OK as its
only action.

Since an algorithm is not expected to allocate but to use memory allocated
by its user, there is a standard memory interface defined that it can use to
actually obtain the memory to meet its needs. The user of an algorithmic
interface supplies the memory interface to the algorithm at a component’s
creation time. See the VCSE::IMemory description on page 3-2 for details
of this interface.

The algorithm interface also enables the user to supply an error handling
interface, which the algorithm instance can use to report errors. See the
VCSE::IError description on page 3-18 for details of this interface.

VisualDSP++ 3.0 Component Software Engineering User’s Guide 3-15

Standard Interfaces

IAlgorithm Interface Definition
The IAlgorithm interface defines a common set of basic control methods
that all VCSE based algorithms are required to provide. Since algorithms
vary considerably in their requirements for the specification of coefficient
values, data sources and destinations, and the like, IAlgorithm makes no
requirements in this area. Algorithm providers are expected to extend
IAlgorithm with methods allowing the user to specify the particulars of an
algorithm instance in a natural way. This can be achieved by providing
one or more setup methods that accept fixed sets of arguments and corre-
sponding processing methods without parameters, or by providing one or
more processing methods that take suitable arguments.

The methods in this interface must return the result code MR_OK if they
execute entirely without problems. The general result code
MR_NOT_COMPLETED is available for other cases, but algorithm developers are
encouraged to define and document their own specific result codes. The
structure of MRESULT codes is described in “VCSE Assembler Macros” on
page A-1.

The IAlgorithm interface definition is shown in Listing 3-2. The inter-
face’s methods are described later in this section.

Listing 3-2. IAlgorithm Interface Definition

#include <VCSE_IError.idl>

namespace VCSE {

 interface IAlgorithm extends IBase {

 MRESULT Reset();

 MRESULT Activate();

 MRESULT Deactivate();

 MRESULT SetAlgorithmErrorInterface(

 [in] IError ErrorReporter,

 [in] int Level);

IAlgorithm Interface

3-16 VisualDSP++ 3.0 Component Software Engineering User’s Guide

 };

};

Method Descriptions

Reset

An algorithm instance can be set to a default operational state by calling
the Reset method. The documentation for the algorithm must describe
the default state and the effects of executing the algorithm in the default
state.

Calls to the Reset method can be made at any time after the algorithm
interface has been instantiated.

Activate

An algorithm component must be notified when a particular instance of
the interface is about to be used by invoking the Activate method to
allow the algorithm to prepare itself for optimized execution. The Acti-
vate method allows the algorithm to execute any necessary initialization
or setup code prior to possibly repeated use of the instance of the
algorithm.

The Activate method must be invoked before using any core computa-
tion methods supplied by an interface, which directly or indirectly extends
IAlgorithm. When multiple instances of an algorithm are created, Deacti-
vate and Activate are expected to be invoked between calls on different
instances.

VisualDSP++ 3.0 Component Software Engineering User’s Guide 3-17

Standard Interfaces

Deactivate

When an algorithm instance will not be invoked for a period, it must be
notified of this by a call to its Deactivate method. The Deactivate
method call enables the algorithm to take any actions to reduce resources
the algorithm is consuming; for example, to move some data from the
internal to external memory.

A Deactivate call must be subsequent to an Activate call. Conversely,
after a Deactivate call, a call to Activate must be made before invoking
an algorithm interface with a call to any method that triggers the algo-
rithm computation. When multiple instances of an algorithm are created,
Deactivate and Activate are expected to be invoked between calls on dif-
ferent instances.

SetAlgorithmErrorInterface

The SetAlgorithmErrorInterface method allows the user of an algorithm
to supply an error handler interface to be used by the algorithm instance
to report any errors the algorithm detects. If no SetAlgorithmErrorInter-
face call is made, or if the passed interface pointer is NULL, then the
algorithm will not report errors.

The Level parameter is a bitmask whose one bits specify which of the var-
ious levels of error reports are required by the caller. See the VCSE::IError
interface description on page 3-18 for the correspondence of bit positions
to error levels.

One error handler interface may be passed into multiple instances of the
same algorithm component and into instances of different algorithms.
However, if a client application holds more than one interface pointer
from the same instance of an algorithm component, then calling SetAlgo-
rithmErrorInterface affects all the interface pointers. (After an algorithm
component is instantiated by calling its Create function, the client can
obtain further interface pointers by calling the GetInterface method,
assuming the algorithm implements more than one interface.)

IError Interface

3-18 VisualDSP++ 3.0 Component Software Engineering User’s Guide

Calls to the SetAlgorithmErrorInterface method can be made at any
time after the algorithm interface is instantiated. For instance, it can be
called once immediately after the instantiation, requesting only notifica-
tion of catastrophic errors; and again at some particular point in the user’s
code to change the level of information being returned.

Valid Sequence of Method Calls
Figure 3-1 shows the valid sequences of the IAlgorithm method calls. In
general, the methods Reset and SetAlgorithmErrorInterface can be
invoked at any time between an algorithm instance creation and
destruction.

IError Interface
The VCSE::IError interface defines a standard mechanism that enables an
instance of a component to report errors or to pass other information
regarding its operation to the component’s client. A standard interface,
whose implementation is provided (directly or indirectly) by the control-
ling application, allows a standard error handling procedure to be used by
the application. An application can use the interface to provide as simple
or as complex an error handling process as it requires.

A component requiring error handling services must include a method (in
one of the implemented interfaces) that allows the user to pass in an IEr-
ror instance to be used for that purpose.

IError Interface Definition
The single method in this interface, Error, reports an error or records
other information about the interface operations. The Error arguments
enable its implementation to discover the severity of the event being
reported and to receive arbitrary information about the event.

VisualDSP++ 3.0 Component Software Engineering User’s Guide 3-19

Standard Interfaces

IError also contains a bit-significant enumeration of the various severity
levels that can be reported to the method. Although a method call can
supply only one specific level, the values are presented as bit-significant.
Therefore, components handed an IError instance for error reporting
may also be handed a bit mask specifying the severities the client is inter-
ested to receive. See the VCSE::IAlgorithm interface documentation
on page 3-15 for an example.

The IError interface definition is shown in Listing 3-3 on page 3-20. The
interface’s only method is described later in this section.

Figure 3-1. Method Calls Sequence

A lg o r ithm in s ta n ce -s p e c if ic
m e th o d ca lls

D e a ct i v a t e(
)

D e a ct i v a t e()

C re a te in s ta n ce

Ac t i v a te ()

D es tro y in s ta n c e

IError Interface

3-20 VisualDSP++ 3.0 Component Software Engineering User’s Guide

Listing 3-3. IError Interface Definition

namespace VCSE {

 enum ErrorLevel {

 ErrorSyslog = 1,

 ErrorDebug = 2,

 ErrorWarning = 4,

 ErrorFatal = 8

 };

 interface IError extends IBase {

 MRESULT Error([in] IBase RepInterface,

 [in] ErrorLevel Level,

 [in] int Code,

 [in] unsigned int Length,

 [in, size_is(Length)] unsigned char ErrInfo[]);

 };

};

Method Descriptions

Error

If a non-NULL IError interface is supplied to an instance of a component
that accepts one, then it must use the Error method of the interface to
report any detected errors or other events falling into the categories
requested by the user of the instance. If there is no mechanism for the user
to specify the categories of interest, then the component must report at
least fatal errors. The parameters to Error are described in Table 3-10 on
page 3-21.

VisualDSP++ 3.0 Component Software Engineering User’s Guide 3-21

Standard Interfaces

Table 3-10. Error Method Parameters

Parameter Type Description

RepInterface IBase Provides the IBase interface of the component instance
reporting the error. May be NULL if no interface is available,
or if the calling code is not a component instance.

Level ErrorLevel Specifies the seriousness of the error being reported. The
available levels are:
• ErrorSyslog

Miscellaneous messages the component wishes to record.
• ErrorDebug

Debug information helping to diagnose problems.
• ErrorWarning

Non-fatal error condition that may impact the perfor-
mance of the component.

• ErrorFatal
A fatal error implying that the component instance may
be compromised.

Code int Specifies the error encountered with an integer value. Error
codes are specific to each component.

Length unsigned int Specifies the length of data provided with the ErrInfo
parameter. A value of 0 implies that no additional informa-
tion is available.

ErrInfo unsigned
char[]

Supplies additional information associated with the error
being reported. One common use of this parameter is to sup-
ply a string describing the error.

Returned value MRESULT Returns MR_NOT_COMPLETED if Error does not successfully
process the request, otherwise returns MR_OK.

IName Interface

3-22 VisualDSP++ 3.0 Component Software Engineering User’s Guide

IName Interface
VCSE::IName is a standard interface that any component may choose to
implement. It provides a means for code holding only an interface pointer
to obtain a meaningful name for the component that provides the inter-
face. It also provides the means by which a client can set a meaningful
name, so the client can, for instance, distinguish between multiple
instances of a component.

An example of code holding an interface that may wish to identify its
defining component is an implementation of the Error method of the
VCSE::IError standard interface.

IName Interface Definition
The three methods defined in this interface allow a client to associate a
name (or other descriptive text) with a component instance and to retrieve
the current size and contents of the name.

The IName interface definition is shown in Listing 3-4. The interface’s
methods are described later in this section.

Listing 3-4. IName Interface Definition

namespace VCSE {

 interface IName extends IBase {

 MRESULT SetName([in, string] char Name[]);

 MRESULT GetName([in] int Length,

 [out, string, size_is(Length)] char Name[]);

 MRESULT GetLength([out] int Length);

 };

};

VisualDSP++ 3.0 Component Software Engineering User’s Guide 3-23

Standard Interfaces

Method Descriptions

SetName

A component implementing the IName interface is required to have a suit-
able default name associated with it. This default name, set when the
factory method is executed, is defined by the component designer and
does not have to be distinct for each component instance. The name
might be generic, such as the fully qualified component name. If the com-
ponent implements IName by aggregation from another component, then
it must call SetName on the aggregated component during its own creation
in order to set a suitable default name.

A client can also use SetName to set the name or other descriptive text to
be associated with the component that implements the IName interface.
For instance, it may do this in order to obtain more meaningful tracing
output or to distinguish between multiple instances of the same
component.

The name is supplied as a VIDL string whose null-terminated contents
SetName uses to replace the currently stored name. The SetName method
must return an error result if it is unable to store the complete name, but
it is undefined whether it stores a part of the new name, retains the old
name, or follows some other course of action.

The result values that SetName returns are:

• MR_OK when the complete name is stored successfully

• MR_NO_MEMORY when sufficient memory is not obtained to store the
complete name

• MR_NOT_COMPLETED when the complete name is not stored for any
other reason, including a fixed-size buffer being too small

IName Interface

3-24 VisualDSP++ 3.0 Component Software Engineering User’s Guide

GetName

The GetName method copies the current name and terminating null char-
acter into the sized string provided by the client. If the string is not long
enough, then GetName must return an error result and place a null-termi-
nated character sequence in the string, assuming it is not of zero length.
The character sequence may be empty but otherwise is undefined.

The result values that GetName returns are:

• MR_NO_ERROR when the complete name is returned successfully

• MR_NOT_COMPLETED when it fails for any other reason, including the
supplied array being too short

GetLength

The GetLength method supplies the length, including the terminating null
character, of the current name. The method allows its clients to ensure
that a sufficiently large string is supplied to a subsequent GetName call. It
must return a result of MR_OK.

VisualDSP++ 3.0 Component Software Engineering User’s Guide 4-1

4 VIDL LANGUAGE
REFERENCE

The VCSE Interface Definition Language (VIDL) is a descriptive notation
for specifying VCSE interfaces and components. The VIDL compiler pro-
cesses and transforms VIDL specifications into source code fragments.
The source code provides skeleton component implementations and inter-
face representations in an appropriate programming language. In practice,
a single VIDL specification can be converted by the VIDL compiler into
an equivalent representation in C, C++, or a platform assembly language.

This chapter provides a reference description of the syntax and semantics
of VIDL. Syntax is described informally using syntax diagrams rather than
grammar rules, and the description of semantics is deliberately as brief and
simple as possible. The text includes a number of examples whose purpose
is illustrative rather than tutorial. The interpretation of the syntax dia-
grams is described in “Understanding Syntax Diagrams” on page 4-2.
Material relating the principles and practice of VCSE programming is
found elsewhere in this manual.

The information about the VIDL syntax and semantics is organized as
follows.

• “Lexical Elements” on page 4-3

• “Named Elements” on page 4-12

• “Element Attributes” on page 4-15

• “Constant Expressions” on page 4-16

• “Types” on page 4-19

Understanding Syntax Diagrams

4-2 VisualDSP++ 3.0 Component Software Engineering User’s Guide

• “Type Specifiers and Definitions” on page 4-25

• “Declarators” on page 4-26

• “Interfaces” on page 4-28

• “Methods” on page 4-31

• “Components” on page 4-41

• “Namespaces” on page 4-53

• “Auto-doc Comments” on page 4-57

• “Specifications” on page 4-60

Understanding Syntax Diagrams
In this chapter, the syntax of VIDL statements and elements is illustrated
by diagrams, which use notation often referred to as “railroad tracks”. The
syntax diagrams should be read from left to right and from top to bottom,
following the path of the line and the arrows.

Literal character sequences are shown within rounded rectangles, whereas
un-rounded rectangles are used to identify named syntax elements, as
shown below:

Any required items appear on their own, on the main path:

[attribute

name

VisualDSP++ 3.0 Component Software Engineering User’s Guide 4-3

VIDL Language Reference

Optional items are shown above or below the main path:

If you can choose from two or more items, they appear vertically, in a
stack. If you must choose one of the items, one item of the stack appears
on the main path:

An arrow returning to the left above or below the main line indicates an
item that can be repeated, along with the separator character if that char-
acter is necessary:

Lexical Elements
VIDL specifications are constructed from character sequences that iden-
tify white space, comments, preprocessing tokens, and language tokens.
The VIDL compiler does not see the preprocessing tokens as the C pre-
processor removes them prior to compilation.

name

namename

attribute

attribute

,

Lexical Elements

4-4 VisualDSP++ 3.0 Component Software Engineering User’s Guide

Character Sequences
A VIDL specification is contained in a text file prepared with a conven-
tional text editor. The file may contain any of the following characters.

• The uppercase and lowercase letters:

• The decimal digits: 0 1 2 3 4 5 6 7 8 9

• The special characters:

• The formatting characters: space, newline, and tab

These characters may be grouped into larger sequences called white space,
comments, preprocessing tokens, and language tokens. A token is always
formed from the longest possible sequence of characters. For example, the
VIDL compiler interprets the character sequence << as a single token
denoting a left-shift operator rather than two tokens denoting two
less-than operators.

White Space
White space consists of any sequence of formatting characters. White
space occurring outside a character literal or string literal may be used to
control the layout of a VIDL text file but adds no meaning to the specifi-
cation it contains. For example, the newline character may be used to split
the text within a VIDL file into physical lines. There is no limit either to
the length of a line or to the number of lines in the file. The VIDL com-
piler skips all white space characters when checking the syntax of a VIDL
specification.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

a b c d e f g h i j k l m n o p q r s t u v w x y z

_ : ; , . ’ ” \ { } [] () = | ^ & + – * / ~ % > < #

VisualDSP++ 3.0 Component Software Engineering User’s Guide 4-5

VIDL Language Reference

Comments
Comments may be inserted at any point in a VIDL specification and pro-
vide a means to add supplementary documentation. VIDL allows three
notations for normal comments, post-comments, and auto-doc com-
ments, as shown in Figure 4-1.

The body of a normal comment and of an auto-doc comment contains all
the characters between the introductory sequence /* or /** and the termi-
nation sequence */. The body of a post-comment contains all the
characters up to but not including the newline character that terminates
the line. The VIDL compiler discards normal and post-comments, but
retains auto-doc comments for further analysis. Auto-doc comments are
distinguished by the starting sequence /** and are used to provide format-
ted external documentation. For more information, see “Auto-doc
Comments” on page 4-57.

Preprocessing
Every VIDL specification is analyzed by the C/C++ language preprocessor
prior to syntax analysis. The preprocessor performs source file substitu-
tion, macro expansion, and conditional removal of source text using

Figure 4-1. Comment Syntax Diagram

/* Normal comment body */

// Post comment body-

Auto-doc comment body *//**

Lexical Elements

4-6 VisualDSP++ 3.0 Component Software Engineering User’s Guide

preprocessing directives that begin with the character #. For a description
of the C/C++ preprocessor, see the VisualDSP++ 3.0 C/C++ Compiler and
Library Manual for the appropriate DSP platform.

The C++ preprocessor is invoked for all DSP platforms except
ADSP-218x DSPs.

The #include directive is used to control the inclusion of additional
VIDL source text from a secondary input file that is named in the direc-
tive. Two available forms of #include are shown in Figure 4-2.

The file, identified by the file name, is located by searching a list of direc-
tories. When the name is delimited by quote characters, the search begins
in the directory containing the primary input file, then proceeds with the
list of directories specified by the -I command line switch. When the
name is delimited by angle bracket characters, the search proceeds directly
with the directories specified by -I. If the file is not located within any
directory on the search list, the search may be continued in one or more
platform-dependent system directories.

Figure 4-2. #include Syntax Diagram

“ “

#include

VIDL file name

< >VIDL file name

VisualDSP++ 3.0 Component Software Engineering User’s Guide 4-7

VIDL Language Reference

VIDL Language Tokens
The characters in a preprocessed VIDL text file are grouped into
sequences called language tokens. Language tokens identify the names,
keywords, operators, punctuation, numerical and string literals that form
the elements of a VIDL specification.

Names

A name is a sequence of alphanumeric characters and underscores that
contains at least one alphanumeric character, as shown in Figure 4-3.
Names are used to identify constants, types, attributes, methods, method
parameters, interfaces, components, and namespaces. Namespace names
are restricted to names with no underscores. Names are also used to iden-
tify tags within the auto-doc comments. Names may be combined with a
:: separator to form a fully qualified name.

Figure 4-3. Name Syntax Diagram

_

letter

letter

digit

_

Lexical Elements

4-8 VisualDSP++ 3.0 Component Software Engineering User’s Guide

Keywords

A keyword is a name, which is reserved by the VIDL language and may not
be used as an identifier. The set of keywords is as follows.

Punctuation

The following tokens are used for punctuation.

 : :: ; , . { } [] ()

Operators

The following tokens are used as arithmetic operators.

 + - * / % ^ & | ~ << >> == != < <= > >=

aggregatable distinct last_is string

aggregates dm length_is struct

alias double long struct_pack

align enum MRESULT struct_pad

auto extends namespace title

category extern out typedef

char first_is pm union

common float register unique

company fract remotable unsigned

complex_float from requires use

complex_double iid shared version

complex_long_double implements short void

complex_fract in signed volatile

complex_long_fract info singleton

component int size_is

const interface static

VisualDSP++ 3.0 Component Software Engineering User’s Guide 4-9

VIDL Language Reference

Numeric Literals

Numbers and strings are represented by integer, real, and string literals.
They may be combined with appropriate arithmetic operators to form
expressions.

Integer Literals

Integer literals are used to denote integer values using sequences of octal,
decimal, and hexadecimal digits (see Figure 4-4).

• The octal digits: 0 1 2 3 4 5 6 7

• The decimal digits: 0 1 2 3 4 5 6 7 8 9

• The hexadecimal digits:

0 1 2 3 4 5 6 7 8 9 a A b B c C d D e E f F

Figure 4-4. Integer Literal Syntax Diagram

0

octal digit

0X

0x

hex digit

decimal digit

Lexical Elements

4-10 VisualDSP++ 3.0 Component Software Engineering User’s Guide

An integer literal defines a value with the VIDL type int. Decimal values
are distinguished by their first digit, which must not be zero and may be
prefixed with the – (minus) unary operator to form negative values. Exam-
ple of each are: O2274 (octal); 1212, 34 (decimal); 0x4BC, 0X4BC
(hexadecimal).

Real Literals

A real literal defines a value with the VIDL type double. The literal’s form
is shown in Figure 4-5. Examples are: 2.340, 2.34e+3, 2.34E–3.

String Literals

A character literal specifies a value of the VIDL type char. The character
denoted is either a single graphic character or one identified by an escape
sequence, as shown in Figure 4-6. Examples are ‘0’ and ‘A’.

An escape sequence consists of octal digits, hexadecimal digits, or one of
the special escape characters n t b r f v " \ (see Figure 4-7). The escape
letters represent the non-printing formatting characters for newline, hori-
zontal tab, backspace, carriage return, form feed, and vertical tab. The
escape sequences '' and \\ respectively denote the single quote and for-
ward slash characters. There can be at most three octal and two
hexadecimal digits in any escape sequence. Examples are: \xA, \t, \012.

Figure 4-5. Real Literal Syntax Diagram

decimal digit .

decimal digit

e

E

+

-

decimal digit

VisualDSP++ 3.0 Component Software Engineering User’s Guide 4-11

VIDL Language Reference

A string literal specifies a sequence of zero or more characters, each of
which is represented by a graphic or an escape sequence. A double quote
character occurring within the string is represented by the escape sequence
\”. The VIDL compiler maps a string literal to an equivalent representa-
tion and type in the implementation language. Examples are:
“www.analog.com\n”, “the MRESULT value \"MR_OK\" ...\012”.

Figure 4-6. Character Literal Syntax Diagram

Figure 4-7. Escape Sequence Syntax Diagram

Figure 4-8. String Literal Syntax Diagram

‘

‘‘

graphic character ‘

\\

escape-sequence

\

x hex digit

octal digit

esc char

" "

graphic character

escape-sequence

Named Elements

4-12 VisualDSP++ 3.0 Component Software Engineering User’s Guide

Named Elements
A VIDL specification is composed of named elements that describe
namespaces, components, interfaces, interface methods, method parame-
ters, types, and constants. Namespaces, components, interfaces, and
method parameters may be annotated with attributes to provide addi-
tional information for the VIDL compiler.

Every named element within a VIDL specification must have a single
defining definition. The portion of the specification over which a defini-
tion applies is called its scope. There are three kinds of scope that may
occur in a VIDL specification:

• The area of text that is not enclosed by the outermost namespace
declaration forms an unnamed scope called the global scope. The
only named element that can be declared in global scope is a
namespace.

• The area of text enclosed by an interface, namespace, or structure
definition forms a named scope whose name is the namespace,
interface, or structure name.

• The VIDL compiler maintains a named scope that is associated
with a predefined namespace called VCSE.

Every use of a name must be preceded by its definition. Because of circular
dependencies, it may not be possible to fully define a name prior to its use.
In these cases, it is permissible to introduce the name into its scope with a
forward declaration. A name may have more than one declaration within
its scope, but there must be exactly one defining definition. A name with a
declaration in an enclosing scope cannot be used and then redefined in the
current scope.

VisualDSP++ 3.0 Component Software Engineering User’s Guide 4-13

VIDL Language Reference

When a named element is used in a VIDL specification, it may be refer-
enced using its qualified or unqualified name. The unqualified form—
shown in Figure 4-9—is merely the name introduced by the definition.
The qualified form is the unqualified name prefixed with the name of each
scope that contains its definition (see Figure 4-10).

A qualified name of the form ADI::EDSP::IFilter references an element
IFilter that is defined in a scope named EDSP that is, in turn, defined
within an enclosing scope called ADI.

In VIDL, scopes are determined by namespace and interface definitions;
although in practice, only namespace scopes can be nested. By convention,
the global scope is partitioned into distinct company-specific namespaces
that allow every named element to be uniquely identified by its fully qual-
ified name.

The order in which scopes are searched for the declaration of an unquali-
fied name may be altered by the use attribute. For more information, see
“use Attribute” on page 4-55.

Figure 4-9. Unqualified Name Syntax Diagram

Figure 4-10. Qualified Name Syntax Diagram

name

::

name

::

Named Elements

4-14 VisualDSP++ 3.0 Component Software Engineering User’s Guide

Therefore, when an element is referenced with an unqualified name N, the
element is identified by searching the available scopes for its declaration,
using the following rules.

1. Search for the declaration of N in the current scope. If it is not
found, proceed to rule 2.

2. Search the scopes defined by the namespaces in any use attribute
attached to the current scope. If the declaration is not found, pro-
ceed to rule 3.

3. Reapply rules 1 and 2 to all scopes that enclose the current scope. If
the declaration is not found, proceed to rule 4.

4. Search the predefined VCSE scope.

If the declaration of N is not found by rule 4, then the VIDL com-
piler reports an error. For example, if N occurs in scope B that is
contained by scope A that is contained in the global scope, then the
VIDL compiler looks for the declaration of N by searching scopes B,
A, the global scope, and finally the VCSE scope.

When an element is referenced by a qualified name ::S::N or S::N,
the element is identified by searching the scopes named by the
scope prefixes as follows.

5. If the prefix is ::S, then S must identify a scope S declared within
the global scope. If the prefix is S, then S must identify a scope S
found by application of rules 1 to 4.

6. If S is the scope identified by the scope prefix, then the name N
must be declared in S.

7. If the declaration of N found by rule 6 identifies another scope N
and N is followed by the token sequence ::M, then rule 6 is reap-
plied by substituting N for S and M for N.

VisualDSP++ 3.0 Component Software Engineering User’s Guide 4-15

VIDL Language Reference

For example, when the VIDL compiler encounters the qualified name
A::B::N, rules 1 through 4 must identify the scope prefix A:: with the
scope A. Rule 6 must locate the declaration of B within scope A. Then by
rule 7, the declaration of B must identify a scope B; and by rule 6, N must
be declared within B. If the qualified name has the form ::A::B::N, the
scope prefix A must be declared within the global scope.

The VIDL compiler uses the case of each letter to distinguish names that
are otherwise identical. Thus, Region and region are regarded as different
names.

Element Attributes
Element attributes supply additional information about namespaces, com-
ponents, interfaces, method parameters, and structure members to the
VIDL compiler. They are specified by attribute lists that precede the defi-
nition of the element to which they apply. The attribute form and all of
the element attribute forms are shown in Figure 4-11 and Figure 4-12 on
page 4-16.

The VIDL compiler verifies the attributes supplied are appropriate for the
element to which they are applied. In practice, every interface or method
parameter definition must be preceded by at least one interface attribute
or parameter attribute.

The definitions of the attributes appropriate to each element are covered
in the respective sections describing the elements.

Figure 4-11. Attribute Syntax Diagram

[element attribute]

,

Constant Expressions

4-16 VisualDSP++ 3.0 Component Software Engineering User’s Guide

Constant Expressions
An expression is composed of binary or unary operators and their oper-
ands (see Figure 4-13 through Figure 4-16). An expression whose
operands are integer, character literals, or enumeration constants is called
a constant expression. Only constant expressions are allowed in VIDL. The
expression must evaluate to a valid value of integer type.

Figure 4-12. Element Attribute Syntax Diagram

Figure 4-13. Primary Expression Syntax Diagram

namespace attribute

component attribute

interface attribute

parameter attribute

member attribute

struct attribute

qualified name

integer literal

character literal

()expression

VisualDSP++ 3.0 Component Software Engineering User’s Guide 4-17

VIDL Language Reference

Table 4-1 and Table 4-2 on page 4-18 list the unary and binary operators
in order of decreasing precedence.

Figure 4-14. Unary Expression Syntax Diagram

Figure 4-15. Expression Syntax Diagram

Figure 4-16. Constant Expression Syntax Diagram

Table 4-1. Unary Operators Precedence Chart

Operator Name Precedence

+ plus 7

– minus 7

~ bit negation 7

unary operator

primary expression

binary operator

unary expression

expression

Constant Expressions

4-18 VisualDSP++ 3.0 Component Software Engineering User’s Guide

Unary operators have the highest precedence and are evaluated before any
binary operator. Binary operators range from integer-multiplication with
the highest precedence through to bitwise-or with the lowest precedence.
Operators are applied to operands according to the following precedence
rules.

1. If o is any binary operator, u is any unary operator, and X and Y are
operands, then the expression u X o Y is evaluated as
(u X) o (Y).

2. If o1 and o2 are binary operators and X, Y and Z are operands, then
the expression X o1 Y o2 Z is evaluated as (X o1 Y) o2 (Z) if the
precedence level of o1 is greater than or equal to the precedence
level of o2. If the precedence level of o1 is less than the precedence
level of o2, then the expression is evaluated as (X) o1 (Y o2 Z).

These rules may be overridden by inserting brackets. For example, in
i*j|k, evaluation of | before * can be forced by writing the expression as
i*(j|k).

Table 4-2. Binary Operators Precedence Chart

Operator Name Precedence

* multiplication 6

/ integer division 6

% remainder 6

+ addition 5

– subtraction 5

<< left shift 4

>> right shift 4

& bitwise and 3

^ bitwise xor 2

| bitwise or 1

VisualDSP++ 3.0 Component Software Engineering User’s Guide 4-19

VIDL Language Reference

Constant expressions may be used to specify the value of an enumeration
constant, an array bound, or an element attribute. For more information
about the operands, see “Numeric Literals” on page 4-9 and “Enum
Types” on page 4-20. Array bounds are described in “Declarators” on
page 4-26 and element attributes in “Element Attributes” on page 4-15.
Constant expressions are evaluated by the VIDL compiler and only the
resultant numeric value is recreated in the generated files.

Listing 4-1. Example Constant Expressions

 1000

 i – '0'

 bits & 0xF0

 n*m + 12

 (u – v)*(x + y)

 (m >> s)&0xF

 ~(0xF << s)

Types
VIDL provides a set of types for describing scalar and aggregate values. A
type is either an arithmetic base type or a user defined type. Both sets of
types are specified by names or constructs that are similar to those found
in Analog Devices dialects of the C and C++ programming languages. The
set of VIDL types is shown in Figure 4-17 on page 4-20.

The VIDL compiler maps each VIDL type into an equivalent host type in
the implementation language. If there is no equivalent host type, it reports
an error.

Types

4-20 VisualDSP++ 3.0 Component Software Engineering User’s Guide

Base Types
The base types allow integer, fixed-point (fractional), floating-point, and
complex arithmetic data to be specified. They are represented by a type
keyword, which in some cases may be prefixed with a signed or unsigned
qualifier (see Figure 4-18).

Enum Types
An enumeration type specifies the values of one or more enumeration con-
stants. The value of each constant is determined by a constant expression,
or by adding one to the value of the preceding constant if no expression is

Figure 4-17. VIDL Types

VIDL Type

Base Types User-defined Types

Scalar
Types

Aggregate
Types

Enum
Type

Struct
Types

Interface
Types

Array
Types

Integral
Types

Fractional
Types

Floating
Types

Complex
Types

complex_float
complex_double
complex_fract
complex_long_fract
complex_long_double

float
double
long double

fract
long fract

char
short
int
long
MRESULT

VisualDSP++ 3.0 Component Software Engineering User’s Guide 4-21

VIDL Language Reference

supplied. The value of the first constant is either zero or the value of its
constant expression. Figure 4-19 and Figure 4-20 on page 4-22 show the
enumeration type formats.

Figure 4-18. Base Type Syntax Diagram

Figure 4-19. Enumerator Syntax Diagram

signed

unsigned

long

int

short

char

int

long int

float

long double

fract

complex_float

complex_double

complex_long_double

complex_fract

complex_long_fract

const expression=

name

Types

4-22 VisualDSP++ 3.0 Component Software Engineering User’s Guide

An enumerator specifies a name that denotes its value in the scope in
which it is declared. The enumerator may be referenced outside its scope
using its qualified name. An enumeration definition specifies a name that
denotes the enumeration type and may be used within its scope as a type
specifier. The enumeration may be referenced outside its scope by its qual-
ified name. For more information, see “Named Elements” on page 4-12.

Listing 4-2. Enum Example

enum Colors { red = 1, green, blue }

enum MemoryType {

 MemoryPrimary = 1,

 MemorySecondary = 2,

 MemoryExternal = 4,

 MemoryBank = 8,

 MemoryAny = (MemoryPrimary | MemorySecondary |

 MemoryExternal | MemoryBank) }

enum Boundary { top = +10, bottom = -10, left = -20, right = +20 }

Structure Types
A structure type is an aggregate containing a list of components called
members. Each member is defined by a declarator that specifies its name
and type. A structure defines a scope in which no two members may have
the same name. The member declarator form, member list form, and
structure definition form are shown in Figure 4-21 through Figure 4-25.

Figure 4-20. enum Definition Syntax Diagram

enum name { enumerator }

,

VisualDSP++ 3.0 Component Software Engineering User’s Guide 4-23

VIDL Language Reference

In Figure 4-22, the alignment_value is an integer with the same con-
straint as the parameter used in #pragma align, which means the value
must be zero (default alignment) or a power of two. Refer to the Visu-
alDSP++ 3.0 C/C++ Compiler and Library Manual for your target DSP
family or the online Help for more information about pragmas.

Figure 4-21. Member Declarator Syntax Diagram

Figure 4-22. Member Attribute Syntax Diagram

Figure 4-23. Member List Syntax Diagram

Figure 4-24. struct Definition Syntax Diagram

type spec ifie r decla ra to r lis t ;

attribu tes

align (alignment_value)

member declarator

struct attributes

auto-doc comment

struct name { }

member list

Types

4-24 VisualDSP++ 3.0 Component Software Engineering User’s Guide

In Figure 4-25, the alignment_value is an integer with the same con-
straint as the parameter used in #pragma pack and #pragma pad, which
means the value must be zero (default alignment) or a power of two. Refer
to the VisualDSP++ 3.0 C/C++ Compiler and Library Manual for your tar-
get DSP family or the online Help for more information about #pragmas.

A structure definition specifies a name that denotes the structure type and
may be used within its scope as a type specifier. The structure may be ref-
erenced outside its scope by using its qualified name. A structure name
cannot be used as a type specifier within its own list of members.

Structure definitions cannot be nested. However, a member may be
declared with a type specifier that references a previously defined struc-
ture. A structure may be defined with an empty list of members.

Listing 4-3. Struct Example

struct Point{ int x; int y; };

[struct_pad(4)] struct Box {

 Point center;

 [align(2)] int width, height;

};

[struct_pack(1)] struct MemType {

 int m_type;

 int m_life;

 char m_bank[256];

};

Figure 4-25. struct Attributes Syntax Diagram

struct_pack (a lignment_va lue)

struct_pad (a lignmen t_va lue)

VisualDSP++ 3.0 Component Software Engineering User’s Guide 4-25

VIDL Language Reference

Interface Types
An interface defines a name that denotes an interface type, which may be
used within its scope as a type specifier. In particular, an interface may be
used to specify the type of a method parameter. An interface may be refer-
enced outside its scope using its qualified name:

 MRESULT SetErrorReporter([in] IError ErrorReporter);

Interfaces are described in “Standard Interfaces” on page 3-1 and “Inter-
faces” on page 4-28.

Type Specifiers and Definitions
A type is specified in a parameter or member declaration by a type specifier.
A type specifier is either the name of the type or a sequence of keywords
that identifies a base type, as shown in Figure 4-26. The VIDL base types
are described in “Base Types” on page 4-20.

Figure 4-26. Type Specifier Syntax Diagram

base type

qualified name

Declarators

4-26 VisualDSP++ 3.0 Component Software Engineering User’s Guide

A type definition supplies a name for the type, which may be used in its
scope as a type specifier. The type may be referenced outside its scope by
using its qualified name.

Listing 4-4. Typedef Example

 typedef unsigned int u_int;

 typedef ::adi::adsp::IFilter adi_ifilter;

 enum primary { red, green, blue };

Declarators
A declarator specifies the name for a method parameter or a structure
member. When used in a type definition, a declarator provides a name for
the type referenced by the type specifier. It is an error if the name has a
previous definition in the scope of the declarator. The declarator and
declarator list formats are illustrated in Figure 4-28 and Figure 4-29.

When the declarator name is followed by one or more pairs of brackets,
the name is assigned an array type. The element type of the array is pro-
vided by the preceding type specifier, and the number of dimensions is
specified by the number of bracket pairs.

Figure 4-27. typedef Syntax Diagram

struct definition

enum definition

typedef type specifier declarator list

;

VisualDSP++ 3.0 Component Software Engineering User’s Guide 4-27

VIDL Language Reference

The number of elements in an array dimension may be specified by a con-
stant expression. If the size of every dimension is specified, the array is
called a fixed array. If the size of any dimension remains unspecified, the
array is called a conformant array, and the dimension is said to be unsized.

When a declarator is declared with a conformant array type, the corre-
sponding member or parameter declarator must be preceded with a
size_is or string parameter attribute that specifies the number of ele-
ments in the dimension at runtime. These attributes are defined in “size_is
Attribute” on page 4-34 and “string Attribute” on page 4-37.

Example:

 /* Declarators: */

 xref[10]

 cval

 coord[10,20]

 /* Declarator lists: */

 xcord, ycord

 ncoef, coef_a[10], coef_b[10]

Figure 4-28. Declarator Syntax Diagram

Figure 4-29. Declarator List Syntax Diagram

name

[const expression]

declarator

,

Interfaces

4-28 VisualDSP++ 3.0 Component Software Engineering User’s Guide

Interfaces
An interface definition specifies the name, the base interface from which it
is extended, and the body. The name of the interface may be used as a type
specifier, described in “Type Specifiers and Definitions” on page 4-25, or
as an interface name within its scope. The interface may be referenced
outside its scope using its qualified name. An interface may also be
declared and its name used as a type specifier, prior to the interface defini-
tion. However, a warning occurs if the interface is not defined in the same
scope as the declaration.

Figure 4-30 through Figure 4-32 on page 4-28 provide syntax diagrams
for interface declarations and interface definitions.

Figure 4-30. Interface Name Syntax Diagram

Figure 4-31. interface Declaration Syntax Diagram

Figure 4-32. Interface Definition Syntax Diagram

qualified name

interface name ;

attributes interface name extends interface name

{ }method declaration

Auto-doc comment
;

VisualDSP++ 3.0 Component Software Engineering User’s Guide 4-29

VIDL Language Reference

An interface definition must be preceded by an attribute list that contains
an iid attribute (see Figure 4-33). The list may also contain a use
attribute, which is described in “use Attribute” on page 4-55.

An iid attribute supplies an interface identifier, which provides a unique
binary identification code for the interface. The code is a sequence of 32
hexadecimal digits generated by support utilities within the VisualDSP++
environment.

By convention, an interface name must start with the capital letter I. The
name IBase is reserved for the predefined root interface VCSE::IBase.

The base interface specified in an interface definition must either be a pre-
viously defined interface or the root interface VCSE::IBase. Every interface
is a direct or indirect extension of IBase.

The methods provided by an interface are specified by the method decla-
rations within its body in addition to the methods provided by its base
interface. The root interface IBase contains a single method called Get-
Interface, which is provided on all other interfaces. For example, there
are interfaces I1, I2, and I3, where I3 extends I2, which extends I1, which
extends IBase. Suppose that the bodies of I1, I2, and I3 respectively con-
tain declarations for the methods M1, M2, and M3. Then the methods of I1
are {GetInterface, M1}, the methods of I2 are {GetInterface, M1, M2},

Figure 4-33. iid Attribute Syntax Diagram

Figure 4-34. Interface Attributes Syntax Diagram

iid (interface identifier)

iid attribute

use attribute

Interfaces

4-30 VisualDSP++ 3.0 Component Software Engineering User’s Guide

and the methods of I3 are {GetInterface, M1, M2, M3}. If the list of
method declarations in an interface body is empty, then the interface pro-
vides only the methods in its base interface.

The body of an interface defines a scope in which its methods are
declared.

Listing 4-5. Interface Identifier Example

namespace Example {

 enum tagRefNotes { A, B, C, D, E, F, G };

 [iid("51c45584-0a17d611-a5580010-4b7cac83")

 use(::ADI::Dolby)]

 interface IInstrument extends IBase {

 MRESULT Select([in, string] char tune[256]);

 MRESULT Plug([in] IChannel chOut);

 MRESULT Play([in] long ticks);

 };

 [iid("d15d56b8-0a17d611-a5580010-4b7cac83")]

 interface ITuner extends IInstrument {

 MRESULT GetRefNote([in, string] char name[],

 [out] RefNotes note);

 };

 [iid("108f48d3-0a17d611-a5580010-4b7cac83")]

 interface ITunable extends IInstrument {

 MRESULT Retune(void);

 };

}

VisualDSP++ 3.0 Component Software Engineering User’s Guide 4-31

VIDL Language Reference

Methods
A method declaration—shown in Figure 4-35—specifies the name of the
method, the return type, and the type of each method parameter. An error
occurs if the name has already been assigned to another method in the
same interface or in a direct or indirect base interface.

The type specifier for the result type must be the predefined type
VCSE::MRESULT. The implementation of the method provided by a compo-
nent is expected to return a value of this type.

Method Parameters
Method parameters are specified by a list of parameter declarators, as
shown in Figure 4-36 and Figure 4-37 on page 4-32. A method with no
parameters is indicated by omitting the parameter list or supplying the
keyword void. A parameter declarator must include one or more parame-
ter attributes (see Figure 4-38 on page 4-32). The type of the parameter is
supplied by the type specifier. If the const, volatile, or memory type (pm
or dm) qualifiers are supplied, they are included in the C or C++ represen-
tation of the method declaration generated by the VIDL compiler.

Figure 4-35. Method Declaration Syntax Diagram

Figure 4-36. Parameter List Syntax Diagram

type specifier name (method-parameters) ;

parameter declarator

,

Methods

4-32 VisualDSP++ 3.0 Component Software Engineering User’s Guide

Parameter Attributes

A parameter must be preceded by a list of parameter attributes.
Figure 4-39 lists valid parameter attributes; a syntax diagram for each
attribute appears in Figure 4-40 through Figure 4-47. For a description of
each attribute, refer to the appropriate sections.

A parameter’s list of attributes must contain at least one of the direction
attributes ([in] and [out]) to indicate how the parameter’s value is trans-
mitted between the method and its calling environment. Both attributes
[in] and [out] can be specified in a parameter’s list of attributes. The
VIDL compiler uses the direction attributes to construct appropriate
parameter declarations in C or C++. The other attributes are optional, and
their use depends, in part, on the type of the method parameter.

Figure 4-37. Method Parameters Syntax Diagram

Figure 4-38. Parameter Declarator Syntax Diagram

parameter list

void

attributes

const

type specifier

pm

declarator
volatile dm

VisualDSP++ 3.0 Component Software Engineering User’s Guide 4-33

VIDL Language Reference

in Attribute

The in attribute specifies an input parameter value that is transmitted
from the calling environment to the method when the method is called.

If the parameter type is a base type or an enumerated type, the parameter
is passed by value. The const qualifier may also be used to indicate that
the method should not modify the value. If the parameter type is an array,
string, or structure type, the parameter is passed by reference. The VIDL
compiler adds the const qualifier to ensure the parameter value, which is
visible in the calling environment, cannot be changed by the method.

Figure 4-39. Parameter Attribute Syntax Diagram

Figure 4-40. in Attribute Syntax Diagram

in attribute

out attribute

size_is attribute

string attribute

shared attribute

alias attribute

bank attribute

align attribute

unique attribute

in

Methods

4-34 VisualDSP++ 3.0 Component Software Engineering User’s Guide

out Attribute

The out attribute specifies an output parameter value that is transmitted
from the method to the calling environment when the method returns.
The VIDL compiler arranges for the parameter to be passed by reference
to make the final value available in the calling environment. An output
parameter should not be prefixed with a const qualifier: an error occurs if
a parameter qualified with the [out] attribute is also prefixed with a
const qualifier.

If the attribute list contains both in and out attributes, then the parameter
is both an input and output parameter. The parameter value is transmitted
from the calling environment to the method when the method is called,
and then transmitted back from the method to the calling environment
when the method returns. The VIDL compiler arranges for an input-out-
put parameter to be passed by reference.

Any access to the input value of an input-output parameter is per-
formed indirectly because the parameter is passed by reference. If
the parameter has a scalar type, then it may be more efficient to
supply an input parameter, which can be accessed directly, and a
separate output parameter to return the value.

size_is Attribute

The size_is attribute specifies the number of elements in each unsized
dimension of a conformant array. The number of expressions supplied in
the attribute must match the number of unsized dimensions in the array,
and each expression must have an integer type. If the attribute occurs
within a parameter declarator, then the operands of the expression may
include any of the preceding parameters in the method parameter list.

Figure 4-41. out Attribute Syntax Diagram

out

VisualDSP++ 3.0 Component Software Engineering User’s Guide 4-35

VIDL Language Reference

If the attribute occurs within the last member declarator of a structure
type, then the expression may include any of the preceding members in
the structure. In each case, the run-time value of the expression deter-
mines the number of elements in the corresponding unsized dimension.

Currently, the expression must either contain constant operands or
contain a single operand, which is the name of a parameter that
precedes the attribute in the parameter list. These restrictions may
be changed in future releases of the VIDL compiler.

The current VIDL compilers for ADSP-21xx, Blackfin, SHARC,
and TigerSHARC DSPs support the size_is attribute in parame-
ter declarator only. Support for member declarator will be
implemented in future releases.

Example 1:

 MRESULT M([in] int n, [in] int m, [in, size_is(n, m)] int x[][])

When method M is called with first and second parameters 10 and 100, the
parameter x may be accessed as if it had been declared as x[10][100].

Figure 4-42. size_is Attribute Syntax Diagram

(expression)

,

size_is

Methods

4-36 VisualDSP++ 3.0 Component Software Engineering User’s Guide

Example 2:

 MRESULT N([in] int n, [in] int m, [out, size_is(n)] int y[])

When method N is called with first and second parameters 10 and 100, the
parameter y may be accessed as if it had been declared as int y[10].

The information supplied by a size_is attribute is only used when
the array parameter must be physically copied between memory or
address spaces. When a method and its calling environment use the
same memory, the run-time overhead is restricted to passing the
extra parameters, giving the size of each array dimension. In exam-
ple 1, if M was only called with actual parameter d[10][100], then M
could be declared as:

 MRESULT M([in] int x[10][100])

and there would be no need to pass the array dimensions as param-
eters n and m.

A size_is attribute is still required when a method returns an array
as an output parameter. In example 2, n must supply the size of the
actual array to store the values of the formal parameter y. If method
N finds that the array is not large enough, then it has the option of
simply discarding the excess values or returning an error code as the
case may be.

The parameter supplied as the argument to size_is can never be
qualified with the direction attribute [out], even when an array is
returned as an output parameter. So in example 2, the VIDL com-
piler reports an error if n is previously declared with the attributes
[out] or [in,out].

VisualDSP++ 3.0 Component Software Engineering User’s Guide 4-37

VIDL Language Reference

string Attribute

The string attribute indicates that a method parameter or structure
member, which is a character array, is to be treated as a null-terminated
string.

The current VIDL compilers for ADSP-21xx, Blackfin, SHARC,
and TigerSHARC DSPs support the string attribute in a parame-
ter declarator only. Support for the attribute in a member
declarator will be implemented in future releases.

When the array must be copied between memory or address spaces, all
characters up to and including the null are copied.

Example 1:

 MRESULT M([in, string] char x[])

All characters including the terminating null character are supplied to the
parameter x. A parameter declared in this way is called a conformant string.

Example 2:

 MRESULT N([in] int n, [in, size_is(n), string] char y[])

The number of characters (excluding the terminating null character) in
the string y transmitted to callee is the minimum of the value of (n-1) and
the length of the argument string computed by strlen. The transmitted
string is always terminated with a null character. The total number of
characters (including the terminating null character) written to y must not
exceed the value of n.

Figure 4-43. string Attribute Syntax Diagram

string

Methods

4-38 VisualDSP++ 3.0 Component Software Engineering User’s Guide

Example 3:

 MRESULT O([in] int n, [out, size_is(n), string] char z[])

The number of characters (excluding the terminating null character) in
the string z returned to the caller is the minimum of the value of (n-1)
and the length of the argument string computed by strlen. The returned
string is always terminated with a null character.

Examples 2 and 3 imply a conformant string parameter is always
null-terminated.

A conformant string parameter declared with an out attribute must
always include a size_is attribute.

shared Attribute

The shared attribute indicates an array or structure passed as a method
parameter is located in a memory region accessible to both the method
and its calling environment.

When the method and its caller run on different processors, the operations
that copy the parameter from one processor memory to the other can be
avoided. When the method and its calling environment are located on the
same processor, or the parameter has a simple arithmetic base type, the
shared attribute has no effect.

Example:

 MRESULT M([in] int n, [in, size_is(n), shared] int x[])

Within M, any access to x is an access to the memory region occupied by
the actual parameter.

Figure 4-44. shared Attribute Syntax Diagram

shared

VisualDSP++ 3.0 Component Software Engineering User’s Guide 4-39

VIDL Language Reference

alias Attribute

The alias attribute indicates an array or structure passed as an input
parameter is to be treated as an alias of another input parameter with the
same type, size, and shape.

Example 1:

 MRESULT M([in] int x[64], [in, alias] int y[64])

When the method M is called with M(a, b), where a and b are different
arrays, a copy of each array is made and the alias directive has no effect.
When M is called with M(a, a), the alias directive causes a single copy of
a to x and ensures that all accesses to y are accesses to x. When the method
and its calling environment are located on the same processor, the
attribute has no effect.

Example 2:

 MRESULT N([in] int x[64], [in, out, alias] int y[64])

When the method N is called with N(a, a), a single copy of a is made to
the parameter x, and all accesses to y become accesses to x. Moreover,
when any values of x are modified within N, these modified values are
returned as elements of the out parameter y.

Figure 4-45. alias Attribute Syntax Diagram

alias

Methods

4-40 VisualDSP++ 3.0 Component Software Engineering User’s Guide

bank Attribute

The bank attribute allows a method parameter to be associated with a
named memory bank.

When two parameters are associated with different banks, their elements
may be accessed without possibility of memory conflicts.

 MRESULT M([in, bank(“B1”)] int x[64], [in, bank(“B2”)] int y[64])

The parameters x and y of the method M are associated with different
memory banks called “B1” and “B2”, and the C or C++ compiler will
assume no conflicts occur when their elements are accessed. It is the call-
ing environment’s responsibility to ensure this is, in fact, the case for the
actual arrays supplied to the parameters x and y.

The bank attribute is not supported on ADSP-21xx DSPs.

align Attribute

The align attribute allows the actual alignment for an array to be speci-
fied in architectural addressing units.

On many processors, an array is word or double word aligned even when
the natural alignment associated with the element type of an array is
smaller. Use of the align attribute allows the true array alignment to be

Figure 4-46. bank Attribute Syntax Diagram

Figure 4-47. align Attribute Syntax Diagram

bank)(string literal

align (const expression)

VisualDSP++ 3.0 Component Software Engineering User’s Guide 4-41

VIDL Language Reference

communicated to the C or C++ compiler. This information is often criti-
cal in enabling vector loop optimizations. By default, parameters are
assumed to have natural alignment unless qualified by the align attribute.
The value of the constant expression must be zero (default alignment) or a
power of two. A value of zero means the alignment of the corresponding
argument is unknown.

 MRESULT M([in, align(4)] short x[200])

In the example (which is for a byte addressable architecture, such as the
ADSP-2153x DSP), the align(4) attribute indicates the array x is word
aligned, although the short data type is half-word aligned.

While the align attribute is supported on the ADSP-21xx family
of processors, it only has relevance as a means of documenting that
an in array needs to be declared as aligned in the callee program
unit for optimal or correct performance within the method.

Components
A component definition specifies a component in terms of its name,
attributes, and the interfaces it provides. A component may provide inter-
faces by direct implementation, or it may elect to aggregate interfaces
provided by other components. The internal details of the implementa-
tion are not part of the component’s specification, but dependencies on
other components are normally recorded by the component’s attributes.

Figure 4-48 through Figure 4-51 on page 4-43 provide syntax diagrams
for a component’s declaration and definition.

A component may be declared prior to its full definition. This is a nota-
tional convenience that allows a component’s name to be introduced prior
to its use in an aggregates clause or a requires attribute, which are defined

Components

4-42 VisualDSP++ 3.0 Component Software Engineering User’s Guide

later in this section. A component definition or declaration introduces a
name for the component into the current scope. The component may be
referenced outside its scope by using its qualified name.

A component definition contains an implements clause, which lists the
component’s external interfaces. The interface list must contain every
interface provided by the component—either by direct implementation or
aggregation from another component. Each aggregated interface must be
identified in a separate aggregates clause (see Figure 4-50), which identi-
fies the aggregatable component providing the interface. Where an
interface extends another interface, the implements and aggregates
clauses need only contain the name of the derived interface. The extended
interfaces are automatically supported by the component.

Figure 4-48. Component Name Syntax Diagram

Figure 4-49. Component Declaration Syntax Diagram

Figure 4-50. Component Aggregation Syntax Diagram

qualified name

component ;name

aggregates interface name from component name ;

,

VisualDSP++ 3.0 Component Software Engineering User’s Guide 4-43

VIDL Language Reference

Example:

namespace ADI {

 component CFiddlePlayer;

 component CGuitarPlayer;

 component CKeyBoardPlayer;

 component CBand implements

 IBand, IFiddle, IGuitar, IKeyBoard {

 aggregates IFiddle from CFiddlePlayer;

 aggregates IGuitar from CGuitarPlayer;

 aggregates IKeyBoard from CKeyBoardPlayer;

 };

};

In the previous example, the components CFiddlePlayer, CGuitarPlayer,
and CKeyBoardPlayer are declared, and the component CBand is defined.
The CBand component provides four interfaces: IBand, IFiddle, IGuitar,
and IKeyBoard. The first interface is provided directly by CBand itself; the
remaining three are aggregated from the previously declared components.

Figure 4-51. Component Definition Syntax Diagram

component name

implements interface name

{ } ;

,

attributes

aggregation

Components

4-44 VisualDSP++ 3.0 Component Software Engineering User’s Guide

The interfaces listed in the implements clause and each of their base
interfaces may be requested in calls to the component’s Create fac-
tory function and to the GetInterface method of the IBase root
interface.

Component Attributes
A component definition must supply category, component, and title
attributes. The set of component attributes is listed in Figure 4-52. Each
attribute is briefly described in the following sections.

Figure 4-52. Component Attribute Syntax Diagram

aggregatable attribute

category attribute

common attribute

company attribute

distinct attribute

info attribute

requires attribute

version attribute

title attribute

singleton attribute

VisualDSP++ 3.0 Component Software Engineering User’s Guide 4-45

VIDL Language Reference

aggregatable Attribute

The aggregatable attribute identifies a component whose interfaces may
be aggregated by another component.

A component referenced in an aggregates clause must be defined to be
aggregatable (see Figure 4-53). For more information about the aggre-
gates clause, refer to “Components” on page 4-41.

namespace ADI {

 [aggregatable,…] component CFiddlePlayer implements IFiddle;

 [aggregatable,…] component CGuitarPlayer implements IGuitar;

 [aggregatable,…] component CKeyBoardPlayer implements IKeyBoard;

};

category Attribute

The category attribute allows a component to be assigned to one or more
component categories.

Figure 4-53. aggregatable Attribute Syntax Diagram

Figure 4-54. category Attribute Syntax Diagram

aggregatable

category (string-literal

,

)

Components

4-46 VisualDSP++ 3.0 Component Software Engineering User’s Guide

Categories provide hierarchical classification schemes for components
based on their functionality. Categories have multipart names that resem-
ble file store path names. The following component categories are
predefined.

 AUDIO

 AUDIO\MONO

 AUDIO\STEREO

 VIDEO

The category name is propagated into the component’s documentation
and packaging information generated by the VIDL compiler. A compo-
nent definition must provide a category attribute.

 [category("AUDIO"), …] component CDolby implements IDolby;

common Attribute

The common attribute enables components, which also have the distinct
attribute, to have a common area for instance storage. The distinct inter-
face methods share the same this/__this pointer for C/C++
implementations.

Figure 4-55. common Attribute Syntax Diagram

common

VisualDSP++ 3.0 Component Software Engineering User’s Guide 4-47

VIDL Language Reference

company Attribute

The company attribute identifies the company that developed the compo-
nent or that acts as the component vendor.

The company name is propagated into the component’s documentation
and packaging information generated by the VIDL compiler. A compo-
nent definition must provide a company attribute.

 [category("AUDIO"), company("Analog Devices Inc"), …]

 component CDolby implements IDolby;

distinct Attribute

The distinct attribute causes the VIDL compiler to generate distinct
shells for components, which implement interfaces with methods whose
names and parameter lists are identical.

Suppose we have the following (partial) specification.

 interface I1 extends IBase {

 MRESULT f([in] int I);

 MRESULT g([in] int J);

 };

 interface I2 extends IBase {

 MRESULT f([in] int I);

Figure 4-56. company Attribute Syntax Diagram

Figure 4-57. distinct Attribute Syntax Diagram

company (string-literal)

distinct

Components

4-48 VisualDSP++ 3.0 Component Software Engineering User’s Guide

 MRESULT h([in] int K);

 };

 component C implements I1, I2;

The interfaces I1 and I2 each contain a method called f, which have iden-
tical parameter list signatures (when reproduced in C or C++), and a
method called GetInterface, which is provided by IBase. When a compo-
nent C implements both I1 and I2, the VIDL compiler generates a single
shell that contains four methods: f, g, h, and GetInterface. Within this
shell, the functions f and GetInterface are shared by both interfaces.
When the component C is labeled distinct, the VIDL compiler generates
separate implementation shells for C in which every method of the inter-
faces I1 and I2, except GetInterface, has a distinct method function. In
the previous example, if C is labeled distinct, then the shell for C’s imple-
mentation of I1 contains method functions I1_f and I2_g, and the shell
for C’s implementation of I2 contains method functions I2_f and I2_h.
There is a single implementation for GetInterface that is shared by each
shell. The distinct implementation of such methods is transparent to the
user of a component: I1_f will be invoked if accessed via an I1 interface
pointer and I2_f will be invoked via an I2 pointer.

If method f, in the above example, had a different signature in interface I1
to that in interface I2, then separate methods are generated regardless of
whether the distinct attribute is used. For a C++ component, this is han-
dled implicitly by the C++ compiler, while for a C component, the VIDL
compiler generates separate methods as above.

VisualDSP++ 3.0 Component Software Engineering User’s Guide 4-49

VIDL Language Reference

info Attribute

The info attribute allows supplementary information about a component
to be supplied as a text string.

The string may enclose a URL used to link to a webpage provided by the
component vendor. The URL is propagated into the component’s docu-
mentation and packaging information generated by the VIDL compiler.

 [category("AUDIO"),

 company("Analog Devices Inc",

 info("http://www.adi.com/dsp/components/audio"), …]

 component CDolby implements IDolby;

 requires Attribute

The requires attribute allows a component to specify other components
on which it depends. This information is reproduced in the component
packaging manifest to ensure that all dependencies on other components
are met when installing a component package.

Typically, this attribute is used when a component relies on other compo-
nents for some aspect of its implementation. For example, it may
aggregate interfaces from other components or delegate method calls to

Figure 4-58. info Attribute Syntax Diagram

Figure 4-59. requires Attribute Syntax Diagram

info (string-literal)

requires (component version)

,

Components

4-50 VisualDSP++ 3.0 Component Software Engineering User’s Guide

other components. The required components are specified by name,
optionally followed by a version check, which constrains the acceptable
versions of the required component. In the case of aggregated compo-
nents, a requires attribute is only necessary if compatibility with a
particular version number is required. Otherwise, the requirement for any
version of the aggregated component will automatically be included in the
component packaging manifest.

 [requires(ADI::CQuickSort), …] CSort implements ISort;

 [requires(CQuickSort=2.0.0), …] CSort implements ISort;

 [requires(::ADI::CQuickSort >=2.0.2), …] CSort implements ISort;

The first decimal digit must be greater or equal to 1.

Figure 4-60. Component Version Syntax Diagram

Figure 4-61. Version Number Syntax Diagram

component name

<=

>=

= version number

version number

version number

decimal digit . decimal digit . decimal digit

VisualDSP++ 3.0 Component Software Engineering User’s Guide 4-51

VIDL Language Reference

singleton Attribute

The singleton attribute specifies that only a single instance of the com-
ponent can exist at any one time and allows the component
implementation to be tailored accordingly. The component’s Create fac-
tory function returns an error code if it has been called while an instance
already exists.

 [singleton, …] component CMemAlloc implements IMemory;

title Attribute

The title attribute provides a descriptive title for the component being
used by the VCSE Component Manager.

The attribute is propagated into the component’s documentation and
packaging manifest generated by the VIDL compiler. A component defi-
nition must provide a title attribute.

[title("Dolby 5.1 Decoder"),…] component CDolby implements IDolby;

Figure 4-62. singleton Attribute Syntax Diagram

Figure 4-63. title Attribute Syntax Diagram

singleton

title (string-literal)

Components

4-52 VisualDSP++ 3.0 Component Software Engineering User’s Guide

version Attribute

The version attribute allows a component version to be specified. The
version number is copied into the component’s documentation and pack-
aging information generated by the VIDL compiler.

If a component does not have an explicit version attribute, then its ver-
sion number is set to 0.0.0. The component’s version number is described
on page 4-49.

 [version(2.0.2)

 category("AUDIO"),

 company("Analog Devices Inc",

 title("Dolby 5.1 Decoder"),

 info("http://www.adi.com/dsp/components/audio")]

 component CDolby implements IDolby;

Figure 4-64. version Attribute Syntax Diagram

version (version number)

VisualDSP++ 3.0 Component Software Engineering User’s Guide 4-53

VIDL Language Reference

Namespaces
A namespace defines a scope containing the definitions of VIDL types,
interfaces, components, and nested namespaces. The name of the
namespace may be used as a scope prefix in a qualified name (see
Figure 4-65) or in a use attribute. For information about qualified names,
see “Named Elements” on page 4-12.

Namespaces provide a convenient way to partition the global scope in
order to avoid name clashes. All named VIDL elements must be enclosed
(directly or indirectly) by a namespace.

Namespaces may have multiple cumulative declarations, provided they
occur within the same enclosing scope. The namespace declaration and
definition forms are shown in Figure 4-66 and Figure 4-67 on page 4-54.

Figure 4-65. Namespace Name Syntax Diagram

Figure 4-66. Element Definition Syntax Diagram

qualified name

auto-doc comment

namespace declaration

type definition

interface declaration

interface definition

component declaration

component definition

Namespaces

4-54 VisualDSP++ 3.0 Component Software Engineering User’s Guide

 /* ACME's types */

 namespace ACME {

 typedef unsigned int NType;

 typedef int SType;

 };

 …

 …

 // ACME's interfaces

 namespace ACME {

 [iid("10768745-271ad611-a55c0010-4b7cac83")]

 interface ISort extends IBase {

 MRESULT SetData([in] NType N,

 [in,size_is(N)] SType data[]);

 MRESULT GetData([in] Ntype N,

 [out,size_is(N)] Stype data[]);

 MRESULT Sort(void);

 };

 };

 ...

 /* ACME's components */

 namespace ACME {

 [version(1.5.0), company(‘ACME Software Inc’), …]

 component CQuickSort implements ISort;

Figure 4-67. Namespace Declaration Syntax Diagram

attributes

namespace name

{

element definition

} ;

VisualDSP++ 3.0 Component Software Engineering User’s Guide 4-55

VIDL Language Reference

 [version(1.5.0), company(‘ACME Software Inc’), …]

 component CBubbleSort implements ISort;

 };

In practice, each declaration of the ACME namespace is located within a sep-
arate VIDL file, which may be incorporated into other specifications via
the #include preprocessor directive. The names defined in the ACME
namespace can be accessed from any other namespaces using a qualified
name. For example, company Analog Devices, Inc. may extend the
ACME::ISort interface but delegate the implementation of the ISort
methods to ACME::CQuickSort. The dependency is recorded as follows.

namespace ADI {

 interface IProcess extends ::ACME::ISort {

 MRESULT ProcessData(void);

 }

 [version (2.0.0), requires(CQuickSort>=1.5.0),

 company("Analog Devices Inc"), …]

 component CProcess implements IProcess;

};

use Attribute
A namespace definition can include a use attribute employed to control
the order in which namespace scopes are searched when locating the defi-
nition of a name. The attribute’s form is shown in Figure 4-68.

Figure 4-68. use Attribute Syntax Diagram

use (namespace name)

,

Namespaces

4-56 VisualDSP++ 3.0 Component Software Engineering User’s Guide

When a name n is used in a namespace X, the VIDL compiler searches for
the definition of n in X. If the name is not defined in X, the VIDL compiler
continues the search for n in the namespaces listed in any use attribute
attached to X. If the use attribute takes the form [use(Y, Z)], Y is
searched before Z. If the name is not found in either Y or Z, the search con-
tinues in the scope that encloses namespace X. If there is no enclosing
scope, the VIDL compiler searches the predefined namespace VCSE.

A use attribute can be applied in the previous example to allow
::ACME::CQuickSort and ::ACME::ISort to be referred to by their unqual-
ified names:

 [use(::ACME)] namespace ADI {
 interface IProcess extends ISort {

 MRESULT ProcessData(void);

 }

 [version (2.0.0), requires(::ACME::CQuickSort>=1.5.0),

 company("Analog Devices Inc")]

 component CProcess implements IProcess;

 };

When a company tag is used to qualify a name or as a parameter in the use
attribute, the fully qualified name is preferable to the unqualified one.

The use attributes may also be used to override the normal order in which
nested scopes are searched.

 namespace A {

 typedef unsigned int T;

 namespace B {

 typedef int T;

 namespace C {

 /* Search scopes C, B, A, VCSE */

 typedef T TC; /* finds B::T */ };

 [use(A,B)] namespace D {

 /* Search scopes D, A, B, C, VCSE */

VisualDSP++ 3.0 Component Software Engineering User’s Guide 4-57

VIDL Language Reference

 typedef T TD; /* finds A::T */
 };

 };

 };

In the definition of type TC in namespace C, the definition of T is located
by searching the scopes C, B, A, and then VCSE. The definition is located in
the enclosing namespace B; therefore, TC has type int. In the definition of
type TD in namespace D, the definition of T is located by searching the
scopes D, A, B, C, and then VCSE. The definition is located in the outer
namespace A; hence, TD has type unsigned int.

Auto-doc Comments
Auto-doc comments are stylized VIDL remarks used by the VIDL com-
piler to generate HTML documentation for components, interfaces, and
methods. An auto-doc comment is distinguished by its opening /**
marker followed by blanks and end of line. There must be a corresponding
closing marker */ that occurs on a following line. Each intermediate line
must start with an *, optionally preceded with white space.

Auto-doc comments contain an overview description of the component,
interface, or method to which they apply, followed by one or more tagged
paragraphs. The descriptive text within the comment may contain embed-
ded HTML directives. Auto-doc tags are prefixed with an @ character and
allow attributes of the component, interface, or method to be clearly doc-
umented and tabulated in HTML. In the following example, the first
auto-doc comment provides a summary of the ISort interface, and the
remaining comments provide documentation for each of the methods.

namespace ADI {

/**

 * The ISort Interface provides a generic sorting capability for

 * floating-point data. The data to be sorted must be supplied by

 * calling SetData before attempting to invoke the Sort method.

Auto-doc Comments

4-58 VisualDSP++ 3.0 Component Software Engineering User’s Guide

 * Once Sort has been invoked, the sorted data can be retrieved

 * by the invoking GetData.

 */

 [iid("20aa3d29-4c1ad611-a55c0010-4b7cac83")]

 interface ISort extends IBase {

 /**

 * The SetData method supplies an array of float data values

 * to be sorted.

 * @param N An input parameter specifying the number of

 * elements in array parameter data.

 * @param data An input parameter supplying the data array

 * be sorted. The corresponding actual array

 * argument must have at least N elements.

 * @return MR_OK if the method is successful. An error

 * code if the method fails.

 */

 MRESULT SetData([in] int N, [in, size_is(N)] float data[]);

 /**

 * The GetData method retrieves an array of float data

 * values that have been sorted. Must be preceded by a call

 * to Sort.

 * @param N An input parameter specifying the number of

 * elements in array parameter data.

 * @param data An output parameter to hold the data array
 * that has been sorted. The corresponding actual

 * array argument must have at least N elements.

 * @return MR_OK if the method is successful. An

 * error code if the method fails.

 */

 MRESULT GetData([in] int N, [out, size_is(N)] int data[]);

 /**

 * The Sort method applies a sorting algorithm to the data

VisualDSP++ 3.0 Component Software Engineering User’s Guide 4-59

VIDL Language Reference

 * supplied by a previous call to SetData. The sorting

 * algorithm is provided by the interface implementation.

 * @return MR_OK if the method successful. An error

 * code if the method fails.

 */

 MRESULT Sort(void);

 };

 };

The VIDL compiler accepts the following auto-doc tags.

@param Applies to methods and provides a description of a
method parameter that includes the name and the
nature of the values that are transmitted. incorpo-
rated into other specifications via the #include
preprocessor directive.

@return Applies to methods and provides a description of
the values of the type MRESULT returned by the
method.

@example Applies to interfaces and provides a fragment of
example code showing how the methods are called.

@author Applies to components allowing authorship to be
attributed to a named individual or organization.

@keyword Supplies a keyword to the index, which is compiled
into the HTML based help information. The tag
may be included into any auto-doc comment. The
keyword is supplied after the tag.

Specifications

4-60 VisualDSP++ 3.0 Component Software Engineering User’s Guide

Specifications
A VIDL specification is a sequence of namespace declarations and
auto-doc comments. Each namespace defines a scope that may contain the
definitions of nested namespaces, components, interfaces, constants, and
types, as well as their related auto-doc comments. The specification for-
mat is presented in Figure 4-69.

Every component, interface, constant, and type must be declared within a
namespace scope.

/**

 * ::ADI is the company namespace for Analog Devices, Inc.

 */

namespace ADI {

 /**

 * The CQuickSort component provides an aggregatable

 * implementation of the ADI::ISort interface using a

 * quick-sort algorithm.

 */

 [title("QuickSort"),

 category("SORT"),

 company("Analog Devices, Inc"),

 aggregatable,

 version(1.1.0)]

 component CQuickSort implements ISort;

};

Figure 4-69. VIDL Specification Syntax Diagram

auto-doc comment

namespace declaration

VisualDSP++ 3.0 Component Software Engineering User’s Guide 5-1

5 VIDL COMPILER COMMAND
LINE INTERFACE

This chapter describes how the VIDL compiler is invoked from the com-
mand line, the various types of files processed and generated by the
compiler, and the option (switch) set used to tailor its operation.

The chapter contains:

• “Running VIDL Compiler” on page 5-1

• “Processing VIDL Files” on page 5-18

• “Generating Source Files” on page 5-24

The VIDL compiler processes the supplied VIDL source file and generates
header files for each specified interface and an implementation shell for
each specified component. Each generated header file can be processed by
the assembler and C or C++ compiler.

The VIDL compiler lets you specify the language in which the implemen-
tation shells are generated. The default implementation language is C;
shells in C++ or assembly can also be generated for the platforms that sup-
port these languages.

Note that ADSP-218x DSP compilers do not support C++.

Running VIDL Compiler
Use the following syntax for the VIDL compiler command line.

 vidl_family [-switch [-switch …]] sourcefile]

Running VIDL Compiler

5-2 VisualDSP++ 3.0 Component Software Engineering User’s Guide

where:

• vidl_family is the name of the VIDL compiler (.DXE). Select the
name that corresponds to your target DSP family:

• source_file is the name of the VIDL file to be preprocessed and
compiled.

The file name can include the drive, directory, file name, and file
name extension. The compiler supports both Win32- and
POSIX-style paths, using either forward or back slashes as the direc-
tory delimiter. The compiler also supports UNC path names
starting with two slashes and a network name.

If the file name contains spaces, enclose it in double quotes: “long
file name.idl”. The VIDL compiler expects the file extension to
be .IDL, ignoring any files that do not have this extension. The
compiler only processes the first .IDL file it encounters, ignoring all
subsequent files with the same extension.

• -switch is the name of the switch to be processed. The compiler
has many switches that control the generated code and the opera-
tion of the compiler. Command line switches are case sensitive,
meaning that -v is not the same as -V.

Double quotes can be used to embed spaces in switches, and a \
(backslash) may be used to pass a double quote to the compiler as
part of a switch.

VIDL Compiler DSP Family

vidlblkfn ADSP-2153x Blackfin DSPs

vidl218x ADSP-218x DSPs

vidl219x ADSP-219x DSPs

vidlts ADSP-TSxxx TigerSHARC DSPs

vidl21k ADSP-21xxx SHARC DSPs

VisualDSP++ 3.0 Component Software Engineering User’s Guide 5-3

VIDL Compiler Command Line Interface

Each of the following command lines,

 vidlblkfn -c++ -trace source.idl

 vidl219x -c++ -trace source.idl

 vidl218x -c++ -trace source.idl

 vidlts -c++ -trace source.idl

 vidl21xxx -c++ -trace source.idl

runs the VIDL compiler for the appropriate DSP family with:

Each of the following command lines,

 vidlblkfn -hdr -Ic:\interfaces interface.idl

 vidl219x -hdr -Ic:\interfaces interface.idl

 vidl218x -hdr -Ic:\interfaces interface.idl

 vidlts -hdr -Ic:\interfaces interfaces.idl

 vidl21k -hdr -Ic:\interfaces interfaces.idl

runs the VIDL compiler for the appropriate DSP family with:

-c++ Elects the generation of C++ component shell files and any associated
header file(s). vidl218x treats the -c++ option as an error because
there is no C++ compiler for ADSP-218x DSPs.

-trace Selects the inclusion of debug code in the component’s source files.

source.idl Names the file containing the VIDL specification to process.

-hdr Selects the generation of only the header files for any interfaces specified
in the VIDL file.

-Ic:\interfaces Specifies the directory c:\interfaces is to be searched when the pre-
processor is including files.

interface.idl Names the file containing the VIDL specification to process.

Running VIDL Compiler

5-4 VisualDSP++ 3.0 Component Software Engineering User’s Guide

When providing an input or output file name as an optional parameter,
use the following guidelines.

• Use a file name, including the extension, with either an unambigu-
ous relative path or an absolute path. A file name with an absolute
path includes the drive, directory, file name, and extension.
Enclose long file names within double quotes: “long file
name.idl”.

• Verify the compiler is using the correct file. If you do not provide
the complete file path as part of the parameter or add additional
search directories, the VIDL compiler looks for input in the cur-
rent project directory.

The VIDL compiler defines the preprocessor macros listed in Table 5-1 to
have the value 1.

VIDL Compiler Switches
This section describes the command line switches used when compiling
VIDL source files. A summary of the switch set, organized by type, is in
Table 5-2, Table 5-3, and Table 5-5. A more in-depth description of each
switch, listed in alphabetical order, follows the tables.

Table 5-1. Preprocessor Macros

Compiler Preprocess Macros

vidlblkfn __ADSPBLACKFIN__

vidl218x __ADSP218X__

vidl219x __ADSP219x__

vidlts __ADSPTS__

vidl21k __ADSP21000__

VisualDSP++ 3.0 Component Software Engineering User’s Guide 5-5

VIDL Compiler Command Line Interface

Table 5-2. VIDL Blackfin Compiler Selection Switches1

Switch Reference Description

-21532 on page 5-8 Generates code for ADSP-21532 DSPs.

-21535 on page 5-8 Generates code for ADSP-21535 DSPs.

1 Only one of these is permitted on a command line.

Table 5-3. VIDL TigerSHARC Compiler Selection Switches1

Switch Reference Description

-TS101 on page 5-9 Generates code for ADSP-TS101 DSPs.

1 Only one of these is permitted on a command line.

Table 5-4. VIDL SHARC Compiler Selection Switches1

Switch Reference Description

-21k on page 5-8 Generates code for ADSP-210xx DSPs.

-211xx on page 5-8 Generates code for ADSP-211xx DSPs.

1 Only one of these is permitted on a command line.

Table 5-5. VIDL Compiler Common Switches

Switch Reference Description

-@ filename on page 5-7 Reads command line input from the specified
file.

-accept-any-include-file on page 5-9 Accepts #include statements that specify any
file type and not just .idl.

-all-idl on page 5-9 Generates headers and implementation shells for
interfaces and components in all nested
included files.

-asm on page 5-9 Generates assembly based implementation
shells, overrides the default (C based shells).

Running VIDL Compiler

5-6 VisualDSP++ 3.0 Component Software Engineering User’s Guide

-c++ on page 5-10 Generates C++ based implementation shells,
overrides the default (C based shells).

-copyright filename on page 5-10 Specifies copyright text to be inserted in gener-
ated source files.

-cppflags flags on page 5-10 Passes additional information to the C prepro-
cessor.

-Dmacro[=def] on page 5-10 Defines the named macro(s).

-dryrun on page 5-11 Displays, but does not perform, the main driver
actions.

-generic on page 5-11 Generates code suitable for compilation with
C/C++ compilers other than those supplied with
VisualDSP++.

-harness on page 5-11 Generates a test program for the component.

-hdr on page 5-12 Generates interface headers; does not generate
component shells.

-h[elp] on page 5-12 Outputs a list of command line switches with
brief descriptions.

-Idirectory on page 5-12 Appends the specified directory to the standard
search path.

-mcd on page 5-13 Generates implementation shells for multiple
components.

-M on page 5-12 Generates make rules only; does not compile.

-MM on page 5-13 Generates make rules and compiles.

-no-adoc on page 5-13 Does not generate HTML documentation files.

-no-vla on page 5-13 Does not generate variable-length arrays in C
implementation shells.

-no-xml on page 5-14 Does not generate the XML component mani-
fest.

Table 5-5. VIDL Compiler Common Switches (Cont’d)

Switch Reference Description

VisualDSP++ 3.0 Component Software Engineering User’s Guide 5-7

VIDL Compiler Command Line Interface

-@ filename

The -@ filename switch specifies that the contents of the named file,
which holds driver options, are to be read and placed directly after the -@
switch on the command line.

-overwrite on page 5-14 Allows already existing test harness program to
be overwritten.

-path-def path on page 5-14 Specifies an alternative driver configuration file.

-path-html directory on page 5-14 Specifies the location of HTML documentation
template files.

-path-install directory on page 5-15 Directs the VIDL compiler to use the specified
directory as the base directory for all VIDL
tools, include directories, and configuration
files.

-path-output directory on page 5-15 Specifies the location of non-temporary files.

-path-temp directory on page 5-15 Specifies the location of temporary files gener-
ated by the driver.

-path-tool path on page 5-14 Specifies the location of the named compilation
tool.

-proc processorID on page 5-15 Generates code for the specified Blackfin,
SHARC, or TigerSHARC processor. There is no
equivalent switch for ADSP-21xx DSPs.
Only one -proc is permitted on a command
line.

-save-temps on page 5-16 Saves intermediate compilation files.

-trace on page 5-16 Generates debug code.

-Umacro on page 5-16 Undefines the named macro(s).

-v[ersion] on page 5-17 Displays version information of the driver.

-verbose on page 5-17 Displays command line information for all
invoked compilation tools.

Table 5-5. VIDL Compiler Common Switches (Cont’d)

Switch Reference Description

Running VIDL Compiler

5-8 VisualDSP++ 3.0 Component Software Engineering User’s Guide

The specified filename argument normally contains only valid options
but may also contain source file names. Spaces, tabs, or newline characters
can separate the driver options. Any line containing a # indicates the
remainder of the line is a comment.

When the argument to this switch is a directory, any VIDL source files
within the given directory are to be placed on the command line.

-21532

The -21532 switch directs the vidlblkfn VIDL compiler to generate code
suitable for the ADSP-21532 DSP. When compiling with this switch, the
__ADSPBLACKFIN__ preprocessor macros is 1.

-21535

The -21535 switch directs vidlblkfn VIDL compiler to generate code
suitable for the ADSP-21535 DSP. When compiling with this switch, the
__ADSPBLACKFIN__ preprocessor macro is 1.

-21k

The -21k switch directs the vidl21k VIDL compiler to generate code suit-
able for the ADSP-210xx DSPs. When compiling with this switch, the
__ADSP_21000__ preprocessor macro is 1.

-211xx

The -211xx switch directs the vidl21k VIDL compiler to generate code
suitable for the ADSP-211xx DSPs. When compiling with this switch, the
__ADSP_21000__ preprocessor macro is defined as 1.

VisualDSP++ 3.0 Component Software Engineering User’s Guide 5-9

VIDL Compiler Command Line Interface

-TS101

The -TS101 switch directs the vidlts VIDL compiler to generate code
suitable for the ADSP-TS101 DSP. When compiling with this switch, the
__ADSPTS__ preprocessor macro is 1.

-accept-any-include-file

The -accept-any-include-file switch overrides the default behavior of
the VIDL compiler by including (#include) other file types, such as .H, in
addition to .IDL files.

By default, the VIDL compiler only #include .IDL files. The
-accept-any-include-file requests the VIDL compiler to relax this
restriction and include other file types, such as .H files.

-all-idl

The -all-idl (generate sources for all VIDLs) switch directs the compiler
to generate interface header files and component shells for interfaces and
components defined in any included files, as well as the main VIDL
source file. By default, the VIDL compiler generates only interface header
files and component shells for interfaces and components defined directly
in the main VIDL source file.

-asm

The -asm (generate assembly shells) switch specifies assembly language
shells are to be generated for any component defined directly in the VIDL
file. Interface header files are also to be generated for each interface
defined directly in the main VIDL file.

When neither -asm or -c++ is specified, the compiler generates C language
shells.

The -asm switch cannot be used in conjunction with -c++ or -hdr.

Running VIDL Compiler

5-10 VisualDSP++ 3.0 Component Software Engineering User’s Guide

-c++

The -c++ (generate C++ shells) switch specifies C++ language shells are to
be generated for any component defined directly in the VIDL file. Inter-
face header files are also to be generated for each interface defined directly
in the main VIDL file.

When neither -asm or -c++ is specified, the compiler generates C language
shells.

The -c++ switch cannot be used in conjunction with -asm or -hdr.

The -c++ switch is not supported for the ADSP-218x DSPs.

-copyright filename

The -copyright (specify copyright file) switch specifies the name of a file,
which contains a copyright statement that is to be copied to the start of
each generated source file.

-cppflags flags

The -cppflags (pass to C preprocessor) switch directs the VIDL compiler
to pass flags, an option or a list of options, to the C preprocessor invoked
via the VIDL front-end.

-Dmacro[=definition]

The -D (define macro) switch directs the compiler to define a macro.
When the optional definition string is not included, the compiler defines
the macro as the string ‘1’. If a definition is required to be a character
string constant, then it must be surrounded by escaped double quotes.
Note that the compiler processes all -D switches before any -U (undefine
macro) switches on the command line.

VisualDSP++ 3.0 Component Software Engineering User’s Guide 5-11

VIDL Compiler Command Line Interface

Only simple macros can be defined this way—macros accepting argu-
ments must be defined in the source files. A warning is generated when a
predefined macro is redefined.

This switch can be invoked with the Global definitions field
located in the VisualDSP++ IDDE’s Project Options dialog box,
VIDL page selection.

-dryrun

The -dryrun switch direct the compiler to display the command lines of
each of the processes the driver invokes without processing them.

-generic

The -generic switch directs the compiler to generate C/C++ code that can
be compiled using alternative compilers to those supplied with
VisualDSP++.

Applications that only use one component will compile with Microsoft
Visual C++ 6.0 or gcc 3.2 with no warnings by adding __GENERIC__ to
the list of preprocessor definitions. For multi-component applications, the
additional /FORCE:MULTIPLE switch is required to be passed to the
Microsoft Visual C++ linker to demote LNK2005 errors to LNK4006 warn-
ings, informing you that an interface IID has already been defined and
that the second definition will be ignored. This is normal. For gcc 3.2, no
additional linker options are required and no warnings are generated.

-harness

The -harness switch directs the compiler to generate a test program for
the components defined directly in the main VIDL source file.

By default, the VIDL compiler does not overwrite an already existing test
harness source file. If you wish the compiler to overwrite an existing test
harness source file, you must also supply the -overwrite option.

Running VIDL Compiler

5-12 VisualDSP++ 3.0 Component Software Engineering User’s Guide

-hdr

The -hdr switch specifies that only the interface header files are to be gen-
erated for each defined interface. Any component definitions are
validated, but the component shells are not generated.

The -hdr switch cannot be used in conjunction with -c++ or -asm.

-h[elp]

The -h or -help switch directs the compiler to display a list of switches,
including a brief description of each switch, that the driver recognizes.
This is the default if no other switches are given.

-Idirectory [{,|;} directory…]

The -I (include directory) switch directs the compiler to add the specified
directories to the #include file search path. Multiple include directories
can be given as a semicolon- or comma-separated list of directories
searched in the order specified.

When multiple occurrences of this switch appear on the command line,
they are searched in the order specified on the command line.

All directories specified with this switch are searched before the standard
include directory is searched.

-M

The -M (generate make rules only) switch directs the compiler not to com-
pile the source file but to send to standard output the rules suitable for the
make utility, describing the dependencies of the generated files. The for-
mat of the make rules output by the compiler is:

 object_file:include_file …

The -M switch cannot be used in conjunction with -MM.

VisualDSP++ 3.0 Component Software Engineering User’s Guide 5-13

VIDL Compiler Command Line Interface

-MM

The -MM (generate make rules and compile) switch is similar to -M. The
difference is that the VIDL compiler does not halt compilation after pre-
processing and proceeds to generate the interface header and component
shell files.

The -MM switch cannot be used in conjunction with -M.

-mcd

The -mcd (generate multiple component shells) switch directs the compiler
to accept more than one component definition in the main VIDL source
file and to generate shells for each such component. The VIDL compiler
only accepts one component definition in the main .IDL source file by
default.

-no-adoc

The -no-adoc (no documentation) switch instructs the compiler not to
generate the HTML documentation files from the auto-doc description
blocks in the VIDL files. The auto-doc comments are still processed and
validated.

-no-vla

The -no-vla (no variable length arrays) switch instructs the compiler not
to generate the variable length arrays for conformant array parameters
when a C component shell is being generated.

Variable length arrays are never generated for a C++ component
shell.

Running VIDL Compiler

5-14 VisualDSP++ 3.0 Component Software Engineering User’s Guide

-no-xml

The -no-xml (no XML output) switch instructs the compiler not to gener-
ate the .XML component manifest when a component shell is being
generated.

-overwrite

The -overwrite switch directs the VIDL compiler to overwrite any exist-
ing test harness source file when the -harness option is specified. When
this option is omitted, the compiler fails if the test harness file already
exists.

-path-[cpp|fe|pr|be] path

The -path-tool path (tool location) switch directs the compiler to use
path as the location for the specified compilation tool. Respectively, the
tools are the preprocessor, front-end, presentation, and back-end. Use this
switch to override the default version of the tool, or that implied by the
-path-install switch.

-path-def path

The -path-def switch directs the VIDL compiler to use the specified path
instead of the default vidl_driver.def file, or that implied by the
-path-install switch.

-path-html directory

The -path-html directory (.HTML files location) switch directs the com-
piler to use the specified directory as the location of the .HTML template
files. The compiler uses the specified templates when generating the
HTML documentation instead of those found in the default directory.
This is useful when working with multiple versions of the tool set.

VisualDSP++ 3.0 Component Software Engineering User’s Guide 5-15

VIDL Compiler Command Line Interface

-path-install directory

The -path-install switch directs the compiler to use the specified direc-
tory as the base directory for all VIDL tools, include directories, and
configuration files. For example, if -path-install c:\myVIDL is specified,
then vidlblkfn (for example) looks for all VIDL compiler tools in the
C:\myVIDL\Blackfin\etc directory.

-path-output directory

The -path-output directory (output location) switch directs the com-
piler to place all the generated files in the specified directory. This is useful
when the directory containing source files is read-only, or there is insuffi-
cient space available to copy the generated files.

-path-temp directory

The -path-temp switch directs the VIDL compiler to use the specified
directory instead of the default location for temporary files.

-proc processorID

The -proc processorID (compile for a specific DSP) switch directs the
VIDL compiler to generate component shells for the specified processor.
On Blackfin DSPs, the compiler accepted values for processorID are
21535 and 21532. On SHARC DSPs, the values are 21k and 211xx; and on
TigerSHARC DSPs, the value is TS101.

-proc 21532 (same as -21532) Directs the compiler to generate code suitable for the
ADSP-21532 DSP. Compiling with this switch defines the
__ADSPBLACKFIN__ preprocessor macro as 1.

-proc 21535 (same as -21535) Directs the compiler to generate code suitable for the
ADSP-21535 DSP. Compiling with this switch defines the
__ADSPBLACKFIN__ preprocessor macro as 1.

Running VIDL Compiler

5-16 VisualDSP++ 3.0 Component Software Engineering User’s Guide

By default, vidlblkfn assumes that the ADSP-21532 Blackfin DSP is the
target processor, and vidlts assumes the ADSP-TS101 TigerSHARC
DSP. The vidl21k complier assumes that the ADSP-210xx DSP is the
default target.

There is no equivalent switch for ADSP-218x or ADSP-219x
DSPs.

-save-temps

The -save-temps (save intermediate files) switch prevents any temporary
files created by the driver or compiler from being deleted. When used in
conjunction with -M or -MM, the dependency lists are redirected to the file
basename(<idl-file>|<infile>).dep.

-trace

The -trace switch directs the compiler to generate debug code in compo-
nent source files to record the entry and exit of each method.

-Umacro

The -U (undefine macro) switch undefines the specified macro. The com-
piler processes all -D (define macro) switches on the command line before
any -U switches.

-proc 21k Directs the vidl21k VIDL compiler to generate code suitable
for the ADSP-210xx DSPs. Compiling with this switch
defines the __ADSP_21000__ preprocessor macro as 1.

-proc 211xx Directs the vidl21k VIDL compiler to generate code suitable
for the ADSP-211xx DSPs. Compiling with this switch
defines the __ADSP_21000__ preprocessor macro as 1.

-proc TS101 (same as -TS101) Directs the compiler to generate code suitable for the
ADSP-TSxxx DSP. Compiling with this switch defines the
__ADSPTS__ preprocessor macro as 1.

VisualDSP++ 3.0 Component Software Engineering User’s Guide 5-17

VIDL Compiler Command Line Interface

The -Umacro_name switch on a command line is equivalent to #undef
macro_name in a source file.

A warning is generated when a predefined macro is undefined.

-v[ersion]

The -v or -version directs the compiler to display the version number of
the compiler driver.

-verbose

The -verbose switch directs the compiler to display the command lines of
each of the compilation processes that the driver invokes.

Processing VIDL Files

5-18 VisualDSP++ 3.0 Component Software Engineering User’s Guide

Processing VIDL Files
Three categories of source files are associated with VCSE:

• Interface Definition Language files (.IDL) name and describe
VCSE-conformant components and interfaces, as well as specify
which of the available interfaces are supported by the components.
The VIDL language is described in “VIDL Language Reference” on
page 4-1.

• Standard header files (.H) give access to the VCSE system features,
such as response values returned from component functions and
interface methods, or macros facilitating interface member calls
from C and assembly code.

Use these headers in component implementations or in compo-
nent-based applications. The VCSE standard headers are described
in “Standard Files” on page 5-20.

• C++, C, and assembly source and header files (.CPP, .C, .ASM, .H)
are generated by the VIDL compiler in response to a VIDL specifi-
cation supplied as its input.

These files contain specific details of the interfaces and compo-
nents described in the VIDL file. These generated files also contain
standard sections of code that either assist the component devel-
oper to create and debug a component or to enable the component
to interoperate with applications and other components.

The VIDL generated files are described in “Generating Source
Files” on page 5-24.

File Organization
The general organization of the standard header files and the generated
files follows the same principles.

VisualDSP++ 3.0 Component Software Engineering User’s Guide 5-19

VIDL Compiler Command Line Interface

File Names

Apart from the basic VCSE support headers, vcse.h, each standard and
generated file is named according to the namespaces and the interface or
component name with which it is associated.

• From left to right, the file name prefix consists of the name of each
namespace (underscore separated, from outer to inner) in which
the interface or component definition is located.

• The prefix is followed by the interface or component name, all sep-
arated from the prefix by a single underscore.

• For some files, such as method definitions, the name is followed by
a suffix of a single underscore and a single word, which indicates its
content.

• The file name preserves the letter case of the VIDL base file name.
The file name extensions are: .CPP for C++ source files, .C for C
source files, .ASM for assembly source files, .H for header files, and
.HTML, .HHC, .HHK for HTML files.

Start-of-File Comments

Each standard file begins with a corporate Analog Devices copyright com-
ment statement, the name of the file, and an indication of the processor
family for which it is intended.

Each generated file begins with a comment providing the file name, a brief
purpose description, the date and time of creation, and the version num-
ber of the VIDL compiler used to produce the file. Files containing no
user-alterable sections have a short warning comment to this effect.

End-of-File Comments

All generated non-header files have a terminating comment that includes
the file name.

Processing VIDL Files

5-20 VisualDSP++ 3.0 Component Software Engineering User’s Guide

Header Files Guards

Standard and generated header files have a conditional compilation con-
struct to prevent multiple inclusion of the file contents.

The name of the preprocessor symbol acting as the guard is constructed as
follows: two leading underscores; the complete file name (not converted to
uppercase) up to the .H extension; and a tail of an underscore, capital H,
followed by two underscores.

Language Identifications

Standard and generated header files can be included into C, C++, and
assembler compilations. This means sections of the files must be excluded
from preprocessing when their contents are not appropriate for the lan-
guage being used. The preprocessor symbols used to control section
inclusion and exclusion are __cplusplus, _LANGUAGE_C, and
_LANGUAGE_ASM. The first two symbols are defined automatically by the
C/C++ compiler driver when the user chooses C++ or C mode, and the
other is defined by the assembler driver.

Standard Files
Three files give access to the fixed features of the VCSE system: vcse.h,
vcse_asm.h, and VCSE_IBase.h. The first and second files are intended for
inclusion into components and component clients written in C++, C, and
assembly, either directly or at the end of an inclusion chain starting with a
generated interface or component header. The second file also defines a set
of assembler macros used by components implemented in assembly lan-
guage. The third file, VCSE_IBase.h, is the interface header for the root
interface VCSE::IBase.

The vcse_asm.h file is always target processor-specific. In general, vcse.h
and VCSE_IBase.h may be target-specific in terms of the C/C++ basic
types they use since these can be mapped to different hardware entities for

VisualDSP++ 3.0 Component Software Engineering User’s Guide 5-21

VIDL Compiler Command Line Interface

the various targets. This convention is catered for by VisualDSP++’s orga-
nization of include directories, which does not expect header files to be
shared across architectures.

Contents of vcse.h

The vcse.h file is the main standard header file used by VCSE interface
header files and the generated component source files. The content of the
standard VCSE header file is outlined as follows.

1. As described in “Language Identifications” on page 5-20, three pre-
processor variables are used to distinguish between the different
possible implementation languages. One and only one should be
defined in each VCSE compilation. The vcse.h header verifies the
inclusion of the appropriate preprocessor variable.

2. Some of the code generated by VCSE may use functions or macros
from the ANSI C run-time library when it is generated in trace
mode. When compiling C and C++ files, vcse.h ensures the appro-
priate standard header files are included.

3. Interfaces are represented as method tables. The vcse.h file defines
a type and macros to enable these method tables to be defined. The
type VCSE_DELTA assists with method table creation, and the macros
__INVOKE_VARARGS, __INVOKE_NOARGS, and __UPCAST assist with
invocation of the methods defined in an interface.

The __INVOKE_* macros are not intended for direct use by a client
or component developers. The header files generated for each
interface definition include a macro for each method, specifically
for use with interface pointers. Each such macro calls the appropri-
ate __INVOKE_* support macro.

Processing VIDL Files

5-22 VisualDSP++ 3.0 Component Software Engineering User’s Guide

Even for assembly written components, the method tables are con-
structed in C, so there are no corresponding assembler structure
declarations; although, equivalent assembler macros for accessing
the method tables and method calls are provided.

Each method table entry consists of an instance of a VCSE_DELTA
struct followed by a function pointer. The delta member is the off-
set to be added to an interface pointer to point to the component
implementing the interface. Its value is either zero (for the first or
only interface implemented by a component) or a small negative
multiple of the size of a pointer. For example, on a byte-address-
able architecture, the offset for the third interface implemented by
a component is –12.

4. All interface functions are defined to return a value of a particular
type, MRESULT. The vcse.h file defines this type for C and C++. For
the assembler, the result type is assumed to be a short integer to fit
in the standard function result register, as defined by the platform’s
run-time model.

For C++ applications, MRESULT is defined inside the standard VCSE
namespace. For C applications, it is given a prefix VCSE_,
VCSE_MRESULT.

The vcse.h header also defines the set of standard VCSE MRESULT
codes. The codes are defined in “MRESULT Codes” on page B-2.

5. VCSE generates two main types of data structures from the VIDL
specifications supplied by the user—interfaces and components.
To reinforce the difference between the two data structures, vcse.h
defines interface and component as synonyms for struct, allowing
the generated code to use the synonyms appropriately.

6. Finally, vcse.h includes the header file vcse_asm.h to provide
access to the macros and definitions used by the assembly language
programmer.

VisualDSP++ 3.0 Component Software Engineering User’s Guide 5-23

VIDL Compiler Command Line Interface

Contents of vcse_asm.h

The vcse_asm.h file is the standard assembly language header file. It
defines macros used by the generated assembly component source files.
Where possible, the VIDL compiler generates the same assembly text for
all the target processors. Processor-specific content is wrapped in macros
defined in vcse_asm.h. The contents of the standard vcse_asm.h file are
outlined as follows.

1. The header file first defines a set of helper macros used when con-
structing names for items, such as for the interface iid. The helper
macros are not meant to be used directly by the assembler pro-
grammer but by other macros.

2. The header file then includes macro definitions for the code sec-
tion in the generated code, function start and end, and function
entry and exit.

3. To support the method-calling macros defined in the generated
interface headers, the macros __GET_METHOD and __INVOKE are
defined. Users are not expected to call __INVOKE directly; instead,
to call it via the method invocation macros generated in the inter-
face header files. In addition, the macro __CHECK_VCSE_RESPONSE is
likely to be used by a client to verify the results returned by the
methods.

4. In addition to the common macros, the header defines some plat-
form-specific convenience macros. The VIDL compiler generated
code does not use these macros, but the various method implemen-
tations provided by the component might. These macros are
provided to facilitate the tasks of setting up stack frames and mak-
ing function calls conforming to the C run-time model.

Processing VIDL Files

5-24 VisualDSP++ 3.0 Component Software Engineering User’s Guide

Contents of VCSE_IBase.h

The VCSE_IBase.h file is the interface header file for the VCSE base inter-
face VCSE::IBase. It is suitable for inclusion into C++, C, or assembly
files. VCSE_IBase.h contains:

1. The external declaration of the interface identifier variable that
holds IBase’s unique identifier.

2. A typedef for a pointer to the struct type that implements the
IBase interface as well as the definition of the struct type.

3. The definition of a macro VCSE_IBase_GetInterface, which is
used for calling the IBase interface’s sole member function from C
and assembly source files. C++ clients use a normal method call to
invoke the interface functions.

4. A typedef for VCSE_IBase_methods, which is the C equivalent of
the C++ method table associated with the VCSE::IBase class.

No structure definitions for the interface appear in the assembly portion
of the file since the assembly implementation of interfaces relies on the
Analog Devices assemblers ‘importing’ the typedef names and struct
layouts from the C portion of interface header files.

Generating Source Files
The VIDL compiler produces several header, source, and HTML and
source files in response to the interface and component definitions found
in the VIDL input presented by the user.

Table 5-6 through Table 5-8 on page 5-28 summarize and describe the
compiler generated files. In addition to the notations in “File Names” on
page 5-19, the following applies to all of the generated file names.

<NS> Represents the namespace components. <I> Represents the interface name.

<C> Represents the component name. All other characters are literals.

VisualDSP++ 3.0 Component Software Engineering User’s Guide 5-25

VIDL Compiler Command Line Interface

Interface Definitions

The VIDL compiler generates the interface files for all interfaces that the
specified interface directly or indirectly extends. The main file generated
for an interface specification is the interface header file. Both the creator
of a component implementing the interface and the client using the inter-
face require this header file.

In addition to the interface header, the VIDL compiler normally produces
a set of .HTML files, which combines information from the auto-doc com-
ments and the VIDL specification, to document the interface and its use.
The generated .HTML files are held in the html subdirectory. All the gener-
ated interface files, along with the corresponding .IDL file, are normally
distributed to all users of the interface. A summary of files generated for
each interface definition is found in Table 5-6.

Table 5-6. Interface Source Files

File Name Description

<NS>_<I>.h Contains definitions of: types that represent the interface as well
as a pointer to the interface; macros that facilitate calling the
methods of the interface; and types that represent the method
table layout. Also contains the definition of the unique interface
identifier.
Any C++, C, or assembly client module calling methods of the
interface includes this file.
Any C++, C, or assembly component module implementing the
interface or constructing a method table for the interface
includes this file.

html\<NS>_<I>.html Main .HTML file; displays the generated documentation for the
interface. Also creates a frame to display a table of contents or an
index.

html\<NS>_<I>_BASE.html Provides comprehensive information on the interface.
Displays on the right-hand side of the frame created by
html\<NS>_<I>.html.

Processing VIDL Files

5-26 VisualDSP++ 3.0 Component Software Engineering User’s Guide

In addition to the specific files generated for each interface, a common set
of files is also generated (shown in Table 5-7 on page 5-26).

html\<NS>_<I>_TOC.html Triggers the creation of the table of contents, which is displayed
on the left-hand side of the frame created by
html\<NS>_<I>.html.

html\<NS>_<I>_INDEX.html Triggers the creation of the automatically generated index, which
is displayed on the left-hand side of the frame created by the file
html\<NS>_<I>.html.

html\<NS>_<I>_hhc.html Defines the table of contents.
Displays on the left-hand side of the frame created by
html\<NS>_<I>.html.

html\<NS>_<I>_hhk.html Defines the automatically generated index.
Displays on the left-hand side of the frame created by the file
html\<NS>_<I>.html.

Table 5-7. Common Generated Documentation Files

File Name Description

html\vcsehtml.css Defines a Common Style Sheet, which is referenced by all of the
generated .HTML files. Allows the appearance of the HTML text
to be controlled.

html\vcsehtml.js Specifies a common Java Script element. The file is referenced in
each of the generated .HTML file.

Table 5-6. Interface Source Files (Cont’d)

File Name Description

VisualDSP++ 3.0 Component Software Engineering User’s Guide 5-27

VIDL Compiler Command Line Interface

Component Definitions

The VIDL compiler produces a set of C, C++, or assembly source files for
each processed component specification. The generated file set provides a
framework for the component implementation and is referred to as an
implementation shell. It provides all the necessary generic code needed to
conform to the VCSE component object model. The generated files pro-
vide the definitions of each method, leaving the developer to complete the
generated shell by providing the implementation of each method. Nor-
mally, the component distribution includes all the generated interface
files.

In addition to the implementation shell source files, the VIDL compiler
produces a set of .HTML files, which combines information from the
auto-doc comments and the VIDL input, to document the component
and each interface supported by the component. The generated .HTML files
are held in the html subdirectory. For more information about these files,
see “Component Documentation Files” on page 5-31.

Only the factory header file, <NS>_<C>_factory.h, should be dis-
tributed with the compiled component; the other source files are
implementation-only files and, normally, are not distributed.

Processing VIDL Files

5-28 VisualDSP++ 3.0 Component Software Engineering User’s Guide

C Based Components

The set of files that the VIDL compiler generates for each C based compo-
nent definition is summarized in Table 5-8.

Table 5-8. C Component Source Files

File Name Description

<NS>_<C>_factory.h Contains the external declarations of the non-interface method
functions of the component.
Any C++, C, or assembly module that creates, destroys, or queries
the size of an instance of the component includes this file.

<NS>_<C>.h Contains the layout (in C++ and C) of the struct that implements
the component, including sections for the implementor to add pri-
vate members and other component-related declarations.
Used by all C++ and C component modules or imported into all
assembly component modules that require to access the members of
the component instance struct.

<NS>_<C>.c Contains C definitions of the component’s factory functions and
the GetInterface and NonDelegatingGetInterface methods.
The component developer can add custom code to the Create and
Destroy function definitions to control the allocation and initial-
ization of the component’s instance data.

<NS>_<C>_test.c Contains a C-based test harness program, which creates the compo-
nent and calls each of the defined interfaces and then destroys the
component. This file is only generated when the -harness switch
is supplied.

<NS>_<C>_methods.c Contains C function definitions for the remaining interface meth-
ods implemented by this component. Also contains the definition
and static initialization of the component’s method tables.
The component developer adds custom code to the function defini-
tions in order to implement the required functionality.

VisualDSP++ 3.0 Component Software Engineering User’s Guide 5-29

VIDL Compiler Command Line Interface

C++ Based Components

The set of files that the VIDL compiler generates for each C++ based com-
ponent definition is summarized in Table 5-9.

Table 5-9. C++ Component Source Files

File Name Description

<NS>_<C>_factory.h Contains the external declarations of the non-interface method
functions of the component.
Any C++, C, or assembly module that creates, destroys, or queries
the size of an instance of the component includes this file.

<NS>_<C>.h Contains the layout in C++ and C of the struct that implements
the component, including sections for the implementor to add pri-
vate members and other component-related declarations.
Used by all C++ and C component modules or imported into all
assembly component modules that require to access the members
of the component instance struct

<NS>_<C>.cpp Contains C++ definitions of the class management functions asso-
ciated with the component, such as a class constructor, the factory
functions, operators new and delete, the GetInterface and
NonDelegatingGetInterface methods.
Component developer adds custom code to the Create and
Destroy function definitions to control the allocation and initial-
ization of the component’s instance data.

<NS>_<C>_test.cpp Contains a C++ based test harness program, which creates the
component and calls each of the defined interfaces and then
destroys the component. This file is only generated when the
-harness switch is supplied.

Processing VIDL Files

5-30 VisualDSP++ 3.0 Component Software Engineering User’s Guide

Assembly Based Components

The set of files that the VIDL compiler generates for each assembly based
component definition is shown in Table 5-10.

Table 5-10. Assembly Component Source Files

File Name Description

<NS>_<C>_factory.h Contains the external declarations of the non-interface method
functions of the component.
Any C++, C, or assembly module that creates, destroys, or queries
the size of an instance of the component includes this file.

<NS>_<C>.h Contains the layout in C++ and C of the struct that implements the
component, including sections for the implementor to add private
members and other component-related declarations.
Used by all assembly component modules or included into all C++
and C component modules that require to access the members of
the component instance struct.

<NS>_<C>.c Contains C definitions of the component’s factory functions and
the GetInterface and NonDelegatingGetInterface methods.
Also contains the definition and static initialization of the compo-
nent’s method tables.
For an assembly component, the factory functions and the Get-
Interface method are generated in C. Hence, this file must be
compiled with C and included in the set of component object files.

<NS>_<C>_methods.asm Contains assembly function definitions for the remaining interface
methods implemented by this component.
The component developer adds custom code to the function defini-
tions in order to implement the required functionality. A standard
set of assembly macros is provided for accessing parameters and ele-
ments of the component’s instance data.

<NS>_<C>_test.c Contains a C based test harness program, which creates the compo-
nent and calls each of the defined interfaces and then destroys the
component. This file is only generated when the -harness switch
is supplied.

VisualDSP++ 3.0 Component Software Engineering User’s Guide 5-31

VIDL Compiler Command Line Interface

Component Documentation Files

For each component processed in the VIDL input file, the VIDL compiler
produces a set of .HTML files to combine information from the auto-doc
comments and the VIDL input. The generated .HTML files are held in the
html subdirectory. In addition to the documentation files for the compo-
nent, all the documentation files for each supported interface are
integrated with the component’s documentation.

The .HTML files generated for each component are shown Table 5-11.

In addition to the specific files generated for the component, a common
set of files is also generated, as shown in Table 5-7 on page 5-26.

Table 5-11. Component Specific Documentation Files

File Name Description

html\<NS>_<C>.html The main .HTML file; displays the generated documentation
for the component. In addition, the file creates a frame to dis-
play a table of contents or an index.

html\<NS>_<C>_BASE.html Describes the component in detail.
Displays on the right-hand side of the frame created by the file
html\<NS>_<C>.html.

html\<NS>_<C>_TOC.html Triggers the creation of the table of contents, which is dis-
played on the left-hand side of the frame created by the file
html\<NS>_<C>.html.

html\<NS>_<C>_INDEX.html The .HTML file, which triggers the creation of the automati-
cally generated index, which is displayed on the left-hand side
of the frame created by the file html\<NS>_<C>.html.

html\<NS>_<C>_hhc.html Defines the table of contents.
Displays on the left-hand side of the frame created by the file
html\<NS>_<C>.html.

html\<NS>_<C>_hhk.html Defines the automatically generated index.
Displays on the left-hand side of the frame created by the file
html\<NS>_<C>.html.

Processing VIDL Files

5-32 VisualDSP++ 3.0 Component Software Engineering User’s Guide

Component Manifest File

For each component specified in the VIDL input file, the VIDL compiler
produces an XML based manifest file. Use this file to control the packag-
ing wizard when the component is being packaged for distribution. The
name of the packaging file is <NS>_<C>.xml. The packaging wizard com-
bines the contents of the .XML file with information derived from the
wizard steps to complete a component package.

VisualDSP++ 3.0 Component Software Engineering User’s Guide 6-1

6 VCSE RULES AND
GUIDELINES

Read this chapter if you develop, deploy, or use VCSE components. The
chapter documents the rules and best programming practices associated
with the software components’ successful development and successful
inclusion into DSP applications.

VCSE provides a model or framework to aid the development and use of
software components in DSP applications running on Analog Devices
DSP processors. Two major aims of VCSE are the promotion of software
interoperability and reuse, in a language-neutral way. Although the VCSE
model ensures these aims can be met, it cannot guarantee that they always
are met for any particular component or application, especially since
assembly is one of the supported languages. For this reason, the model and
tools support must be supplemented with rules and guidelines to obtain
the maximum benefit when using components.

The rules and guidelines cover two broad areas, although the two areas
sometimes overlap:

• Programming, see “Programming” on page 6-6

• Packaging, see “Packaging” on page 6-14

Issues concerning the correct operation of a component, considered in iso-
lation, come under programming; while issues concerning a component’s
inclusion in an application that may use other components come under
packaging.

Summary

6-2 VisualDSP++ 3.0 Component Software Engineering User’s Guide

Paragraphs labeled ‘Rule’ describe actions or practices that are mandatory;
applications may fail to build or run properly if they, or some components
they include, fail to obey a rule.

Paragraphs labeled ‘Guideline’ describe actions or practices that we
strongly recommend you to follow. Applications may not fail to build or
run if guidelines are not heeded, but they may be harder to debug or to
deploy.

Components described as algorithms are those that implement the stan-
dard interface VCSE::IAlgorithm or an interface derived from it. Some
rules and guidelines differ according to whether or not a component they
apply to is an algorithm.

The rules and guidelines are described as being specific to algorithm or
non-algorithm components. Where a component implements multiple
interfaces that define a mixture of algorithms and non-algorithms, the
rules and guidelines apply to the parts of the component that implement
the algorithm or non-algorithm interfaces, respectively. Thus, a client
using only the algorithm interfaces offered by the component can consider
the component (as a whole) to be an algorithm component even though it
contains (unused) code that may break some of the ‘algorithm’ rules.

Summary
The following tables summarize the presented rules and guidelines. Those
that are common to the development and use of all components are listed
first, followed by those rules and guidelines that apply only to algorithms,
and finally those that apply only to non-algorithms.

• Table 6-1, “Common Component Rules” on page 6-3

• Table 6-2, “Common Component Guidelines” on page 6-4

• Table 6-3, “Algorithm Component Rules” on page 6-5

VisualDSP++ 3.0 Component Software Engineering User’s Guide 6-3

VCSE Rules and Guidelines

• Table 6-4, “Algorithm Component Guidelines” on page 6-5

• Table 6-5, “Non-algorithm Component Rules” on page 6-5

There are no guidelines for non-algorithm components.

Following the tables are sections providing a detailed description of each
rule or guideline.

Table 6-1. Common Component Rules

Rule Description

Programming For a component, use the interface pointer supplied to its Create factory func-
tion (parameter ienvp) to obtain an interface pointer to a memory allocator;
use this interface for all memory allocations. For more information, see
“Resource Allocation” on page 6-6.

Programming For a client, supply an interface pointer obtained from a component imple-
menting an appropriate memory allocator to the Create function when instan-
tiating a component. For more information, see “Resource Allocation” on
page 6-6.

Programming Client-component interactions must follow C run-time model specifications
for the target processor. For more information, see “Registers and Stack” on
page 6-9.

Programming The documentation for every component that requires a memory allocation
interface other than VCSE::IMemory must include or refer to a detailed
description of the interface. For more information, see “Resource Allocation”
on page 6-6.

Programming Document self-modifying components as only sequentially reusable. For more
information, see “Interrupt System and Reentrancy” on page 6-10.

Programming Document components saving data in fixed memory locations as only sequen-
tially reusable. For more information, see “Interrupt System and Reentrancy”
on page 6-10.

Packaging Use your company tag when naming files, globally visible labels, and LDF’s sec-
tions and variables to avoid name clashes. For more information, see “Name
Clashes” on page 6-14.

Packaging Document your component’s memory characteristics. For more information,
see “Memory” on page 6-16.

Summary

6-4 VisualDSP++ 3.0 Component Software Engineering User’s Guide

Packaging Document your component’s processing cycle characteristics. For more infor-
mation, see “Processing” on page 6-17.

Packaging Document all the required non-memory resources for your component. For
more information, see “Non-memory Resource Requirements” on page 6-17.

Table 6-2. Common Component Guidelines

Guideline Description

Programming For a component, define an interface (VIDL) for a non-memory resource allo-
cation. For a client, implement that interface in conjunction with the appro-
priate memory allocator. For more information, see “Non-memory Resource
Requirements” on page 6-17.

Programming Clients and components should follow C run-time model specifications for
the target processor. For more information, see “Registers and Stack” on
page 6-9.

Programming Components should use the standard memory allocation interface
VCSE::IMemory where possible. For more information, see “Resource Alloca-
tion” on page 6-6.

Programming For assembly written components, use the #include VCSE.h macros to set up
stack frames and refer to outgoing function call arguments. For more informa-
tion, see “Registers and Stack” on page 6-9.

Programming Avoid self-modifying code in component specifications. For more informa-
tion, see “Interrupt System and Reentrancy” on page 6-10.

Programming Avoid fixed location data variables in component code. For more information,
see “Interrupt System and Reentrancy” on page 6-10.

Packaging Use the linker’s data elimination features for applications that employ assem-
bly written components. For more information, see “Code and Data Elimina-
tion” on page 6-18.

Packaging Ensure that your component objects are usable in various addressing models.
For more information, see “Addressing Models” on page 6-18.

Table 6-1. Common Component Rules (Cont’d)

Rule Description

VisualDSP++ 3.0 Component Software Engineering User’s Guide 6-5

VCSE Rules and Guidelines

Table 6-3. Algorithm Component Rules

Rule Description

Programming Do not modify the interrupt controls and structures. For more information,
see “Interrupt System and Reentrancy” on page 6-10.

Programming Document any algorithm components whose methods rely on specific config-
urations or performance characteristics of the interrupt system. For more
information, see “Interrupt System and Reentrancy” on page 6-10.

Programming Document your algorithm component’s reentrancy capabilities. For more
information, see “Interrupt System and Reentrancy” on page 6-10.

Programming Do not switch processor modes. For more information, see “Processor Modes”
on page 6-13.

Programming Document the algorithm component’s requirement to be in a specific proces-
sor mode. For more information, see “Processor Modes” on page 6-13.

Programming Do not access any core peripherals. For more information, see “Core Peripher-
als” on page 6-14.

Programming Do not access code or data at absolute memory addresses. For more informa-
tion, see “Address Clashes” on page 6-15.

Table 6-4. Algorithm Component Guidelines

Guideline Description

Programming Design your algorithm components to provide the most reentrancy capabili-
ties. For more information, see “Interrupt System and Reentrancy” on
page 6-10.

Table 6-5. Non-algorithm Component Rules

Rule Description

Programming Document all the processor’s interrupt system operations and alterations. For
more information, see “Interrupt System and Reentrancy” on page 6-10.

Programming Restore the processor’s original mode once a method’s execution is com-
pleted. For more information, see “Processor Modes” on page 6-13.

Programming

6-6 VisualDSP++ 3.0 Component Software Engineering User’s Guide

Programming
The rules and guidelines defined in this section cover two major aspects of
embedded applications design—resource usage, including memory alloca-
tion; and processor usage, including the interrupt system. The objective is
to describe how a component and its client should conduct themselves in
order for the component to obtain the resources and environment it needs
to function, and the client to obtain the results and services envisaged
when the application is planned.

Resource Allocation
All VCSE components require the allocation of at least one resource—an
area of memory to hold the data associated with each instance of the com-
ponent created by a client. Each instance may also require additional
memory (working storage) and access to other resources, such as an I/O
peripheral or a hardware timer.

The Create function called by a client to create a new component instance
has two parameters associated with resource allocation: an interface
pointer and a token. The interface pointer is obtained from some other
component implementing the memory allocation interface appropriate to
the component being instantiated. This may be the VCSE::IMemory stan-
dard interface, or it may be some other interface, as described in the
component’s documentation. The code initially generated by the VIDL
compiler assumes that it is the VCSE::IMemory interface, but the compo-

Programming Document how the core peripherals are accessed by your component. For
more information, see “Core Peripherals” on page 6-14.

Programming Do not access code or data at absolute addresses, except memory-mapped
registers. For more information, see “Address Clashes” on page 6-15.

Table 6-5. Non-algorithm Component Rules (Cont’d)

Rule Description

VisualDSP++ 3.0 Component Software Engineering User’s Guide 6-7

VCSE Rules and Guidelines

nent developer may alter that code to use a different allocator. An
arbitrary token value will be passed as an argument to the Allocate and
Free methods of the IMemory instance in code generated by the VIDL
compiler. User specified allocators may utilize or ignore the token as
desired.

See “Standard Interfaces” on page 3-1 for more information about the
VCSE::IMemory interface and component instantiation. It is possible to
pass NULL for the interface pointer and use a different mechanism for allo-
cating memory when instantiating a component, but this is intended only
as an aid during initial component development and as a method of boot-
strapping memory allocator components.

Rule: Every component, with the exception of any that implements a
memory allocator interface, must use the interface pointer passed to its
Create function to obtain the allocator interface and to use that interface
to satisfy all its memory requirements.

Rule: Every client must supply an interface pointer obtained from a com-
ponent implementing a suitable memory allocation interface to the Create
function of every component that the client instantiates, with the excep-
tion of components that themselves implement memory allocators. Details
of the allocator interface that a component requires are referenced in the
component’s documentation.

The component that supplies the interface pointer used as an argument to
a Create call can implement other interfaces besides its memory allocator.
One way to organize resource allocation for a particular application is to
develop a composite component. The interface pointer passed to the Cre-
ate functions of all instantiated components acts as a gateway to all of the
allocators.

Rule: If a component requires its clients to provide an instance of a mem-
ory allocator other than VCSE::IMemory, then its documentation must
contain or refer to a full description of that alternative memory allocation
interface.

Programming

6-8 VisualDSP++ 3.0 Component Software Engineering User’s Guide

Guideline: Component developers should use VCSE::IMemory as their
memory allocation interface whenever possible since clients are likely to
already have a component that implements the memory allocator. If this is
impossible, then consider using some other already-published interface or
providing a component that implements your custom interface.

Guideline: If your component requires the allocation of a resource other
than memory, either use a published interface or, if necessary, publish a
new interface definition. The interface is to be used by the component for
allocation and freeing of the resource. The implementation of such addi-
tional resource interfaces should be accessed via the same component that
provides the memory allocator interface to the component.

Applications may centralize the management of resources with a
monitor component aggregating the interfaces provided by separate
resource allocation components. Clients of the monitor may access
its resource interfaces by calling the GetInterface method of its
IBase interface.

See “Packaging” on page 6-14 for rules concerning documentation of a
component’s resource usage.

VisualDSP++ 3.0 Component Software Engineering User’s Guide 6-9

VCSE Rules and Guidelines

Processor Usage

Registers and Stack

A VCSE component can be implemented in C++, C, or assembly and
must be usable by a client application written in any of these languages.
To achieve this, the points of interaction between a client and component,
the Create and Destroy functions, and the interface methods must adhere
to the C run-time model for the targeted processor. The major points cov-
ered by a run-time model are:

The C run-time model is described in the VisualDSP++ 3.0 C/C++ Com-
piler and Library Manual supplied with VisualDSP++ for each target
architecture family.

Rule: All interactions between a client and a component must obey the
target processor’s C run-time model.

Processing that is strictly internal to an application or component code
does not need to conform to the run-time model. For example, the imple-
mentation of an interface method can invoke support functions that
accept more register based arguments than the model specifies or that
return multiple results in multiple registers. As long as no effects of this
are discernible once control returns to the code that invokes the interface
method, this is acceptable. However, we recommend that all code follow

Register usage Specifies which registers are available as scratch registers,
which must be preserved across a function call, and which have
special usage.

Function call Specifies how arguments and control are passed to a function
and how results and control are returned.

Stack maintenance Specifies the alignment that stack pointer registers must main-
tain and the details of any areas that must be created for param-
eter passing and other purposes.

Data size/alignment Specifies the memory sizes and alignment requirements of the
fundamental data types.

Programming

6-10 VisualDSP++ 3.0 Component Software Engineering User’s Guide

the platform’s run-time model since non-standard code is a common
source of hard-to-find bugs and also reduces flexibility (in terms of code
replacement or reuse).

Guideline: All client and component code should adhere to the C
run-time model of the target platform.

On some platforms, a common problem found in assembly code written
to follow the C run-time model is failure to provide the proper on-stack
storage area for outgoing arguments. For instance, on Blackfin DSPs, even
if the function being called takes no arguments, the caller must provide a
three-word area at the top of the stack. The called function is at liberty to
use this area as temporary storage. Failure to provide the area may result in
the caller’s own temporary storage (perhaps containing a return address or
saved registers) being overwritten.

Guideline: In assembly code, use the macros made available via #include
VCSE.h. The macros can help to set up proper stack frames and correctly
refer to outgoing function call arguments.

Assembly programmers need to understand the C run-time model.

Interrupt System and Reentrancy

An ‘ideal’ VCSE component has the following characteristics.

• Multiple instances of the component can coexist

• The instance structure can address or contain all the modifiable
data of one component instance

• The component’s methods require no exclusive access to any sys-
tem resource, apart from the memory for each instance structure

VisualDSP++ 3.0 Component Software Engineering User’s Guide 6-11

VCSE Rules and Guidelines

• The component’s methods do not require to run in any particular
execution mode (supervisor or system mode)

• The component’s methods do not require to be non-interruptible,
or fail if interrupt processing overhead exceeds some limit

Such a component is likely to be usable in all situations, from a simple sin-
gle thread of control in a standalone application through various flavors of
cooperative and preemptive multitasking systems. Not many components
can achieve such ubiquity; therefore, adhering to programming and docu-
mentation rules for the components can help a potential user to judge
whether a particular component fits into their system.

The general principle is components that are algorithms must not alter the
execution environment to suit their needs, but must document the envi-
ronment they require. Components implementing peripheral or resource
managers may change the execution environment, but must document the
changes and the circumstances in which they occur.

Rule: No algorithm component may modify the interrupt controls and
structures in any way.

Rule: Any algorithm component with methods relying on specific config-
urations or performance characteristics of the interrupt system must
document their requirements. Examples include methods that must exe-
cute with interrupts disabled, or that fail to work to specification if
interrupt processing overhead exceeds a certain threshold.

The reentrancy capabilities, from least restrictive to most restrictive, that a
component might posses are:

1. Interleaved execution of methods of the same component instance
is possible

2. Interleaved execution of methods of different instances of the same
component is possible

Programming

6-12 VisualDSP++ 3.0 Component Software Engineering User’s Guide

3. Execution of a component instance is preemptable, but not in favor
of another instance of the component, meaning the component as a
whole is only serially reusable

4. Execution of a component instance is not preemptable

5. Only one instance of the component is allowed to be created and
executed

Rule: The documentation for each algorithm component must state its
reentrancy capability, either for the component as a whole or for each
method.

Guideline: When developing an algorithm component, try to achieve at
least point 2 (found on the previous page in the list of reentrancy capabil-
ities) to allow the most flexibility in the application design.

Non-algorithm components, particularly peripheral handlers, may need to
install interrupt handlers and modify interrupt control registers in order to
function. The component’s documentation must state what changes the
component makes to the target processor’s interrupt system, when, and
under what circumstances.

Rule: Any use or modification of the processor’s interrupt system must be
fully stated in the component documentation.

In a VCSE component, only a single copy of the code—the Create and
Destroy functions and the methods—exists. In fact, this code works on
different sets of data (the instance data), allowing a component to be
timesliced or interleaved between different incarnations of itself. Obvi-
ously, if a method modifies its code to suit the instance that is executing at
that point, it loses the ability to execute other instances of itself at the
same time.

Rule: Components that employ self-modifying code must classify them-
selves in their documentation as only serially reusable.

VisualDSP++ 3.0 Component Software Engineering User’s Guide 6-13

VCSE Rules and Guidelines

Guideline: If at all possible, components should not use self-modifying
code since it restricts the application designer’s options in deploying the
component.

In a similar manner, components saving data in fixed memory locations,
where ‘fixed’ means not allocated by a memory allocator, are not generally
preemptable and must be documented as such.

Rule: Components saving data in fixed memory locations must classify
themselves in their documentation as only serially reusable.

Guideline: If at all possible, components should not use fixed location
data variables since it restricts the application designer’s options in deploy-
ing the component.

Processor Modes

Some of Analog Devices DSPs feature processor modes in which different
subsets of the total processor capabilities are available. Usually there is a
user mode in which all of the computational and most of the control capa-
bilities are available, and a system or supervisor mode in which the
remaining control aspects are operative. The overall decision as to which
processor modes should be in effect at each point is left to the application
designer. Non-algorithm components may need to switch modes at cer-
tain points in their processing but are required to restore the original
mode before returning to the application.

Rule: Algorithm components must not switch processor modes.

Rule: Algorithm components with methods that require a specific proces-
sor mode must document this requirement.

Rule: Non-algorithm components may alter the processor mode during
execution of a method, but must restore the original mode before return-
ing to the caller.

Packaging

6-14 VisualDSP++ 3.0 Component Software Engineering User’s Guide

Core Peripherals

Algorithm components are presumed to be structured as ‘pure’ algo-
rithms—they perform some computation upon data supplied as
arguments and return results in specified memory locations, as described
in “IAlgorithm Interface” on page 3-14. Thus, algorithms should have no
reason to use the processor’s I/O peripherals to obtain data or to output
results. For producing debugging or tracing output, components should
use the IError mechanism described in “IError Interface” on page 3-18.

Rule: Algorithm components must not access the core peripherals.

Non-algorithm components may need to use the core peripherals; indeed
their function may be to manage access to one or more of the peripherals.
The only requirement in this circumstance is that the component docu-
mentation must list, on a method-by-method basis, which peripherals are
used and summarize how or why they are used.

Rule: The documentation for a component that accesses core peripherals
must describe how the peripherals are used.

Packaging

Name Clashes
There is no requirement that the code and data comprising a VCSE com-
ponent should be contained entirely within the source files generated by
the VIDL compiler—you, the component developer, are free to call func-
tions and reference data defined in other files. (Of course, the
corresponding object (.DOJ) files must be added to the component library
(.DLB) file that gets distributed for inclusion into client applications.)

To avoid the possibility of name clashes with other developers’ compo-
nents or with clients’ code, there is a simple naming rule: all externally
visible names created by a component developer must use the developer’s

VisualDSP++ 3.0 Component Software Engineering User’s Guide 6-15

VCSE Rules and Guidelines

company tag. The VIDL compiler takes care of the names of methods,
types, enumerations, and structures defined in properly specified .IDL
files:

• Developer defined filenames, C function and data variable names,
and names in Linker Definition Files (.LDF) must have a prefix
consisting of the company tag followed by an underscore.

• Externally visible C++ function, class, and data variable names
must be defined within an outer namespace whose identifier is the
company tag; further inner namespaces are acceptable.

• Assembler global names must use a prefix consisting of an under-
score, the company tag, and another underscore.

It is your responsibility to ensure inclusion of any two components into
the same application will not result in name result in name clashes. The
possibility of name clashes within the company namespace can be reduced
by ensuring that all names incorporate any embedded namespace and the
name of the component using the style of names generated by the VIDL
compiler.

Rule: You must use your company tag when naming the files, globally vis-
ible code and data names, and LDF names (sections and variables) to
ensure there are no clashes of global names between their separate
components.

Address Clashes
As a developer of a VCSE component, you have no control over the allo-
cation of memory addresses to any of the component’s code or data. The
designers of the applications into which the component is included, along
with the system linker, control the layout of code and data. Accordingly,
every VCSE component must be link-time relocatable; that is, apart from
references to memory-mapped registers, the code and initialized data must
not refer to absolute (literal) addresses, but must refer to relocatable labels.

Packaging

6-16 VisualDSP++ 3.0 Component Software Engineering User’s Guide

Rule: No algorithm component may access code or data at absolute mem-
ory addresses.

Rule: No non-algorithm component may access code or data at absolute
memory addresses, apart from accesses to memory-mapped registers.

Memory and Processing Characteristics
If you are considering using a third party component in your application
to obtain some part of the application’s functionality, you need to know
what effect that component may have on your system’s memory and MIPS
budgets. Does it fit? Is it fast enough? In the case of multichannel data
streams, how many channels is the application able to support using this
component? To aid these calculations, a VCSE component must have its
memory and processing characteristics documented and available for
evaluation.

Memory

The minimum documentation for a component’s memory characteristics
consists of:

1. The total size of code and initialized data that gets linked into an
application using the component. Supply separate totals for archi-
tectures that differentiate between program and data memory.

2. Typical and maximum figures for the additional data memory asso-
ciated with one instance of the component, including the size of
the instance structure itself and any other working storage. If the
memory requirement is dependent on the values of parameters that
the client supplies, use the names that the parameters have in the
interface definition (VIDL file).

VisualDSP++ 3.0 Component Software Engineering User’s Guide 6-17

VCSE Rules and Guidelines

3. A breakdown of the totals from 1 and 2, in terms of the different
memory attributes that the component’s allocator interface defines.
For example, if the standard allocator VCSE::IMemory is used, then
a breakdown by MemoryType and MemoryLifetime is appropriate.

Rule: A component’s documentation must include at least the minimum
memory usage characteristics.

Processing

The minimum documentation for a component’s processing characteris-
tics is a list of typical and maximum cycle counts for the execution of the
Create and Destroy functions and each of the component’s methods. The
counts must be obtained from hardware or a cycle-accurate simulator, and
the source of the counts must be stated.

If a cycle count is dependent on the values of parameters which the client
supplies, the documentation must quote the names the parameters have in
the interface definition (.IDL file). If the cycle counts depend on the type
of memory allocated to any of the component’s code, static data, or
instance data, the documentation must specify which type is required for
each critical element in order to achieve the best performance.

Rule: A component’s documentation must include at least the minimum
processing cycle characteristics.

Non-memory Resource Requirements
If a component uses, or requires, some system resource other than mem-
ory, you must document these requirements. If a specific peripheral is
required (for example, a particular DMA channel), document this require-
ment as well.

Rule: A component’s documentation must list the non-memory resources
it needs.

Packaging

6-18 VisualDSP++ 3.0 Component Software Engineering User’s Guide

Code and Data Elimination
The VisualDSP++ linker performs exclusion of functions and data areas
from builds when it can detect the code or data in question is unused.
This feature is available automatically for C/C++ programmers. Assembler
programmers should define a label consisting of a period (.), the name of
the function or variable, another period, and the letters “end” (.function-
name.end) immediately at the end of each function or data item that may
be omitted if never referred to. The macros __STARTFUNC and __ENDFUNC
available via #include VCSE.h generate the appropriate labels for the start
and end of a function.

Guideline: For assembly written components, use the VisualDSP++
linker’s features to enable exclusion of potentially not-needed code and
data, such as debugging code, from applications that include the assembly
components.

Addressing Models
The compilation systems of some DSP platforms allow a choice of
addressing model—applications with limited memory requirements can
be built in a way that minimizes code size by assuming all addresses are in
some way ‘short’ or ‘near’. Other systems support various types of memory
and allow some variability in the allocation of code and data to each mem-
ory type.

You should attempt to develop your components, which are delivered as
object code (not user-modifiable source code) as universal as possible. If
universality is not possible or imposes too great a performance or size
overhead for some class of applications, consider providing alternative ver-
sions of your components, compiled to use the different addressing
models.

Guideline: Ensure your components, as supplied in object file format, are
usable in as wide a class of addressing models as possible.

VisualDSP++ 3.0 Component Software Engineering User’s Guide A-1

A VCSE ASSEMBLER MACROS

This appendix lists and describes the VCSE assembly macros available to
to developers of assembler components and applications by the #include
<vcse.h> statement.

The information is presented as follows.

• “General Overview of Macro Definitions” on page A-1

• “Implementation of Macros on ADSP-2153x DSPs” on page A-9

• “Implementation of Macros on ADSP-21xx DSPs” on page A-16

• “Implementation of Macros on TigerSHARC DSPs” on page A-25

• “Implementation of Macros on SHARC DSPs” on page A-35

General Overview of Macro Definitions
This section presents a functional summary of each of the macros avail-
able. Processor-specific information is reserved for the following sections,
where a more detailed description is given.

In some cases, the processor-specific implementation of a macro may dif-
fer from that described in this section. Please refer to the section that is
relevant to your target DSP family for further information.

General Overview of Macro Definitions

A-2 VisualDSP++ 3.0 Component Software Engineering User’s Guide

Method Result Macros
Macros provided for constructing method result values and testing the
result values returned from method calls are listed as follows.

VCSE_MRESULT

Expands into the appropriate data definition directive when defining a
memory location to hold a method result.

MR_ICONSTRUCT(F,I)

Constructs a method result value literal.

MR_FAILURE(mr)

Checks the returned method result for failure status.

MR_SUCCESS(mr)

Checks the returned method result for success status.

__CHECK_VCSE_RESPONSE(handler)

Checks the status of the returned method result against MR_OK and calls the
handler function if different, passing the result code as the first parameter.

F Determines whether result code denotes a failure code (F=1) or otherwise (F=0).

I Specific failure or warning value.

mr Register containing method result value.

mr Register containing method result value.

handler Symbol of handler function.

VisualDSP++ 3.0 Component Software Engineering User’s Guide A-3

VCSE Assembler Macros

Accessing Factory Functions
Every VCSE component has three factory functions, which client applica-
tions use to create and destroy instances of the component and to obtain
an indication of the size of a component’s per-instance data structure.

__CREATOR(C)

Forms the symbol name for component C’s Create factory function.

__DESTROYER(C)

Forms the symbol name for component C’s Destroy factory function.

__SIZEOF(C)

Forms the symbol name for component C’s SizeOf factory function.

Invoking Interface Methods
The usual approach for invoking an interface method is to use the macro
the VIDL compiler generates for it in the interface header file. For exam-
ple, method Filter in an interface ADI::FILTERS::IFir would have a
macro called ADI_FILTERS_IFir_Filter(P) defined in the interface header
file. Alternatively, the following constituent elements of the above macro
call can be used separately.

C Fully qualified component name.

C Fully qualified component name.

C Fully qualified component name.

P Register holding pointer to interface.

General Overview of Macro Definitions

A-4 VisualDSP++ 3.0 Component Software Engineering User’s Guide

__INVOKE(P,T,M)

Invokes an interface method M for the interface of type T. Assumes that the
method’s user arguments are already set up. Uses __GET_METHOD(P,T,M)
defined in the next section.

__GET_METHOD(P,T,M)

Calculates the pointer to the method’s code and its first argument.

Function Writing Macros
The definition of a function in assembly, especially one that follows the C
run-time model, requires the use of certain directives and instruction
sequences. The directives are concerned with making the function’s name,
size, and visibility available in the generated object file; the instruction
sequences are required for setting up stack frames, saving and restoring
preserved registers, and returning function results. The following macros
are available to help with these tasks.

__STARTFUNC(Name,Visibility)

Generates the assembler directives to mark the start of an assembly written
function.

P Register holding pointer to interface.

T Fully qualified interface name.

M Method name.

P Register holding pointer to interface.

T Fully qualified interface name.

M Method name.

VisualDSP++ 3.0 Component Software Engineering User’s Guide A-5

VCSE Assembler Macros

__ENDFUNC(Name)

Generates the assembler directives to mark the end of an assembly written
function.

__LINK(N)

Generates a new stack frame by pushing the relevant registers on to the
stack and reserving enough space for local variables. This macro is
required if the function is a non-leaf function. It should be used in con-
junction with __EXIT or __RETURN(Value).

__PUSH(Reg)

Pushes the named register on to the run-time stack.

__POP(Reg)

Pops the run-time stack, placing the top value in to the named register.

Name Symbol name of the function. Remember to include a leading underscore
if the function is called from C or C++ code.

Visibility Determines whether the function has global (Visibility=__GLOBAL) or
local scope (Visibility=__LOCAL).

Name Symbol name of the function.

N Stack space (words) required for local variables.

Reg Valid register name.

Reg Valid register name.

General Overview of Macro Definitions

A-6 VisualDSP++ 3.0 Component Software Engineering User’s Guide

__ALLOCSTACK(N)

Allocates space on the run-time stack.

__FREESTACK(N)

Frees space on the run-time stack.

__arg0 to __arg9

Where the DSP architecture and instruction set allow, the stack locations
for outgoing arguments can be directly referenced using these macros.

__STORE_ARG(n,Reg)

Where the DSP architecture and instruction set disallow the implementa-
tion of the __argN macros, an alternative macro is provided. Note that use
of __STORE_ARG(n,Reg) may be less efficient than direct methods.

__EXIT

Generates code required to exit from a non-leaf function. The macro
restores the registers pushed on the stack by __LINK(N). No value is
returned.

N Stack space required.

N Stack space required.

N Argument index.

Reg Valid register name containing value to be stored.

VisualDSP++ 3.0 Component Software Engineering User’s Guide A-7

VCSE Assembler Macros

__LEAF_EXIT

Generates code required to exit from a leaf function.

__RETURN(Value)

Generates code required to exit from a non-leaf function and returns
Value. The prime use of the macro is to return method result values.

__LEAF_RETURN(Value)

Generates code required to exit from a leaf function and returns Value.
The prime use of the macro is to return method result values.

Miscellaneous

__LA(R,V)

Loads the register R with the address of variable V.

Value Valid value that can be used by the mechanism by which values are
returned from a function.

Value Valid value that can be used in the mechanism by which values are
returned from a function.

R Valid register that can be assigned the address of a variable.

V Variable name.

General Overview of Macro Definitions

A-8 VisualDSP++ 3.0 Component Software Engineering User’s Guide

__VCSE_ASM_TRACE(A1,A2)

Calls to this macro are generated by the VIDL compiler when you request
tracing code to be placed at the start and end of method bodies, but it may
be of more general use. It concatenates two string literal arguments, A1
and A2, and calls a small function in the C run-time library to write the
result to stdout.

__VCSE_PRINT_VAR(A1,A2,V)

This is another macro used by VCSE generated tracing code. It concate-
nates two string literal arguments, A1 and A2, appends a carriage control
and a line feed, and passes the result and the value V into a call of a simpli-
fied printf-like function.

A1 First string literal.

A2 Second string literal.

A1 First string literal.

A2 Second string literal.

V Value to be output.

VisualDSP++ 3.0 Component Software Engineering User’s Guide A-9

VCSE Assembler Macros

Implementation of Macros on
ADSP-2153x DSPs

C Run-Time Model
The macros provided within vcse_asm.h assume that the C run-time
model is implemented, which is always the case for the assembly imple-
mentation of interface methods. The macros, therefore, make use of
certain reserved registers, as described in the VisualDSP++ 3.0 C/C++
Compiler and Library Manual for Blackfin DSPs.

You need to take this into consideration and insert additional code if the
macros are used outside of the context of the C run-time model.

Method Result Macros
Macros provided for constructing method result values and testing the
result values returned from method calls are listed as follows.

VCSE_MRESULT

This macro expands into the appropriate data definition directive when
defining a memory location to hold a method result. On ADSP-2153x
Blackfin DSPs, the directive is .BYTE 2.

MR_ICONSTRUCT(F,I)

Use this macro to construct a method result (MRESULT) value literal, com-
bining the failure indicator F (which should be 1 if the specified result
code, I, denotes a method failure and 0 otherwise) and a specific failure or
warning code value, I (which should be a decimal number in the range 0–
255). See “MRESULT Codes” on page B-2 for further details on the con-
struction of MRESULT values.

Implementation of Macros on ADSP-2153x DSPs

A-10 VisualDSP++ 3.0 Component Software Engineering User’s Guide

The following code fragment is an example of how the MR_ICONSTRUCT
macro can be used.

 #define warn 0

 #define fail 1

 #define NOT_FOUND MR_ICONSTRUCT(fail,3)

 #define CREATED_NEW MR_ICONSTRUCT(warn,4)

 .

 .

 CC = ...

 R0 = NOT_FOUND;

 IF CC R0 = CREATED_NEW;

 RETS;

MR_FAILURE(mr) and MR_SUCCESS(mr)

These macros can be used to determine whether or not a returned method
result value represents a failure or otherwise. MR_FAILURE sets CC to 1 if mr
represents a failure code; otherwise, the macro sets CC to zero. MR_SUCCESS
does the opposite.

The following is an example of how to use the macros immediately after
every method call.

 MR_FAILURE(R0)

 IF CC JUMP .my_error_label;

__CHECK_VCSE_RESPONSE(handler)

This macro provides an alternative way to check whether a method call is
successful. Assuming the result code is still in R0, the macro compares the
result with the predefined value MR_OK. If the values are not equal (the
method reported either a failure or a warning), then the user supplied
function handler is called with the result code in R0.

VisualDSP++ 3.0 Component Software Engineering User’s Guide A-11

VCSE Assembler Macros

Accessing Factory Functions
Every VCSE component has three factory functions, which client applica-
tions use to create and destroy instances of the component and to obtain
an indication of the size of a component’s per-instance data structure.
Each of the macros __CREATOR(C), __DESTROYER(C), and __SIZEOF(C)
takes the fully qualified name of a VCSE component and expands it into
the name of the component’s Create, Destroy, and Sizeof functions,
respectively.

Taking __CREATOR as an example:

#define FIR ADI_FILTERS_CFir /* fully qualified component name */

 .

 .

/* load up Create's arguments */

...

call __CREATOR(FIR)

MR_FAILURE(R0)

IF CC JUMP .no_fir;

If at a later time a different FIR component is to be used in the applica-
tion, all that needs to be changed is the #define of FIR.

Invoking Interface Methods
The usual approach for invoking an interface method is to use the macro
the VIDL compiler generates for it in the interface header file. For exam-
ple, method Filter in an interface ADI::FILTERS::IFir would have a
macro called ADI_FILTERS_IFir_Filter(P) defined in the interface header
file <ADI_FILTERS_IFilter.h>. To invoke the method, use the following
code.

 /* load up Filter's arguments into R1, R2 and stack slots */
 /* ... */

 /* and then invoke Filter */

Implementation of Macros on ADSP-2153x DSPs

A-12 VisualDSP++ 3.0 Component Software Engineering User’s Guide

 ADI_FILTERS_IFir_Filter(P)

 MR_FAILURE(R0)

 IF CC JUMP .error_3;

In the macro call, P is either the name of the register containing the inter-
face pointer or an addressing expression, such as [FP–24] or [P3+4]), for the
location where it is stored.

Each of the generated method call macros ultimately uses a macro called
__GET_METHOD(P,T,M) to obtain a pointer to the method’s code and to cal-
culate its first argument. In situations where the same method of the same
interface pointer is being called repeatedly, it may be appropriate for users
to call __GET_METHOD directly, save the code pointer and argument value,
and use these values to call the method subsequently.

The P parameter to __GET_METHOD is either the name of the register hold-
ing the interface pointer whose method is required, or an addressing
expression from which it can be loaded. The T parameter is the name of
the interface, and M is the name of the required method. The macro puts
the method’s code pointer into register P0 and its required first argument
into R0. The macro also overwrites R3 and P1.

Instead of using the ADI_FILTERS_IFir_Filter macro to call the Filter
method, as shown in the previous example, an application could use
__GET_METHOD:

 /* outside main loop */

 __GET_METHOD(P,ADI_FILTERS_IFir,Filter)

 P3 = P0; /* save method code address */

 R7 = R0; /* save method's first argument */

 .

 .

 /* ... inside main loop */

 /* load up Filter's arguments into R1, R2, and stack slots

 /* ...

 /* then load up saved first argument */

VisualDSP++ 3.0 Component Software Engineering User’s Guide A-13

VCSE Assembler Macros

 R0 = R7;

 /* and call the method */
 call (P3);

 MR_FAILURE(R0)

 IF CC JUMP .error_8;

Function Writing Macros
The definition of a function in assembly, especially one that follows the C
run-time model, requires the use of certain directives and instruction
sequences. The directives are concerned with making the function’s name,
size, and visibility available in the generated object file. The instruction
sequences are required for setting up stack frames, saving and restoring
preserved registers, and returning function results. The following macros
are available to help with these tasks.

__STARTFUNC(Name,Visibility) and __ENDFUNC(Name)

These two macros generate the assembler directives, which mark the start
and the end of an assembly written function. Because the Name argument is
used ‘as is’, it is important to include a leading underscore if the function
is to be called from C or C++ code.

The Visibility argument to __STARTFUNC should be one of the symbols
__GLOBAL or __LOCAL, depending on whether you want the function name
to be visible from outside this file.

__LINK(N)

This macro is an alternative name for the Blackfin DSP link instruction,
which creates a new stack frame by pushing the return address and old FP
on the stack and decrementing SP by the requested number of bytes to
allocate space for the function’s on-stack variables.

Implementation of Macros on ADSP-2153x DSPs

A-14 VisualDSP++ 3.0 Component Software Engineering User’s Guide

__PUSH(Reg) and __POP(Reg)

The __PUSH macro generates an instruction to push Reg onto the run-time
stack. The actual argument supplied for Reg can be anything that is valid
for a Blackfin DSP PUSH or PUSH_MULTIPLE instruction, such as a register
name, a register range in parentheses (__PUSH((R7:5))), or a comma sepa-
rated pair of ranges (__PUSH((R7:5,P5:4))).

The __POP macro accepts a similar argument to __PUSH and generates the
appropriate Blackfin DSP pop or pop_multiple instruction.

__ALLOCSTACK(N) and __FREESTACK(N)

The first macro generates an instruction to adjust SP downwards by N
bytes to create new space on the run-time stack. N must be a multiple of
four with a maximum value of 60. Use __ALLOCSTACK to create the stack
slots needed for holding the outgoing arguments of calls made from a
function. The __FREESTACK macro adjusts SP in the opposite direction in
order to free up temporarily allocated stack space.

__arg0 to __arg9

The C run-time model includes rules defining where a function must
place the arguments for a function it calls. Often, these passing places are
split between registers and slots on the stack; on Blackfin DSPs, for
instance, the first three arguments are passed in R0–R2 and the remainder
on the stack.

The __argN macros expand to addressing expressions, which give the cor-
rect location for the first ten arguments. The __arg0, __arg1, and __arg2
macros give R0, R1, and R2 (respectively), while __arg3 gives [SP+12],
__arg4 gives [SP+16], and so on.

VisualDSP++ 3.0 Component Software Engineering User’s Guide A-15

VCSE Assembler Macros

__EXIT and __LEAF_EXIT

These macros generate the appropriate instructions for exiting non-leaf
and leaf functions, respectively. A leaf function is one that calls no other
functions and does not issue a link instruction in its prolog. Both macros
require the effects of any __PUSH and __ALLOCSTACK calls to be undone first
by calling corresponding __POP and __FREESTACK macros.

__RETURN(Value) and __LEAF_RETURN(Value)

These macros generate instructions to assign Value to the result register R0
and exit the function (using __EXIT or __LEAF_EXIT as appropriate). The
actual argument used for Value can be anything that can be directly
assigned to R0, such as another register, an immediate value, or the con-
tents of a location (for example, [P1 + 4] or B[P3 + 5](X)).

Miscellaneous

__LA(R,V)

This macro is a shorthand for the two instructions, R.H = V; R.L = V;.
Its main use is to load the address of a variable into a register.

__VCSE_ASM_TRACE(A1,A2)

The VIDL compiler calls this macro when you request tracing code to be
inserted at the start and end of method bodies, but it may be of more gen-
eral use. It concatenates two string literal arguments, A1 and A2, and calls a
small function in the C run-time library, _Write, to write the result to
stdout. The macro preserves RETS, R0–R7, and P0–P5.

Implementation of Macros on ADSP-21xx DSPs

A-16 VisualDSP++ 3.0 Component Software Engineering User’s Guide

__VCSE_PRINT_VAR(A1,A2,V)

This is another macro used by the VCSE generated tracing code. It con-
catenates two string literal arguments, A1 and A2, appends a carriage
control and a line feed, and passes the result and the value V into a call of a
simplified printf-like function.

The V argument must be assignable to register R1 (another register, an
integer literal, or an addressing expression, such as W[P3 + 12](Z}), while
the concatenation of A1 and A2 makes up a format specification for print-
ing V. The macro preserves the same registers as __VCSE_ASM_TRACE does.

Implementation of Macros on
ADSP-21xx DSPs

C Run-Time Model
The macros provided within vcse_asm.h assume that the C run-time
model is implemented, which is always the case for the assembly imple-
mentation of interface methods. The macros, therefore, make use of
certain reserved registers, as given in Table A-1.

Table A-1. Reserved Registers for ADSP-21xx DSP C Run-Time Model

 ADSP-218x DSPs ADSP-219x DSPs

Register Use Register Use

I4 Stack pointer (SP) I4 Stack pointer (SP)

M4 Frame pointer (FP) I5 Frame pointer (FP)

M7 –1 M5 –1

M1 +1

VisualDSP++ 3.0 Component Software Engineering User’s Guide A-17

VCSE Assembler Macros

You need to take this into consideration and insert additional code if the
macros are used outside of the context of the C run-time model.

Method Result Macros
Macros provided for constructing method result values and testing the
result values returned from method calls are listed as follows.

VCSE_MRESULT

This macro expands into the appropriate data definition directive when
defining a memory location to hold a method result. On ADSP-21xx
DSPs, this is simply .VAR.

MR_ICONSTRUCT(F,I)

Use this macro to construct a method result value literal (MRESULT), com-
bining the failure indicator F (which should be 1 if the specified result
code, I, denotes a method failure and 0 otherwise) and a specific failure or
warning code value, I (which should be a decimal number in the range 0–
255). See “MRESULT Codes” on page B-2 for further details on the con-
struction of MRESULT values.

The following code fragment shows one way to use the MR_ICONSTRUCT
macro.

 #define warn 0

 #define fail 1

 #define NOT_FOUND MR_ICONSTRUCT(fail,3)

M2 0

M6 0

Table A-1. Reserved Registers for ADSP-21xx DSP C Run-Time Model

 ADSP-218x DSPs ADSP-219x DSPs

Implementation of Macros on ADSP-21xx DSPs

A-18 VisualDSP++ 3.0 Component Software Engineering User’s Guide

 #define CREATED_NEW MR_ICONSTRUCT(warn,4)

 .

 .

 AR = ...

 AX1 = NOT_FOUND;

 IF NE JUMP .end_func;

 AX1 = CREATED_NEW;

 .END_FUNC:

 RTS;

MR_FAILURE(mr) and MR_SUCCESS(mr)

These macros can be used to determine whether or not a returned method
result value represents a failure or otherwise. MR_FAILURE sets the upper-
most bit (15) of AF to 1 if mr represents a failure code, otherwise it sets it to
zero. Similarly, MR_SUCCESS sets the uppermost bit of AF to 1 if mr repre-
sents a success code, and zero otherwise. The MR_SUCCESS(mr) macro also
modifies AR and SR0.

The following is an example of how to use the macros immediately after
every method call.

 MR_FAILURE(AX1)

 IF NE JUMP .my_error_label;

__CHECK_VCSE_RESPONSE(handler)

This macro provides an alternative way to check whether a method call is
successful. Assuming the result code is still in AX1, the macro compares the
result with the predefined value MR_OK. If the values are not equal (the
method reports either a failure or a warning), then the user supplied func-
tion handler is called with the result code in AX1 pushed on to the
outgoing argument stack. The macro modifies AR.

VisualDSP++ 3.0 Component Software Engineering User’s Guide A-19

VCSE Assembler Macros

Accessing Factory Functions
Every VCSE component has three factory functions, which client applica-
tions use to create and destroy instances of the component and to obtain
an indication of the size of a component’s per-instance data structure.
Each of the macros __CREATOR(C), __DESTROYER(C), and __SIZEOF(C)
takes the fully qualified name of a VCSE component and expands it into
the name of the component’s Create, Destroy, and Sizeof functions,
respectively.

Taking __CREATOR as an example:

#define FIR ADI_FILTERS_CFir /*fully qualified component name */

 .

 .

 /* load up Create's arguments */

 ...

 call __CREATOR(FIR)

 MR_FAILURE(AX1)

 IF NE JUMP .no_fir;

If at a later time a different FIR component is to be used in the applica-
tion, all that needs to be changed is the #define of FIR.

Invoking Interface Methods
The usual approach for invoking an interface method is to use the macro
the VIDL compiler generates for it in the interface header file. For exam-
ple, method Filter in an interface ADI::FILTERS::IFir has a macro
ADI_FILTERS_IFir_Filter(P) defined in the interface header file
<ADI_FILTERS_IFilter.h>. To invoke the method, use the following code.

 /* load up Filter's arguments into the stack slots */

 /* ... */

 /* and then invoke Filter */

 ADI_FILTERS_IFir_Filter(P)

Implementation of Macros on ADSP-21xx DSPs

A-20 VisualDSP++ 3.0 Component Software Engineering User’s Guide

 MR_FAILURE(AX1)

 IF NE JUMP .error_3;

In the macro call, P is the name of the register containing the interface
pointer.

Each of the generated method call macros ultimately uses a macro called
__GET_METHOD(P,T,M) to obtain a pointer to the method’s code and to cal-
culate its first argument. In situations where the same method of the same
interface pointer is being called repeatedly, it may be appropriate for users
to call __GET_METHOD directly, save the code pointer and argument value,
and use these values to call the method subsequently.

The P parameter to __GET_METHOD is the name of the register holding the
interface pointer whose method is required. The T parameter is the name
of the interface, and M is the name of the required method.

On ADSP-218x DSPs, the macro puts the method’s code pointer into reg-
ister I6 and its required first argument into AR. The macro also overwrites
AX0, AY1, and I0.

On ADSP-219x DSPs, the address bus is 24 bits wide, so two registers are
required to hold the method’s code pointer. The macro puts the lower 16
bits of the pointer into register I1, the upper 8 bits of the pointer into reg-
ister IJPG, and the method’s required first argument into AR. The macro
also overwrites AX0, AY1, and I0.

Instead of using the ADI_FILTERS_IFir_Filter macro to call the Filter
method, as shown in the code example, an application can use the
__GET_METHOD macro (see Table A-2 on page A-21).

Function Writing Macros
The definition of a function in assembly, especially one that follows the C
run-time model, requires the use of certain directives and instruction
sequences. The directives are concerned with making the function’s name,

VisualDSP++ 3.0 Component Software Engineering User’s Guide A-21

VCSE Assembler Macros

size, and visibility available in the generated object file. The instruction
sequences are required for setting up stack frames, saving and restoring
preserved registers, and returning function results. The following macros
are available to help with these tasks.

__STARTFUNC(Name,Visibility) and __ENDFUNC(Name)

These two macros generate the assembler directives, which mark the start
and the end of an assembly written function. The Name argument is used
‘as is’; it is important to include a leading underscore if the function is to
be called from C or C++ code.

Table A-2. __Get_Method Macros

ADSP-218x DSPs ADSP-219x DSPs

/* outside main loop */
__GET_METHOD(
 P,ADI_FILTERS_IFir, Filter)
SE = I6; /* save method code address */
SI = AR; /* save method's first argu-
ment */
/* ... inside main loop */
/* load up Filter's arguments into
stack slots */
/* then load up saved first argument
*/
__PUSH(AR)
/* load up the method’s address */
I6 = SE;
/* and call the method */
call (I6);
MR_FAILURE(AX1)
IF NE JUMP .error_8;

/* outside main loop */
__GET_METHOD(
 P,ADI_FILTERS_IFir, Filter)
SE = I1; /* save method code address */
MX0=IJPG;
SI = AR; /* save method's first argument
*/
/* ... inside main loop */
/* load up Filter's arguments into
stack slots */
/* load up saved first argument */
__PUSH(AR)
/* load up the method’s address and the
saved first argument, call the method */
I1 = SE;
IJPG=MX0;
call (I1) (DB);
__PUSH(AR)
NOP;
MR_FAILURE(AX1)
IF NE JUMP .error_8;

Implementation of Macros on ADSP-21xx DSPs

A-22 VisualDSP++ 3.0 Component Software Engineering User’s Guide

The Visibility argument to __STARTFUNC should be __GLOBAL or
__LOCAL, depending on whether you want the function name to be visible
from outside the file.

__LINK(N)

This macro creates a new stack frame by pushing the old frame pointer FP
and the return address on the stack and decrementing the stack pointer SP
by the requested number of bytes to allocate space for the function’s
on-stack variables. SI and M5 are modified by the __LINK(N) macro (on
ADSP-218x DSPs only).

__PUSH(Reg) and __POP(Reg)

The __PUSH macro generates an instruction to push Reg onto the run-time
stack. The actual argument supplied for Reg must be a Dreg.

The __POP macro accepts a similar argument to __PUSH and generates the
appropriate code to pop the run-time stack. I1 is modified by the __POP
macro (on ADSP-218x DSPs only).

__ALLOCSTACK(N) and __FREESTACK(N)

The first macro generates an instruction to adjust SP downwards by N
words to create new space on the run-time stack. Use __ALLOCSTACK to cre-
ate the stack slots needed for holding the outgoing arguments of calls
made from a function. __FREESTACK adjusts SP in the opposite direction in
order to free up temporarily allocated stack space. On ADSP-218x DSPs,
M5 is modified by both macros (on ADSP-218x DSPs only).

__arg0 to __arg9 (ADSP-219x DSPs only)

The C run-time model includes rules defining where a function must
place the arguments for a function it calls. For ADSP-219x DSPs, these
passing places are slots on the run-time stack.

VisualDSP++ 3.0 Component Software Engineering User’s Guide A-23

VCSE Assembler Macros

The __argN macros expand to addressing expressions, which give the cor-
rect location for the first ten arguments. __arg0 gives DM(SP+1), __arg1
gives DM(SP+2), and so on.

__STORE_ARG(n,Reg) (ADSP-218x only)

The pre-modify-offset mode of DAG addressing, used in the above __argN
macros on ADSP-219x DSP architectures, is not available on the
ADSP-218x DSPs. It is, therefore, not possible to construct these macros
using ADSP-218x DSP assembler. The alternative macro,
__STORE_ARG(n,Reg), which results in a complete DAG move instruction, is
thus provided for consistency. However, use of __STORE_ARG(n,Reg) for
multiple arguments is not recommended. A better way is either to use the
__PUSH macro for each argument in reverse order or, if the arguments must
be added in ascending order, apply the following code example.

 __ALLOCSTACK(2)

 I0 = I4;

 MODIFY(I0,M1); /* I4 now points to the first argument slot */
 AX0 = ...;

 DM(I0+=M1) = AX0; /* Store first argument */

 AX0 = ...;

 DM(I0+=M1) = AX0; /* Store second argument */

 call _my_func;

 __FREESTACK(2)

If, in the above example, I0 is not available, then the run-time stack can
be used to store its value, but it must be pushed prior to __ALLOCSTACK(2)
and popped after __FREESTACK(2).

The __STORE_ARG(n,Reg) macro modifies I1 and M3.

Implementation of Macros on ADSP-21xx DSPs

A-24 VisualDSP++ 3.0 Component Software Engineering User’s Guide

__EXIT and __LEAF_EXIT

These macros generate the appropriate instructions for exiting non-leaf
and leaf functions, respectively. A leaf function is one that calls no other
functions and does not store the linkage information in its prolog. Both
macros require the effects of any __PUSH and __ALLOCSTACK calls to be
undone first by calling the corresponding __POP and __FREESTACK macros.

Additionally, if __LINK(N) with N>0 has been used in the prolog, then
__FREESTACK(N) must be used prior to the use of __EXIT or
__RETURN(Value).

The __EXIT macro modifies I6 and SI (on ADSP-218x DSPs only).

__RETURN(Value) and __LEAF_RETURN(Value)

These macros generate instructions to assign Value to the result register
AX1 and exit the function (using __EXIT or __LEAF_EXIT as appropriate).
The actual argument used for Value can be anything that can be directly
assigned to AX1, such as another register, an immediate value, or the con-
tents of a location (for example, DM(I0,M0)).

Miscellaneous Macros

__LA(R,V)

This macro is provided for consistency with the macros provided for other
DSP architectures. For ADSP-21xx DSPs, it simply translates to R=V;. Use
the macro to load the address of a variable into a register (for example,
__LA(AX0,_my_var)).

__VCSE_ASM_TRACE(A1,A2)

Calls to this macro are generated by the VIDL compiler when you request
tracing code to be placed at the start and end of method bodies, but it may
be of more general use. It concatenates its two string literal arguments, A1

VisualDSP++ 3.0 Component Software Engineering User’s Guide A-25

VCSE Assembler Macros

and A2, and calls a simplified printf-like function to write the result to
stdout. Please note that AX1 is used in the macro, and other registers may
be clobbered within the printf-like function.

__VCSE_PRINT_VAR(A1,A2,V)

This is another macro used by the VCSE generated tracing code. It con-
catenates two string literal arguments, A1 and A2, appends a carriage
control and a line feed, and passes the result and the value V to a simpli-
fied printf-like function.

The V argument must be assignable to register AX1, while the concatena-
tion of A1 and A2 must make up the format specification by which V is
output, for example:

__VCSE_PRINT_VAR(‘ADI::FILTERS::Ifir::Filter’,’ method result is

%x’,AR)

Please refer to __VCSE_ASM_TRACE(A1,A2) for comments concerning
registers usage.

Implementation of Macros on
TigerSHARC DSPs

C Run-Time Model
The macros provided within vcse_asm.h assume that the C run-time
model is implemented, which is always the case for the assembly imple-
mentation of interface methods. The macros, therefore, use certain
reserved registers, as described in the VisualDSP++ 3.0 C/C++ Compiler
and Library Manual for TigerSHARC DSPs. You need to take this into
consideration and insert additional code if the macros are used outside of
the context of the C run-time model.

Implementation of Macros on TigerSHARC DSPs

A-26 VisualDSP++ 3.0 Component Software Engineering User’s Guide

The vcse_asm.h header file includes the following #define statements.

 #define jSP j27 /* j Stack Pointer */

 #define jFP j26 /* j Frame Pointer */
 #define kSP k27 /* k Stack Pointer */

 #define kFP k26 /* k Frame Pointer */

 #define SP jSP /* default Stack Pointer */

 #define FP jFP /* default Frame Pointer */

 #define zero j31 /* Zero value (C run-time model) */

Method Result Macros
Macros provided for constructing method result values and testing the
result values returned from method calls are listed as follows.

VCSE_MRESULT

This macro expands into the appropriate data definition directive when
defining a memory location to hold a method result. On ADSP-TSxxx
DSPs, the directive is .VAR.

MR_ICONSTRUCT(F,I)

Use this macro to construct a method result (MRESULT) value literal, com-
bining the failure indicator F (which should be 1 if the specified result
code, I, denotes a method failure and 0 otherwise) and a specific failure or
warning code value, I (which should be a decimal number in the range 0–
255). See “VCSE MRESULT Codes” on page B-1 for further details on
the construction of method result values.

The following code fragment is an example of how the MR_ICONSTRUCT
macro can be applied.

 #define warn 0

 #define fail 1

 #define NOT_FOUND MR_ICONSTRUCT(fail,3)

VisualDSP++ 3.0 Component Software Engineering User’s Guide A-27

VCSE Assembler Macros

 #define CREATED_NEW MR_ICONSTRUCT(warn,4)

 .

 .

 j30 = ...

 .align_code 4;

 IF JEQ, JUMP .not_found;;

 __RETURN(CREATED_NEW,true)

 .not_found:

 __RETURN(NOT_FOUND,true)

MR_FAILURE(mr) and MR_SUCCESS(mr)

These macros can be used to determine whether or not a returned method
result value represents a failure or otherwise. MR_FAILURE clears SZ if mr
represents failure code, otherwise the macro sets SZ to zero. Similarly,
MR_SUCCESS clears SZ if mr represents a success code or sets it to zero
otherwise.

The following is an example of how to use the macros immediately after
every method call.

MR_FAILURE(j8)

IF NXSEQ, JUMP .MY_ERROR_LABEL;

__CHECK_VCSE_RESPONSE(handler)

This macro provides an alternative way to check whether a method call is
successful. Assuming the result code is still in j8, the macro compares the
result with the predefined value MR_OK. If the values are not equal (the
method reported either a failure or a warning), then the user supplied
function handler is called with the result code in j4.

Implementation of Macros on TigerSHARC DSPs

A-28 VisualDSP++ 3.0 Component Software Engineering User’s Guide

Accessing Factory Functions

Every VCSE component has three factory functions, which client applica-
tions use to create and destroy instances of the component and to obtain
an indication of the size of a component’s per-instance data structure.
Each of the macros __CREATOR(C), __DESTROYER(C), and __SIZEOF(C)
takes the fully qualified name of a VCSE component and expands it into
the name of the component’s Create, Destroy, and Sizeof functions,
respectively.

Taking __CREATOR as an example,

#define FIR ADI_FILTERS_CFir /* fully qualified component name */

 .

 .

/* load up Create's arguments */

...

call __CREATOR(FIR)

MR_FAILURE(j8)

IF NXSEQ, JUMP .no_fir;

If at a later time a different FIR component is to be used in the applica-
tion, all that needs to be changed is the #define of FIR.

Invoking Interface Methods

The usual approach for invoking an interface method is to use the macro
the VIDL compiler generates for the method in the interface header file.
For example, method Filter in an interface ADI::FILTERS::IFir would
have a macro called ADI_FILTERS_IFir_Filter(P) defined in the interface
header file <ADI_FILTERS_IFilter.h>. To invoke the method, use the fol-
lowing code.

/* load up Filter's arguments into appropriate regs and stack

slots */

/* ... */

VisualDSP++ 3.0 Component Software Engineering User’s Guide A-29

VCSE Assembler Macros

/* and then invoke Filter */

ADI_FILTERS_IFir_Filter(P)

MR_FAILURE(j8)

IF NXSEQ, JUMP .error_3;

In the macro call, P is either the name of the register containing the inter-
face pointer or an addressing expression, such as [FP + 0x48], for the
location where the pointer is stored.

Each of the generated method call macros ultimately uses another macro,
__GET_METHOD(P,T,M), to obtain a pointer to the method’s code and to
calculate its first argument. In situations where the same method of the
same interface pointer is being called repeatedly, it may be appropriate for
users to call __GET_METHOD directly, save the code pointer and argument
value, and use these values when calling the method subsequently.

The P parameter to __GET_METHOD is the name of the register holding
either the interface pointer whose method is required, or an addressing
expression from which it can be loaded. The T parameter is the name of
the interface, and M is the name of the required method. The macro puts
the method’s code pointer into register CJMP and its required first argu-
ment into j4. The macro also overwrites j10 and j11.

Instead of using the ADI_FILTERS_IFir_Filter macro to call the Filter
method, as previously described, an application can use __GET_METHOD:

 /* outside main loop */
 __GET_METHOD(P,ADI_FILTERS_IFir,Filter)

 j30 = cjmp;; /* save method code address */

 j29 = j4;; /* save method's first argument */

 .

 .

 /* ... inside main loop */

 /* load up Filter's arguments into appropriate registers

 and stack slots

 /* ...

Implementation of Macros on TigerSHARC DSPs

A-30 VisualDSP++ 3.0 Component Software Engineering User’s Guide

 /* then load up saved first argument, */

 j4 = j29;;

 /* the method code address, */

 cjmp = j30;;

 /* and call the method */

 if true, cjmp_call (ABS); q[jSP+4]=j27:24; q[kSP+4]=k27:24;;

 MR_FAILURE(j8)

 IF NXSEQ, JUMP .error_8;

Function Writing Macros

The definition of a function in assembly, especially one that follows the C
run-time model, requires the use of certain directives and instruction
sequences. The directives are concerned with making the function’s name,
size, and visibility available in the generated object file. The instruction
sequences are required for setting up stack frames, saving and restoring
preserved registers, and returning function results. The following macros
are available to help with these tasks.

__STARTFUNC(Name,Visibility) and __ENDFUNC(Name)

These two macros generate the assembler directives, which mark the start
and the end of an assembly written function. The Name argument is used
‘as is’, it is important to include a leading underscore if the function is to
be called from C or C++ code.

The Visibility argument to __STARTFUNC should be __GLOBAL or
__LOCAL, depending on whether you want the function name to be visible
from outside the file.

__LINK(N)

This macro creates a new stack frame by decrementing the j-stack pointer
jSP by the requested number of bytes plus four bytes to allocate space for
the function’s on-stack variables and to save the return address. Addition-
ally, the k-stack pointer is decremented by eight to save the xr27:24

VisualDSP++ 3.0 Component Software Engineering User’s Guide A-31

VCSE Assembler Macros

registers, and both j- and k-frame pointers are decremented by 0x40, fol-
lowing the C run-time model. The number of bytes, N, must be a multiple
of four because the stacks are required to align with quad-word
boundaries.

__JPUSH(q,Reg) and __JPOP(q,Reg)

The __JPUSH and __JPOP macro generate instructions to push and pop
either a single or a range of four registers, specified by Reg, onto or from
the j run-time stack. If a single register is to be pushed or popped, the first
argument q is left blank (__JPUSH(,j23)) or specified as q if a set of four
registers is to be pushed/popped (__JPUSH(q,j27:24)).

The actual argument supplied for Reg can be anything that is valid for a
TigerSHARC DSP data move instruction, such as a register name or a
quad register range (__JPUSH(q,R7:5)).

__KPUSH(q,Reg) and __KPOP(q,Reg)

The __KPUSH and __KPOP macros are similar to the __JPUSH _JPOP macros,
except that the specified registers are pushed onto and popped off the k
run-time stack.

__JKPUSH(q,jReg,kReg) and __KPOP(q,jReg,kReg)

The __JKPUSH and __JKPOP macros enable the specified j and k registers or
quad range of registers to be pushed onto and popped off both run-time
stacks simultaneously.

__PUSH(Reg) and __POP(Reg)

These macros are synonyms for __JPUSH(,Reg) or __JPOP(,Reg). They
are provided for compatibility with VCSE assembler macros for other
DSP architectures.

Implementation of Macros on TigerSHARC DSPs

A-32 VisualDSP++ 3.0 Component Software Engineering User’s Guide

__JALLOCSTACK(N) and __JFREESTACK(N)

The first macro generates an instruction to adjust jSP downwards by N
words to create new space on the run-time stack. N must be a multiple of
four because the stacks are required to align with quad-word boundaries.
Use __JALLOCSTACK to create the stack slots needed for holding the outgo-
ing arguments of calls made from a function. __JFREESTACK adjusts jSP in
the opposite direction in order to free up temporarily allocated stack
space.

__KALLOCSTACK(N) and __KFREESTACK(N)

These macros operate in the same manner as __JALLOCSTACK and
__JFREESTACK, except that they operate on the k-stack pointer, kSP.

__JKALLOCSTACK(N,M) and __JKFREESTACK(N,M)

These macros enable both the j and k stack pointers to be adjusted simul-
taneously. The value of jSP is adjusted by the N argument, while the M
argument adjusts the value of kSP.

__ALLOCSTACK(N) and __FREESTACK(N)

These macros are synonyms for the __JALLOCSTACK and __JFREESTACK
macros, as described on page A-32.

__arg(n)

The C run-time model includes rules defining where a function must
place the arguments for a function it calls. On TigerSHARC DSPs, the
first four arguments are passed in registers (j7:4 if integers or pointers,
x7:4 if floating point or double-word values). The first function argument
is in either j4 or x4, and the remaining arguments are on the j-stack. The
exception to this rule occurs when a function can take a variable number
of arguments (such as VCSE_printf), when all arguments must be passed
via the j-stack.

VisualDSP++ 3.0 Component Software Engineering User’s Guide A-33

VCSE Assembler Macros

The __arg(n) macros expand to memory addressing expressions to place
the arguments on the stack. The maximum number of arguments catered
for by these macros is nine.

__arg0 to __arg9

The __argN macros expand to addressing expressions, which give the cor-
rect location for the first ten integer or pointer arguments. The __arg0,
__arg1, __arg2, and __arg3 macros expand to j4, j5, j6, and j7 (respec-
tively), while __arg4 gives [jSP+12], __arg5 gives [jSP+16], and so on.

__arg0_int to __arg3_int

These macros are synonyms for __arg0 to __arg3.

__arg0_float to __arg3_float

These macros expand to addressing expressions, which give the correct
location for the first four double-word or floating-point arguments.

__arg0_mem to __arg3_mem

These macros are synonyms for __arg(0) to __arg(3).

__EXIT(Cond) and __LEAF_EXIT(Cond)

These macros generate the appropriate instructions for exiting non-leaf
and leaf functions, respectively. A leaf function is one that calls no other
functions and does not store linkage information in its prolog. Both mac-
ros require the effects of any __JPUSH/__KPUSH and
__JALLOCSTACK/__KALLOCSTACK calls to be undone first by calling the cor-
responding __JPOP/__KPOP and __JFREESTACK/__KFREESTACK macros. The
Cond argument can be used to specify the condition on which the branch
is to execute. This will usually be TRUE. No additional cycles are used for
the conditional branch over the non-conditional branch.

Implementation of Macros on TigerSHARC DSPs

A-34 VisualDSP++ 3.0 Component Software Engineering User’s Guide

__RETURN(Value,Cond) and __LEAF_RETURN(Value,Cond)

These macros generate instructions to assign Value to the j8 result regis-
ter and exit the function, using __EXIT(Cond) or __LEAF_EXIT(Cond) as
appropriate. The actual argument used for Value can be anything that can
be directly assigned to j8, such as another register, an immediate value, or
the contents of a location (for example, [jSP + 4]).

Miscellaneous

__LA(Reg,V)

This macro is provided for consistency with the macros provided for other
DSP architectures. For TigerSHARC DSP, it simply translates to Reg=V;.
Use this macro to load the address of a variable into a register (for exam-
ple, __LA(j4,_my_var)).

__VCSE_ASM_TRACE(A1,A2)

The VIDL compiler calls this macro when you request tracing code to be
inserted at the start and end of method bodies, but it may be of more gen-
eral use. The macro concatenates two string literal arguments, A1 and A2,
and calls a simplified printf-like function to write the result to stdout.
Please note that some registers may be clobbered within the printf-like
function.

__VCSE_PRINT_VAR(A1,A2,V)

This is another macro used by the VCSE generated tracing code. The
macro concatenates its two string literal arguments, A1 and A2, appends a
carriage control and a line feed, and passes the result and the value, V, into
a call of a simplified printf-like function.

The V argument must be held in a register, while the concatenation of A1
and A2 makes up a format specification for printing V; for example:

VisualDSP++ 3.0 Component Software Engineering User’s Guide A-35

VCSE Assembler Macros

__VCSE_PRINT_VAR('ADI::FILTERS::Ifir::Filter',' method result is

%x',j8)

Implementation of Macros on SHARC
DSPs

C Run-Time Model
The macros provided within vcse_asm.h assume that the C run-time
model is implemented, which is always the case for the assembly imple-
mentation of interface methods. The macros, therefore, use certain
reserved registers, as described in the VisualDSP++ 3.0 C/C++ Compiler
and Library Manual for SHARC DSPs. You need to take this into consider-
ation and insert additional code if the macros are used outside of the
context of the C run-time model.

The vcse_asm.h header file includes the following #define statements:

 #define SP i7 /* Stack Pointer */

 #define FP i6 /* Frame Pointer */

 #define zero m5 /* Zero value (DAG 1) */

 #define zero2 m13 /* Zero value (DAG 2) */

 #define one m6 /* 1 value (DAG 1) */

 #define one2 m14 /* 1 value (DAG 2) */

 #define minus_one m7 /* -1 value (DAG 1) */

 #define minus_one2 m15 /* -1 value (DAG 2) */

Method Result Macros
Macros provided for constructing method result values and testing the
result values returned from method calls are listed as follows.

Implementation of Macros on SHARC DSPs

A-36 VisualDSP++ 3.0 Component Software Engineering User’s Guide

VCSE_MRESULT

This macro expands into the appropriate data definition directive when
defining a memory location to hold a method result. On ADSP-21xxx
DSPs, the directive is .VAR.

MR_ICONSTRUCT(F,I)

Use this macro to construct a method result value literal (MRESULT), com-
bining the failure indicator F (which should be 1 if the specified result
code, I, denotes a method failure and 0 otherwise) and a specific failure or
warning code value, I (which should be a decimal number in the range 0–
255). See “VCSE MRESULT Codes” on page B-1 for further details on
the construction of MRESULT values.

The following code fragment is an example of how the MR_ICONSTRUCT
macro can be applied.

 #define warn 0

 #define fail 1

 #define NOT_FOUND MR_ICONSTRUCT(fail,3)

 #define CREATED_NEW MR_ICONSTRUCT(warn,4)

 .

 .

 MR_FAILURE(r0)

 IF TF JUMP .not_found;;

 __RETURN(CREATED_NEW,true)

 .not_found:

 __RETURN(NOT_FOUND,true)

VisualDSP++ 3.0 Component Software Engineering User’s Guide A-37

VCSE Assembler Macros

MR_FAILURE(mr) and MR_SUCCESS(mr)

These macros can be used to determine whether or not a returned method
result value represents a failure or otherwise. MR_FAILURE sets the Bit Test
Flag (TF) if mr is a failure code, otherwise the macro sets TF to zero. Simi-
larly, MR_SUCCESS sets TF if mr represents a success code or to zero
otherwise.

The following is an example of how to use the macros immediately after
every method call.

 MR_FAILURE(r0)

 IF TF JUMP .my_error_label;

__CHECK_VCSE_RESPONSE(handler)

This macro provides an alternative way to check whether a method call is
successful. It assumes the result code is still in r0 and compares the result
with the predefined value MR_OK. If the values are not equal (the method
reported either a failure or a warning), then the user supplied function
handler is called with the result code in r4.

Accessing Factory Functions
Every VCSE component has three factory functions, which client applica-
tions use to create and destroy instances of the component and to obtain
an indication of the size of a component’s per-instance data structure.
Each of the macros __CREATOR(C), __DESTROYER(C), and __SIZEOF(C)
takes the fully qualified name of a VCSE component and expands it into
the name of the component’s Create, Destroy, and Sizeof functions,
respectively.

Taking __CREATOR as an example:

 /* fully qualified component name */
 #define FIR ADI_FILTERS_CFir

Implementation of Macros on SHARC DSPs

A-38 VisualDSP++ 3.0 Component Software Engineering User’s Guide

 .

 .

 /* load up Create's arguments */

 ...

 call __CREATOR(FIR)

 MR_FAILURE(r0)

 IF TF JUMP .no_fir;

If at a later time a different FIR component is to be used in the applica-
tion, all that needs to be changed is the #define of FIR.

Invoking Interface Methods
The usual method for invoking an interface method is to use the macro
the VIDL compiler generates for it in the interface header file. For exam-
ple, method Filter in an interface ADI::FILTERS::IFir would have a
macro called ADI_FILTERS_IFir_Filter(P) defined in the interface header
file ADI_FILTERS_IFilter.h. To invoke the method, use the following
code.

 /* load up Filter's arguments into appropriate registers and

 stack slots */

 /* ... */

 /* and then invoke Filter */

 ADI_FILTERS_IFir_Filter(P)

 MR_FAILURE(r0)

 IF TF JUMP .error_3;

In the macro call, P is the name of the register containing the interface
pointer or an addressing expression, such as dm(-2,FP), for the location
where it is stored.

Each of the generated method call macros ultimately uses a macro called
__GET_METHOD(P,T,M) to obtain a pointer to the method’s code and to cal-
culate its first argument. In situations where the same method of the same

VisualDSP++ 3.0 Component Software Engineering User’s Guide A-39

VCSE Assembler Macros

interface pointer is being called repeatedly, it may be appropriate to call
__GET_METHOD directly, save the code pointer and argument value, and use
these to call the method subsequently.

The P argument to __GET_METHOD is the name of the register holding the
interface pointer whose method is required, or an addressing expression
from which it can be loaded. The T argument is the name of the interface,
and M is the name of the required method. The macro puts the method’s
code pointer into register i12 and the required first argument into r4. The
macro also overwrites i0 and r0.

Instead of using the ADI_FILTERS_IFir_Filter macro to call the Filter
method, as shown above, an application could use __GET_METHOD:

 /* outside main loop */
 __GET_METHOD(P,ADI_FILTERS_IFir,Filter)

 b12 = i12; /* save method code address */

 b4 = r4; /* save method's first argument */

 .

 .

 /* ... inside main loop */

 /* load up Filter's arguments into appropriate registers

 and stack slots */

 /* ...*/

 /* then load up saved first argument, */

 r4 = b4;

 /* the method code address */

 i12 = b12;

 /* and call the method */

 r2=FP; FP=SP;

 call (zero2,i12) (db); puts=r2; puts=PC;

 MR_FAILURE(r0);

 IF TF JUMP .error_8;

Implementation of Macros on SHARC DSPs

A-40 VisualDSP++ 3.0 Component Software Engineering User’s Guide

Function Writing Macros
The definition of a function in assembly, especially one that follows the C
run-time model, requires the use of certain directives and instruction
sequences. The directives are concerned with making the function’s name,
size, and visibility available in the generated object file. The instruction
sequences are required for setting up stack frames, saving and restoring
preserved registers, and returning function results. The following macros
are available to help with these tasks.

__STARTFUNC(Name,Visibility) and __ENDFUNC(Name)

These two macros generate the assembly directives, which mark the start
and the end of an assembly written function. The Name argument is used
‘as is’, so remember to include a leading underscore if the function is
called from C or C++ code.

The Visibility argument to __STARTFUNC should be one of the symbols
__GLOBAL or __LOCAL, depending on whether you want the function name
to be visible from outside the file.

__LINK(N)

This macro creates a new stack frame by decrementing the stack pointer SP
by the requested number of bytes to allocate space for the function’s
on-stack variables.

__PUSH(Reg) and __POP(Reg)

The __PUSH/__POP macros generate instructions to push/pop Reg
onto/from the run-time stack.The actual argument supplied for Reg can be
anything that is valid for a SHARC DSP data move instruction.

VisualDSP++ 3.0 Component Software Engineering User’s Guide A-41

VCSE Assembler Macros

__ALLOCSTACK(N) and __FREESTACK(N)

The first macro generates an instruction to adjust SP downwards by N
words to create new space on the run-time stack. A common use of
__ALLOCSTACK is to create the stack slots needed for holding the outgoing
arguments of calls made from a function. __FREESTACK adjusts SP in the
opposite direction in order to free up temporarily allocated stack space.

__arg(n)

The C run-time model contains rules defining where a function must
place the arguments for a function it calls. On SHARC DSPs, the first
three arguments are passed in registers (r4, r8, and r12) and the remainder
on the stack. The exception to this rule occurs when a function can take a
variable number of arguments, such as VCSE _printf, and when all argu-
ments must be passed via the stack.

The __arg(n) macros expand to memory addressing expressions to place
the arguments on the stack. The maximum number of arguments catered
for by these macros is ten.

__arg0 to __arg9

The __argN macros expand to addressing expressions, which give the cor-
rect location for the first ten arguments. The __arg0, __arg1, and __arg2
macros expand to r4, r8, and r12 (respectively), while __arg4 gives
dm(5,SP), __arg5 gives dm(6,SP), and so on.

__EXIT and __LEAF_EXIT

These functions generate the appropriate instructions for exiting non-leaf
and leaf functions, respectively. A leaf function is one that calls no other
functions and does not store linkage information in the function’s prolog.

Implementation of Macros on SHARC DSPs

A-42 VisualDSP++ 3.0 Component Software Engineering User’s Guide

__RETURN(Value) and __LEAF_RETURN(Value)

These macros generate instructions to assign Value to the result register r0
and exit the function (using __EXIT or __LEAF_EXIT, as appropriate). The
actual argument used for Value can be anything that can be directly
assigned to r0, such as another register, an immediate value, or the con-
tents of a location (for example, dm(1,SP)).

Miscellaneous

__LA(Reg,V)

This macro is provided for consistency with the macros provided for other
DSP architectures. For SHARC DSP, it simply translates to Reg = V;. Use
this macro to load the address of a variable into a register (for example,
__LA(r4,_my_var)).

__VCSE_ASM_TRACE(A1,A2)

Calls to this macro are generated by the VIDL compiler when you request
tracing code to be placed at the start and end of method bodies, but it may
be of more general use. The macro concatenates two string literal argu-
ments A1 and A2 and calls a simplified printf-like function to write the
result to stdout. Please note that some registers may be clobbered within
the printf-like function.

__VCSE_PRINT_VAR(A1,A2,V)

This is another macro used by VCSE-generated tracing code. The macro
concatenates two string literal arguments A1 and A2, appends a carriage
control and a line feed, and passes the result and the value V into a call of a
simplified printf-like function.

The V argument must be held in a register, while the concatenation of A1
and A2 makes up a format specification for printing V, for example:

VisualDSP++ 3.0 Component Software Engineering User’s Guide A-43

VCSE Assembler Macros

__VCSE_PRINT_VAR(‘ADI::FILTERS::Ifir::Filter’,’ method result is

%x’,r0)

Implementation of Macros on SHARC DSPs

A-44 VisualDSP++ 3.0 Component Software Engineering User’s Guide

VisualDSP++ 3.0 Component Software Engineering User’s Guide B-1

B VCSE MRESULT CODES

This appendix lists and describes the defined MSRESULT codes.

The information is presented as follows.

• “MRESULT Structure” on page B-1

• “MRESULT Codes” on page B-2

MRESULT Structure
An MRESULT is defined as a signed short integer on each DSP platform and,
therefore, is a 16-bit signed quantity.

The high order bit (bit 15) of an MRESULT indicates whether the return
value represents success or failure. If set to zero, the value indicates suc-
cess. If set to one, it indicates failure. The macros MR_SUCCESS and
MR_FAILURE can be also used to test for success or failure.

The next seven bits (bit 14 to bit 8) are reserved for VCSE defined result
codes. The low order eight bits (bit 7 to bit 0) are used for interface spe-
cific result codes.

Bit 15 14–8 7–0

Value F vcode icode

MRESULT Codes

B-2 VisualDSP++ 3.0 Component Software Engineering User’s Guide

The interface specific field icode is set to zero for all VCSE defined result
codes. Similarly, the VCSE defined result field vcode should be zero for all
interface specific results.

The macro MR_VCODE can be used to access the VCSE defined field.

The macro MR_ICODE can be used to access the interface specific field.

MRESULT Codes
Table B-1 lists and briefly describes the MRESULT codes.

Table B-1. VCSE MRESULT Codes

Code Description

MR_OK (0x0000) Indicates the VCSE function or method executed
without failure.

MR_FAILED (0x8000) Indicates the VCSE function or method detects a
failure, which does not have a specific result code
value.

MR_NOT_SUPPORTED (0x8100) Indicates the underlying component does not
implement the requested interface. The code is
returned by a GetInterface method.

MR_NO_MEMORY (0x8200) Indicates the Allocate method of the IMemory
interface does not have sufficient available memory
to satisfy a memory allocation request.

MR_NO_AGGREGATION (0x8300) Indicates an attempt is made to aggregate a compo-
nent that does not support aggregation.

MR_BAD_AGGREGATION (0x8400) Indicates the requested interface is not
VCSE::IBase. The code is returned by a compo-
nent’s Create function when it is called to create
an instance for aggregation into another compo-
nent.

VisualDSP++ 3.0 Component Software Engineering User’s Guide B-3

VCSE MRESULT Codes

MR_BAD_ALIGNMENT (0x8500) Indicates the MemRequest struct passed to the
Allocate method of the IMemory interface has a
bad value for the Alignment member.

MR_BAD_MEMTYPE (0x8600) Indicates the MemRequest struct passed to the
Allocate method of the IMemory interface has a
bad value for the TypeFlags member.

MR_BAD_MEMLIFE (0x8700) Indicates the MemRequest struct passed to the
Allocate method of the IMemory interface has a
bad value for the LifetimeFlags member.

MR_BAD_CONTEXT (0x8800) Indicates the MemRequest struct passed to the
Allocate method of the IMemory interface has a
bad value for the Context member.

MR_BAD_MEMBANK (0x8900) Indicates the MemRequest struct passed to the
Allocate method of the IMemory interface has a
bad value for the BankName member.

MR_BAD_HANDLE (0x8A00) Indicates an invalid Token value is passed to the
Allocate and Free methods of a component that
implements IMemory.

MR_NOT_COMPLETED (0x8B00) Indicates the called function or method did not
complete its processing. It may have reported a spe-
cific error by other means, such as an IError inter-
face. This is a general result code.

MR_NOT_ALLOCATED_MEM (0x8C00) Indicates the Free method of an IMemory instance
is asked to free memory it did not allocate.

MR_INV_PARAM (0x8D00) Indicates an invalid value for a method argument is
not covered by some interface specific result code.
This is a general result code.

MR_BAD_IFCE_PTR (0x8E00) Indicates a NULL interface pointer is passed to a
component’s Destroy function.

MR_SINGLETON_EXISTS (0x8F00) Indicates an attempt made to create more than one
instance of a [singleton] component. The code
is returned by the Create function.

Table B-1. VCSE MRESULT Codes (Cont’d)

Code Description

MRESULT Codes

B-4 VisualDSP++ 3.0 Component Software Engineering User’s Guide

VisualDSP++ 3.0 Component Software Engineering User’s Guide I-1

I INDEX

Symbols
#pragma 4-23
.H files 1-17, 2-10, 2-24, 5-9, 5-18,

5-19, 5-20
.IDL files 1-17, 2-11, 2-12, 2-13, 2-20,

2-27, 5-2, 5-5, 5-9
.VCP files 1-20
.XML files 1-20, 2-13, 2-14, 2-30, 2-35,

5-6, 5-14, 5-32
-@ filename switch 5-7
@example 2-25
@keyword 2-25
@param 2-25
@return 2-25
__ADSP_21000__ 5-16
__ADSP218X__ 5-4
__ADSP219x__ 5-4
__ADSPBLACKFIN__ 5-4, 5-15
__ADSPTS__ 5-4, 5-16
__ALLOCSTACK A-6, A-14, A-22,

A-32, A-41
__arg A-6, A-14, A-22, A-32, A-41
__arg0_float A-33
__arg0_int A-33
__arg0_mem A-33
__ASSIGN_THIS_POINTER 2-18
__builtin_aligned 2-18

__CHECK_VCSE_RESPONSE 5-23,
A-2, A-10, A-18, A-27, A-37

__CREATOR A-3, A-11, A-19, A-28,
A-37

__DEBUG_TRACE_ENTRY 2-28
__DEBUG_TRACE_EXIT 2-28
__DESTROYER A-3, A-11, A-19,

A-28, A-37
__ENDFUNC A-5, A-13, A-21, A-30,

A-40
__EXIT A-5, A-6, A-15, A-24, A-33,

A-41
__FREESTACK A-6, A-14, A-22,

A-32, A-41
__GENERIC__ 5-11
__GET_METHOD A-4, A-12, A-20,

A-29, A-38
__GET_METHOD macro 5-23
__GLOBAL A-22, A-30, A-40
__INVOKE 5-23, A-4
__INVOKE_* macros 5-21
__INVOKE_NOARGS macro 5-21
__INVOKE_VARARGS macro 5-21
__JALLOCSTACK A-32
__JFREESTACK A-32
__JKALLOCSTACK A-32
__JKFREESTACK A-32

INDEX

I-2 VisualDSP++ 3.0 Component Software Engineering User’s Guide

__JKPUSH A-31
__JPOP A-31
__JPUSH A-31
__KALLOCSTACK A-32
__KFREESTACK A-32
__KPOP A-31
__KPUSH A-31
__LA A-7, A-15, A-24, A-34, A-42
__LEAF_EXIT A-7, A-15, A-24, A-33,

A-41
__LEAF_RETURN A-7, A-15, A-24,

A-34, A-42
__LINK A-5, A-6, A-13, A-22, A-30,

A-40
__LOCAL A-22, A-30, A-40
__POP A-5, A-14, A-22, A-31, A-40
__PUSH A-5, A-14, A-22, A-31, A-40
__RETURN A-5, A-7, A-15, A-24,

A-34, A-42
__SIZEOF A-3, A-11, A-19, A-28,

A-37
__STARTFUNC A-4, A-13, A-21,

A-30, A-40
__STORE_ARG A-6, A-23
__this, pointer 2-19
__UPCAST macro 5-21
__VCSE_ASM_TRACE A-8, A-15,

A-24, A-34, A-42
__VCSE_free macro 3-4
__VCSE_malloc macro 3-4
__VCSE_PRINT_VAR A-8, A-16,

A-25, A-34, A-42

Numerics
-211xx switch 5-8
-21532 switch 5-8
-21535 switch 5-8
-21k switch 5-8

A
abstract classes 2-21
abstraction 1-9
-accept-any-include-file switch 5-9
Activate 3-16
address clashes 6-15
ADDRESS, type 3-12, 3-13
addressing models 6-18
ADI namespace 2-7
ADSP-2153x DSPs

macros A-9
ADSP-21xx DSPs

macros A-16
ADSP-21xxx DSPs

macros A-35
ADSP-TSxxx DSPs

macros A-25
aggregate type 4-22
aggregation 2-36, 2-43, 2-45
algorithm components

guidelines 6-5
rules 6-5

align, see also attributes
alignment_value 4-23, 4-24
-all-idl switch 5-9
Allocate 3-4, 3-12

method parameters 3-12
return values 3-12

VisualDSP++ 3.0 Component Software Engineering User’s Guide I-3

INDEX

allocation strategies 3-3, 3-11
alternative compilers

gcc 3.2 5-11
Microsoft Visual C++ 6.0 5-11

arithmetic operators 4-8, 4-17
arrays

bounds of 4-19
unsized 4-27

-asm switch 5-9
assembly macros, overview of A-1
assembly, component header files 2-34
attributes 2-4

align 2-6
common 1-7
list of 4-29

auto-doc comments 2-9, 2-11, 2-24,
5-31

automation 1-7

B
backspaces 4-10
binary operators 4-16, 4-18
binary standard interface 1-15

C
C

component header files 2-31
function prototypes 2-4
functions 2-22
run-time library 2-22

C run-time model 5-23, 6-9
ADSP-2153x DSPs A-9
ADSP-21xx DSPs A-16
ADSP-21xxx DSPs A-35

ADSP-TSxxx DSPs A-25
C++ component header files 2-34
-c++ switch 5-10
C/C++ compiler 2-5
carriage returns 4-10
character literals 4-4, 4-10
character sequences 4-3, 4-4

decimal digits 4-4
letters 4-4
special characters 4-4

class constructs 1-2
client-server model 1-21
COM platform 1-4
comments 4-5

auto-doc 4-5
normal 4-5
post 4-5

common components
guidelines 6-4
rules 6-3

compiler command line switches
-@ 5-7
-211xx 5-8
-21532 5-8
-21535 5-8
-21k 5-8
-accept-any-include-file 5-9
-all-idl 5-9
-asm 5-9
-c++ 5-10
-copyright 5-10
-cppflags 5-10
-D 5-10
-dryrun 5-11

INDEX

I-4 VisualDSP++ 3.0 Component Software Engineering User’s Guide

-generic 5-11
-harness 5-11
-hdr 5-12
-help 5-12
-I 5-12
-M 5-12
-mcd 5-13
-MM 5-13
-no-adoc 5-13
-no-vla 5-13
-no-xml 5-14
-overwrite 5-14
-path 5-14
-path-def 5-14
-path-html 5-14
-path-install 5-15
-path-output 5-15
-path-temp 5-15
-proc 5-15
-save-temps 5-16
-trace 5-16
-TS101 5-9
-U 5-16
-verbose 5-17
-version 5-17

component instances
header file for C++ 2-34

Component Manager 1-21
Component Model 1-7, 1-15, 1-23,

2-14
components

aggregation 2-43
assembly implemented 5-30
C implemented 5-28

C++ implemented 5-29
classes 2-32
creating instances of 2-36
definitions of 5-27
destroying 2-41
documenting 2-24
factory header files 2-35
factory source files 2-32
functions, see also factory functions
instance storage 1-5
instances of 1-5, 2-14
instantiation 2-36, 3-3, 3-4
manifest files 5-32
method source files 2-33
modifiable sections 2-31
packaging 2-30
state of 1-5, 1-12
testing 2-27

conformant arrays 4-27
constant expressions 4-16, 4-20

arithmetic operators 4-16
context 3-11
conventions, manual xxviii
-copyright switch 5-10
CORBA platform 1-4
core peripherals 6-14
-cppflags switch 5-10
Create 1-5, 2-20, 2-22, 2-36, 3-12
customer support xxii

D
data

placements 3-4
size and alignment 6-9

VisualDSP++ 3.0 Component Software Engineering User’s Guide I-5

INDEX

Deactivate 3-17
decimal digits 4-9
declarators 4-26

lists 4-26
definitions

named elements 4-12
scope of 4-12

dependencies, component 1-11
Destroy 1-5, 2-20, 2-22
destroying

components 2-41
developing

components 2-1
dimensions, arrays 4-27
direction attributes 4-32
distributed components 1-5, 2-14
-Dmacro switch 5-10
documentation

comments in 4-5
generated files 5-31
HTML files 2-11
memory characteristics 6-16
processing characteristics 6-17
resource requirements 6-17

-dryrun switch 5-11

E
element attributes 4-15, 4-19
eliminating code, data 6-18
embedded systems 1-3
encapsulation 1-4, 1-7
end-of-file comments 5-19
enumeration

constants 4-19

type 4-21
Error 3-20
ErrorLevel type 3-21
escape

characters 4-10
sequences 4-10

evaluation, components 1-15
EXAMPLES namespace 2-7
extending interfaces 1-9, 1-11
extensibility 1-6

F
factory functions 1-5, 2-23, A-3, A-11,

A-19, A-28, A-37
factory source files 2-32
file searching 4-6

"filename" 4-6
<filename> 4-6

files
naming guidelines 5-4, 5-19
organization 5-18

flexibility 1-6, 1-7, 1-11
Free 3-4, 3-13
fully qualified names 4-7
function calls 6-9
functional specifications 1-10, 1-14

G
-generic switch 5-11

see also alternative compilers
GetInterface 2-42, 2-48

delegation of 2-49
non-delegating 2-49

GetLength 3-24

INDEX

I-6 VisualDSP++ 3.0 Component Software Engineering User’s Guide

GetName 3-24
global scope 4-12, 4-13
guidelines 6-2

addressing models 6-18
code, data elimination 6-18
Component Model 1-23
interrupt system, reentrancy 6-12
registers and stacks 6-10
resource allocation 6-8
stacks 6-10

H
HANDLE, type 3-12, 3-13
-harness switch 5-11
-hdr switch 5-12
header files 2-11

guards of 5-20
-help switch 5-12
hexadecimal digits 4-9, 4-10
highest precedence, operators 4-18
horizontal tabs 4-10
HTML

component documentation 5-31
constructs 2-9
documentation 2-26
tags 2-25

I
-I switch 5-12
IAlgorithm, standard interface 3-1, 3-14

definition of 3-15
methods of 3-15

IBase
identifier of 5-24

interface 2-4
see also interfaces
type 3-21

IBase.h, interface header 5-24
IBase_GetInterface 5-24
IBase_methods 5-24
-Idirectory switch 5-12
idl 5-5
IDL, see VIDL
IError, standard interface 3-1, 3-18

definition of 3-20
iid, interface identifier 1-10, 2-4, 2-36,

4-29
IMemory enumerations

MemContext 3-6
MemLifetime 3-6
MemType 3-6

IMemory structures
MemRequest 3-7

IMemory, standard interface 3-1, 3-2
definition of 3-6
methods of 3-12

implementation
files 1-19, 2-13
shells 2-27

implementing
aggregation 2-45
interfaces 2-11

in, direction attribute 4-32
IName, standard interface 3-2, 3-22

definition of 3-22
include directives 4-6
industry developments, VCSE related

1-3

VisualDSP++ 3.0 Component Software Engineering User’s Guide I-7

INDEX

inheritance 1-2
instances

creation 1-7
data 2-19, 3-3
storage 1-12
variables 1-12

integer literals 4-9
interaction, application-component

1-21
Interface Definition Language (.IDL)

files 5-18
interface pointers

C and assembly 2-39
C++ 2-40

interfaces 1-4, 1-8, 2-8, 4-28
assembly methods 2-22
C methods 2-17
C++ methods 2-19
declaring 4-28
defining 2-3
definitions of (.IDL) 4-28, 5-25
extending 4-29
generating source files 5-26
IBase, base 1-10, 4-29
identifiers 4-29
iid 5-23, 5-24
implementing 2-11
methods of 4-29
methods of, see method tables
naming conventions 1-9, 4-29
pointers 1-15
scopes of 4-30

interoperability 1-7
interrupt system, reentrancy 6-10

K
keywords 4-8

L
language identifications 5-20
language tokens 4-3, 4-4, 4-7

character literals 4-10
keywords 4-8
names 4-7
numeric literals 4-9
operators 4-8
punctuation 4-8
string literals 4-11

lexical elements 4-3
character sequences 4-4
comments 4-3
language tokens 4-7
preprocessing tokens 4-3
white space tokens 4-3

library files 1-19
LifetimeFlags 3-11
LOCAL namespace 2-7
lowest precedence, operators 4-18

M
-M switch 5-12
macros

ADSP-2153x DSP specific A-9
ADSP-21xx DSP specific A-16
ADSP-21xxx DSP specific A-35
ADSP-TSxxx DSP specific A-25
function writing A-4, A-13, A-20,

A-30, A-40
manifest files (.XML) 2-35, 5-32

INDEX

I-8 VisualDSP++ 3.0 Component Software Engineering User’s Guide

-mcd switch 5-13
MemBank 3-9, 3-10

ADSP-2153x DSPs 3-10
ADSP-21xx DSPs 3-10
ADSP-21xxx DSPs 3-10
ADSP-TSxxx DSPs 3-10

MemExternal 3-9, 3-10
ADSP-2153x DSPs 3-10
ADSP-21xx DSPs 3-10
ADSP-21xxx DSPs 3-10
ADSP-TSxxx DSPs 3-10

memory
allocation 3-2, 3-4
attributes, see MemRequest
characteristics 6-16
managers, see memory

memory types
ADSP-2153x DSPs 3-9
ADSP-21xx DSPs 3-10
ADSP-21xxx DSPs 3-10
ADSP-TSxxx DSPs 3-10

MemoryRequest type 3-13
MemPrimary 3-9, 3-10

ADSP-2153x DSPs 3-9
ADSP-21xx DSPs 3-10
ADSP-21xxx DSPs 3-10
ADSP-TSxxx DSPs 3-10

MemRequest structure
Alignment member 3-8
BankName member 3-9
Context member 3-9
Length member 3-8
LifetimeFlags member 3-8
TypeFlags member 3-8

MemSecondary 3-9, 3-10
ADSP-2153x DSPs 3-9
ADSP-21xx DSPs 3-10
ADSP-21xxx DSPs 3-10
ADSP-TSxxx DSPs 3-10

MemWorking 3-11
method calls 2-3

sequence of 3-18
method result macros A-2, A-9, A-17,

A-26, A-35
methods

invoking A-3, A-11, A-19, A-28, A-38
see also interfaces
source files 2-33
tables 1-15, 1-16

-MM switch 5-13
modifiable sections 2-31
MR 3-13
MR_BAD_AGGREGATION B-2
MR_BAD_ALIGNMENT 3-13, B-3
MR_BAD_CONTEXT 3-13, B-3
MR_BAD_HANDLE 3-13, B-3
MR_BAD_IFCE_PTR B-3
MR_BAD_MEMBANK 3-13, B-3
MR_BAD_MEMLIFE 3-13, B-3
MR_BAD_MEMTYPE 3-13, B-3
MR_FAILED B-2
MR_FAILURE A-2, A-10, A-18, A-27,

A-37, B-1
MR_ICONSTRUCT A-2, A-17, A-26,

A-36
MR_INV_PARAM B-3
MR_NO_AGGREGATION B-2
MR_NO_ERROR 3-24

VisualDSP++ 3.0 Component Software Engineering User’s Guide I-9

INDEX

MR_NO_MEMORY 3-13, 3-23, B-2
MR_NOT_ALLOCATED_MEM B-3
MR_NOT_COMPLETED 3-15,

3-23, 3-24, B-3
MR_NOT_SUPPORTED B-2
MR_OK 3-23, A-2, A-10, A-18, A-27,

A-37, B-2
MR_SINGLETON_EXISTS B-3
MR_SUCCESS A-2, A-10, A-18, A-27,

A-37, B-1
MRESULT 2-4, A-9, A-17, A-26, A-36

codes 3-13, 5-22, B-2
structure B-1
type 3-13, 5-22

N
name clashes 2-14, 6-14
named elements 4-12

case-sensitivity 4-15
qualified names 4-13
unqualified names 4-13

names, in specifications 4-7
namespaces 2-7

ADI 2-51
EXAMPLES 2-51
LOCAL 2-51
registration of 2-50

New Component Package Wizard 1-20
New Component Project Wizard 1-20
New Interface Wizard 1-19
newline tokens 4-4, 4-10
-no-adoc switch 5-13
non-algorithm component rules 6-5
non-printing characters 4-10

-no-vla switch 5-13
-no-xml switch 5-14
numeric literals 4-9

O
octal digits 4-9, 4-10
operational specifications 1-10
operators, see arithmetic operators
optional items, syntax diagrams 4-3
origin of components 1-1
out, direction attribute 4-32
-overwrite switch 5-14

P
package files (.VCP) 1-20, 2-35
package manifest files (.XML) 2-35
packaging, components 2-30, 6-14
parameters 2-5
-path switch 5-14
-path-def switch 5-14
-path-html switch 5-14
-path-install switch 5-15
-path-output switch 5-15
-path-temp switch 5-15
pop, instruction A-14
pop_multiple, instruction A-14
pragmas 4-23

pack 4-24
pad 4-24

precedence
chart, arithmetic operators 4-17
overriding 4-18
rules 4-18

preprocessing

INDEX

I-10 VisualDSP++ 3.0 Component Software Engineering User’s Guide

directives 4-6
tokens 4-4
variables 5-21
VIDL specifications 4-5

preprocessor macros 5-4
__cplusplus 5-20
_LANGUAGE_ASM 5-20
_LANGUAGE_C 5-20

-proc switch 5-15
-proc 21532 5-15
-proc 21535 5-15
-proc TS101 5-16

processing characteristics 6-16
processor

modes 6-13
usage 6-9

prototypes 2-3, 2-8
punctuation tokens 4-8

Q
qualified names 4-13, 4-24, 4-28

R
real literals 4-10
reentrancy 6-10
registering namespaces 2-8
registers 6-9
remote method invocations 1-22
repeated items, syntax diagrams 4-3
required items, syntax diagrams 4-2
reserved names, see keywords
reserved registers

ADSP-2153x DSPs A-9
ADSP-21xx DSPs A-16

ADSP-21xxx DSPs A-35
ADSP-TSxxx DSPs A-25

Reset 3-16
reusable software 1-2, 1-3, 1-6
rules

address clashes 6-16
documenting memory 6-17
name clashes 6-15
packaging 6-1
processing characteristics 6-17
processor modes 6-13
programming area 6-1
registers and stacks 6-9
resource allocation 6-6
resource requirements 6-17
summary of 6-2

running VIDL compiler 1-17
run-time model 1-15

ADSP-2153x DSPs A-9
ADSP-21xx DSPs A-16
ADSP-21xxx DSPs A-35
ADSP-TSxxx DSPs A-25

S
-save-temps switch 5-16
scopes 4-12, 4-24, 4-25, 4-28
searching

#include files 4-6
elements with qualified names 4-14
elements with unqualified names 4-14

sequences, method calls 3-18
SetAlgorithmErrorInterface 3-17
SetName 3-23
size_is attributes 2-6

VisualDSP++ 3.0 Component Software Engineering User’s Guide I-11

INDEX

software architecture 1-21
multiprocessor 1-22
single-processor 1-22
support layer 1-22

source files 5-24
specifications 4-3, 4-4, 4-12
stacks 6-9

maintenance 6-9
standard header files 5-18, 5-20
standard interfaces 3-1

IAlgorithm 3-1
IError 3-1
IMemory 3-1
IName 3-2

start-of-file comments 5-19
string literals 4-4
structure type 4-22

declaration form 4-22
definition form 4-22
members of 4-22

structure, C component instance 2-14
syntax diagrams 4-2

T
testing components 2-27
tokens, see language tokens
trace mode 2-27, 5-21
-trace switch 2-27, 5-16
-TS101 switch 5-9
TypeFlags 3-7
types

array 4-26
base 4-20
char 4-10

definition 4-26
double 4-10
enumeration 4-21
int 4-10
interface 4-25
specifiers 4-25
structure 4-22
user-defined 4-19

U
-U switch 5-16
unary operators 4-16
unqualified names 4-13
use, interface attribute 4-13, 4-29
using components 2-1, 2-35

V
variables, see names
VCSE

architecture, see software architecture
benefits of 1-6
model, see Component Model
MRESULT codes B-2
MRESULT structure B-1
namespace 3-1, 4-12
rules and guidelines 1-23, 6-1
standard binary interface 1-15
standard interfaces 3-1

vcse.h, standard header 5-20, 5-21, A-1
vcse_asm.h, standard assembly header

5-20, 5-23
vcse_asm.h, standard header A-25
VCSE_DELTA macro 5-21
VCSE_IBase.h 5-20

INDEX

I-12 VisualDSP++ 3.0 Component Software Engineering User’s Guide

VCSE_MEM_ALLOC macro 3-4
VCSE_MRESULT A-2, A-9, A-17,

A-26, A-36
-verbose switch 5-17
-version switch 5-17
vertical tabs 4-10
VIDL 1-9, 1-17

base types 4-20
element attributes 4-15
enum types 4-20
int types 4-10
interface types 4-25
interfaces 4-28
keywords, list of 4-8
lexical elements 4-3
named elements 4-12
scopes 4-13
source file types 5-18
specifications 2-10, 2-11
specifications, see operational

specifications

struct type 4-22
type specifiers 4-25

VIDL compiler
auto-doc comments 5-31
command line 2-13, 5-1
file processing 1-17, 5-18
generated files 5-18
generating source files 5-24
running 5-1
switches 5-4

virtual functions 2-21
VisualDSP++

VCSE projects 1-19

W
white space tokens 4-4
wizards

New Component Package 1-20
New Component Project 1-20
New Interface 1-19

	Contents
	Preface
	Purpose of This Manual
	Intended Audience
	Manual Contents
	What’s New in This Manual
	Technical or Customer Support
	Supported Processors
	Product Information
	MyAnalog.com
	DSP Product Information
	Related Documents
	Online Documentation
	From VisualDSP++
	From Windows
	From the Web

	Printed Manuals
	VisualDSP++ Documentation Set
	Hardware Manuals
	Data Sheets

	Contacting DSP Publications

	Notation Conventions

	1 Introduction to VCSE
	Origin of Components
	Software Components
	Benefits of Components

	VCSE Components
	Component Software Engineering Concepts
	VCSE Interfaces
	Interface Example

	VCSE Components
	Component Example

	Binary Standard Interface
	Figure 1-1. ISort Interface Method Table

	Interface Definition Language and Compiler
	Figure 1-2. VIDL Compiler Operation

	Integration With VisualDSP++
	Component Projects
	New Interface and Component Wizards
	Component Packaging Wizard
	Component Manager

	Software Architecture
	Figure 1-3. Simple Application Model

	Rules and Guidelines

	2 Developing and Using VCSE Components
	Defining Interface
	Listing 2-1. G.711 Function Prototypes
	Listing 2-2. EXAMPLES::IG.711 VIDL Specification

	Creating Interface Implementation
	Figure 2-1. Examples::IG711 Interface Documentation Files
	Listing 2-3. Component Implementing EXAMPLES::IG711 Interface
	Table 2-1. EXAMPLES::IG711 Interface Implementation Files�
	C Component Instance Structure
	C Interface Method Functions
	C++ Interface Methods
	Assembly Interface Methods

	Documenting Components
	Figure 2-2. SetDeviceAddresses Component Documentation Files

	Testing Components
	Table 2-2. VCSE Support Libraries�

	Packaging Components
	Using Modifiable Sections
	Component Factory Source File
	Table 2-3. Component Factory Source File

	Component Methods Source File
	Table 2-4. Method Source File

	Component Instance Header File for C/Assembly
	Table 2-5. C Component Instance Header�

	Component Instance Header File for C++
	Table 2-6. C++ Component Instance Header�

	Component Factory Header File
	Table 2-7. Component Factory Header�

	Component Package Manifest File
	Table 2-8. Component Manifest File

	Using Components
	Creating Component Instances
	Listing 2-4. Instantiating EXAMPLES_CULaw Component
	Listing 2-5. Examples_CULaw_Create Function

	Using Interface Pointers in C or Assembly
	Listing 2-6. C Interface Pointer

	Using Interface Pointers in C++
	Listing 2-7. C++ Interface Pointer

	Destroying Components
	Listing 2-8. Examples_CULaw_Destroy Function

	Implementation of GetInterface Method
	Listing 2-9. Implementing GetInterface Method

	Aggregating Components
	Implementation of Aggregation
	Figure 2-3. Aggregation Example
	Listing 2-10. Aggregation Example
	Listing 2-11. GetInterface Method Example
	Listing 2-12. Non-Delegating GetInterface Example
	Listing 2-13. Delegating GetInterface Example

	Company Namespace Registration

	3 Standard Interfaces
	IMemory Interface
	IMemory and Component Instance Creation
	IMemory Interface Definition
	Listing 3-1. IMemory Interface Definition

	Type and Enumeration Descriptions
	MemRequest
	Table 3-1. MemRequest Structure Members�

	TypeFlags
	Table 3-2. MemType Enumeration Members�
	Table 3-3. ADSP-2153x Blackfin DSP Memory Types�
	Table 3-4. ADSP-21xx DSP Memory Types�
	Table 3-5. ADSP-TSxxx TigerSHARC DSP Memory Types�
	Table 3-6. ADSP-21xxx SHARC DSP Memory Types�

	LifetimeFlags
	Table 3-7. MemLifetime Enumeration Members�

	Context
	Table 3-8. MemContext Enumeration Members�

	Method Descriptions
	Allocate
	Table 3-9. Allocate Method Parameters and Return Values�

	Free

	IAlgorithm Interface
	IAlgorithm Interface Definition
	Listing 3-2. IAlgorithm Interface Definition

	Method Descriptions
	Reset
	Activate
	Deactivate
	SetAlgorithmErrorInterface

	Valid Sequence of Method Calls
	Figure 3-1. Method Calls Sequence

	IError Interface
	IError Interface Definition
	Listing 3-3. IError Interface Definition

	Method Descriptions
	Error
	Table 3-10. Error Method Parameters�

	IName Interface
	IName Interface Definition
	Listing 3-4. IName Interface Definition

	Method Descriptions
	SetName
	GetName
	GetLength

	4 VIDL Language Reference
	Understanding Syntax Diagrams
	Lexical Elements
	Character Sequences
	White Space
	Comments
	Figure 4-1. Comment Syntax Diagram

	Preprocessing
	Figure 4-2. #include Syntax Diagram

	VIDL Language Tokens
	Names
	Figure 4-3. Name Syntax Diagram

	Keywords
	Punctuation
	Operators
	Numeric Literals
	Integer Literals
	Figure 4-4. Integer Literal Syntax Diagram

	Real Literals
	Figure 4-5. Real Literal Syntax Diagram

	String Literals
	Figure 4-6. Character Literal Syntax Diagram
	Figure 4-7. Escape Sequence Syntax Diagram
	Figure 4-8. String Literal Syntax Diagram

	Named Elements
	Figure 4-9. Unqualified Name Syntax Diagram
	Figure 4-10. Qualified Name Syntax Diagram

	Element Attributes
	Figure 4-11. Attribute Syntax Diagram
	Figure 4-12. Element Attribute Syntax Diagram

	Constant Expressions
	Figure 4-13. Primary Expression Syntax Diagram
	Figure 4-14. Unary Expression Syntax Diagram
	Figure 4-15. Expression Syntax Diagram
	Figure 4-16. Constant Expression Syntax Diagram
	Table 4-1. Unary Operators Precedence Chart�
	Table 4-2. Binary Operators Precedence Chart�
	Listing 4-1. Example Constant Expressions

	Types
	Figure 4-17. VIDL Types
	Base Types
	Figure 4-18. Base Type Syntax Diagram

	Enum Types
	Figure 4-19. Enumerator Syntax Diagram
	Figure 4-20. enum Definition Syntax Diagram
	Listing 4-2. Enum Example

	Structure Types
	Figure 4-21. Member Declarator Syntax Diagram
	Figure 4-22. Member Attribute Syntax Diagram
	Figure 4-23. Member List Syntax Diagram
	Figure 4-24. struct Definition Syntax Diagram
	Figure 4-25. struct Attributes Syntax Diagram
	Listing 4-3. Struct Example

	Interface Types

	Type Specifiers and Definitions
	Figure 4-26. Type Specifier Syntax Diagram
	Figure 4-27. typedef Syntax Diagram
	Listing 4-4. Typedef Example

	Declarators
	Figure 4-28. Declarator Syntax Diagram
	Figure 4-29. Declarator List Syntax Diagram

	Interfaces
	Figure 4-30. Interface Name Syntax Diagram
	Figure 4-31. interface Declaration Syntax Diagram
	Figure 4-32. Interface Definition Syntax Diagram
	Figure 4-33. iid Attribute Syntax Diagram
	Figure 4-34. Interface Attributes Syntax Diagram
	Listing 4-5. Interface Identifier Example

	Methods
	Figure 4-35. Method Declaration Syntax Diagram
	Method Parameters
	Figure 4-36. Parameter List Syntax Diagram
	Figure 4-37. Method Parameters Syntax Diagram
	Figure 4-38. Parameter Declarator Syntax Diagram
	Parameter Attributes
	Figure 4-39. Parameter Attribute Syntax Diagram
	in Attribute
	Figure 4-40. in Attribute Syntax Diagram

	out Attribute
	Figure 4-41. out Attribute Syntax Diagram

	size_is Attribute
	Figure 4-42. size_is Attribute Syntax Diagram

	string Attribute
	Figure 4-43. string Attribute Syntax Diagram

	shared Attribute
	Figure 4-44. shared Attribute Syntax Diagram

	alias Attribute
	Figure 4-45. alias Attribute Syntax Diagram

	bank Attribute
	Figure 4-46. bank Attribute Syntax Diagram

	align Attribute
	Figure 4-47. align Attribute Syntax Diagram

	Components
	Figure 4-48. Component Name Syntax Diagram
	Figure 4-49. Component Declaration Syntax Diagram
	Figure 4-50. Component Aggregation Syntax Diagram
	Figure 4-51. Component Definition Syntax Diagram
	Component Attributes
	Figure 4-52. Component Attribute Syntax Diagram
	aggregatable Attribute
	Figure 4-53. aggregatable Attribute Syntax Diagram

	category Attribute
	Figure 4-54. category Attribute Syntax Diagram

	common Attribute
	Figure 4-55. common Attribute Syntax Diagram

	company Attribute
	Figure 4-56. company Attribute Syntax Diagram

	distinct Attribute
	Figure 4-57. distinct Attribute Syntax Diagram

	info Attribute
	Figure 4-58. info Attribute Syntax Diagram

	requires Attribute
	Figure 4-59. requires Attribute Syntax Diagram
	Figure 4-60. Component Version Syntax Diagram
	Figure 4-61. Version Number Syntax Diagram

	singleton Attribute
	Figure 4-62. singleton Attribute Syntax Diagram

	title Attribute
	Figure 4-63. title Attribute Syntax Diagram

	version Attribute
	Figure 4-64. version Attribute Syntax Diagram

	Namespaces
	Figure 4-65. Namespace Name Syntax Diagram
	Figure 4-66. Element Definition Syntax Diagram
	Figure 4-67. Namespace Declaration Syntax Diagram
	use Attribute
	Figure 4-68. use Attribute Syntax Diagram

	Auto-doc Comments
	Specifications
	Figure 4-69. VIDL Specification Syntax Diagram

	5 VIDL Compiler Command Line Interface
	Running VIDL Compiler
	Table 5-1. Preprocessor Macros�
	VIDL Compiler Switches
	Table 5-2. VIDL Blackfin Compiler Selection Switches�
	Table 5-3. VIDL TigerSHARC Compiler Selection Switches�
	Table 5-4. VIDL SHARC Compiler Selection Switches�
	Table 5-5. VIDL Compiler Common Switches�
	-@
	-21532
	-21535
	-21k
	-211xx
	-TS101
	-accept-any-include-file
	-all-idl
	-asm
	-c++
	-copyright
	-cppflags
	-D
	-dryrun
	-generic
	-harness
	-hdr
	-h[elp]
	-I
	-M
	-MM
	-mcd
	-no-adoc
	-no-vla
	-no-xml
	-overwrite
	-path-[cpp|fe|pr|be]
	-path-def
	-path-html
	-path-install
	-path-output
	-path-temp
	-proc
	-save-temps
	-trace
	-U
	-v[ersion]
	-verbose

	Processing VIDL Files
	File Organization
	File Names
	Start-of-File Comments
	End-of-File Comments
	Header Files Guards
	Language Identifications

	Standard Files
	Contents of vcse.h
	Contents of vcse_asm.h
	Contents of VCSE_IBase.h

	Generating Source Files
	Interface Definitions
	Table 5-6. Interface Source Files�
	Table 5-7. Common Generated Documentation Files�

	Component Definitions
	C Based Components
	Table 5-8. C Component Source Files�

	C++ Based Components
	Table 5-9. C++ Component Source Files�

	Assembly Based Components
	Table 5-10. Assembly Component Source Files�

	Component Documentation Files
	Table 5-11. Component Specific Documentation Files�

	Component Manifest File

	6 VCSE Rules and Guidelines
	Summary
	Table 6-1. Common Component Rules�
	Table 6-2. Common Component Guidelines�
	Table 6-3. Algorithm Component Rules�
	Table 6-4. Algorithm Component Guidelines�
	Table 6-5. Non-algorithm Component Rules�

	Programming
	Resource Allocation
	Processor Usage
	Registers and Stack
	Interrupt System and Reentrancy
	Processor Modes
	Core Peripherals

	Packaging
	Name Clashes
	Address Clashes
	Memory and Processing Characteristics
	Memory
	Processing

	Non-memory Resource Requirements
	Code and Data Elimination
	Addressing Models

	A VCSE Assembler Macros
	General Overview of Macro Definitions
	Method Result Macros
	VCSE_MRESULT
	MR_ICONSTRUCT(F,I)
	MR_FAILURE(mr)
	MR_SUCCESS(mr)
	__CHECK_VCSE_RESPONSE(handler)

	Accessing Factory Functions
	__CREATOR(C)
	__DESTROYER(C)
	__SIZEOF(C)

	Invoking Interface Methods
	__INVOKE(P,T,M)
	__GET_METHOD(P,T,M)

	Function Writing Macros
	__STARTFUNC(Name,Visibility)
	__ENDFUNC(Name)
	__LINK(N)
	__PUSH(Reg)
	__POP(Reg)
	__ALLOCSTACK(N)
	__FREESTACK(N)
	__arg0 to __arg9
	__STORE_ARG(n,Reg)
	__EXIT
	__LEAF_EXIT
	__RETURN(Value)
	__LEAF_RETURN(Value)

	Miscellaneous
	__LA(R,V)
	__VCSE_ASM_TRACE(A1,A2)
	__VCSE_PRINT_VAR(A1,A2,V)

	Implementation of Macros on ADSP-2153x DSPs
	C Run-Time Model
	Method Result Macros
	VCSE_MRESULT
	MR_ICONSTRUCT(F,I)
	MR_FAILURE(mr) and MR_SUCCESS(mr)
	__CHECK_VCSE_RESPONSE(handler)

	Accessing Factory Functions
	Invoking Interface Methods
	Function Writing Macros
	__STARTFUNC(Name,Visibility) and __ENDFUNC(Name)
	__LINK(N)
	__PUSH(Reg) and __POP(Reg)
	__ALLOCSTACK(N) and __FREESTACK(N)
	__arg0 to __arg9
	__EXIT and __LEAF_EXIT
	__RETURN(Value) and __LEAF_RETURN(Value)

	Miscellaneous
	__LA(R,V)
	__VCSE_ASM_TRACE(A1,A2)
	__VCSE_PRINT_VAR(A1,A2,V)

	Implementation of Macros on ADSP-21xx DSPs
	C Run-Time Model
	Table A-1. Reserved Registers for ADSP-21xx DSP C Run-Time Model�

	Method Result Macros
	VCSE_MRESULT
	MR_ICONSTRUCT(F,I)
	MR_FAILURE(mr) and MR_SUCCESS(mr)
	__CHECK_VCSE_RESPONSE(handler)

	Accessing Factory Functions
	Invoking Interface Methods
	Table A-2. __Get_Method Macros�

	Function Writing Macros
	__STARTFUNC(Name,Visibility) and __ENDFUNC(Name)
	__LINK(N)
	__PUSH(Reg) and __POP(Reg)
	__ALLOCSTACK(N) and __FREESTACK(N)
	__arg0 to __arg9 (ADSP-219x DSPs only)
	__STORE_ARG(n,Reg) (ADSP-218x only)
	__EXIT and __LEAF_EXIT
	__RETURN(Value) and __LEAF_RETURN(Value)

	Miscellaneous Macros
	__LA(R,V)
	__VCSE_ASM_TRACE(A1,A2)
	__VCSE_PRINT_VAR(A1,A2,V)

	Implementation of Macros on TigerSHARC DSPs
	C Run-Time Model
	Method Result Macros
	VCSE_MRESULT
	MR_ICONSTRUCT(F,I)
	MR_FAILURE(mr) and MR_SUCCESS(mr)
	__CHECK_VCSE_RESPONSE(handler)
	Accessing Factory Functions
	Invoking Interface Methods
	Function Writing Macros
	__STARTFUNC(Name,Visibility) and __ENDFUNC(Name)
	__LINK(N)
	__JPUSH(q,Reg) and __JPOP(q,Reg)
	__KPUSH(q,Reg) and __KPOP(q,Reg)
	__JKPUSH(q,jReg,kReg) and __KPOP(q,jReg,kReg)
	__PUSH(Reg) and __POP(Reg)
	__JALLOCSTACK(N) and __JFREESTACK(N)
	__KALLOCSTACK(N) and __KFREESTACK(N)
	__JKALLOCSTACK(N,M) and __JKFREESTACK(N,M)
	__ALLOCSTACK(N) and __FREESTACK(N)
	__arg(n)
	__arg0 to __arg9
	__arg0_int to __arg3_int
	__arg0_float to __arg3_float
	__arg0_mem to __arg3_mem
	__EXIT(Cond) and __LEAF_EXIT(Cond)
	__RETURN(Value,Cond) and __LEAF_RETURN(Value,Cond)

	Miscellaneous
	__LA(Reg,V)
	__VCSE_ASM_TRACE(A1,A2)
	__VCSE_PRINT_VAR(A1,A2,V)

	Implementation of Macros on SHARC DSPs
	C Run-Time Model
	Method Result Macros
	VCSE_MRESULT
	MR_ICONSTRUCT(F,I)
	MR_FAILURE(mr) and MR_SUCCESS(mr)
	__CHECK_VCSE_RESPONSE(handler)

	Accessing Factory Functions
	Invoking Interface Methods
	Function Writing Macros
	__STARTFUNC(Name,Visibility) and __ENDFUNC(Name)
	__LINK(N)
	__PUSH(Reg) and __POP(Reg)
	__ALLOCSTACK(N) and __FREESTACK(N)
	__arg(n)
	__arg0 to __arg9
	__EXIT and __LEAF_EXIT
	__RETURN(Value) and __LEAF_RETURN(Value)

	Miscellaneous
	__LA(Reg,V)
	__VCSE_ASM_TRACE(A1,A2)
	__VCSE_PRINT_VAR(A1,A2,V)

	B VCSE MRESULT Codes
	MRESULT Structure
	MRESULT Codes
	Table B-1. VCSE MRESULT Codes�

	I Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

