
3.0
Assembler and Preprocessor

Manual for Blackfin� DSPs

 Second Revision, April 2002

Part Number
82-000410-04

Analog Devices, Inc.
Digital Signal Processor Division
One Technology Way
Norwood, Mass. 02062-9106

Copyright Information
© 2002 Analog Devices, Inc., ALL RIGHTS RESERVED. This docu-
ment may not be reproduced in any form without prior, express written
consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice
The Analog Devices logo, VisualDSP, the VisualDSP logo, SHARC, the
SHARC logo, TigerSHARC, and the TigerSHARC logo are registered
trademarks of Ananlog Devices, Inc.

VisualDSP++, the VisualDSP++ logo, CROSSCORE, the CROSSCORE
logo, Blackfin, the Blackfin logo, and EZ-KIT Lite are trademarks of Ana-
log Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

Revision. 2.0

CONTENTS
PREFACE

Purpose ... xi

Intended Audience .. xi

Manual Contents ... xii

What’s New in this Manual .. xii

Technical or Customer Support ... xiii

Supported Processors ... xiii

Product Information .. xiv

MyAnalog.com ... xiv

DSP Product Information ... xiv

Related Documents ... xv

Online Technical Documentation ... xvi

From VisualDSP++ .. xvi

From Windows ... xvii

From the Web ... xvii

Printed Manuals ... xviii

VisualDSP++ Documentation Set xviii

Hardware Manuals ... xviii

Datasheets ... xviii
VisualDSP++ 3.0 Assembler and Preprocessor Manual iii
for Blackfin DSPs

CONTENTS
Contacting DSP Publications ... xix

Notation Conventions ... xix

ASSEMBLER

Assembler Guide .. 1-2

Assembler Overview .. 1-3

Writing Assembly Programs ... 1-3

Program Content .. 1-5

Program Structure .. 1-7

Program Interfacing Requirements 1-11

Using Assembler Support for C Structs 1-12

Preprocessing a Program .. 1-14

Using Feature Assembler Macros ... 1-14

Make Dependencies .. 1-15

Reading a Listing File .. 1-17

Assembler Syntax Reference .. 1-18

Assembler Keywords and Symbols ... 1-18

Assembler Expressions ... 1-23

Assembler Operators ... 1-24

Numeric Formats .. 1-25

Fractional Type Support .. 1-25

1.15 Fracts ... 1-26

1.0r Special Case .. 1-27

Fractional Arithmetic .. 1-27

Mixed Type Arithmetic ... 1-28
iv VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

CONTENTS
Comment Conventions ... 1-28

Conditional Assembly Directives .. 1-28

Built-In Functions ... 1-31

offsetof() Built-In .. 1-31

sizeof() Built-In ... 1-31

-> Struct References ... 1-32

Assembler Directives .. 1-35

.ALIGN, Specify an Address Alignment 1-37

.BYTE, Declare a Byte Data Variable or Buffer 1-39

ASCII String Initialization Support 1-41

.EXTERN, Refer to a Globally Available Symbol 1-42

.EXTERN STRUCT, Refer to a Struct Defined Elsewhere . 1-43

.FILE, Override the Name of a Source File 1-45

.GLOBAL, Make a Symbol Globally Available 1-46

.IMPORT, Provide Structure Layout Information 1-47

.LEFTMARGIN, Set the Margin Width of a Listing File 1-49

.LIST/.NOLIST, Listing Source Lines and Opcodes 1-50

.LIST_DATA/.NOLIST_DATA, Listing Data Opcodes 1-51

.LIST_DATFILE/.NOLIST_DATFILE, Listing Data Initialization
Files ... 1-52

.LIST_DEFTAB, Set the Default Tab Width for Listings ... 1-53

.LIST_LOCTAB, Set the Local Tab Width for Listings 1-54

LIST_WRAPDATA/.NOLIST_WRAPDATA 1-55

.NEWPAGE, Insert a Page Break in a Listing File 1-56

.PAGELENGTH, Set the Page Length of a Listing File 1-57
VisualDSP++ 3.0 Assembler and Preprocessor Manual v
for Blackfin DSPs

CONTENTS
.PAGEWIDTH, Set the Page Width of a Listing File 1-58

.PREVIOUS, Revert to the Previously Defined Section 1-59

.SECTION, Declare a Memory Section 1-61

.STRUCT, Create a Struct Variable 1-62

.TYPE, Change Default Symbol Type 1-66

.VAR, Declare a 32-Bit Data Variable or Buffer 1-67

.VAR and ASCII String Initialization Support 1-70

.WEAK, Support a Weak Symbol Definition and Reference 1-71

Assembler Command-Line Reference .. 1-72

Running the Assembler ... 1-73

Assembler Command-Line Switch Summary 1-75

Assembler Command-Line Switch Descriptions 1-77

-Dmacro[=definition] ... 1-77

-flags-compiler .. 1-77

User-Specified Defines Options 1-78

Include Options ... 1-78

 -flags-pp -opt1 [,-opt2...] ... 1-79

-g ... 1-79

-h[elp] .. 1-79

-i|I directory ... 1-80

-l filename .. 1-80

-li filename ... 1-81

-M ... 1-81

-MM .. 1-81
vi VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

CONTENTS
-Mo filename .. 1-82

-Mt filename ... 1-82

-micaswarn ... 1-82

-o [filename] ... 1-82

-pp ... 1-83

-proc processorID ... 1-83

-sp .. 1-84

-stallcheck ... 1-84

-v[erbose] ... 1-84

-version .. 1-84

-w ... 1-84

-wnumber ... 1-84

Specifying Assembler Options in VisualDSP++ 1-85

PREPROCESSOR

Preprocessor Guide ... 2-2

Writing Preprocessor Commands ... 2-2

Header Files .. 2-3

Writing Macros ... 2-4

Using Predefined Macros ... 2-6

Specifying Preprocessor Options .. 2-8

Preprocessor Command Reference ... 2-9

Preprocessor Commands and Operators 2-9

#define ... 2-11

Variable Length Argument Definitions 2-12
VisualDSP++ 3.0 Assembler and Preprocessor Manual vii
for Blackfin DSPs

CONTENTS
#elif ... 2-14

#else ... 2-15

#endif .. 2-16

#error ... 2-17

#if .. 2-18

#ifdef ... 2-19

#ifndef ... 2-20

#include ... 2-21

#line .. 2-22

#pragma ... 2-23

#undef ... 2-24

#warning .. 2-25

(Argument) ... 2-26

(Concatenate) .. 2-27

? (Generate a Unique Label) .. 2-28

Preprocessor Command-Line Reference 2-30

Running the Preprocessor .. 2-30

Preprocessor Command-Line Switches 2-31

-cpredef .. 2-32

-cs! ... 2-32

-cs/* ... 2-33

-cs// ... 2-33

-cs{ ... 2-33

-csall .. 2-33
viii VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

CONTENTS
-Dmacro[=def] .. 2-33

-h[elp] .. 2-33

-i|Idirectory .. 2-34

-M .. 2-34

-MM .. 2-35

-Mo filename .. 2-35

-Mt filename ... 2-35

-o filename ... 2-35

-v[erbose] ... 2-36

-version .. 2-36

INDEX
VisualDSP++ 3.0 Assembler and Preprocessor Manual ix
for Blackfin DSPs

CONTENTS
x VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

PREFACE

Thank you for purchasing Analog Devices development software for digi-

tal signal processors (DSPs).

Purpose
The VisualDSP++ 3.0 Assembler and Preprocessor Manual for Blackfin DSPs
contains information about the assembler program for Blackfin™ DSPs.
These are 16-bit, fixed-point processors from Analog Devices for use in
computing, communications, and consumer applications.

The manual provides information on how to write assembly programs for
Blackfin DSPs and reference information about related development soft-
ware. It also provides information on new and legacy syntax for assembler
and preprocessor directives and comments, as well as command-line
switches.

Intended Audience
The primary audience for this manual is DSP programmers who are famil-
iar with Analog Devices DSPs. This manual assumes that the audience has
a working knowledge of the appropriate DSP architecture and instruction
set. Programmers who are unfamiliar with Analog Devices DSPs can use
this manual but should supplement it with other texts (such as Hardware
Reference and Instruction Set Reference manuals that describe your target
architecture).
VisualDSP++ 3.0 Assembler and Preprocessor Manual xi
for Blackfin DSPs

Manual Contents
Manual Contents
The manual consists of:

• Chapter 1, “Assembler”

Provides an overview of the process of writing and building assem-
bly programs. It also provides information about the assembler’s
switches, expressions, keywords, and directives.

• Chapter 2, “Preprocessor”

Provides procedures for using preprocessor commands within
assembly source files as well as the preprocessor’s command-line
interface options and command sets.

What�s New in this Manual
This edition of the VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs supports all Blackfin processors including the new
ADSP-21532 DSP.

In addition to documenting all existing assembler and preprocessor fea-
tures, this manual describes new directives, switches, and commands,
including syntax and code examples. In particular, it includes new sections
on C structures and reference syntax and conditional assembly.

For example, this assembler release provides several new keywords:
.offsetof, .sizeof, .struct, .if, .elif, .else, .endif, and .import. All
.LISTDATA/.NO_LISTDATA listing directives are also new for this release.
xii VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Preface
Technical or Customer Support
You can reach DSP Tools Support in the following ways:

• Visit the DSP Development Tools website at
http://www.analog.com/technology/dsp/development-

Tools/index.html

• Email questions to
dsptools.support@analog.com

• Phone questions to 1-800-ANALOGD

• Contact your ADI local sales office or authorized distributor

• Send questions by mail to:

Analog Devices, Inc.

DSP Division

One Technology Way

P.O. Box 9106

Norwood, MA 02062-9106

USA

Supported Processors
The name “Blackfin” refers to a family of Analog Devices 16-bit,
fixed-point processors. VisualDSP++ currently supports the following
Blackfin processors:

• ADSP-21532 DSP

• ADSP-21535 DSP
VisualDSP++ 3.0 Assembler and Preprocessor Manual xiii
for Blackfin DSPs

Product Information
Product Information
You can obtain product information from the Analog Devices website,
from the product CD-ROM, or from the printed publications (manuals).

Analog Devices is online at www.analog.com. Our website provides infor-
mation about a broad range of products—analog integrated circuits,
amplifiers, converters, and digital signal processors.

MyAnalog.com
MyAnalog.com is a free feature of the Analog Devices website that allows
customization of a webpage to display only the latest information on
products you are interested in. You can also choose to receive weekly email
notification containing updates to the webpages that meet your interests.
MyAnalog.com provides access to books, application notes, data sheets,
code examples, and more.

Registration:

Visit www.myanalog.com to sign up. Click Register to use MyAnalog.com.
Registration takes about five minutes and serves as means for you to select
the information you want to receive.

If you are already a registered user, just log on. Your user name is your
email address.

DSP Product Information
For information on digital signal processors, visit our website at
www.analog.com/dsp, which provides access to technical publications,
datasheets, application notes, product overviews, and product
announcements.
xiv VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Preface
You may also obtain additional information about Analog Devices and its
products in any of the following ways.

• Email questions or requests for information to
dsp.support@analog.com

• Fax questions or requests for information to
1-781-461-3010 (North America)
089/76 903-557 (Europe)

• Access the Digital Signal Processing Division’s FTP website at
ftp ftp.analog.com or ftp 137.71.23.21
ftp://ftp.analog.com

Related Documents
For information on product related development software, see the follow-
ing publications:

VisualDSP++ 3.0 Getting Started Guide for Blackfin DSPs

VisualDSP++ 3.0 User’s Guide for Blackfin DSPs

VisualDSP++ 3.0 C/C++ Compiler and Library Manual for Blackfin DSPs

VisualDSP++ 3.0 C/C++ Assembler and Preprocessor Manual for Blackfin DSPs

VisualDSP++ 3.0 Linker and Utilities Manual for Blackfin DSPs

VisualDSP++ 3.0 Product Bulletin

VisualDSP++ Kernel (VDK) User’s Guide

VisualDSP++ Component Software Engineering User’s Guide

Quick Installation Reference Card
VisualDSP++ 3.0 Assembler and Preprocessor Manual xv
for Blackfin DSPs

Product Information
Online Technical Documentation
Online documentation comprises VisualDSP++ Help system and tools
manuals, Dinkum Abridged C++ library and FlexLM network license
manager software documentation. You can easily search across the entire
VisualDSP++ documentation set for any topic of interest. For easy print-
ing, supplementary .PDF files for the tools manuals are also provided.

A description of each documentation file type is as follows.

If documentation is not installed on your system as part of the software
installation, you can add it from the VisualDSP++ CD-ROM at any time.

Access the online documentation from the VisualDSP++ environment,
Windows Explorer, or Analog Devices website.

From VisualDSP++

• Access VisualDSP++ online Help from the Help menu’s Contents,
Search, and Index commands.

• Open online Help from context-sensitive user interface items (tool-
bar buttons, menu commands, and windows).

File Description

.CHM Help system files and VisualDSP++ tools manuals.

.HTML Dinkum Abridged C++ library and FlexLM network license manager software doc-
umentation. Viewing and printing the .HTML files require a browser, such as Inter-
net Explorer 4.0 (or higher).

.PDF VisualDSP++ tools manuals in Portable Documentation Format, one .PDF file for
each manual. Viewing and printing the .PDF files require a PDF reader, such as
Adobe Acrobat Reader (4.0 or higher).
xvi VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Preface
From Windows

In addition to any shortcuts you may have constructed, there are many
ways to open VisualDSP++ online Help or the supplementary documenta-
tion from Windows.

Help system files (.CHM files) are located in the Help folder, and .PDF files
are located in the Docs folder of your VisualDSP++ installation. The Docs
folder also contains the Dinkum Abridged C++ library and FlexLM net-
work license manager software documentation.

Using Windows Explorer

• Double-click any file that is part of the VisualDSP++ documenta-
tion set.

• Double-click the vdsp-help.chm file, which is the master Help sys-
tem, to access all the other .CHM files.

Using the Windows Start Button

• Access VisualDSP++ online Help by clicking the Start button and
choosing Programs, VisualDSP, and VisualDSP++
Documentation.

• Access the .PDF files by clicking the Start button and choosing
Programs, VisualDSP, Documentation for Printing, and the
name of the book.

From the Web

To download the tools manuals, point your browser at
http://www.analog.com/technology/dsp/developmentTools/

gen_purpose.html.

Select a DSP family and book title. Download archive (.ZIP) files, one for
each manual. Use any archive management software, such as WinZip, to
decompress downloaded files.
VisualDSP++ 3.0 Assembler and Preprocessor Manual xvii
for Blackfin DSPs

Product Information
Printed Manuals
For general questions regarding literature ordering, call the Literature
Center at 1-800-ANALOGD (1-800-262-5643) and follow the prompts.

VisualDSP++ Documentation Set

VisualDSP++ manuals may be purchased through Analog Devices Cus-
tomer Service at 1-781-329-4700; ask for a Customer Service
representative. The manuals can be purchased only as a kit. For additional
information, call 1-603-883-2430.

If you do not have an account with Analog Devices, you will be referred to
Analog Devices distributors. To get information on our distributors, log
onto http://www.analog.com/salesdir/continent.asp.

Hardware Manuals

Hardware reference and instruction set reference manuals can be ordered
through the Literature Center or downloaded from the Analog Devices
website. The phone number is 1-800-ANALOGD (1-800-262-5643).
The manuals can be ordered by a title or by product number located on
the back cover of each manual.

Datasheets

All datasheets can be downloaded from the Analog Devices website. As a
general rule, any datasheet with a letter suffix (L, M, N) can be obtained
from the Literature Center at 1-800-ANALOGD (1-800-262-5643) or
downloaded from the website. Datasheets without the suffix can be down-
loaded from the website only—no hard copies are available. You can ask
for the datasheet by a part name or by product number.
xviii VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Preface
If you want to have a datasheet faxed to you, the fax number for that
service is 1-800-446-6212. Follow the prompts and a list of datasheet
code numbers will be faxed to you. Call the Literature Center first to find
out if requested datasheets are available.

Contacting DSP Publications
Please send your comments and recommendation on how to improve our
manuals and online Help. You can contact us by:

• Emailing dsp.techpubs@analog.com

• Filling in and returning the attached Reader’s Comments Card
found in our manuals

Notation Conventions
The following table identifies and describes text conventions used in this
manual.

� Additional conventions, which apply only to specific chapters, may
appear throughout this document.

Example Description

Close command
(File menu)

Text in bold style indicates the location of an item within the
VisualDSP++ environment’s menu system. For example, the Close
command appears on the File menu.

{this | that} Alternative required items in syntax descriptions appear within curly
brackets and separated by vertical bars; read the example as this or
that.

[this | that] Optional items in syntax descriptions appear within brackets and sepa-
rated by vertical bars; read the example as an optional this or that.
VisualDSP++ 3.0 Assembler and Preprocessor Manual xix
for Blackfin DSPs

Notation Conventions
[this,…] Optional item lists in syntax descriptions appear within brackets
delimited by commas and terminated with an ellipsis; read the example
as an optional comma-separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with
letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

A note, providing information of special interest or identifying a
related topic. In the online version of this book, the word Note appears
instead of this symbol.

A caution, providing information about critical design or program-
ming issues that influence operation of a product. In the online version
of this book, the word Caution appears instead of this symbol.

Example Description
xx VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

1 ASSEMBLER

This chapter provides information on how to use the assembler for devel-

oping and assembling programs with Blackfin DSPs.

The chapter contains:

• “Assembler Guide” on page 1-2
Describes the process of developing new programs in the Blackfin
DSP assembly language.

• “Assembler Syntax Reference” on page 1-18
Provides the assembler rules and conventions of syntax which is
used to define symbols (identifiers), expressions, and to describe
different numeric and comment formats.

• “Assembler Command-Line Reference” on page 1-72
Provides reference information on the assembler’s switches and
conventions.
VisualDSP++ 3.0 Assembler and Preprocessor Manual 1-1
for Blackfin DSPs

Assembler Guide
Assembler Guide
The easmblkfn.exe assembler runs from the VisualDSP++ Integrated
Debugging and Development Environment (IDDE) or from an operating
system command line. The assembler processes assembly source, data,
header files, and produces an object file. Assembler operations depend on
two types of controls: assembler directives and assembler switches.

This section describes the process of developing new programs in the
Blackfin DSPs assembly language. It provides information on how assem-
ble your programs from the operating system’s command line.

Software developers using the assembler should be familiar with:

• “Writing Assembly Programs” on page 1-3

• “Using Assembler Support for C Structs” on page 1-12

• “Preprocessing a Program” on page 1-14

• “Reading a Listing File” on page 1-17

• “Make Dependencies” on page 1-15

• “Specifying Assembler Options in VisualDSP++” on page 1-85

For information about the DSP architecture, including the DSP instruc-
tion set used when writing the assembly programs, see the Hardware
Reference Manual and Instruction Set Manual for an appropriate DSP.
1-2 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Assembler
Assembler Overview
The Blackfin DSP assembler processes data from assembly source (.ASM),
data (.DAT), and include header (.H) files to generate object files in Execut-
able and Linkable Format (ELF), an industry-standard format for binary
object files. The object file name has a.DOJ extension.

In addition to the object file, the assembler can produce a listing file,
which shows the correspondence between the binary code and the source.

Assembler switches are specified from the VisualDSP++ IDEDE or in the
command used to invoke the assembler. These switches allow you to con-
trol the assembly process of source, data, and header files. Use these
switches to enable and configure assembly features, such as search paths,
output file names, and macro preprocessing.

You can also set assembler options via the Assemble tab of the
VisualDSP++ Project Options dialog box (see “Specifying Assembler
Options in VisualDSP++” on page 1-85).

Writing Assembly Programs
Assembler directives are coded in your assembly source file. The directives
allow you to define variables, set up some hardware features, and identify
program’s sections for placement within DSP memory. The assembler uses
directives for guidance as it translates a source program into object code.

Write assembly language programs using the VisualDSP++ editor or any
editor that produces text files. Do not use a word processor that embeds
special control codes in the text. Use an .ASM extension to source file
names to identify them as assembly source files.

Assemble your source files from the VisualDSP++ environment or using
any mechanism, such as a batch file or makefile, that will support invok-
ing the assembler driver easmblkfn.exe with a specified command-line
command.
VisualDSP++ 3.0 Assembler and Preprocessor Manual 1-3
for Blackfin DSPs

Assembler Guide
By default, the assembler processes an input file to produce a binary object
file (.DOJ) and an optional listing file (.LST).

Figure 1-1 shows a graphical overview of the assembly process. The figure
shows the preprocessor processing the assembly source (.ASM) and initial-
ization data (.DAT) files.

Figure 1-1. Assembler Input and Output Files

Data initialization file
(.DAT)

Assembly source file
(.ASM, .DSP)

Header file
(.H)

Preprocessor

Intermediate
preprocessed file (.IS)

Assembler

Object file
(.DOJ)

Listing file
(.LST)
1-4 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Assembler
Object files produced by the Blackfin DSP assembler may be used as input
to the linker and archiver. You can archive the output of an assembly pro-
cess into a library file (.DLB), which can then be linked with other objects
into an executable. Use the linker to combine separately assembled object
files and objects from library files to produce an executable file.

For more information on the linker and archiver, see the VisualDSP++ 3.0
Linker and Utilities Manual for Blackfin DSPs.

A binary object file (.DOJ) and an optional listing (.LST) file are final
results of the successful assembly.

The assembler listing files are text files read for information on the results
of the assembly process. The listing file also provides information about
the imported C data structures. It tells which imports were used within
the program, followed by a more detailed section (see .IMPORT directive
on page 1-47). It shows the name, total size and layout with offset for the
members. The information appears at the end of the listing.

You must specify the -l listname.lst option (on page 1-81) to get the
information.

The assembly source file may contain preprocessor commands, such as
#include, that cause the preprocessor to include header files (.H) into the
source program. The preprocessor’s only output, an intermediate source
file (.IS), is the assembler’s primary input.

Program Content

Assembly source file statements include assembly instructions, assembler
directives, and preprocessor commands.

Assembly Instructions

Instructions adhere to the DSP’s instruction set syntax documented in the
DSP’s Instruction Set manual. Terminate each instruction with a semico-
lon (;). Figure 1-2 on page 1-9 shows an example assembly source file.
VisualDSP++ 3.0 Assembler and Preprocessor Manual 1-5
for Blackfin DSPs

Assembler Guide
To mark the location of an instruction, place an address label at the begin-
ning of an instruction line or on the preceding line. End the label with a
colon (:) before beginning the instruction. Your program then refer to this
memory location using the label instead of an absolute address. The
assembler places no restriction on the number of characters in a label.

Labels are case sensitive. The assembler treats “outer” and “Outer” as
unique labels. For example,

 outer: [I1]=R0;
 outer: R1=0X1234;
 Jump outer; //jumps back 2 instructions.

Assembler Directives

Directives begin with a period (.) and end with a semicolon (;). The
assembler does not differentiate between directives in lowercase or
uppercase.

� This manual prints directives in uppercase to distinguish them
from other assembly statements.

For example,

 .SECTION data1;

 .BYTE2 sqrt_coeff[2] = 0x5D1D, 0xA9ED;

For a complete description of the easmblkfn directive set, see “Assembler
Directives” on page 1-35.

Preprocessor Commands

Preprocessor commands begin with a pound sign (#) and end with a car-
riage return. The pound sign must be the first non-white space character
on the line containing the command. If the command is longer than one
line, use a backslash (\) and a carriage return to continue the command
onto the next line.
1-6 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Assembler
Do not put any characters between the backslash and the carriage return.
Unlike assembler directives, preprocessor commands are case sensitive and
must be lowercase. For example,

 #include "string.h"

 #define MAXIMUM 100

For more information, see “Writing Preprocessor Commands” on
page 2-2. For a list of the preprocessor commands, see “Preprocessor
Command Reference” on page 2-9.

Program Structure

An assembly source file defines code (instructions) and data, and organizes
the instructions and data to allow use of the Linker Description File
(LDF) to describe how code and data are mapped into the memory on
your target DSP. The way you structure your code and data into memory
should follow the memory architecture of the target DSP.

Use the .SECTION directive to organize the code and data in assembly
source files. The .SECTION directive defines a grouping of instructions and
data that will occupy contiguous memory addresses in the DSP. The name
given in a section directive corresponds to an input section name in the
Linker Description File.

Suggested input section names that you could use in your assembly source
appear in Table 1-1 on page 1-8. Using these predefined names in your
sources makes it easier to take advantage of the default LDF included in
your DSP system. For more information on the LDF, see the VisualDSP
++ 3.0 Linker and Utilities Manual for Blackfin DSPs.

You can use sections in a program to group elements to meet hardware
constraints. For example, the ADSP-21535 DSP has a separate program
and data memory in the Level 1 memory only. Level 2 memory and exter-
nal memory are not separated into instruction and data memory.
VisualDSP++ 3.0 Assembler and Preprocessor Manual 1-7
for Blackfin DSPs

Assembler Guide
To group the code that reside in off-chip memory, declare a section for
that code and place that section in the selected memory with the linker.
Figure 1-2 on page 1-9 shows how a program divides into sections that
match the memory segmentation of a Blackfin DSP system.

The example assembly program defines four sections; each section begins
with a .SECTION directive and ends with the occurrence of the next .SEC-
TION directive or end-of-file. The source program contains two data and
two program sections:

• Data Sections—data1 and constdata. Variables and buffers are
declared and can be initialized.

• Program Sections—seg_rth and program. Data, instructions, and
statements for conditional assembly are coded.

Looking at Figure 1-2 on page 1-9, notice that an assembly source may
contain preprocessor commands, such as #include to include other files in
your source code, #ifdef for conditional assembly, or #define to define
macros.

Assembler directives, such as .BYTE, appear within sections to declare and
initialize variables.

Listing 1-1 on page 1-10 shows a sample user-defined Linker Description
File. Looking at the LDF’s SECTIONS{} command, notice that the
INPUT_SECTION commands map to sections program, data1, constdata,
ctor, and seg_rth. The LDF’s SECTIONS{} command defines the .SECTION
placements in the system’s physical memory as defined by the linker’s Mem-
ory{} command.

Table 1-1. Suggested Input Section Names

.SECTION Name Description

data1 A section that holds data.

program A section that holds code.
1-8 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Assembler
Figure 1-2. Assembly Source File Structure

.SECTION data1;

.BYTE buffer1[2] = 1,2;

.
BYTE2 buffer2[0x100];
BYTE2 buffer3;

.SECTION constdata;

.BYTE4 program_buffer1 = 0x123456;

.SECTION seg_rth;

JUMP start; RTI;RTI;RTI; // begin execution

RTI;RTI;RTI;RTI;
RTI;RTI;RTI;RTI;
RTI;RTI;RTI;RTI;
RTI;RTI;RTI;RTI;
RTI;RTI;RTI;RTI;
RTI;RTI;RTI;RTI;
RTI;RTI;RTI;RTI;
RTI;RTI;RTI;RTI;
RTI;RTI;RTI;RTI;
RTI;RTI;RTI;RTI;
RTI;RTI;RTI;RTI;

.SECTION program;
start:
#ifndef R_SET_TO_2
R0 = 0x0001;
#endif

#ifdef R_SET_TO_2
R0 = 0x0002;

#endif

R1 = buffer1;
R2 = 0;
R3 = 1;
P0 = 0x100;
P1=10;
P2=20;

Assembler
Directive

Data Section

Code Section
Assembler
Label and

Code Section

Ins tructions

Assembler
Label

Assembly
Ins tructions

Preprocessor
Commands for
Conditional
Assembly

Code Section

.

VisualDSP++ 3.0 Assembler and Preprocessor Manual 1-9
for Blackfin DSPs

Assembler Guide
Listing 1-1. Example Linker Description File

ARCHITECTURE(ADSP-21535)
SEARCH_DIR($ADI_DSP\Blackfin\lib)
$OBJECTS = $COMMAND_LINE_OBJECTS;
MEMORY /* Define/label system memory
{ /* List of global Memory Segments */
MEM_PROGRAM { TYPE(RAM) START(0xF0000000) END(0xF002FFFF)
WIDTH(8) }
MEM_HEAP { TYPE(RAM) START(0xF0030000) END(0xF0037FFF)
WIDTH(8) }
MEM_STACK { TYPE(RAM) START(0xF0038000) END(0xF003DFFF)
WIDTH(8) }
MEM_SYSSTACK { TYPE(RAM) START(0xF003E000) END(0xF003FDFF)
WIDTH(8) }
MEM_ARGV { TYPE(RAM) START(0xF003FE00) END(0xF003FFFF)
WIDTH(8) }
}
PROCESSOR p0 /* The processor in the system */
{
 OUTPUT($COMMAND_LINE_OUTPUT_FILE)

SECTIONS
{ /* List of sections for processor P0 */
 program
 { // Align all code sections on 2 byte boundary
 INPUT_SECTION_ALIGN(2)
 INPUT_SECTIONS($OBJECTS(program) $LIBRARIES(pro-
gram))
 INPUT_SECTION_ALIGN(1)
 INPUT_SECTIONS($OBJECTS(data1) $LIBRARIES(data1)
 INPUT_SECTION_ALIGN(1)
 INPUT_SECTIONS($OBJECTS(constdata) $LIBRARIES(con-
stdata))
 INPUT_SECTION_ALIGN(1)
 INPUT_SECTIONS($OBJECTS(ctor) $LIBRARIES(ctor))
 INPUT_SECTION_ALIGN(2)
 INPUT_SECTIONS($OBJECTS(seg_rth))
 } >MEM_PROGRAM
 stack
 {
 ldf_stack_space = .;
1-10 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Assembler
 ldf_stack_end = ldf_stack_space +
MEMORY_SIZEOF(MEM_STACK) - 4;
 } >MEM_STACK
 sysstack
 {
 ldf_sysstack_space = .;
 ldf_sysstack_end = ldf_sysstack_space +
 MEMORY_SIZEOF(MEM_SYSSTACK) - 4;
 } >MEM_SYSSTACK

 heap
 { // Allocate a heap for the application
 ldf_heap_space = .;
 ldf_heap_end = ldf_heap_space + MEMORY_SIZEOF(MEM_HEAP) -
1;
 ldf_heap_length = ldf_heap_end - ldf_heap_space;
 } >MEM_HEAP
 argv
 { // Allocate argv space for the application
 ldf_argv_space = .;
 ldf_argv_end = ldf_argv_space + MEMORY_SIZEOF(MEM_ARGV) -
1;
 ldf_argv_length = ldf_argv_end - ldf_argv_space;
 } >MEM_ARGV
 }
}

Program Interfacing Requirements

You can interface your assembly program with a C or C++ program. The
C/C++ compiler supports two methods for mixing C/C++ and assembly
language:

• Embedding assembly code in C or C++ programs

• Linking together C or C++ and assembly routines

To embed (inline) assembly code in your C or C++ program, use the
asm() construct. To link together programs that contain C/C++ and
assembly routines, use assembly interface macros. These macros facilitate
VisualDSP++ 3.0 Assembler and Preprocessor Manual 1-11
for Blackfin DSPs

Assembler Guide
the assembly of mixed routines. For more information about these meth-
ods, see the VisualDSP++ 3.0 C/C++ Compiler and Library Manual for
Blackfin DSPs.

When writing a C or C++ program that interfaces with assembly, observe
the same rules that the compiler follows as it produces code to run on the
DSP. These rules for compiled code define the compiler’s run-time envi-
ronment. Complying with a run-time environment means following rules
for memory usage, register usage, and variable names.

The definition of the run-time environment for the Blackfin DSP’s
C/C++ compiler is provided in the VisualDSP++ 3.0 C/C++ Compiler and
Library Manual for Blackfin DSPs, which also includes a series of examples
to demonstrate how to mix C/C++ and assembly code.

Using Assembler Support for C Structs
The assembler supports C typedef/struct declarations within assembly
source. These are the assembler data directives and built-ins that provide
high-level programming features with C structs in the assembler:

• Data Directives:
.IMPORT (see on page 1-47)
.EXTERN STRUCT (see on page 1-43)
.STRUCT (see on page 1-62)

• Built-ins:
offsetof(struct/typedef,field (see on page 1-31)
sizeof(struct/typedef (see on page 1-31)

• Struct References:
struct->field (nesting supported) (see on page 1-32)

For more information on C struct support, refer to the “-flags-compiler”
command-line switch on page 1-77 and to “Reading a Listing File” on
page 1-17.
1-12 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Assembler
C structs in assembly features accept the full set of legal C symbol names,
including those that are otherwise reserved in Blackfin DSP assembler. For
example, 'X' and 'Z' are reserved keywords in the Blackfin DSP assembler,
but it is legal to reference them in the context of the C struct in assembly
features. For example:

.import "Coordinate.h";
 // typedef struct Coordinate {
 // int X;
 // int Y;
 // int Z;
 // } Coordinate;

.section data;

.struct Coordinate Coord1 = {
 X = 1,
 Y = 4,
 Z = 7
 };

.section program;

 P0.l = Coord1->X;
 P0.h = Coord1->X;

 P1.l = Coord1->Y;
 P1.h = Coord1->Y;

 P2.l = Coord1->Z;
 P2.h = Coord1->Z;

 P3.l = Coord1+offsetof(Coordinate,Z);
 P3.h = Coord1+offsetof(Coordinate,Z);
VisualDSP++ 3.0 Assembler and Preprocessor Manual 1-13
for Blackfin DSPs

Assembler Guide
Preprocessing a Program
The assembler includes a preprocessor that allows the use of C-style pre-
processor commands in your assembly source files. The preprocessor
automatically runs before the assembler unless you use the assembler’s
-sp (skip preprocessor) switch. Table 2-3 on page 2-10 lists preprocessor
commands and provides a brief description of each command.

Preprocessor commands are useful for modifying assembly code. For
example, you can use the #include command to fill memory, load config-
uration registers, and set up DSP parameters. You can use the #define
command to define constants and aliases for frequently used instruction
sequences. The preprocessor replaces each occurrence of the macro refer-
ence with the corresponding value or series of instructions.

For example, the macro MAXIMUM in the example on page 1-7 is replaced
with the number 100 during preprocessing. For more information on the
preprocessor command set, see “Preprocessor Command Reference” on
page 2-9. For more information on preprocessor usage, see “-flags-pp
-opt1 [,-opt2...]” on page 1-79.

Using Feature Assembler Macros
The assembler includes the command to invoke preprocessor macros to
define the context, such as the source language, the architecture, and the
specific processor. These “feature macros” allow the programmer to use
preprocessor conditional commands to configure the source for assembly
based on the context.

The set of feature macros include:

-D__ADSPBLACKFIN__ =1 � Always present

-D_LANGUAGE_ASM =1 � Always present
1-14 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Assembler
-D__ADSP21535__ =1 � Present when running
 easmblkfn -proc ADSP-21535
 (for ASDP-21535 DSP)

-D__ADSP21532__ =1 � Present when running
 easmblkfn -proc ADSP-21532
 (for ASDP-21532 DSP)

For the .IMPORT headers, the assembler calls the compiler driver with the
appropriate processor option and the compiler sets the machine constants
accordingly (and defines -Deasmblkfn_LANGUAGE_C = 1). This macro is
present when used for C compiler calls to specify headers. It replaces
-D_LANGUAGE_ASM. For Blackfin DSPs,

 easmblkfn -21535 assembly -> ccblkfn -21535

 easmblkfn -21532 assembly -> ccblkfn -21532

� Use the -verbose option to verify what macro is default-defined.
Refer to Chapter 1 in the VisualDSP++ 3.0 C/C++ Compiler and
Library Manual for Blackfin DSPs for more information.

Make Dependencies
The assembler can generate “make dependencies” for a file to allow
VisualDSP++ and other makefile-based build environments to determine
when to rebuild an object file due to changes in the input files. The assem-
bler source file and any files mentioned in #include commands, .IMPORT
directives, or buffer initializations (in .VAR, .STRUCT, and .BYTEn directives)
constitute the “make dependencies” for an object file.

When VisualDSP++ requests make dependencies for the assembly, the
assembler produces the dependencies from buffer initializations and
invokes

• The preprocessor to determine the make dependency from
#include commands, and
VisualDSP++ 3.0 Assembler and Preprocessor Manual 1-15
for Blackfin DSPs

Assembler Guide
• The compiler to determine the make dependencies from the
.IMPORT headers.

The following example shows make dependencies for VCSE_IBase.h which
includes vcse.h. Note that the same header VCSE_IBase.h when called
from the assembler (with assembler #defines) also includes VCSE_asm.h,
but this was not the case when called for compiling .IMPORT.

easmblkfn -M -l main.lst main.asm

// dependency from the assembler

"main.doj": "main.asm"

// dependencies from the assembler pre-processor PP for the

// #include headers

"main.doj": "ACME_Impulse_factory.h"

"main.doj": "ACME_Impulse_types.h"

"main.doj": "VCSE_IBase.h"

"main.doj": "VCSE_asm.h"

"main.doj": "vcse.h"

// dependencies from the compiler for the .IMPORT headers

main.doj: .\ACME_IFir.h

main.doj: .\ADI_IAlg.h

main.doj: .\VCSE_IBase.h

main.doj: .\vcse.h
1-16 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Assembler
Reading a Listing File
A listing file (.LST) is an optional output text file that lists the results of
the assembly process. Listing files provide the following information:

• Address — The first column contains the offset from the .SEC-
TION’s base address.

• Opcode — The second column contains the hexadecimal opcode
that the assembler generates for the line of assembly source.

• Line — The third column contains the line number in the assem-
bly source file.

• Assembly Source — The fourth column contains the assembly
source line from the file.

The assembler listing file provides information about the imported C data
structures. It tells which imports were used within the program, followed
by a more detailed section. It shows the name, total size and layout with
offset for the members. The information appears at the end of the listing.
You must specify the -l listname.lst option (as shown on page 1-80) to
get a listing file.
VisualDSP++ 3.0 Assembler and Preprocessor Manual 1-17
for Blackfin DSPs

Assembler Syntax Reference
Assembler Syntax Reference
When you develop a source program in assembly language, include pre-
processor commands and assembler directives to control the program’s
processing and assembly. You must follow the assembler rules and conven-
tions of syntax to define symbols (identifiers), expressions, and use
different numeric and comment formats.

Software developers who write assembly programs should be familiar with:

• “Assembler Keywords and Symbols” on page 1-18

• “Assembler Expressions” on page 1-23

• “Assembler Operators” on page 1-24

• “Numeric Formats” on page 1-25

• “Comment Conventions” on page 1-28

• “Conditional Assembly Directives” on page 1-28

• “Built-In Functions” on page 1-31

• “-> Struct References” on page 1-32

• “Assembler Directives” on page 1-35

Assembler Keywords and Symbols
The assembler supports predefined keywords that include register and bit-
field names, assembly instructions, and assembler directives. Table 1-2
lists the assembler keywords. Although the keywords in the listing appear
in uppercase, the keywords are case insensitive in the assembler’s syntax.
For example, the assembler does not differentiate between “DATA” and
“data”.
1-18 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Assembler
Table 1-2. Assembler Keywords

.ALIGN .ASCII .ASSERT .ASM_ASSERT .BYTE

.BYTE2 .BYTE4 .ELSE .ELIF .ENDIF

.EXTERN .EXTERN STRUCT .FILE .GLOBAL .IF

.IMPORT .ORG .PREVIOUS .SECTION .STRUCT

.TYPE .VAR

A0 A1 ABORT ABS AC

ALIGN8 ALIGN16 ALIGN24 AMNOP AN

AND ASHIFT ASL ASR ASSIGN

ASTAT AV0 AV1 AZ

B B0 B1 B2 B3

BANG BAR BITCLR BITMUX BITSET

BITTGL BITTST BIT_XOR_AC BP BREV

BRF BRT BY BYTEOP1P BYTEOP16M

BYTEOP1NS BYTEOP16P BYTEOP2M BYTEOP2P BYTEOP3P

BYTEPACK BYTEUNPACK BXOR BXORSHIFT

CALL CARET CC CLI CLIP

CO CODE COLON COMMA CSYNC

DATA DBG DBGA DBGAH DBGAL

DBGCMPLX DBGHALT DEPOSIT DISALGNEXCPT DIVSDEPOSIT

DOZE DIVQ DIVS DOT emucause

EMUEXCPT EXCAUSE EXCPT EXPADJ EXTRACT

FEXT FEXTSX FLUSH FLUSHINV FP

FU GE GF GT

H HI HLT hwerrcause

I0 I1 I2 I3 IDLE
VisualDSP++ 3.0 Assembler and Preprocessor Manual 1-19
for Blackfin DSPs

Assembler Syntax Reference
idle_req IFLUSH IH INTRP IS

ISS2 IU JUMP JUMP.L JUMP.S

L LB0 LB1 LC0 LC1

LE LENGTH LINK LJUMP LMAX

LMIN LO LOOP LOOP_BEGIN LOOP_END

LPAREN LSETUP LSHIFT LT LT0

LT1 LZ

M M0 M1 M2 M3

MAX MIN MINUS MNOP MUNOP

NEG NOP NOT NS

ONES OR OUTC

P0 P1 P2 P3 P4

P5 PACK PC PRNT PERCENT

PLUS PREFETCH

R R0 R1 R2 R3

R4 R5 R6 R7 RAISE

RBRACE RBRACK RETI RETN

RETS RETX RTX RETI RETN

R1_COLON0 RTE RTI RSDL RETI

RETN RETS RETX RND12 RNDH

RND RND20 RNDL ROL ROR

ROT ROT_L_AC ROT_R_AC RPAREN RSDL

RTE RTI RTN RTS RTX

S S2RND SAA SAA1H SAA1L

SAA2H SAA2L SAA3H SAA3L SAT

Table 1-2. Assembler Keywords (Cont’d)
1-20 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Assembler
You extend this set of keywords with symbols that declare sections, vari-
ables, constants, and address labels. When defining symbols in assembly
source code, follow these conventions:

• Define symbols that are unique within the file in which they are
declared.

If you use a symbol in more than one file, use the .GLOBAL assembly
directive to export the symbol from the file in which it is defined.
Then use the .EXTERN assembly directive to import the symbol into
other files.

• Begin symbols with alphabetic characters.

Symbols can use alphabetic characters (A—Z and a—z), digits (0—9),
and special characters $ and _ (dollar sign and underscore) as well
as . (dot).

Symbols are case sensitive; so input_addr and INPUT_ADDR define
unique variables.

SCO SEARCH SHT_TYPE SIGN SIGNBITS

SLASH SLEEP SKPF SKPT SP

SS SSF SSF_RND_HI SSF_TRUNC SSF_TRUNC_HI

SSF_RND SSF_TRUNC SSYN STI STRUCT

STT_TYPE SU SYSCFG

T TESTSET TFU TH TL

TST UNLINK UNLNK UNRAISE UU

V VIT_MAX W W32 WEAK

X XB XH XOR Z

Table 1-2. Assembler Keywords (Cont’d)
VisualDSP++ 3.0 Assembler and Preprocessor Manual 1-21
for Blackfin DSPs

Assembler Syntax Reference
The dot, point, or period, '.' as the first character of a symbol trig-
gers special behavior in the VisualDSP++ environment. Such
symbols will not appear in the symbol table accessible in the debug-
ger. A symbol name in which the first two characters are points will
not appear even in the symbol table of the object.

The compiler and runtimes prepend '_' to avoid using symbols in
the user name space that begin with an alphabetic character.

• Do not use a reserved keyword to define a symbol.

• Match source and LDF sections’ symbols.

Ensure that .SECTIONs’ name symbols do not conflict with the
linker’s keywords in the LDF. The linker uses sections’ name sym-
bols to place code and data in DSP memory. For more details, see
the VisualDSP++ 3.0 Linker and Utilities Manual for Blackfin
DSPs.

Ensure that .SECTION name symbols do not begin with the ‘.’ (dot).

• Terminate address label symbols with a colon (:).

• Blackfin DSP reserved word list includes some keywords with com-
monly used spellings; therefore, ensure correct syntax spelling.

Address label symbols may appear at the beginning of an instruction line
or stand alone on the preceding line. The following disassociated lines of
code demonstrate symbol usage.

 .BYTE2 xoperand; // xoperand is a 16-bit variable
 .BYTE4 input_array[10]; // input_array is a 32-bit wide data

 buffer

 sub_routine_1: // sub_routine_1 is a label

 .SECTION kernel; // kernel is a section
1-22 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Assembler
Assembler Expressions
The assembler can evaluate simple expressions in source code. The assem-
bler supports two types of expressions: constant and symbolic.

Constant expressions

A constant expression is acceptable where a numeric value is expected in
an assembly instruction or in a preprocessor command. Constant expres-
sions contain an arithmetic or logical operation on two or more numeric
constants. For example,

 2.9e-5 + 1.29

 (128 - 48) / 3

 0x55&0x0f

 7.6r � .8r

For information about fraction type support, refer to “Fractional Type
Support” on page 1-25.

Symbolic expressions

Symbolic expressions contain symbols, whose values may not be known
until link time:

 data/8

 (data_buffer1 + data_buffer2) & 0xF

 strtup + 2

 data_buffer1 + LENGTH(data_buffer2)*2

Symbols in this type of expression are data variables, data buffers, and pro-
gram labels. In the first three examples above, the symbol name represents
the address of the symbol. The fourth combines that meaning of a symbol
with a use of the length operator (see Table 1-4).
VisualDSP++ 3.0 Assembler and Preprocessor Manual 1-23
for Blackfin DSPs

Assembler Syntax Reference
Assembler Operators
Table 1-3 lists the assembler’s numeric and bitwise operators used in con-
stant expressions and address expressions. These operators are listed in the
order they are processed while the assembler evaluates your expressions.
Relational operators are only supported in relational expressions in condi-
tional assembly, as described in “Conditional Assembly Directives” on
page 1-28.

The assembler also supports special “symbol” and “length of” operators.
Table 1-4 lists and describes these operators used in constant and address
expressions.

Table 1-3. Operator Precedence

Operator Usage Description

(expression) expression in parentheses evaluates first

~
-

Ones complement
Unary minus

*
/
%

Multiply
Divide
Modulus

+

�
Addition
Subtraction.

<<
>>

Shift left
Shift right

Table 1-4. Special Assembler Operators

Operator Usage Description

symbol Address pointer to symbol

LENGTH(symbol) Length of symbol in words
1-24 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Assembler
The “length of” operator can be used with external symbols—apply it to
symbols that are defined in other sections as .GLOBAL symbols.

The following example demonstrates how the assembler operators are used
to load the length and address information into registers.

 #define n 20
 ...

 .SECTION data1; // data section
 .var real_data [n]; // n=number of input sample

 .SECTION program; // code section
 p0.l = real_data;
 p0.h = real_data;
 p1=LENGTH(real_data); // buffer's length

 LOOP loop1 lc0=p1;
 LOOP_BEGIN loop1;
 R0=[p0++]; // get next sample
 ...
 LOOP_END loop1;

This code fragment initializes p0 and p1 to the base address and length,
respectively, of the buffer real_data. The loop will be executed 20 times.

Numeric Formats
The assembler supports binary, decimal, hexadecimal, and fractional
numeric formats (bases) within expressions and assembly instructions.
Table 1-5 describes the conventions of notation the assembler uses to dis-
tinguish between numeric formats.

Fractional Type Support

Fractional (fract) constants are specially marked floating-point constants
to be represented in fixed-point. A fract constant uses the floating-point
representation with a trailing “r”, where r stands for fract.
VisualDSP++ 3.0 Assembler and Preprocessor Manual 1-25
for Blackfin DSPs

Assembler Syntax Reference
The legal range is [� 1…1). Fracts are represented as signed values, which
means the values must be greater than or equal � 1 and less than 1.

For example,

 .VAR myFracts[] = 0.5r, -0.5e-4r, -0.25e-3r, 0.875r;
 /* constants are examples of legal fracts */

 .VAR OutOfRangeFract = 1.5r;
 /* [Error E37] …Fract constant '1.5r' is out of range.

 Fract constants must be greater than or equal to -1 and

 less than 1. */

1.15 Fracts

Blackfin DSP-supported fracts use 1.15 format, meaning a sign bit and
“15 bits of fraction”. This is �1 to +1�2**15. For example, 1.15 maps the
constant 0.5r to 2**14.

The conversion formula used by Blackfin DSP to convert from the
floating-point to fixed-point uses a scale factor of 15:

 fractValue = (short) (doubleValue * (1 << 15))

Table 1-5. Numeric Formats

Convention Description

0xnumber “0x” prefix indicates a hexadecimal number

B#number
b#number

 “B#” or “b#” prefix indicates a binary number

number No prefix indicates a decimal number

numberr “r” suffix indicates a fractional number
1-26 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Assembler
For example:

 .VAR myFract = 0.5r;
 // Fract output for 0.5r is 0x4000

 // sign bit + 15 bits// 0100 0000 0000 0000

 // 4 0 0 0 = 0x4000 = .5r

 .VAR myFract = -1.0r;
 // Fract output for -1.0r is 0x8000

 // sign bit + 15 bits

 // 1000 0000 0000 0000

 // 8 0 0 0 = 0x8000 = -1.0r

1.0r Special Case

1.0r is out of the range fract. Specify 0x7FFF for the closest approximation
of 1.0r within the 1.15 representation.

Fractional Arithmetic

The assembler provides supports for arithmetic expressions using opera-
tions on fractional constants, consistent with the support for other
numeric types in constant expressions, as described in “Assembler Expres-
sions” on page 1-23.

The internal (intermediate) representation for expression evaluation is a
double floating-point value. Fract range checking is deferred until the
expression is evaluated. For example,

 #define fromSomewhereElse 0.875r
 .SECTION data1;

 .VAR localOne = fromSomewhereElse + 0.005r;
 // Result .88r is within the legal range

 .VAR xyz = 1.5r -0.9r;

 // Result .6r is within the legal range

 .VAR abc = 1.5r; // Error: 1.5r out of range
VisualDSP++ 3.0 Assembler and Preprocessor Manual 1-27
for Blackfin DSPs

Assembler Syntax Reference
Mixed Type Arithmetic

The assembler does not support arithmetic between fracts and integers.
For example,

 .VAR myFract = 1 - 0.5r;

 [Error E8] …Assembler Error: Illegal mixing of types in

 expression.

Comment Conventions
The assembler supports C and C++ style formats for inserting comments
in assembly sources. The easmblkfn assembler does not support nested
comments. Table 1-6 lists and describes assembler comment conventions.

Conditional Assembly Directives
Conditional assembly directives are used for evaluation of assembly-time
constants using relational expressions. The expressions may include rela-
tional and logical operations. In addition to integer arithmetic, the
operands may be the C struct in assembly built-ins sizeof()and
offsetof() that return integers.

The conditional assembly directives are:

• .IF constant-relational-expression;

• .ELIF constant-relational-expression;

Table 1-6. Comment Conventions

Convention Description

/* comment */ A “/* */” string encloses a multiple-line comment.

// comment A pair of slashes “//” begin a single-line comment.
1-28 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Assembler
• .ELSE;

• .ENDIF;

All conditional assembly blocks begin with an .IF directive and end with a
.ENDIF directive. Table 1-7 shows examples of conditional directives.

Optionally, any number of .ELIF and a final .ELSE directive may appear
within the .IF and .ENDIF. The conditional directives are each terminated
with a semi-colon ";" just like all existing assembler directives. Condi-
tional directives do not have to appear alone on a line. These directives are
in addition to the C-style preprocessing directives #if, #elif, #else, and
#endif.

� The ".IF", ".ELSE", ".ELIF “, and ".ENDIF" directives (in any case)
are reserved keywords.

The .IF conditional assembly directives must be used to query about C
structs in assembly using the sizeof() and/or offsetof() built-ins. These
built-ins are evaluated at assembly time, so they cannot appear in expres-
sions in the #if preprocessor directives.

In addition, the sizeof() and offsetof() built-ins (see “Built-In Func-
tions” on page 1-31) can be used in relational expressions. Different code
sequences can be included based on the result of the expression. For exam-
ple, a sizeof(struct/typedef/C base type) is permitted.

The assembler supports nested conditional directives. The outer condi-
tional result propagates to the inner condition, just as it does in C
preprocessing.

Assembler directives are distinct from preprocessor directives:

• The # directives are evaluated during preprocessing by the PP pre-
processor. Therefore, preprocessor #IF directives cannot use the
assembler built-ins (see “Built-In Functions”).
VisualDSP++ 3.0 Assembler and Preprocessor Manual 1-29
for Blackfin DSPs

Assembler Syntax Reference
• The conditional assembly directives are processed by the assembler
in a later pass. Therefore, you would be able to write a relational or
logical expression whose value will depend on the value of a
#define: For example,

.IF tryit == 2
<some code>

.ELIF tryit >= 3

<some more code>

If you have "#define tryit 2", then the code <some code> will be
assembled, <some more code> will not be.

• There are no parallel assembler directives for C-style directives
#define, #include, #ifdef, #if defined(name), #ifndef, etc..

Table 1-7. Relational Operators for Conditional Assembly

Relational Operators Conditional Directive Examples

not ! .if !0;

greater than > .if (sizeof(myStruct) > 16);

greater than equal >= .if (sizeof(myStruct) >= 16);

less than < .if (sizeof(myStruct) < 16);

less than equal <= .if (sizeof(myStruct) <= 16);

equality == .if (8 == sizeof(myStruct));

not equal != .if (8 != sizeof(myStruct));

logical or || .if (2 !=4) || (5 == 5);

logical and && .if (sizeof(char) == 2 && sizeof(int) == 4);
1-30 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Assembler
Built-In Functions
The assembler supports built-in functions that enable you to pass infor-
mation obtained from the imported C struct layouts.

offsetof() Built-In

The offsetof() built-in is used to calculate the offset of a specified mem-
ber from the beginning of its parent data structure. For Blackfin DSPs,
offsetof() units are in bytes.

 offsetof(struct/typedef, memberName)

where:

struct/typedef—struct VAR or a typedef can be supplied as the
first argument

memberName—a member name within the struct or typedef (sec-
ond argument)

sizeof() Built-In

The sizeof() built-in returns the amount of storage associated with an
imported C struct or data member. It provides functionality similar to its
C counterpart.

 sizeof(struct/typedef/C base type);

where:

sizeof() built-in takes a symbolic reference as its single argument.
A symbolic reference is a name followed by zero or more qualifiers
to members. The sizeof() built-in gives the amount of storage
associated with:
VisualDSP++ 3.0 Assembler and Preprocessor Manual 1-31
for Blackfin DSPs

Assembler Syntax Reference
• An aggregate type (structure)
• A C base type (int, char, etc.)
• A member of a structure (any type)

For example,

 .import "Celebrity.h";
 .extern struct Celebrity StNick;
 l3 = sizeof(Celebrity); // typedef
 l3 = sizeof(StNick); // struct var of typedef Celebrity
 l3 = sizeof(char); // C built-in type
 l3 = sizeof(StNick->Town); // member of a struct var

 l3 = sizeof(Celebrity->Town); // member of a struct typedef

The sizeof() built-in returns the size in the units appropriate for its pro-
cessor. For Blackfin DSPs, units are in bytes.

When applied to a structure type or variable, sizeof() returns the actual
size, which may include padding bytes inserted for alignment. When
applied to a statically dimensioned array, sizeof() returns the size of the
entire array.

-> Struct References
A reference to a struct VAR provides an absolute address. For a fully qual-
ified reference to a member, the address is offset to the correct location
within the struct. The assembler syntax for struct references is “->”.
For example,

 myStruct->Member5

references the address of Member5 located within myStruct. If the struct
layout changes, there is no need to change the reference. The assembler
re-calculates the offset when the source is re-assembled with the updated
header. Nested struct references are supported.
1-32 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Assembler
For example,

 myStruct->nestedRef->AnotherMember

� Unlike struct members in C, struct members in the assembler are
always referenced with “->” (and not “.”) because “."“is a legal
character in identifiers in assembly and not available as a struct
reference.

References within nested structures are permitted. A nested struct defini-
tion can be provided in a single reference in assembly code while a nested
struct via a pointer type requires more than one instruction. Make use of
the offsetof() built-in to avoid hard-coded offsets that could become
invalid if the struct layout changes in the future. Following are two nested
struct examples for .IMPORT "CHeaderFile.h";.

Example 1: Nested Reference Within the Struct Definition with Appro-
priate C Declarations

C code

 struct Location {

 char Town[16];

 char State[16];

 };

 struct myStructTag

 int field1;

 struct Location NestedOne;

 };

Assembly Code

 .extern struct myStructTag _myStruct;

 P3.l = _myStruct->NestedOne->State;

 P3.h = _myStruct->NestedOne->State;
VisualDSP++ 3.0 Assembler and Preprocessor Manual 1-33
for Blackfin DSPs

Assembler Syntax Reference
Example 2: Nested Reference When Nested via a Pointer with Appropri-
ate C Declarations

When nested via a pointer myStructTagWithPtr, which has pNestedOne,
use pointer register offset instructions.

C Code

 // from C header

 struct Location {

 char Town[16];

 char State[16];

 };

 struct myStructTagWithPtr {

 int field1;

 struct Location *pNestedOne;

 };

Assembly Code

 // in assembly file
 .extern struct myStructTagWithPtr _myStructWithPtr;

 P1.l = _myStructWithPtr->pNestedOne;

 P1.h = _myStructWithPtr->pNestedOne;

 P0 = [P1 + offsetof(Location,State)];
1-34 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Assembler
Assembler Directives
Directives in an assembly source file control the assembly process. Unlike
assembly instructions, directives do not produce opcodes during assembly.
Use the following general syntax for assembler directives

 .directive [/qualifiers |arguments];

Each assembler directive starts with a period (.) and ends with a semico-
lon (;). Some directives take qualifiers and arguments. A directive’s
qualifier immediately follows the directive and is separated by a slash (/);
arguments follow qualifiers. Assembler directives can be uppercase or low-
ercase; uppercase distinguishes directives from other symbols in your
source code.

The Blackfin DSP assembler supports the directives shown in Table 1-8.
A description of each directive appears in the following sections.

Table 1-8. Assembler Directive Summary

Directive Description

.ALIGN (see on page 1-37) Specifies a byte alignment requirement

.BYTE| .BYTE2| .BYTE4
(see on page 1-39)

Defines and initializes one, two, and four one-byte
data objects, respectively

.EXTERN (see on page 1-42) Allows reference to a global symbol

.EXTERN STRUCT (see on page 1-43) Allows reference to a global symbol (struct) that
was defined in another file

.FILE (see on page 1-45) Overrides filename given on the command line.
Used by C compiler

.GLOBAL (see on page 1-46) Changes a symbol’s scope from local to global

.IMPORT (see on page 1-46) Provides the assembler with the structure layout (C
struct) information

.LEFTMARGIN (see on page 1-49) Defines the width of the left margin of a listing

.LIST (see on page 1-50) Starts listing of source lines
VisualDSP++ 3.0 Assembler and Preprocessor Manual 1-35
for Blackfin DSPs

Assembler Syntax Reference
.LIST_DATA (see on page 1-51) Starts listing of data opcodes

.LIST_DATFILE (see on page 1-52) Starts listing of data initialization files

.LIST_DEFTAB (see on page 1-53) Sets the default tab width for listings

.LIST_LOCTAB (see on page 1-54) Sets the local tab width for listings

.LIST_WRAPDATA (see on page 1-55) Starts wrapping opcodes that don’t fit listing column

.NEWPAGE (see on page 1-56) Inserts a page break in a listing

.NOLIST (see on page 1-50) Stops listing of source lines

.NOLIST_DATA (see on page 1-51) Stops listing of data opcodes

.NOLIST_DATFILE (see on page 1-52) Stops listing of data initialization files

.NOLIST_WRAPDATA (see on page 1-55) Stops wrapping opcodes that don't fit listing column

.PAGELENGTH (see on page 1-57) Defines the length of a listing page

.PAGEWIDTH (see on page 1-58) Defines the width of a listing page

.PREVIOUS (see on page 1-59) Reverts to a previously described .SECTION

.SECTION (see on page 1-61) Marks the beginning of a section

.STRUCT (see on page 1-62) Defines and initializes data objects based on C
typedefs from .IMPORT C header files

.TYPE (see on page 1-66) Changes the default data type of a symbol.
Used by C compiler

.VAR (see on page 1-67) Defines and initializes 32-bit data objects

.WEAK (see on page 1-71) Creates a weak definition or reference

Table 1-8. Assembler Directive Summary (Cont’d)

Directive Description
1-36 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Assembler
.ALIGN, Specify an Address Alignment

The .ALIGN directive forces the address alignment of an instruction or
data item. Use it to ensure section alignments in the LDF. You may use
.ALIGN to ensure the alignment of the first element of a section, therefore
providing the alignment of the object section (“input section” to the
linker). You may also use the INPUT_SECTION_ALIGN(#number) linker com-
mand in the LDF to force all the following input sections to the specified
alignment.

Refer to Chapter 1 “Linker” in the VisualDSP++ Linker and Utilities Man-
ual for Blackfin DSPs for more information on section alignment.

Syntax:

 .ALIGN expression;

where

• expression evaluates to an integer. It specifies the byte alignment
requirement; its value must be a power of 2. When aligning a data
item or instruction, the assembler adjusts the address of the current
location counter to the next address that can be evenly divided by
the value of expression. The expression set to 0 or 1 signifies no
address alignment requirement.

� In the absence of the .ALIGN directive, the default address align-
ment is 1.

Example

.ALIGN 0; /* no alignment requirement */

…

.ALIGN 1; /* no alignment requirement */

…

.SECTION data1;

.ALIGN 2;

.BYTE single;
VisualDSP++ 3.0 Assembler and Preprocessor Manual 1-37
for Blackfin DSPs

Assembler Syntax Reference
 /* aligns the data item on a half-word boundary,

 at the location with the address value that can

 be evenly divided by 2 */

.ALIGN 4;

.BYTE samples1[100]=”data1.dat”;

 /* aligns the first data item on a word boundary,

 at the location with the address value that can be

 evenly divided by 4; advances other data items

 consequently */
1-38 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Assembler
.BYTE, Declare a Byte Data Variable or Buffer

The .BYTE, .BYTE2, and .BYTE4 directives declare and optionally initialize
one-, two-, or four-byte data objects. Note that the .BYTE4 directive per-
forms the same function as the .VAR directive.

Syntax: When declaring and/or initializing memory variables or buffer
elements, use one of these forms:

.BYTE varName1[,varName2,…];

.BYTE = initExpression1, initExpression2,…;

.BYTE varName1,varName2,… = initExpression1, initExpression2,…;

.BYTE bufferName[] = initExpression1, initExpression2,…;

.BYTE bufferName[] = "fileName";

.BYTE bufferName[length] = "fileName";

.BYTE bufferName1[length] [, bufferName2[length],…];

.BYTE bufferName[length] = initExpression1, initExpression2,…;

where

• varName—user-defined symbols that name variables

• bufferName—user-defined symbols that name buffers

• fileName parameter—indicates that the elements of a buffer get
their initial values from the fileName data file. <fileName> can
consist of the actual name and path specification for the data file. If
the initialization file is in current directory of your operating sys-
tem, only the filename need be given inside brackets.

Otherwise, you may use the -I switch to specify the file name and
add the directory and the name of the initialization file to the pro-
cessor include path in VisualDSP++.

Initializing from files is useful for loading buffers with data, such as
VisualDSP++ 3.0 Assembler and Preprocessor Manual 1-39
for Blackfin DSPs

Assembler Syntax Reference
filter coefficients or FFT phase rotation factors that are generated
by other programs. The assembler determines how the values are
stored in memory when it reads the data files.

• The ellipsis (…)—represents a comma-delimited list of parameters.

• initExpressions parameters—set initial values for variables and
buffer elements.

� The optional [length] parameter defines the length of the associ-
ated buffer in words. The number of initialization elements defines
length of an implicit-size buffer. The brackets [] that enclose the
optional [length] are required. For more information, see the fol-
lowing .VAR examples.

The following lines of code demonstrate .BYTE directives:

.BYTE = 5, 6, 7;

 // initialize three 8-bit memory locations

.BYTE samples[] = 123, 124, 125, 126, 127;

 // declare an implicit-length buffer and initialize it
 // with five 1-byte constants

.BYTE4 points[] = 1.01r, 1.02r, 1.03r;

 // declare and initialize an implicit-length buffer
 // and initialize it with three 4-byte fract constants

.BYTE2 Ins, Outs, Remains;

 // declare three 2-byte variables zero-initialized by

 // default
.BYTE4 demo_codes[100] = "inits.dat";

 // declare a 100-location buffer and initialize it

 // with the contents of the inits.dat file;

.BYTE2 taps=100;

 // declare a 2-byte variable and initialize it to 100

.BYTE twiddles[10] = "phase.dat";

 // declare a 10-location buffer and load the buffer

 // with contents of the phase.dat file
1-40 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Assembler
When declaring or initializing variables with .BYTE, take under consider-
ation constraints applied to the .VAR directive. The .VAR directive allocates
and optionally initializes 32-bit data objects. For information about the
.VAR directive, refer to information on page 1-67.

ASCII String Initialization Support

The easmblkfn assembler supports ASCII string initialization. This allows
the full use of the ASCII character set including digits and special
characters.

In Blackfin DSPs, ASCII initialization can be provided in .BYTE, .BYTE2 or
.VAR directives. The most likely use is the .BYTE directive where each char
is represented by one byte versus a .VAR directive where each char needs
four bytes.

String initialization takes one of the following forms:

 .BYTE symbolString[length] = ‘initString’, 0;

 .BYTE symbolString[] = ‘initString’, 0;

Note that the number of initialization characters defines the optional
length of a string (implicit-size initialization).

Example:

 .byte k[13] = ‘Hello world!’, 0;

 .byte k[] = ‘Hello world!’, 0;
VisualDSP++ 3.0 Assembler and Preprocessor Manual 1-41
for Blackfin DSPs

Assembler Syntax Reference
.EXTERN, Refer to a Globally Available Symbol

The .EXTERN directive allows a code module to reference global data struc-
tures, symbols, etc. that are declared as .GLOBAL in other files. For
additional information, see the .GLOBAL directive on page 1-46.

Syntax:

 .EXTERN symbolName1[, symbolName2, …];

where

symbolName—the name of a global symbol to import. A single .EXTERN
directive can reference any number of symbols on one line, separated by
commas.

Example:

.EXTERN coeffs;// This code declares an external symbol

 // to reference the global symbol coeffs

 // declared in the example code in the .GLOBAL
 // directive description.
1-42 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Assembler
.EXTERN STRUCT, Refer to a Struct Defined Elsewhere

The .EXTERN STRUCT directive allows a code module to reference a struct
that was defined in another file. Code in the assembly file can then refer-
ence the data members by name, just as if they were declared locally.

Syntax:

 .EXTERN STRUCT typedef structvarName ;

where

 typedef—the type definition for a struct VAR.

 structvarName—a struct VAR name.

The .EXTERN STRUCT directive specifies a struct symbol name that was
declared in another file. The naming conventions are the same for structs
as for variables and arrays:

• If a struct was declared in a C file, refer to it with a leading _.

• If a struct was declared in an .asm file, use the name “as is”, no lead-
ing _ is necessary.

The key to the assembler knowing the layout is the .IMPORT directive and
the .EXTERN STRUCT directive associating the typedef with the struct VAR.
To reference a data structure that was declared in another file, use the
.IMPORT directive with the .EXTERN directive. This mechanism can be used
for structures defined in assembly source files as well as in C files

The .EXTERN directive supports variables in the assembler. If the program
does reference struct members, .EXTERN STRUCT must be used because the
assembler must consult the struct layout to calculate the offset of the
struct members. If the program does not reference struct members, you
can use .EXTERN for struct VARs.
VisualDSP++ 3.0 Assembler and Preprocessor Manual 1-43
for Blackfin DSPs

Assembler Syntax Reference
Example:

.IMPORT "MyCelebrities.h";
 // 'Celebrity' is the typedef for struct var 'StNick'
 // .EXTERN means that '_StNick' is referenced within this
file,
 // but not locally defined. This example assumes StNick was
 // declared in a C file and it must be referenced with a lead-
ing
 // underscore.

 .EXTERN STRUCT Celebrity _StNick;
 // 'isSeniorCitizen' is one of the members of the 'Celebrity'
 // type

P3.l = _StNick->isSeniorCitizen;
P3.h = _StNick->isSeniorCitizen;
1-44 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Assembler
.FILE, Override the Name of a Source File

The .FILE directive overrides the name of the source file. This directive
may appear in the C/C++ compiler-generated assembly source file (.S).
The .FILE directive is used to ensure that the debugger has the correct file
name for the source file that had generated the object file.

Syntax:

 .FILE “filename.ext”;

where

filename — the name of the source file to associate with the object
file. The argument is enclosed in double quotes.

Example:

 .FILE “vect.c”; // the argument may be a *.c file
 .SECTION data1;

 …

 …
VisualDSP++ 3.0 Assembler and Preprocessor Manual 1-45
for Blackfin DSPs

Assembler Syntax Reference
.GLOBAL, Make a Symbol Globally Available

The .GLOBAL directive changes the scope of a symbol from local to global,
making the symbol available for reference in object files that are linked to
the current one.

By default, a symbol has local binding, meaning the linker can resolve ref-
erences to it only from the local file, that is, the same file in which it is
defined. it is valid visible only in the file in which it is declared. Local
symbols in different files can have the same name, and the linker considers
them to be independent entities. Global symbols are recognizable in visi-
ble from other files; all references from other files to an external symbol by
the same name will resolve to the same address and value, corresponding
to the single global definition of the symbol.

You change the default scope with the .GLOBAL directive. Once the symbol
is declared global, other files may refer to it with .EXTERN. For more infor-
mation, refer to the .EXTERN directive on page 1-42. Note that .GLOBAL (or
.WEAK) scope is required for symbols that appear in the RESOLVE commands
in the LDF file.

Syntax:

 .GLOBAL symbolName1[, symbolName2,…];

where

symbolName—the name of a global symbol. A single .GLOBAL direc-
tive may define the global scope of any number of symbols on one
line, separated by commas.

Example:

 .BYTE coeffs[10]; // declares a buffer

 .BYTE4 taps=100; // declares a variable

 .GLOBAL coeffs, taps; // makes the buffer and the variable
 // visible to other files
1-46 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Assembler
.IMPORT, Provide Structure Layout Information

The .IMPORT directive makes struct layouts visible inside an assembler
program. The .IMPORT directive provides the assembler with the following
structure layout information:

• The names of typedefs and structs available

• The name of each data member

• The sequence and offset of the data members

• Information as provided by the C compiler for the size of C base
types (alternatively, for the sizeof() C base types).

Syntax:

 .IMPORT “headerfilename1“ , [“headerfilename2”, …];

where

headerfilename—one or more comma-separated C header files
enclosed in double quotes.

The .IMPORT directive does not allocate space for a variable of this type—
that requires the .STRUCT directive.

The assembler takes advantage of knowing the struct layouts. The assem-
bly programmer may reference struct data members by name in assembler
source, as one would do in C. The assembler calculates the offsets within
the structure based on the size and sequence of the data members.

If the structure layout changes, the assembly code need not change. It just
needs to get the new layout from the header file, via the compiler. The
make dependencies track the .IMPORT header files and know when a
re-build is needed. Use the assembler -flags-compiler assembler switch
option (see on page 1-77) to pass options to the C compiler for the
.IMPORT header file compilations.
VisualDSP++ 3.0 Assembler and Preprocessor Manual 1-47
for Blackfin DSPs

Assembler Syntax Reference
The .IMPORT directive with one or more .EXTERN directives allows code in
the module to refer to a struct variable that was declared and initialized
elsewhere. The C struct can either be declared in C compiled code or
another assembly file.

The .IMPORT directive with one or more .STRUCT directives declares and
initializes variables of that structure type within the assembler section in
which it appears.

For more information, refer to the .EXTERN directive on page 1-42
and the .STRUCT directive on page 1-42.

Example:

 .IMPORT "CHeaderFile.h";
 .IMPORT "ACME_IIir.h","ACME_IFir.h";
1-48 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Assembler
.LEFTMARGIN, Set the Margin Width of a Listing File

The .LEFTMARGIN directive sets the margin width of a listing page. It spec-
ifies the number of empty spaces at the left margin of the listing file
(.LST), which the assembler produces when you use the -l switch. In the
absence of the .LEFTMARGIN directive, the assembler leaves no empty spaces
for the left margin.

The assembler checks the .LEFTMARGIN and .PAGEWIDTH values against one
another. If the specified values do not allow enough room for a properly
formatted listing page, the assembler issues a warning and adjusts the
directive that was specified last to allow an acceptable line width.

Syntax:

 .LEFTMARGIN expression;

where

expression—evaluates to an integer from 0 to 100. Default is 0.
Therefore, the minimum left margin value is 0 and maximum left
margin value is 100. To change the default setting for the entire
listing, place the .LEFTMARGIN directive at the beginning of your
assembly source file.

Example:

 .LEFTMARGIN 9; /* the listing line begins at column 10. */

� You can set the margin width only once per source file. If the
assembler encounters multiple occurrences of the .LEFTMARGIN
directive, it ignores all of them except the last directive.
VisualDSP++ 3.0 Assembler and Preprocessor Manual 1-49
for Blackfin DSPs

Assembler Syntax Reference
.LIST/.NOLIST, Listing Source Lines and Opcodes

The .LIST/.NOLIST directives (on by default) turn on and off the listing of
source lines and opcodes.

If .NOLIST is in effect, no lines in the current source, or any nested source,
will be listed until a .LISTdirective is encountered in the same source, at
the same nesting level. The .NOLIST directive operates on the next source
line, so that the line containing a .NOLIST will appear in the listing (and
thus account for the missing lines).

Syntax:

 .LIST;

 .NOLIST;

These directives can appear multiple times anywhere in a source file, and
their effect depends on their location in the source file.
1-50 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Assembler
.LIST_DATA/.NOLIST_DATA, Listing Data Opcodes

The .LIST_DATA/.NOLIST_DATA directives (off by default) turn the listing
of data opcodes on or off. If .NOLIST_DATA is in effect, opcodes corre-
sponding to variable declarations will not be shown in the opcode column.
Nested source files inherit the current setting of this directive pair, but a
change to the setting made in a nested source file will not affect the parent
source file.

Syntax:

 .LIST_DATA;

 .NOLIST_DATA;

These directives can appear multiple times anywhere in a source file, and
their effect depends on their location in the source file.
VisualDSP++ 3.0 Assembler and Preprocessor Manual 1-51
for Blackfin DSPs

Assembler Syntax Reference
.LIST_DATFILE/.NOLIST_DATFILE, Listing Data Initialization Files

The .LIST_DATFILE/.NOLIST_DATFILE directives (off by default) turn the
listing of data initialization files on or off. Nested source files inherit the
current setting of this directive pair, but a change to the setting made in a
nested source file will not affect the parent source file.

Syntax:

 .LIST_DATFILE;

 .NOLIST_DATFILE;

These directives can appear multiple times anywhere in a source file, and
their effect depends on their location in the source file. They are used in
assembly source files, but not in data initialization files.
1-52 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Assembler
.LIST_DEFTAB, Set the Default Tab Width for Listings

Tab characters in source files are expanded to blanks in listing files under
the control of two internal assembler parameters that set the tab expansion
width. The default tab width is normally in control, but it can be overrid-
den if the local tab width is explicitly set with a directive.

The .LIST_DEFTAB directive sets the default tab width while the
.LIST_LOCTAB directive sets the local tab width (see on page 1-54).

Both the default tab width and the local tab width can be changed any
number of times via the .LIST_DEFTAB and .LIST_LOCTAB directives. The
default tab width is inherited by nested source files, but the local tab
width only affects the current source file.

Syntax:

 .LIST_DEFTAB expression;

where

expression—evaluates to an integer greater than or equal to 0.
A value of 0 sets the default tab width to the default tab width. In
the absence of a .LIST_DEFTAB directive, the default tab width
defaults to 4.

Example:

 // Tabs here are expanded to the default of 4 columns
 .LIST_DEFTAB 8;
 // Tabs here are expanded to 8 columns
 .LIST_LOCTAB 2;
 // Tabs here are expanded to 2 columns
 // But tabs in "include_1.h" will be expanded to 8 columns
 #include "include_1.h"
 .LIST_DEFTAB 4;
 // Tabs here are still expanded to 2 columns
 // But tabs in "include_2.h" will be expanded to 4 columns
 #include "include_2.h"
VisualDSP++ 3.0 Assembler and Preprocessor Manual 1-53
for Blackfin DSPs

Assembler Syntax Reference
.LIST_LOCTAB, Set the Local Tab Width for Listings

Tab characters in source files are expanded to blanks in listing files under
the control of two internal assembler parameters that set the tab expansion
width. The default tab width is normally in control, but it can be overrid-
den if the local tab width is explicitly set with a directive.

The .LIST_LOCTAB directive sets the local tab width, and the .LIST_DEFTAB
directive sets the default tab width (see on page 1-53).

Both the default tab width and the local tab width can be changed any
number of times via the .LIST_DEFTAB and .LIST_LOCTAB directives. The
default tab width is inherited by nested source files, but the local tab
width only affects the current source file.

Syntax:

 .LIST_LOCTAB expression;

where

expression—evaluates to an integer greater than or equal to 0.
A value of 0 sets the local tab width to the current setting of the
default tab width.

In the absence of a .LIST_LOCTAB directive, the local tab width defaults to
the current setting for the default tab width.

Example: See the .LIST_DEFTAB example on page 1-53.
1-54 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Assembler
LIST_WRAPDATA/.NOLIST_WRAPDATA

The.LIST_WRAPDATA/.NOLIST_WRAPDATA directives control the listing of
opcodes that are too big to fit in the opcode column. By default, the
.NOLIST_WRAPDATA directive is in effect.

This directive pair applies to any opcode that would not fit, but in prac-
tice, such a value will almost always be data (alignment directives can also
result in large opcodes).

• If .LIST_WRAPDATA is in effect, the opcode value is wrapped so that
it fits in the opcode column (resulting in multiple listing lines).

• If .NOLIST_WRAPDATA is in effect, the printout is what fits in the
opcode column.

Nested source files inherit the current setting of this directive pair, but a
change to the setting made in a nested source file will not affect the parent
source file.

Syntax:

 .LIST_WRAPDATA;

 .NOLIST_WRAPDATA;

These directives can appear multiple times anywhere in a source file, and
their effect depends on their location in the source file.
VisualDSP++ 3.0 Assembler and Preprocessor Manual 1-55
for Blackfin DSPs

Assembler Syntax Reference
.NEWPAGE, Insert a Page Break in a Listing File

The .NEWPAGE directive inserts a page break in the printed listing file
(.LST), which the assembler produces when you use the -l switch. The
assembler inserts a page break at the location of the .NEWPAGE directive.

Syntax:

 .NEWPAGE;

This directive may appear anywhere in your source file. In the absence of
the .NEWPAGE directive, the assembler generates a page break after 66 lines
from the previous page break.
1-56 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Assembler
.PAGELENGTH, Set the Page Length of a Listing File

The .PAGELENGTH directive controls the page length of the listing file pro-
duced by the assembler when you use the -l switch.

Syntax:

 .PAGELENGTH expression;

where

expression—evaluates to an integer from 0 to 66.
It specifies the number of text lines per printed page. The default
page length is now 0, which means the listing will have no page
breaks.

To format the entire listing, place the .PAGELENGTH directive at the begin-
ning of your assembly source file. If a page length value greater than 0 is
too small to allow a properly formatted listing page, the assembler will
issue a warning and use its internal minimum page length (approximately
10 lines).

Example:

 .PAGELENGTH 50; // starts a new page after printing 50 lines

� You can set the page length only once per source file. If the assem-
bler encounters multiple occurrences of the directive, it ignores all
of them except the last directive.
VisualDSP++ 3.0 Assembler and Preprocessor Manual 1-57
for Blackfin DSPs

Assembler Syntax Reference
.PAGEWIDTH, Set the Page Width of a Listing File

The .PAGEWIDTH directive sets the page width of the listing file produced
by the assembler when you use the -l switch.

Syntax:

 .PAGEWIDTH expression;

where

expression—evaluates to an integer from 0 to 72.
It specifies the maximum number of characters per row in the
printed output. In the absence of the .PAGEWIDTH directive, a new
line begins after 72 characters are printed on the preceding line.

To change the default number of characters per line in the entire listing,
place the .PAGEWIDTH directive at the beginning of the assembly source file.

Example:

.PAGEWIDTH 36; // starts a new line after 36

 // characters are printed on one line

� You can set the page width only once per source file. If the assem-
bler encounters multiple occurrences of the directive, it ignores all
of them except the last directive.
1-58 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Assembler
.PREVIOUS, Revert to the Previously Defined Section

The .PREVIOUS directive instructs the assembler to set the current section
in memory to the section that has been described immediately before the
current one. The .PREVIOUS directive operates on a stack.

Syntax:

 .PREVIOUS;

The following examples provide illegal and legal cases of the use of the
consecutive .PREVIOUS directives.

Example of Illegal Directive Use

 .SECTION data1; // data
 .SECTION program; // instructions

 .PREVIOUS; // previous section ends, back to data1

 .PREVIOUS; // no previous section to set to

Example of Legal Directive Use

 #define MACRO1
 .SECTION data2; .VAR vd = 4;
 .PREVIOUS;
 .SECTION data1; /* data */
 .VAR va = 1;
 .SECTION program; /* instructions */
 .VAR vb = 2;
 /* MACRO1 */
 .PREVIOUS;
 .VAR vc = 3;

evaluates as:

 .SECTION data1; /* data */
 .VAR va = 1;
 .SECTION program; /* instructions */
 .VAR vb = 2;
VisualDSP++ 3.0 Assembler and Preprocessor Manual 1-59
for Blackfin DSPs

Assembler Syntax Reference
 /* MACRO1 */

 .SECTION data2;
 .VAR vd = 4;
 .PREVIOUS; /* end data2, section program */
 .PREVIOUS; /* end program, start data1 */
 .VAR vc = 3;
1-60 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Assembler
.SECTION, Declare a Memory Section

The .SECTION directive marks the beginning of a logical section mirroring
an array of contiguous locations in your processor memory. Statements
between one .SECTION and the following .SECTION directive, or the
end-of-file instruction, comprise the content of the section.

Syntax:

 .SECTION sectionName [sectionType];

where

• sectionName—section name symbol which is not limited in length
and is case-sensitive. Section names must match the corresponding
input section names used by the LDF to place the section. Use the
default LDF included in the ...\Blackfin\ldf subdirectory of the
VisualDSP++ installation directory, or write your own LDF.

Note: Some sections starting with “.” names have certain meaning
within the linker. The dot (.) should not be used as the initial char-
acter in sectionName.

• sectionType—an optional ELF section type identifier. The assem-
bler uses the default SHT_PROGBITS when this identifier is absent.
Valid sectionTypes are described in the ELF.h header file, which is
available from third-party software development kits.
For more information on the ELF file format, see the
VisualDSP++ Linker and Utilities Manual for Blackfin DSPs.

Example:

/* Declared below memory sections correspond to the
 default LDF’s input sections. */
.SECTION data1; // memory section
.SECTION program; // memory section
...
VisualDSP++ 3.0 Assembler and Preprocessor Manual 1-61
for Blackfin DSPs

Assembler Syntax Reference
.STRUCT, Create a Struct Variable

The .STRUCT directive allows you to define and initialize high-level data
objects within the assembly code. The .STRUCT directive creates a struct
variable using a C-style typedef as its guide from .IMPORT C header files.

Syntax:

 .STRUCT typedef structName;

 .STRUCT typedef structName = {};

 .STRUCT typedef structName = { struct-member-initializers
 [,struct-member-initializers...] };

 .STRUCT typedef ArrayOfStructs [] =
 { struct-member-initializers

 [,struct-member-initializers...] };

where

typedef—the type definition for a struct VAR.

structName—a struct name.

struct-member-initializers—per struct member initializers

The { } curly braces are used for consistency with the C initializer syntax.
Initialization can be in “long” or “short” form where data member names
are not included. The short form corresponds to the syntax in C compiler
struct initialization with these changes:

• Change C compiler keyword “struct” to “.struct”

• Change C compiler constant string syntax “MyString” to
'MyString'
1-62 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Assembler
The long form is assembler specific and provides the following benefits:

• Provides better error checking

• Supports self-documenting code

• Protects from possible future changes to the layout of the struct.
If an additional member is added before the member is initialized,
the assembler will continue to offset to the correct location for the
specified initialization and zero-initialize the new member.

Any members that are not present in a long-form initialization are initial-
ized to zero. For example, if struct StructThree has three members
(member1, member2, and member3)

 struct StructThree myThree {
 member1 = 0xaa,

 member3 = 0xff

 };

then member2 will be initialized to 0 because no initializer was present for
it. If no initializers are present, the entire struct is zero-initialized.

If data member names are present, the assembler validates that the assem-
bler and compiler are in agreement about these names. The initialization
of data struct members declared via the assembly .STRUCT directive is
processor-specific.

Example 1. Long Form .STRUCT Directive

 #define NTSC 1
 // contains layouts for playback and capture_hdr
 .import "comdat.h";
 .struct capture_hdr myLastCapture = {
 captureInt = 0,
 captureString = ‘InitialState’
 };
 .struct myPlayback playback = {
VisualDSP++ 3.0 Assembler and Preprocessor Manual 1-63
for Blackfin DSPs

Assembler Syntax Reference
 theSize = 0,
 ready = 1,
 stat_debug = 0,
 last_capture = myLastCapture,
 watchdog = 0,
 vidtype = NTSC
 };

Example 2. Short Form .STRUCT Directive

 #define NTSC 1
 // contains layouts for playback and capture_hdr
 .import "comdat.h";
 .struct capture_hdr myLastCapture = { 0, ‘InitialState’ };
 .struct playback myPlayback = { 0, 1, 0, myLastCapture, 0,
 NTSC };

Example 3. Long Form Initializing an Array

 .struct structWithArrays XXX ={
 scalar = 5,
 array1 = { 1,2,3,4,5 },
 array2 = { "file1.dat" },
 array3 = "WithBraces.dat" // must have { } within dat
 };

In the short-form, nested braces can be used to perform partial initializa-
tions as in C. In Example 4 below, if the second member of the struct is an
array with more than four elements, the remaining elements will be initial-
ized to zero.

Example 4. Short Form Initializing an Array

 .struct structWithArrays XXX ={ 5, { 1,2,3,4 }, 1, 2 };
1-64 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Assembler
Example 5. Initializing a Pointer

A struct may contain a pointer. Initialize pointers with symbolic
references.

 .extern outThere;
 .byte myString[] = 'abcde',0;
 .struct structWithPointer PPP ={
 scalar = 5,
 myPtr1 = myString,
 myPtr2 = outThere
 };

Example 6. Initializing a Nested Structure

A struct may contain a struct. Use fully qualified references to initialize
nested struct members.

 .struct NestedStruct nestedOne ={
 scalar = 10,
 nested->scalar1 = 5,
 nested->array = { 0x1000, 0x1010, 0x1020 }
 };
VisualDSP++ 3.0 Assembler and Preprocessor Manual 1-65
for Blackfin DSPs

Assembler Syntax Reference
.TYPE, Change Default Symbol Type

The .TYPE directive directs the assembler to change the default symbol
type of an object. This directive may appear in the compiler-generated
assembly source file (.S).

Syntax:

 .TYPE symbolName, symbolType;

where

• symbolName—the name of the object to which the symbolType
should be applied.

• symbolType—an ELF symbol type STT_*. Valid ELF symbol types
are listed in the ELF.h header file. By default, a label has an
STT_FUNC symbol type, and a variable or buffer name defined in a
storage directive has an STT_OBJECT symbol type.
1-66 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Assembler
.VAR, Declare a 32-Bit Data Variable or Buffer

The.VAR directive declares and optionally initializes 32-bit variables and
data buffers. A variable uses a single memory location, and a data buffer
uses an array of memory locations.

When declaring or initializing variables:

• A .VAR directive may appear only within a section. The assembler
associates the variable with the memory type of the section in
which the .VAR appears.

• A single .VAR directive can declare any number of variables or buff-
ers, separated by commas, on one line.

Unless the absolute placement for a variable is specified with the
RESOLVE() command (from an LDF), the linker places variables in
consecutive memory locations. For example, .VAR d,f,k[50];
sequentially places symbols x, y and 50 elements of the buffer z in
the DSP memory. For example,

.VAR d;

.VAR f;

.VAR k[50];

• The number of initializer values may not exceed the number of
variables or buffer locations that you declare.

• The .VAR directive may declare an implicit-size buffer by using
empty brackets []. The number of initialization elements defines
the length of the implicit-size buffer.
VisualDSP++ 3.0 Assembler and Preprocessor Manual 1-67
for Blackfin DSPs

Assembler Syntax Reference
Syntax:

The.VAR directive takes one of the following forms:

.VAR varName1[,varName2,…];.

.VAR = initExpression1, initExpression2,…;

.VAR varName1 = initexpression1 [,varName2 =initexpression2,…];.

.VAR bufferName[] = initExpression1, initExpression2,…;

.VAR bufferName[] = "fileName";

.VAR bufferName[length] = "fileName";.

.VAR bufferName1[length] [, bufferName2[length],…];

.VAR bufferName[length] = initExpression1, initExpression2,…;

where:

• varName —represents user-defined symbols that identify variables.

• bufferName —represents user-defined symbols that identify
buffers.

• fileName parameter—indicates that the elements of a buffer get
their initial values from the fileName data file. <fileName> can
consist of the actual name and path specification for the data file. If
the initialization file is in current directory of your operating sys-
tem, only the fileName need be given inside brackets.

Initializing from files is useful for loading buffers with data, such as
filter coefficients or FFT phase rotation factors that are generated
by other programs. The assembler determines how the values are
stored in memory when it reads the data files.

• Ellipsis (…)—represents a comma-delimited list of parameters.
1-68 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Assembler
• [length]—optional parameter that defines the length (in words) of
the associated buffer. When length is not provided, the buffer size
is determined by the number of initializers.

• Brackets ([])—enclosing the optional [length] is required. For
more information, see the following .VAR examples.

• initExpressions parameters—set initial values for variables and
buffer elements.

The following lines of code demonstrate some .VAR directives:

.VAR samples[] = 10, 11, 12, 13, 14;

 // declare and initialize an implicit-length buffer
 // since there are five values, this has the same effect

 // as samples[5]

.VAR Ins, Outs, Remains;

 // declare three uninitialized variables

.VAR samples[100] = "inits.dat";

 // declare a 100-location buffer and initialize it

 // with the contents of the inits.dat file;

.VAR taps=100;

 // declare a variable and initialize the variable

 // to 100

.VAR twiddles[10] = "phase.dat";

 // declare a 10-location buffer and load the buffer

 // with the contents of the phase.dat file

� All Blackfin DSP memory accesses should have proper alignment.
This means that when loading or storing a N-byte value into the
processor, ensure that this value is aligned in memory by N bound-
ary, or a hardware exception would be generated.
VisualDSP++ 3.0 Assembler and Preprocessor Manual 1-69
for Blackfin DSPs

Assembler Syntax Reference
Example:

In the following example, the 4-byte variables y0, y1 and y2 would be mis-
aligned unless the .ALIGN 4; directive is placed before the .VAR y0; and
.VAR y2; statements.

 .SECTION data1;

 .ALIGN 4;
 .VAR x0;
 .VAR x1;
 .BYTE b0;

 .ALIGN 4; // aligns the following data item y0 on a word
 // boundary; advances other data items consequently

 .VAR y0;

 .VAR y1;
 .BYTE b1;

 .ALIGN 4; // aligns the following data item y2 on a word

 // boundary

 .VAR y2;

.VAR and ASCII String Initialization Support

The easmblkfn assembler supports ASCII string initialization. The easm-
blkfn assembler supports ASCII string initialization. Refer to the .BYTE
directive description on page 1-39 for more information.
1-70 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Assembler
.WEAK, Support a Weak Symbol Definition and Reference

The .WEAK directive supports weak binding for a symbol. Use this directive
where the symbol is defined, replacing the .GLOBAL directive to make a
weak definition and the .EXTERN directive to make a weak reference.

Syntax:

 .WEAK symbol;

where

 symbol—the user-defined symbol

While the linker will generate an error if two objects define global symbols
with identical names, it will allow any number of instances of weak defini-
tions of a name. All will resolve to the first, or to a single, global definition
of a symbol.

One difference between .EXTERN and .WEAK references is that the linker will
not extract objects from archives to satisfy weak references. Such refer-
ences, left unresolved, have the value of 0.

Note that .WEAK (or .GLOBAL scope) is required for symbols that appear in
the RESOLVE commands in the .LDF file.
VisualDSP++ 3.0 Assembler and Preprocessor Manual 1-71
for Blackfin DSPs

Assembler Command-Line Reference
Assembler Command-Line Reference
This section describes the easmblkfn assembler command-line interface
and switch set. It describes the assembler’s switches, which are accessible
from the operating system’s command line or from the
VisualDSP++ environment.

This section contains:

• “Running the Assembler” on page 1-73

• “Assembler Command-Line Switch Summary” on page 1-75

• “Assembler Command-Line Switch Descriptions” on page 1-77

Command-line switches control certain aspects of the assembly process,
including library searching, listing, and preprocessing. Because the assem-
bler automatically runs the preprocessor as your program is assembled
(unless you use the -sp switch), the assembler’s command line can receive
input for the preprocessor program and direct its operation. For more
information on the preprocessor, see Chapter 2 “Preprocessor”.

� When developing a DSP project, you may find it useful to modify
the assembler’s default options settings. The way you set the assem-
bler’s options depends on the environment used to run the DSP
development software.

See “Specifying Assembler Options in VisualDSP++” on page 1-85
for more information.
1-72 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Assembler
Running the Assembler
To run the assembler from the command line, type the name of the assem-
bler program followed by arguments in any order, and the name of the
assembly source file.

 easmblkfn {-Option} sourceFile

where:

easmblkfn—name of the assembler program for Blackfin
processors.

-Option—switch (or switches) to process.
The command-line interface offers many optional switches that
select operations and modes for the assembler and preprocessor.
Some assembler switches take a file name as a required parameter.

sourceFile—name of the source file to assemble.

The name of the source file to assemble can be provided as:

• ShortFileName—a file name without quotes (no special characters)

• LongFileName—a quoted file name (may include spaces and other
special path name characters)

The assembler outputs a list of command-line options when run without
arguments (same as -h[elp]).

The assembler supports relative and absolute path names. When you spec-
ify an input or output file name as a parameter, follow these guidelines for
naming files:

• Include the drive letter and path string if the file is not in the cur-
rent project directory.
VisualDSP++ 3.0 Assembler and Preprocessor Manual 1-73
for Blackfin DSPs

Assembler Command-Line Reference
• Enclose long file names in double quotation marks; for example,
“long file name”.

• Append the appropriate file name extension to each file.

Table 1-9 summarizes file extension conventions accepted by the Visu-
alDSP++ environment.

Assembler command-line switches are case-sensitive. For example, the fol-
lowing command line

easmblkfn -l pListing.lst -Dmaximum=100 -v -o bin\p1.doj p1.asm

runs the assembler with

-l pListing.lst — directs the assembler to output the listing file.

-Dmaximum=100 — defines the preprocessor macro to be 100.

-v — displays verbose information on each phase of the assembly.

Table 1-9. File Name Extension Conventions

Extension File Description

.asm Assembly source file
Note: The assembler treats files with unrecognized extensions as
assembly source files.

.is Preprocessed assembly source file

.h Header file

.lst Listing file

.doj Assembled object file in ELF/DWARF-2 format

.dat Data initialization file
1-74 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Assembler
-o bin\p1.doj — specifies the name and directory for the assem-
bled object file.

p1.asm — identifies the assembly source file to assemble.

Assembler Command-Line Switch Summary
This section describes the easmblkfn command-line switches in ASCII
collation order. A summary of the assembler switches appears in
Table 1-10. Refer to “Assembler Command-Line Switch Descriptions”
starting on page 1-77 for a detailed description of each assembler switch.

Table 1-10. Assembler Command-Line Switch Summary

Switch Name Purpose

-Ddmacro[=definition] Passes macro definition to the preprocessor.

-flags-compiler -opt1
[,-opt2...]

Passes each comma-separated option to the compiler.
(Used when compiling .IMPORT C header files.)

-flags-pp -opt1 [,-opt2...] Passes each comma-separated option to the preprocessor.

-g Generates debug information (DWARF-2 format).

–h[elp] Outputs a list of assembler switches.

-i|-I pathname Searches a directory for included files.

-l filename Outputs the named listing file.

-li filename Outputs the named listing file with #include files
expanded.

-M Generates make dependencies for #include and data files
only; does not assemble. For example, -M suppresses the
creation of an object file.

-MM Generates make dependencies for #include and data files.
Use -MM for make dependencies with assembly.

-Mo filename Writes make dependencies to the filename specified.
The -Mo option is for use with either the -M or -MM option.
If -Mo is not present, the default is <stdout> display.
VisualDSP++ 3.0 Assembler and Preprocessor Manual 1-75
for Blackfin DSPs

Assembler Command-Line Reference
-Mt filename Specifies the make dependencies target name.
The -Mt option is for use with either the -M or -MM option.
If -Mt is not present, the default is base name plus 'DOJ'.

-micaswarn Treats multi-issue conflicts as warnings.

–o filename Outputs the named object [binary] file.

-pp Runs the preprocessor only; does not assemble.

-proc processorID Specifies a processor for which the assembler should pro-
duce suitable code.

-sp Assembles without preprocessing.

-stallcheck=(none|cond|all) Displays stall information:
• none - no messages
• cond - conditional stalls only (default)
• all - all stall information

-v[erbose] Displays information on each assembly phase.

–version Displays version information for the assembler and prepro-
cessor programs.

-w Removes all assembler-generated warnings.

-wnumber Suppresses any report of the specified warning.

Table 1-10. Assembler Command-Line Switch Summary (Cont’d)

Switch Name Purpose
1-76 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Assembler
Assembler Command-Line Switch Descriptions
A description of each command-line switch includes information about
case-sensitivity, equivalent switches, switches overridden/contradicted by
the one described, and naming and spacing constraints on parameters.

-Dmacro[=definition]

The -D (define macro) switch directs the assembler to define a macro and
pass it to the preprocessor. See “Using Feature Assembler Macros” on
page 1-14 for the list of predefined macros.

Examples:

 –Dinput // defines input as 1

 –Dsamples=10 // defines samples as 10

 –Dpoint="Start" // defines point as the string “Start”

-flags-compiler

The -flags-compiler -opt1 [-opt2...] switch passes each comma-sepa-
rated option to the C compiler. The switch takes a list of one or more
comma-separated compiler options that are passed on the compiler com-
mand-line for compiling .IMPORT headers. The assembler calls the
compiler to process each header file in an .IMPORT directive. It calls the
compiler with the -debug-types option along with any -flags-compiler
options given on the assembler command line.

For example,

 // file.asm has .IMPORT "myHeader.h";

 easmblkfn -flags-compiler -I\Path,-I. file.asm
VisualDSP++ 3.0 Assembler and Preprocessor Manual 1-77
for Blackfin DSPs

Assembler Command-Line Reference
The rest of the assembly program, including its #include files, are pro-
cessed by the assembler preprocessor. The -flags-compiler switch
processes a list of one or more legal C compiler options, including -D and
-I options.

User-Specified Defines Options

The -D (defines) options on the assembler command line are passed to the
assembler preprocessor, but they are not passed to the compiler for
.IMPORT header processing. If you have #defines for the .IMPORT header
compilation, they must be explicitly specified with the -flags-compiler
switch. For example,

// file.asm has .IMPORT "myHeader.h";

easmblkfn -DaDef -flags-compiler -DbDef,-DbDefTwo=2. file.asm

// -DaDef is not passed to the compiler

ccblkfn -debug-types -flags-compiler -DbDef,-DbDefTwo=2

myHeader.h

� See “Using Feature Assembler Macros” on page 1-14 for the list of
predefined macros including default macros.

Include Options

The -I (include search path) options and -flags-compiler options are
passed to the C compiler for each .IMPORT header compilation. The com-
piler include path is always present automatically. Using the
-flags-compiler option, you can control the order the include directo-
ries are searched. The -flags-compiler switch attributes always take
precedence from the assembler’s -I options. For example,

easmblkfn -I\aPath -DaDef -flags-compiler -I\cPath,-I. file.asm

ccblkfn -I\aPath -DaDef -flags-compiler -I\cPath,-I. myHeader.h
1-78 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Assembler
The .IMPORT C header files are preprocessed by the C compiler preproces-
sor. The struct headers are standard C headers and the standard C
compiler preprocessor is needed. The rest of the assembly program,
including its #include files, are processed by the assembler preprocessor.

Assembly programs are pre-processed using the PP preprocessor (the
assembler/linker preprocessor) as well as -I and -D options from the
assembler command-line. However, the PP call does not receive the
-flags-compiler switch options.

 -flags-pp -opt1 [,-opt2...]

The -flags-pp switch passes each comma-separated option to the
preprocessor.

� Use -flags-pp with caution. For example, if PP legacy comment
syntax is enabled, the comment characters become unavailable for
non-comment syntax.

-g

The -g (generate debug information) switch directs the assembler to gen-
erate line number and symbol information in DWARF-2 binary format,
allowing you to debug the assembly source files.

-h[elp]

The -h or -help switch directs the assembler to output to standard out a
list of command-line switches with a syntax summary.
VisualDSP++ 3.0 Assembler and Preprocessor Manual 1-79
for Blackfin DSPs

Assembler Command-Line Reference
-i|I directory

The -i directory or -I directory (include directory) switch directs the
assembler to append the specified directory or a list of directories sepa-
rated by semicolons (;) to the search path for included files. These files are:

• Header files (.h) included with the #include preprocessor
command

• Data initialization files (.dat) specified with the .VAR assembly
directive

The assembler passes this information to the preprocessor; the preproces-
sor searches for included files in the following order:

1. Current project directory (.DPJ)

2. …\Blackfin\include subdirectory of the VisualDSP++ installation
directory

3. Specified directory (or list of directories). The order of the list
defines the order of multiple searches.

Current directory is your *.dpj project directory, not the directory of the
assembler program. Usage of full path names for the -I switch on the
command line is recommended. For example,

 easmblkfn -I \bin\include

-l filename

The -l (listing) switch directs the assembler to generate the named listing
file. Each listing file (.LST) shows the relationship between your source
code and instruction opcodes that the assembler produces. For example,

 easmblkfn -flags-compiler -I\path,-I. -l file.lst file.asm

The file name is a required argument to the -l option. For more informa-
tion, see “Reading a Listing File” on page 1-17.
1-80 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Assembler
-li filename

The -l (listing) switch directs the assembler to generate the named listing
file with #include files. The file name is a required argument to the -l
option. For more information, see “Reading a Listing File” on page 1-17.

-M

The-M (generate make rule only) assembler switch directs the assembler to
generate make dependency rules, which is suitable for the make utility,
describing the dependencies of the source file. No object file is generated
for -M assemblies. For make dependencies with assembly, use -MM.

The output, an assembly make dependencies list, is written to stdout in
the standard command-line format:

 “target_file”: “dependency_file.ext”

where dependency_file.ext may be an assembly source file, a header file
included with the #include preprocessor command, a data file, or a header
file imported via the .IMPORT directive.

The -Mo filename switch writes make dependencies to the filename speci-
fied instead of <stdout>. For consistency with the compilers, when the
-o filename is used with -M, the assembler outputs the make dependen-
cies list to the named file. The -Mo filename takes precedence if both -o
filename and -Mo filename are present with -M.

-MM

The - MM (generate make rule and assemble) assembler switch directs the
assembler to output a rule, which is suitable for the make utility, describ-
ing the dependencies of the source file. The assembly of the source into an
object file proceeds normally. The output, an assembly make dependen-
cies list, is written to stdout.The only difference between -MM and -M
actions is that the assembling continues with -MM. See “-M” for more
information.
VisualDSP++ 3.0 Assembler and Preprocessor Manual 1-81
for Blackfin DSPs

Assembler Command-Line Reference
-Mo filename

The -Mo (output make rule) assembler switch specifies the name of the
make dependencies file which the assembler generates when you use the -M
or -MM switch. If -Mo is not present, the default is <stdout> display. If the
named file is not in the current directory, you must provide the path name
in double quotation marks (“ ”).

� The -Mo filename option takes precedence over the -o filename
option.

-Mt filename

The -Mt filename (output make rule for the named object) assembler
switch specifies the name of the object file for which the assembler gener-
ates the make rule when you use the -M or -MM switch. If the named file is
not in the current directory, you must provide the path name. If -Mt is
not present, the default is the base name plus the .DOJ extension.
See “-M” for more information.

-micaswarn

The -micaswarn switch treats multi-issue conflicts as warnings.

-o [filename]

The -o (output) switch directs the assembler to use the specified filename
argument for the output file. This switch names the output, whether for
conventional production of an object, a preprocessed, assemble produced
file (.pp), or make dependency (-M). The assembler uses the root input file
name for the output and appends a .DOJ extension.

Some examples of this switch syntax are:

 easmblkfn -pp -o test1.is test.asm

 // preprocessed output goes into test1.is
1-82 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Assembler
 easmblkfn -o “C:\bin\prog3.doj” prog3.asm

 // specify directory for the object file

-pp

The -pp (proceed with preprocessing only) switch directs the assembler to
run the preprocessor, but stop without assembling the source into an
object file. When assembling with the -pp switch, the .IS file is the final
result of the assembly. By default, the output file name uses the same root
name as the source, with the extension .IS.

-proc processorID

The -proc processorID (target processor) switch specifies that the assem-
bler should produce code suitable for the specified DSP. If the processor
identifier is unknown to the assembler, it attempts to read required
switches for code generation from the file <processorID>.ini.

The assembler searches for the .ini file in the VisualDSP ++ System
folder.

• The ADSP-21535 identifier directs the assembler to produce code
unique to the ADSP-21535 processor.

• The ADSP-21532 identifier directs the assembler to produce code
unique to the ADSP-21532 processor.

For custom processors, the assembler searches the section “proc” in the
<processorID>.ini for key 'architecture'. The custom processor must
be based on an architecture key that is one of the known Blackfin DSPs.
For example, -proc Custom21535 searches the Custom21535.ini file.
VisualDSP++ 3.0 Assembler and Preprocessor Manual 1-83
for Blackfin DSPs

Assembler Command-Line Reference
-sp

The -sp (skip preprocessing) switch directs the assembler to assemble the
source file into an object file without running the preprocessor. When the
assembler skips preprocessing, no preprocessed assembly file (.IS) is
created.

-stallcheck

The -stallcheck = option switch provides the following choices for dis-
playing stall information:

-stallcheck=none Display no messages for stall information

-stallcheck=cond Display information about conditional stalls
 only (default)

-stallcheck=all Display all stall information

-v[erbose]

The -v or -verbose (verbose) switch directs the assembler to display ver-
sion and command-line information for each phase of assembly.

-version

The -version (display version) switch directs the assembler to display ver-
sion information for the assembler and preprocessor programs.

-w

The -w (disable all warnings) switch directs the assembler not to display
warning messages generated during assembly.

-wnumber

The -wnumber (warning suppression) switch causes the assembler to sup-
press any report of the specified warning.
1-84 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Assembler
Specifying Assembler Options in VisualDSP++
When using the VisualDSP++ IDDE, use the Assemble page from the
Project Options dialog box to set assembler functional options. For more
information on assembler configuration, use the VisualDSP++ online
Help.

Figure 1-3. Project Options � Assemble Property Page
VisualDSP++ 3.0 Assembler and Preprocessor Manual 1-85
for Blackfin DSPs

Assembler Command-Line Reference
Callouts refer to the corresponding compiler command-line switches
described in “Assembler Command-Line Switch Descriptions” on
page 1-77. The Additional options field is used to enter the appropriate
file names and options that do not have corresponding controls on the
Assemble page but are available as compiler switches.

The assembler options apply to directing calls to easmblkfn when assem-
bling *.asm files. Changing assembler options in VisualDSP++ does not
affect the assembler calls made by the compiler during the compilation of
.c/.cpp files.
1-86 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

2 PREPROCESSOR

The preprocessor program (pp.exe) evaluates and processes preprocessor

commands in source files. With these commands, you direct the prepro-
cessor to define macros and symbolic constants, include header files, test
for errors, and control conditional assembly and compilation. The prepro-
cessor supports ANSI C standard preprocessing with extensions, such as
“?” and “...”.

The pp preprocessor is run by other build tools (assembler and linker)
from the operating system’s command line or within the VisualDSP++ 3.0
environment. These tools accept command information for the preproces-
sor and pass it to the preprocessor. The pp preprocessor can also operate
from the command line with its own command-line switches.

The chapter contains:

• “Preprocessor Guide” on page 2-2
Contains the information on building programs.

• “Preprocessor Command Reference” on page 2-9
Describes the preprocessor’s commands, with syntax and usage
examples.

• “Preprocessor Command-Line Reference” on page 2-30
Describes the preprocessor’s command-line switches, with syntax
and usage examples.
VisualDSP++ 3.0 Assembler and Preprocessor Manual 2-1
for Blackfin DSPs

Preprocessor Guide
Preprocessor Guide
This section contains the PP preprocessor information on how to build
programs from a command line or from the VisualDSP++ 3.0 environ-
ment. Software developers using the preprocessor should be familiar with:

• “Writing Preprocessor Commands”

• “Header Files” on page 2-3

• “Writing Macros” on page 2-4

• “Using Predefined Macros” on page 2-6

• “Specifying Preprocessor Options” on page 2-8

The compiler also has it own preprocessor that allows you to use prepro-
cessor commands within your C/C++ source. The compiler preprocessor
automatically runs before the compiler. This preprocessor is separate from
the assembler and has some features that may not be used within your
assembly source files. For more information, see the VisualDSP++ 3.0
C/C++ Compiler and Library for Blackfin DSPs.

Writing Preprocessor Commands
Preprocessor commands begin with a pound sign (#) and end with a car-
riage return. The pound sign must be the first non-white space character
on the line containing the command. If the command is longer than one
line, use a backslash (\) and a carriage return to continue the command on
the next line. Do not put any characters between the backslash and the
carriage return. Unlike assembly directives, preprocessor commands are
case sensitive and must be lowercase.

For more information on preprocessor commands, see “Preprocessor
Command Reference” on page 2-9.
2-2 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Preprocessor
For example,

 #include "string.h"

 #define MAXIMUM 100

When the preprocessor runs, it modifies your source code by:

• Including system and user-defined header files

• Defining macros and symbolic constants

• Providing conditional assembly and compilation

You specify preprocessing options with preprocessor commands�lines
starting with #. Without any commands, the preprocessor performs these
three global substitutions:

• Replaces comments with single spaces

• Deletes line continuation characters (\)

• Replaces predefined macro references with corresponding
expansions

The following cases are notable exceptions to the described substitutions:

• The preprocessor does not recognize comments or macros within
the file name delimiters of an #include command.

• The preprocessor does not recognize comments or predefined mac-
ros within a character or string constant.

Header Files
A header file (.h) contains lines of source code to be included (textually
inserted) into another source file. Typically, the header file contains decla-
rations and macro definitions. The #include preprocessor command
includes a copy of the header file at the location of the command. There
are two main categories of header files:
VisualDSP++ 3.0 Assembler and Preprocessor Manual 2-3
for Blackfin DSPs

Preprocessor Guide
System Header Files
These files are used to declare global definitions, especially memory
mapped registers, system architecture and processors. Use angle brackets
to indicate a system header file.

Example:

 #include <device.h>

 #include <major.h>

System header files are installed in the …\include\sys folder.

User Header Files
These files contain declarations for interfaces between the source files of
your program. Use double quotes to indicate a user header file.

Example:

 #include "defBlackfin.h”

 #include "fft_ovly.h"

This directory includes run-time library files.

For syntax information and usage examples on the #include preprocessor
command, see “#include” on page 2-21.

Writing Macros
The preprocessor processes macros in your C, C++, assembly source files,
and Linker Description Files (LDF). Macros are useful for repeating
instruction sequences in your source code or defining symbolic constants.

The term macro defines a macro-identifying symbol and corresponding
definition that the preprocessor uses to substitute the macro reference(s).
Macros allow text replacement, file inclusion, conditional assembly, con-
ditional compilation, and macro definition.
2-4 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Preprocessor
Macro definitions start with #define and end with a carriage return.
If a macro definition is longer than one line, place the backslash character
(\) at the end of each line except the last, for line continuation. This char-
acter indicates that the macro definition continues on the next line and
allows to break a long line for cosmetic purposes without changing its
meaning.

The macro definition can be any text that would occur in the source file,
instructions, commands, or memory descriptions. The macro definition
may also have other macro names that will be replaced with their own
definitions.

Macro nesting (macros called within another macro) is limited only by the
memory that is available during preprocessing. However, recursive macro
expansion is not allowed.

Example:

 #define false 0
 #define min(a,b) ((a) < (b) ? (a):(b))
 #define xchg(xv,yv)\
 p0=xv;\
 p1=yv;\
 r0=[p0];\

 r1=[p1];\

 [p1]=r0;\

 [p0]=r1;

A macro can have arguments. When you pass parameters to a macro, the
macro serves as a general-purpose routine that is usable in many different
programs. The block of instructions that the preprocessor substitutes can
vary with each new set of arguments. A macro, however, differs from a
subroutine call.
VisualDSP++ 3.0 Assembler and Preprocessor Manual 2-5
for Blackfin DSPs

Preprocessor Guide
During assembly, each instance of a macro inserts a copy of the same
block of instructions, so multiple copies of that code appear in different
locations in the object code. By comparison, a subroutine appears only
once in the object code, and the block of instructions at that location are
executed for every call.

If a macro ends with a semicolon (;), then when it appears in assembly
statement, the semicolon is not needed. However, if a macro does not end
with a semicolon character (“;”), then it must be followed by the semico-
lon when appearing in the assembly statement. Users should be consistent
in treatment of the semicolon in macro definitions.

For example,

 #define mac r0=r2+r5 // macro definition
 r2=r1-r0; // set parameters
 r5=[p1];mac; // macro invocation

For more syntax information and usage examples for the #define prepro-
cessor command, see “#define” on page 2-11.

Using Predefined Macros
In addition to macros you define, the preprocessor has predefined macros,
and DSP development tools define feature macros that you can use in
your code.

The pp preprocessor provides a set of predefined macros that you can use
in your assembly code. The preprocessor automatically replaces each
occurrence of the macro reference found throughout the program with the
specified value.

� Note that the __DATE__, __FILE__, and __TIME__ macros return
strings within the single quotation marks (‘’).
2-6 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Preprocessor
The predefined macros that the preprocessor provides are listed and
described in Table 2-1.

The feature macros are defined by the DSP tools to specify the architec-
ture and language being processed. Table 2-2 lists feature macros that are
set by the Blackfin DSP tools.

Table 2-1. Predefined Preprocessor Macros

Macro Definition

ADI Defines ADI as 1.

__LINE__ The __LINE__ macro is replaced with the line number in the
source file that the macro appears on.

__FILE__ Defines __FILE__ as the name and extension of the file in
which the macro is defined, for example, ‘macro.asm’.

__STDC__ Defines __STDC__ as 1.

__TIME__ Defines __TIME__ as current time in the 24-hour format
‘hh:mm:ss’, for example, ‘06:54:35’.

__DATE__ Defines __DATE__ as current date in the format ‘Mm dd yyyy’,
for example, ‘Oct 02 2000’.

Table 2-2. Feature Preprocessor Macros

Macro Definition

__ADSPBLACKFIN__ Always 1 for Blackfin DSP tools

__ADSP21535__ Equal 1 when used for ASDP-21535 DSP

__ADSP21532__ Equal 1 when used for ASDP-21532 DSP

_LANGUAGE_ASM Always set to 1 by easmblkfn

_LANGUAGE_C Equal 1 when used for C compiler calls to specify .IMPORT
headers. Replaces _LANGUAGE_ASM.
VisualDSP++ 3.0 Assembler and Preprocessor Manual 2-7
for Blackfin DSPs

Preprocessor Guide
Specifying Preprocessor Options
When developing a DSP project, it may be useful to modify the preproces-
sor’s default options. Because the assembler, compiler, and linker
automatically run the preprocessor as your program is built (unless you
skip the processing entirely), these DSP tools can receive input for the pre-
processor program and direct its operation. The way the preprocessor
options are set depends on the environment used to run the DSP develop-
ment software.

You can specify preprocessor options either from the preprocessor’s com-
mand line or via the VisualDSP++ environment:

• From the operating system command line, you select the prepro-
cessor’s command-line switches. For more information on these
switches, see “Preprocessor Command-Line Switches” on
page 2-31.

• From the VisualDSP++ environment, you select the preprocessor’s
options in the Assemble, Compile, and Link tabs (property pages)
of the Project Options dialog boxes, accessible from the Project
menu. For more information on these option settings, see the Visu-
alDSP++ 3.0 User’s Guide for Blackfin DSPs and online Help.

Refer to “Specifying Assembler Options in VisualDSP++” on
page 1-85 for the Assemble property page.
2-8 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Preprocessor
Preprocessor Command Reference
This section provides reference information about the DSP’s preprocessor
commands and operators used in source code, including their syntax and
usage examples. It provides the summary and descriptions of all preproces-
sor command and operators.

The preprocessor reads code from a source file (.ASM), modifies it accord-
ing to preprocessor commands, and generates an altered preprocessed
source file. The preprocessed source file is a primary input file for the
assembler or linker; it is purged when the a binary object file (.DOJ) is
created.

Preprocessor command syntax must conform to these rules:

• Must be the first non white space character on its line.

• Cannot be more than one line in length unless the backslash char-
acter (\) is inserted

• Can contain comments containing the backslash character (\)

• Cannot come from a macro expansion

The preprocessor operators are special operators when used in a #define
command.

Preprocessor Commands and Operators
Table 2-3 lists the preprocessor command set. Table 2-4 lists the prepro-
cessor operator set. Sections that begin on page 2-11 describe each of the
preprocessor commands and operators.
VisualDSP++ 3.0 Assembler and Preprocessor Manual 2-9
for Blackfin DSPs

Preprocessor Command Reference
Table 2-3. Preprocessor Command Summary

Command/Operator Description

#define (on page 2-11) Defines a macro

#elif (on page 2-14) Subdivides an #if … #endif pair

#else (on page 2-15) Identifies alternative instructions within an #if … #endif pair

#endif (on page 2-16) Ends an #if … #endif pair

#error (on page 2-17) Reports an error message

#if (on page 2-18) Begins an #if … #endif pair

#ifdef (on page 2-19) Begins an #ifdef … #endif pair and tests if macro is defined

#ifndef (on page 2-20) Begins an #ifndef … #endif pair and tests if macro is not
defined

#include (on page 2-21) Includes contents of a file

#line (on page 2-22) Sets a line number during preprocessing

#pragma (on page 2-22) Takes any sequence of tokens

#undef (on page 2-24) Removes macro definition

#warning (on page 2-25) Reports a warning message

Table 2-4. Preprocessor Operator Summary

Command/Operator Description

(on page 2-26) Converts a macro argument into a string constant

(on page 2-27) Concatenates two tokens

? (on page 2-28) Generates unique labels for repeated macro expansions

... (on page 2-12) Specifies a variable length argument list
2-10 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Preprocessor
#define

The #define command has two purposes—to define symbolic constants
and to define macros.

When you define a macro in your source code, the preprocessor substi-
tutes each occurrence of the macro with the defined text or value.
Defining this type of macro has the same effect as using the Find/Replace
feature of a text editor, although it does not replace literals in double quo-
tation marks (“ “).

For macro definitions that are longer than one line, use the backslash
character (\) at the end of each line except for the last line. You can add
arguments to the macro definition. The arguments are symbols separated
by commas that appear within parentheses.

Syntax:

 #define macroSymbol replacementText
 #define macroSymbol[(arg1,arg2,…)] replacementText

where

macroSymbol — macro identifying symbol.

(arg1,arg2,…) — optional list of arguments enclosed in parenthesis
and separated by commas. No space is permitted between the
macro name and the left parenthesis. If there is a space, the paren-
thesis and arguments are treated as if the space is part of the
definition.

replacementText — text to substitute each occurrence of
macroSymbol in your source code.

Examples:

#define BUFFER_SIZE 1020

 /* Defines a constant named BUFFER_SIZE and sets its
VisualDSP++ 3.0 Assembler and Preprocessor Manual 2-11
for Blackfin DSPs

Preprocessor Command Reference
 value to 1020.*/

#define MINIMUM (X, Y) ((X) < (Y)? (X): (Y))

 /* Defines a macro named MINIMUM that selects the

 minimum of two numeric arguments. */
#define copy(src,dest)

p1=src;\

p2=dst;\

r0=[p1];\

[p2]=r0

/*define a macro named copy with two arguments.
 The definition includes two instructions that copy

 a word from memory to memory.

 For example,

 copy(0x1000,0x2000);

 calls the macro, passing parameters to it.

 The preprocessor replaces the macro with the code:

 p1=0x1000; p2=0x2000; r0=[p1]; [p2]=r0;

*/

Variable Length Argument Definitions

The definition of a macro can also be defined with a variable length argu-
ment list (using the ... operator).

 #define test(a, ...) <definition>

defines a macro test which takes two or more arguments. It is invoked as
any other macro, although the number of arguments can vary. For
example,
2-12 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Preprocessor
 test(1) — error; the macro must have at least one
 more argument than formal parameters, not
 counting “...”.

 test(1,2) — valid entry

 test(1,2,3,4,5) — valid entry

In the macro definition, the identifier __VA_ARGS__ is available to take on
the value of all of the trailing arguments, including the separating com-
mas, all of which are merged to form a single item. For example,

 #define test(a, ...) bar(a); testbar(__VA_ARGS__);

expands as

 test (1,2) -> bar(1); testbar(2);

 test (1,2,3,4,5) -> bar(1); testbar(2,3,4,5);
VisualDSP++ 3.0 Assembler and Preprocessor Manual 2-13
for Blackfin DSPs

Preprocessor Command Reference
#elif

The #elif command (else if) is used within an #if … #endif pair. The
#elif includes an alternative condition to test when the initial #if condi-
tion evaluates as FALSE. The preprocessor tests each #elif condition
inside the pair and processes instructions that follow the first true #elif.
You can have an unlimited number of #elif commands inside one #if
… #end pair.

Syntax:

 #elif condition

where

condition — expression to evaluate as TRUE (non zero) or FALSE
(zero)

Example:

#if X == 1

 …
#elif X == 2

 …
 /* The preprocessor includes text within the section if

 the test is true and excludes all other text

 following #elif when x!=1 and x=2. */

#else

 …
#endif
2-14 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Preprocessor
#else

The #else command is used within an #if … #endif pair. It adds an
alternative instruction to the #if … #endif pair. Only one #else com-
mand can be used inside the pair. The preprocessor executes instructions
that follow #else after all the preceding conditions are evaluated as FALSE
(zero). If no #else text is specified, and all preceding #if and #elif con-
ditions are FALSE, the preprocessor does not include any text inside the
#if … #endif pair.

Syntax:

 #else

Example:

#if X == 1

 …
#elif X == 2

 …
#else

 …
 /* The preprocessor includes text within the section if

 the test is true and excludes all other text after

 #else when x!=1 and x!=2. */

#endif
VisualDSP++ 3.0 Assembler and Preprocessor Manual 2-15
for Blackfin DSPs

Preprocessor Command Reference
#endif

The #endif command is required to terminate #if … #endif,
#ifdef … #endif, and #ifndef … #endif pairs. Make sure that the num-
ber of #if commands matches the number of #endif commands.

Syntax:

 #endif

Example:

 #if condition
 …
 …
#endif

 /* The preprocessor includes text within the section if

 the test is true and excludes all other text after #if

 when condition evaluates as TRUE. */
2-16 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Preprocessor
#error

The #error command causes the preprocessor to raise an error. The pre-
processor uses the text following the #error command as the error
message.

Syntax:

 #error messageText

where

messageText — user-defined text

To break a long messageText without changing its meaning, place
the backslash character (\) at the end of each line except for the last
line.

Example:

#ifndef __ADSP21535__

#error \

 MyError:\

 Expecting a 21535. \

 Check the Linker Description File!

#endif
VisualDSP++ 3.0 Assembler and Preprocessor Manual 2-17
for Blackfin DSPs

Preprocessor Command Reference
#if

The #if command begins an #if … #endif pair. Statements inside an
#if … #endif pair can include other preprocessor commands and condi-
tional expressions. The preprocessor processes instructions inside the
#if … #endif pair only when condition that follows the #if evaluates as
TRUE. Every #if command must terminated with an #endif command.

Syntax:

 #if condition

where

condition — expression to evaluate as TRUE (non zero) or FALSE
(zero)

Example:

#if x!=100/* test for TRUE condition */

…

… /* The preprocessor includes text within the section if

 the test is true and excludes all other text

 after #if only when x!=100 */

#endif
2-18 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Preprocessor
#ifdef

The #ifdef (if defined) command begins an #ifdef … #endif pair and
instructs the preprocessor to test whether macro is defined. The number
of #ifdef commands must match the number of #endif commands.

Syntax:

 #ifdef macroSymbol

where

macroSymbol — macro identifying symbol

Example:

#ifdef __ADSP21535__

 /* tests that __ADSP21535__ has been defined */

#endif
VisualDSP++ 3.0 Assembler and Preprocessor Manual 2-19
for Blackfin DSPs

Preprocessor Command Reference
#ifndef

The #ifndef command (if not defined) begins an #ifndef … #endif pair
and directs the preprocessor to test for an undefined macro. The prepro-
cessor considers a macro undefined if it has no defined value. The number
of #ifndef commands must equal the number of #endif commands.

Syntax:

 #ifndef macroSymbol

where

 macroSymbol — macro identifying symbol

Example:

#ifndef __ADSP21535__

 /* tests that __ADSP21535__ is undefined*/

#endif
2-20 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Preprocessor
#include

The #include command directs the preprocessor to insert the text from a
header file at the command location. There are two types of header files:
system and user. The only difference to the preprocessor between these
two types of files is the way the preprocessor searches for them.

• System Header <fileName> — The preprocessor searches for a sys-
tem header file in the order: (1) the directories you specify and (2)
the standard list of system directories.

• User Header “fileName” — The preprocessor searches for a user
header file in this order:

1. Current directory—the directory where the source file that
has the #include command(s) lives

2. Directories you specify

3. Standard list of system directories

Syntax:

#include <fileName> // include a system header file
#include "fileName" // include a user header file

#include macroFileNameExpansion

 /* Include a file named through macro expansion.

 This command directs the preprocessor to expand the

 macro. The preprocessor processes the expanded text,

 which must match either <fileName> or "fileName". */

Example:

#ifdef __ADSP21535__

#include <.\ADSP21535\include\stdlib.h>

 /* tests that __ADSP21535__ has been defined */

#endif
VisualDSP++ 3.0 Assembler and Preprocessor Manual 2-21
for Blackfin DSPs

Preprocessor Command Reference
#line

The #line command directs the preprocessor to set the internal line
counter to the specified value. Use this command for error tracking
purposes.

Syntax:

 #line lineNumber “sourceFile”

where

lineNumber — number of the source line that you want to output

sourceFile — name of the source file included in double quota-
tion marks. The sourceFile entry can include the drive, directory,
and file extension as part of the file name.

Example:

#line 7 “myFile.c”

� All assembly programs have #line directives after preprocessing.
They always have a first line with #line 1 "filename.asm" and
they will also have all #line or #include directives that were
processed.
2-22 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Preprocessor
#pragma

The #pragma is the implementation-specific command that could modify
the preprocessor behavior. The #pragma command can take any sequence
of tokens. This command is accepted for compatibility with other
VisualDSP++ software tools. The pp preprocessor currently does not sup-
port pragmas; therefore, it will ignore any information in the #pragma.

Syntax:

 #pragma any_sequence_of_tokens

Example:

#pragma disable_warning 1024
VisualDSP++ 3.0 Assembler and Preprocessor Manual 2-23
for Blackfin DSPs

Preprocessor Command Reference
#undef

The #undef command directs the preprocessor to undefine the macro.

Syntax:

 #undef macroSymbol

where

macroSymbol — macro created with the #define command

Example:

#undef BUFFER_SIZE /* undefines a macro named BUFFER_SIZE */
2-24 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Preprocessor
#warning

The #warning command is used to cause the preprocessor to issue a warn-
ing. The preprocessor uses the text following the #warning command as
the warning message.

Syntax:

 #warning messageText

where

messageText — user-defined text

To break a long messageText without changing its meaning, place
the backslash character (\) at the end of each line except for the last
line.

Example:

#ifndef __ADSP21535__

#warning \

 MyWarning: \

 Expecting an ADSP21535. \

 Check the Linker Description File!

#endif
VisualDSP++ 3.0 Assembler and Preprocessor Manual 2-25
for Blackfin DSPs

Preprocessor Command Reference
(Argument)

The # (argument) “stringanization” operator directs the preprocessor to
convert a macro argument into a string constant. The preprocessor con-
verts an argument into a string when macro arguments are substituted into
the macro definition.

The preprocessor handles white space in string-to-literal conversions by:

• Ignoring leading and trailing white spaces

• Converting any white space in the middle of the text to a single
space in the resulting string

Syntax:

 #toString

where

toString — Macro formal parameter to convert into a literal
string. The # operator must precede a macro parameter. The pre-
processor includes a converted string within the double quotation
marks (“”).

Example:

#define WARN_IF(EXP) \

fprintf (stderr, "Warning: " #EXP "\n")

 /* Defines a macro that takes an argument and converts the

 argument to a string:

WARN_IF(current < minimum);

 Invokes the macro passing the condition.
fprintf (stderr, "Warning: " "current < minimum" "\n");

 Note that the #EXP has been changed to current < minimum
 and is enclosed in “” */
2-26 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Preprocessor
(Concatenate)

The ## (concatenate) operator directs the preprocessor to concatenate two
tokens. When you define a macro, you request concatenation with ## in
the macro body. The preprocessor concatenates the syntactic tokens on
either side of the concatenation operator.

Syntax:

 token1##token2

Example:

/* The example code segment defines a macro that takes the name of
a command as an argument, converts the argument to a string, and

concatenates the string with _command to make the function

name.*/

#define COMMAND(NAME) {#NAME, NAME##_command}

struct command commands[] =

 {

 COMMAND(quit),

 COMMAND(help),

 };

/* The code above shows the code you input to the preprocessor,

and the code below shows the preprocessor output.*/

struct command commands[] =

 {

 { "quit", quit_command } ,

 { "help", help_command } ,

 };
VisualDSP++ 3.0 Assembler and Preprocessor Manual 2-27
for Blackfin DSPs

Preprocessor Command Reference
? (Generate a Unique Label)

The "?" operator directs the preprocessor to generate unique labels for
iterated macro expansions. Within the definition body of a macro
(#define), you can specify one or more identifiers with a trailing question
mark (?) to ensure that unique label names are generated for each macro
invocation.

The preprocessor affixes ” _num” to a label symbol, where num is a uniquely
generated number for every macro expansion. For example,

 abcd?===>abcd_1

If a question mark is a part of the symbol that needs to be preserved,
ensure that “?” is delimited from the symbol. For example,

 “abcd?” is a generated label, while “abcd ?” is not.

Example:

#define loop(x,y)mylabel?:x =1+1;\

x =2+2;\

ourlabel?:y =3*3;\

y =5*5;\

JUMPJUMP mylabel?;\

JUMP yourlabel?;

loop (bz,kjb)

loop (lt,ss)

loop (yc,jl)

//Generates the following output:

mylabel_1:bz =1+1;bz =2+2;yourlabel_1:kjb =3*3;kjb = 5*5;

JUMP mylabel_1;

JUMP yourlabel_1;

mylabel_2:lt =1+1;lt =2+2;yourlabel_2:ss =3*3;ss =5*5;
2-28 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Preprocessor
JUMP mylabel_2;

JUMP yourlabel_2;

mylabel_3:yc =1+1;yc =2+2;yourlabel_3:jl =3*3;jl =5*5;

JUMP mylabel_3;

JUMP yourlabel_3;
VisualDSP++ 3.0 Assembler and Preprocessor Manual 2-29
for Blackfin DSPs

Preprocessor Command-Line Reference
Preprocessor Command-Line Reference
The pp preprocessor is the first step in the process of building (assembling,
compiling, linking) your programs. The pp preprocessor is run before the
assembler and compiler from the assembler or linker. You can also run it
independently from its own command line.

This section contains:

• “Running the Preprocessor”

• “Preprocessor Command-Line Switches” on page 2-31

Running the Preprocessor
To run the preprocessor from the command line, type the name of the
program followed by arguments in any order.

 pp [-switch1[-switch2 …]] [sourceFile]

where

pp — name of the preprocessor program

-switch1,-switch2 — switches to process. The preprocessor offers
several switches that are used to select its operation and modes.
Some preprocessor switches take a file name as a required
parameter.

sourceFile — name of the source file to process. The preprocessor
supports relative and absolute path names. The pp.exe outputs a
list of command-line switches when runs without this argument.
2-30 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Preprocessor
For example, the following command line

 pp -Dfilter_taps=100 -v -o bin\p1.is p1.asm

runs the preprocessor with

-Dfilter_taps=100 � defines the macro filter_taps as equal to
100

-v � displays verbose information for each phase of the
preprocessing

-o bin\p1.is � specifies the name and directory for the interme-
diate preprocessed file

p1.asm � specifies the assembly source file to preprocess

� Most switches without arguments can be negated by prepending
-no to the switch; for example, -nowarn turns off warning messages,
and -nocs! turns off omitting “!” style comments.

Preprocessor Command-Line Switches
The preprocessor is controlled through the switches (or VisualDSP++
options) of other DSP development tools, such as the compiler, assembler,
and linker. Note that the preprocessor (pp.exe) can operate indepen-
dently from the command line with its own command-line switches.

Table 2-5 lists the pp.exe switches. A detailed description of each switch
appears beginning on on page 2-32.

Table 2-5. Preprocessor Command-Line Switch Summary

Switch Name Description

-cpredef Outputs strings within “ “

-cs! Treats as a comment all text after “!” on a single line
VisualDSP++ 3.0 Assembler and Preprocessor Manual 2-31
for Blackfin DSPs

Preprocessor Command-Line Reference
The following sections describe each of the preprocessor command-line
switches.

-cpredef

Directs the preprocessor to output strings enclosed within “double quota-
tion marks”, which are compatible with C-style strings.

-cs!

Directs the preprocessor to treat as a comment all text after “!” on a single
line.

-cs/* Treats as a comment all text within /* */

-cs// Treats as a comment all text after //

-cs{ Treats as a comment all text within { }

-csall Accepts comments in all formats

–Dmacro[=definition] Defines macro

-h[elp] Outputs a list of command-line switches

–i|Idirectory Searches directory for included files

-M Makes dependencies only

-MM Makes dependencies and produces preprocessor output

-Mo filename Specifies filename for the make dependencies output file

-Mt filename Makes dependencies for the specified source file

–o filename Outputs named object file

–v[erbose] Displays information about each preprocessing phase

–version Displays version information for preprocessor.

Table 2-5. Preprocessor Command-Line Switch Summary (Cont’d)
2-32 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Preprocessor
-cs/*

Directs the preprocessor to treat as a comment all text within /* */.

-cs//

Directs the preprocessor to treat as a comment all text after // on a single
line.

-cs{

Directs the preprocessor to treat as a comment all text within { }.

-csall

Directs the preprocessor to accept comments in all formats.

-Dmacro[=def]

Directs the preprocessor to define a macro. If you do not include the
optional definition string (=def), the preprocessor defines the macro as
value 1. Similar to the C compiler, you can use the -D switch to define an
assembly language constant macro.

Some examples of this switch are:

 -Dinput // defines input as 1

 –Dsamples=10 // defines samples as 10

 –Dpoint="Start" // defines point as the string “Start”

 –D_LANGUAGE_ASM=1 // defines assembly language as 1

-h[elp]

Directs the preprocessor to output to standard output the list of com-
mand-line switches with a syntax summary.
VisualDSP++ 3.0 Assembler and Preprocessor Manual 2-33
for Blackfin DSPs

Preprocessor Command-Line Reference
-i|Idirectory

Directs the preprocessor to append the specified directory (or a list of
directories separated by semicolon) to the search path for included header
files (see on page 2-21).

 Note that no space is allowed between -i|I and the path name.

The preprocessor searches for included files in these order:

1. Current project (.DPJ) directory (where the source file lives)

2. Specified directory (a list of directories). The order of the list
defines the order of multiple searches.

3. ...\include subdirectory of the VisualDSP++ installation
directory

4. Connected project directories (.DPJ)

� Current directory is the directory where the source file lives, not
the directory of the assembler program. Usage of full path names
for the -I switch on the command line (omitting the disk parti-
tion) is recommended.

-M

Directs the preprocessor to output a rule (generate make rule only), which
is suitable for the make utility, describing the dependencies of the source
file. The output, a make dependencies list, is written to stdout in the
standard command-line format.

 “target_file”: “dependency_file.ext”

where

dependency_file.ext may be an assembly source file or a header
file included with the #include preprocessor command.
2-34 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

Preprocessor
When the -o filename option is used with -M, the -o option is ignored.
To specify an alternate target name for the make dependencies, use the
-Mt option. To direct the make dependencies to a file, use the -Mo option.

-MM

Directs the preprocessor to output a rule (generate make rule and prepro-
cess), which is suitable for the make utility, describing the dependencies of
the source file. The output, a make dependencies list, is written to stdout
in the standard command-line format.

The only difference between -MM and -M actions is that the preprocessing
continues with -MM. See “-M” for more information.

-Mo filename

Specifies the name of the make dependencies file (output make rule) that
the preprocessor generates when using the -M or -MM switch. If the named
file is not in the current directory, you must provide the path name in the
double quotation marks (“ ”). The -o filename option overrides default
of make dependencies to stdout.

-Mt filename

Specifies the name of the target file (output make rule for the named
source) for which the preprocessor generates the make rule using the -M or
-MM switch. If the named file is not in the current directory, you must pro-
vide the path name in the double quotation marks (“ ”). The -M fileneme
switch overrides the default base.doj. See “-M” for more information.

-o filename

Directs the preprocessor to use (output) the specified filename argument
for the preprocessed assembly file. The preprocessor directs the output to
stdout when no -o option is specified.
VisualDSP++ 3.0 Assembler and Preprocessor Manual 2-35
for Blackfin DSPs

Preprocessor Command-Line Reference
-v[erbose]

Directs the preprocessor to output the version of the preprocessor pro-
gram and information for each phase of the preprocessing.

-version

Directs the preprocessor to display the version information for the prepro-
cessor program.

� The -version option on the assembler command line provides ver-
sion information for both the assembler and preprocessor. The
-version option on the preprocessor command-line provides pre-
processor version information only.
2-36 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

I INDEX

Symbols -D option 1-78

(stringanization) preprocessor

operator 2-26
(concatenate) preprocessor operator

2-27
... preprocessing extension 2-12
.STRUCT directive 1-63
? preprocessor operator 2-28
__VA_ARGS__ identifier 2-13

Numerics
32-bit variables 1-67

A
absolute address 1-32
address alignment 1-37
ALIGN (address alignment) assembler

directive 1-37
archiver 1-5
arithmetic

fractional 1-27
mixed fractional 1-28

ASCII string initialization support 1-41,
1-70

Assembler
command-line switch

-D (define macro) 1-77

-flags-compiler 1-77
-flags-pp 1-79
-g (generate debug info) 1-79
-h (help) 1-79
-i (include path) 1-80
-I option 1-78
-l (listing) switch 1-80
-li (listing with include) switch 1-81
-M (make rule only) 1-81
-micaswarn 1-82
-MM (make rule and assemble)

1-82
-Mo (output make rule) 1-82
-Mt (make rule for named file) 1-81
-o (output) 1-82
-pp (proceed with preprocessing)

1-83
-proc processorID 1-83
-sp (skip preprocessing) 1-84
-stallcheck 1-84
-v (verbose) 1-84
-version (display version) 1-84
-w (skip warning messages) 1-84
-wnumber (warning suppression)

1-84
assembler
VisualDSP++ 3.0 Assembler and Preprocessor Manual I-1
for Blackfin DSPs

INDEX
command-line syntax 1-73
directive syntax 1-6, 1-35
directives 1-35
expressions, constant and address

1-23
file extensions 1-74
instruction set 1-5
keywords 1-18
numeric bases 1-25
operator precedence chart 1-24
predefined macros 1-14
program content 1-5
run-time environment 1-2
source files

(.ASM) 1-4
symbols 1-21

assembler directives
.ALIGN 1-37
.BYTE 1-39
.EXTERN 1-42
.EXTERN STRUCT 1-43
.FILE 1-45
.GLOBAL 1-46
.IMPORT 1-47
.LEFTMARGIN 1-49
.LIST 1-50
.LIST_DATA 1-51
.LIST_DATFILE 1-52
.LIST_DEFTAB 1-53
.LIST_LOCTAB 1-54
.LIST_WRAPDATA 1-55
.NEWPAGE 1-56
.NOLIST 1-50
.NOLIST_DATA 1-51

.NOLIST_DATFILE 1-52

.NOLIST_WRAPDATA 1-55

.PAGELENGTH 1-57

.PAGEWIDTH 1-58

.PREVIOUS 1-59

.SECTION 1-61

.STRUCT 1-62

.TYPE 1-66

.VAR 1-67

.WEAK 1-71
assembly directives

conditional 1-28
assembly language constant 2-33

B
built-in functions

offsetof() 1-31
sizeof() 1-31

BYTE assembler directive 1-39
BYTE4 directive 1-39

C
C and assembly, interfacing 1-11
comma-separated option 1-79
concatenate (##) preprocessor

operator 2-27
conditional assembly directives

.ELIF 1-28

.ELSE 1-29

.ENDIF 1-29

.IF 1-28
constant expression 1-23
conventions

comment strings 1-28
I-2 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

INDEX
file extensions 1-74
file names 1-73
numeric formats 1-25
user-defined symbols 1-21

conventions, of this manual -xix
-cpredef (C-style definitions)

preprocessor switch 2-32
-cs! ("!" comment style)

preprocessor switch 2-32
-cs/* ("/* */" comment style)

preprocessor switch 2-33
-cs// ("//" comment style)

preprocessor switch 2-33
-cs{ ("{}" comment style)

preprocessor switch 2-33
-csall (all comment styles)

preprocessor switch 2-33
custom processors 1-83
customer support -xiii

D
-D (define macro) assembler switch

1-77
-D (define macro) preprocessor

switch 2-33
-D assembler switch option, see

-flags-compiler switch 1-78
default defines 1-78
default symbol type 1-66
default tab width 1-53, 1-54
define (macro) preprocessor

command 2-11
variable argument list 2-12

defines options 1-78

E
easmblkfn assembler program 1-73
elif preprocessor command 2-14
else (alternate instruction)

preprocessor command 2-15
endif (termination) preprocessor

command 2-16
error (error message) preprocessor

command 2-17
expressions

address 1-23
constant 1-23

EXTERN (global label) assembler
directive 1-42, 1-43

F
feature (predefined) macros 1-14
FILE (override filename) assembler

directive 1-45
file extensions

.ASM (assembly source) 1-3

.DAT (data file) 1-3

.DLB (library file) 1-5

.DOJ (object file) 1-3

.H (header file) 1-3

.IS (preprocessed assembly file)
1-83

file formats
ELF (Executable and Linkable

Format) 1-3
file naming conventions 1-73
-flags-compiler assembler switch

1-77
-flags-pp assembler switch 1-79
VisualDSP++ 3.0 Assembler and Preprocessor Manual I-3
for Blackfin DSPs

INDEX
formats, numeric 1-25
fractional constants 1-27
fracts

1.0r special case 1-27
1.15 format 1-26
constants 1-25
mixed type arithmetic 1-28

G
-g (generate debug info) 1-79
generating unique labels 2-28
GLOBAL (global symbol)

assembler directive 1-46
global substitutions 2-3

H
-h (help) assembler switch 1-79,

2-33
header files 2-3

system 2-4
user 2-4

I
-i (include directory) preprocessor

switch 2-34
-i (include path) assembler switch

1-80
-I (include search-path)) assembler

options 1-78
-I assembler switch option, see

-flags-compiler switch 1-78
if (test if true) preprocessor

command 2-18

ifdef (test if defined) preprocessor
command 2-19

ifndef (test if not defined)
preprocessor command 2-20

IMPORT assembler directive 1-47
IMPORT header files 1-47
IMPORT headers

make dependencies 1-16
include (insert a file) preprocessor

command 2-21
include files

system header files 2-3
user header files 2-3

input section alignment instruction
1-37

instruction set 1-5

L
-l (listing) assembler switch 1-80
LEFTMARGIN assembler directive

1-49
-li (listing with include) assembler

switch 1-81
line (output line number)

preprocessor command 2-22
linker 1-5
Linker Description File 1-7
LIST assembler directive 1-50
LIST_DATA assembler directive

1-51
LIST_DATFILE assembler

directive 1-52
LIST_DEFTAB assembler directive

1-53
I-4 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

INDEX
LIST_LOCTAB assembler directive
1-54

LIST_WRAPDATA assembler
directive 1-55

listing files
address 1-17
assembly process information 1-5
assembly source code 1-17
C data structure information 1-5
data initialization 1-52
data opcodes 1-51
large opcodes 1-55
line number 1-17
named 1-80
opcode 1-17
producing 1-4

listing files (.LST) 1-5, 1-17
local tab width 1-53, 1-54
long-form initialization 1-62, 1-63

M
-M (make rule only) assembler

switch 1-81
-M (make rule only) preprocessor

switch 2-34
macros

feature assembler 1-14
feature preprocessor 2-7
predefined preprocessor 2-6, 2-7
variable length argument list 2-12
writing 2-4

make dependencies 1-47
memory

types 1-7

memory section
declaring 1-61

-micaswarn assembler switch 1-82
-MM (make rule and assemble)

assembler switch 1-81
-MM (make rule and assemble)

preprocessor switch 2-35
-Mo (output make rule) assembler

switch 1-82
-Mo (output make rule)

preprocessor switch 2-35
-Mt (output make rule for named

file) assembler switch 1-82
-Mt preprocessor switch 2-35
multi-issue conflict warnings 1-82

N
N boundary alignment 1-69
nested struct definition 1-32, 1-33
nested struct reference 1-32, 1-33
NEWPAGE assembler directive

1-56
NOLIST assembler directive 1-50
NOLIST_WRAPDATA assembler

directive 1-55
numeric formats 1-25

O
-o (output) assembler switch 1-82
-o (output) preprocessor switch

2-35
object file

producing 1-4
object files (.DOJ) 1-5
VisualDSP++ 3.0 Assembler and Preprocessor Manual I-5
for Blackfin DSPs

INDEX
offsetof() built-in function 1-31

P
PAGELENGTH assembly directive

1-57
PAGEWIDTH assembly directive

1-58
-pp (proceed with preprocessing)

assembler switch 1-83
pragma preprocessor command

2-23
predefined preprocessor macros

__DATE__ 2-7
__FILE__ 2-7
__LINE__ 2-7
__STDC__ 2-7
__TIME__ 2-7
ADI 2-7
-D__ADSP21532__ 2-7
-D__ADSP21535__ 2-7
-D__ADSPBLACKFIN__ 2-7
-D_LANGUAGE_ASM 2-7
-D_LANGUAGE_C 2-7

preprocessed assembly files 2-9
preprocessed source file 2-9
preprocessing a program 1-14
Preprocessor

command syntax 2-9
preprocessor

command syntax 2-9
command, list of 2-9
command-line switches 2-31

-cpredef 2-32
-cs! 2-32

-cs/* ("/* */" comment style)
2-33

-cs// ("//" comment style) 2-33
-cs{ ("{}" comment style) 2-33
-csall (all comment styles) 2-33
-D (define macro) 2-33
-h (help) 2-33
-i (include path) 2-34
-M (make rule only) 2-34
-MM (make rule and assemble)

2-35
-Mo (output make rule) 2-35
-Mt (output make rule for

named file) 2-35
-o (output) 2-35
-v (verbose) 2-36
-version (display version) 2-36

command-line syntax 2-30
commands 1-6, 2-2
compiler 2-2
feature macros 2-7
global substitutions 2-3
guide 2-2
option settings 2-8
overview 2-1
predefined macros 2-7
system header file 2-21
user header file 2-21

preprocessor commands 2-9
#define 2-11
#elif 2-14
#else 2-15
#endif 2-16
#error 2-17
I-6 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

INDEX
#if 2-18
#ifdef 2-19
#ifndef 2-20
#include 2-21
#line (counter) 2-22
#pragma 2-23
#undef 2-24
#warning 2-25

preprocessor operators
(stringanization) 2-26
##concatenate 2-27
? (generate unique label) 2-28

PREVIOUS assembler directive
1-59

-proc (target processor) assembler
switch 1-83

program
assembling 1-4
content 1-5
listing files 1-17
preprocessing 1-14
structure 1-7
writing assembly 1-3

Project Options settings
assembler 1-85
preprocessor 2-8

S
SECTION (start or embed a

section) assembler directive
1-61

sectionTypes identifier 1-61
settings

assembler options 1-85

from command line 1-72
from VisualDSP++ IDDE 1-86

default tab width 1-53
local tab width 1-54
preprocessor options

from command line 2-8
from VisualDSP++ IDDE 2-8
through build tools 2-8

short-form initialization 1-62
SHT_PROGBITS identifier 1-61
sizeof() built-in function 1-31
source files

(.ASM) 1-4
-sp (skip preprocessing) assembler

switch 1-84
special characters

dot 1-21
stall information 1-84
-stallcheck assembler switch 1-84
stringanization (#) operator 2-26
STRUCT (struct variable)

assembler directive 1-62
struct references 1-32

nested 1-32
switches (see assembler

command-line switch)
symbol conventions 1-21
symbol types 1-66
symbolic expressions 1-23
symbols (see assembler symbols)
syntax

assembler command line 1-73
assembler directives 1-35
constants 1-23
VisualDSP++ 3.0 Assembler and Preprocessor Manual I-7
for Blackfin DSPs

INDEX
instruction set 1-5
macro 2-4
preprocessor command 2-9

system header files 2-4

T
tab

characters 1-53
characters in source file 1-54

TYPE (symbol type) assembler
directive 1-66

U
undef (undefine) preprocessor

command 2-24
unique labels 2-28
user header files 2-3

V
-v (verbose) assembler switch 1-84
-v (verbose) preprocessor switch

2-36
VAR (data variable) assembler

directive 1-67

VAR and VAR/INIT24 (declare
variable) assembler directives
1-39, 1-67

variable length argument list 2-12
-version (display version) assembler

switch 1-84
-version (display version)

preprocessor switch 2-36
VisualDSP++

assembler settings 1-86
assembling from 1-3
preprocessor settings 2-8
Project Options dialog box 1-18

W
-w (skip warning messages)

assembler switch 1-84
warning (warning message)

preprocessor command 2-25
warnings 1-82
WEAK assembler directive 1-71
weak symbol binding 1-71
-wnumber (warning suppression)

assembler switch 1-84
word boundary alignment 1-38
wrapping opcode listings 1-55
writing assembly programs 1-3
I-8 VisualDSP++ 3.0 Assembler and Preprocessor Manual
for Blackfin DSPs

	Contents
	Preface
	Purpose
	Intended Audience
	Manual Contents
	What’s New in this Manual
	Technical or Customer Support
	Supported Processors
	Product Information
	MyAnalog.com
	DSP Product Information
	Related Documents
	Online Technical Documentation
	From VisualDSP++
	From Windows
	From the Web

	Printed Manuals
	VisualDSP++ Documentation Set
	Hardware Manuals
	Datasheets

	Contacting DSP Publications

	Notation Conventions

	1 Assembler
	Assembler Guide
	Assembler Overview
	Writing Assembly Programs
	Program Content
	Program Structure
	Table 1-1. Suggested Input Section Names
	Figure 1-2. Assembly Source File Structure
	Listing 1-1. Example Linker Description File

	Program Interfacing Requirements

	Using Assembler Support for C Structs
	Preprocessing a Program
	Using Feature Assembler Macros
	Make Dependencies
	Reading a Listing File

	Assembler Syntax Reference
	Assembler Keywords and Symbols
	Table 1-2. Assembler Keywords�

	Assembler Expressions
	Assembler Operators
	Table 1-3. Operator Precedence
	Table 1-4. Special Assembler Operators

	Numeric Formats
	Table 1-5. Numeric Formats
	Fractional Type Support
	1.15 Fracts
	1.0r Special Case
	Fractional Arithmetic
	Mixed Type Arithmetic

	Comment Conventions
	Table 1-6. Comment Conventions

	Conditional Assembly Directives
	Table 1-7. Relational Operators for Conditional Assembly �

	Built-In Functions
	offsetof() Built-In
	sizeof() Built-In

	-> Struct References
	Assembler Directives
	Table 1-8. Assembler Directive Summary�
	.ALIGN, Specify an Address Alignment
	.BYTE, Declare a Byte Data Variable or Buffer
	ASCII String Initialization Support

	.EXTERN, Refer to a Globally Available Symbol
	.EXTERN STRUCT, Refer to a Struct Defined Elsewhere
	.FILE, Override the Name of a Source File
	.GLOBAL, Make a Symbol Globally Available
	.IMPORT, Provide Structure Layout Information
	.LEFTMARGIN, Set the Margin Width of a Listing File
	.LIST/.NOLIST, Listing Source Lines and Opcodes
	.LIST_DATA/.NOLIST_DATA, Listing Data Opcodes
	.LIST_DATFILE/.NOLIST_DATFILE, Listing Data Initialization Files
	.LIST_DEFTAB, Set the Default Tab Width for Listings
	.LIST_LOCTAB, Set the Local Tab Width for Listings
	LIST_WRAPDATA/.NOLIST_WRAPDATA
	.NEWPAGE, Insert a Page Break in a Listing File
	.PAGELENGTH, Set the Page Length of a Listing File
	.PAGEWIDTH, Set the Page Width of a Listing File
	.PREVIOUS, Revert to the Previously Defined Section
	.SECTION, Declare a Memory Section
	.STRUCT, Create a Struct Variable
	.TYPE, Change Default Symbol Type
	.VAR, Declare a 32-Bit Data Variable or Buffer
	.VAR and ASCII String Initialization Support

	.WEAK, Support a Weak Symbol Definition and Reference

	Assembler Command-Line Reference
	Running the Assembler
	Table 1-9. File Name Extension Conventions

	Assembler Command-Line Switch Summary
	Table 1-10. Assembler Command-Line Switch Summary�

	Assembler Command-Line Switch Descriptions
	-Dmacro[=definition]
	-flags-compiler
	User-Specified Defines Options
	Include Options

	-flags-pp -opt1 [,-opt2...]
	-g
	�h[elp]
	-i|I directory
	-l filename
	-li filename
	-M
	-MM
	-Mo filename
	-Mt filename
	-micaswarn
	-o [filename]
	-pp
	-proc processorID
	-sp
	-stallcheck
	�v[erbose]
	-version
	-w
	-wnumber

	Specifying Assembler Options in VisualDSP++
	Figure 1-3. Project Options – Assemble Property Page

	2 Preprocessor
	Preprocessor Guide
	Writing Preprocessor Commands
	Header Files
	Writing Macros
	Using Predefined Macros
	Table 2-1. Predefined Preprocessor Macros
	Table 2-2. Feature Preprocessor Macros

	Specifying Preprocessor Options

	Preprocessor Command Reference
	Preprocessor Commands and Operators
	Table 2-3. Preprocessor Command Summary
	Table 2-4. Preprocessor Operator Summary
	#define
	Variable Length Argument Definitions

	#elif
	#else
	#endif
	#error
	#if
	#ifdef
	#ifndef
	#include
	#line
	#pragma
	#undef
	#warning
	# (Argument)
	## (Concatenate)
	? (Generate a Unique Label)

	Preprocessor Command-Line Reference
	Running the Preprocessor
	Preprocessor Command-Line Switches
	Table 2-5. Preprocessor Command-Line Switch Summary�
	-cpredef
	-cs!
	-cs/*
	-cs//
	-cs{
	-csall
	-Dmacro[=def]
	�h[elp]
	-i|Idirectory
	-M
	-MM
	-Mo filename
	-Mt filename
	-o filename
	�v[erbose]

	I Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	S
	T
	U
	V
	W

