
3.03.03.03.0
Linker and Utilities Manual

 for Blackfin� DSPs

 Second Revision, April 2002

Part Number
82-000410-05

Analog Devices, Inc.
Digital Signal Processor Division
One Technology Way
Norwood, Mass. 02062-9106

Copyright Information
©2002 Analog Devices, Inc., ALL RIGHTS RESERVED. This document
may not be reproduced in any form without prior, express written consent
from Analog Devices, Inc.

Printed in the USA.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice
The Analog Devices logo, SHARC, the SHARC logo, TigerSHARC, the
TigerSHARC logo, and EZ-KIT Lite are registered trademarks;
BLACKfin, VisualDSP++, VDK, the VisualDSP++ logo, Apex-ICE,
Mountain-ICE, Summit-ICE, Trek-ICE, and The DSP Collaborative are
trademarks of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

Revision 2.0

CONTENTS
PREFACE

Purpose of This Manual .. xiii

Intended Audience .. xiii

Manual Contents ... xiv

What’s New in this Manual ... xv

Technical or Customer Support ... xv

Supported Processors .. xvi

Product Information .. xvi

MyAnalog.com ... xvi

DSP Product Information .. xvii

Related Documents ... xvii

Online Technical Documentation ... xviii

From VisualDSP++ .. xix

From Windows .. xix

From the Web ... xx

Printed Manuals .. xx

VisualDSP++ Documentation Set .. xx

Hardware Manuals .. xx

Datasheets ... xxi
VisualDSP++ 3.0 Linker and Utilities Manual iii
for Blackfin DSPs

CONTENTS
Contacting DSP Publications ... xxi

Notation Conventions ... xxi

LINKER

Linking Process Overview ... 1-3

Getting Started ... 1-7

Linking Environment Overview .. 1-7

Describing the Link Target .. 1-10

ADSP-21535 DSP Memory Architecture Overview 1-11

Representing Memory Architecture 1-13

Specifying the Memory Map ... 1-14

Inputs — C/C++ and Assembly Sources 1-16

Input Section Directives in Assembly Code 1-16

 Section Directives in C/C++ Source Files 1-17

LDF Overview .. 1-18

Notes on Basic LDF Example .. 1-22

Placing Code on the Target ... 1-26

Passing Arguments for Simulation/Emulation 1-27

LDF Syntax Overview ... 1-28

Outputs — DSP Executables ... 1-28

Getting Started Summary .. 1-29

Linker Guide .. 1-30

LDF Structure .. 1-31

Command Scoping ... 1-31

LDF Expressions and Conventions .. 1-32
iv VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

CONTENTS
Linker Keywords, Commands and Operators 1-34

Miscellaneous LDF Keywords .. 1-35

LDF Operators .. 1-35

ABSOLUTE () Operator ... 1-36

ADDR(section name) Operator ... 1-37

DEFINED Operator ... 1-37

MEMORY_SIZEOF Operator .. 1-38

SIZEOF Operator ... 1-38

Location Counter (.) ... 1-39

LDF Macros .. 1-40

LDF Macro List .. 1-41

LDF Macros and Command-Line Interaction 1-42

Linker Error and Warning Messages 1-43

LDF Command Summary ... 1-44

ALIGN() .. 1-45

ARCHITECTURE() ... 1-45

DYNAMIC() .. 1-46

ELIMINATE() .. 1-47

ELIMINATE_SECTIONS() ... 1-47

INCLUDE() ... 1-47

INPUT_SECTION_ALIGN() .. 1-48

KEEP() ... 1-49

LINK_AGAINST() ... 1-49

MAP(filename) ... 1-50
VisualDSP++ 3.0 Linker and Utilities Manual v
for Blackfin DSPs

CONTENTS
MEMORY{} ... 1-50

PROCESSOR{} .. 1-53

RESOLVE() ... 1-55

SEARCH_DIR() .. 1-55

SECTIONS{} ... 1-56

section_commands or expressions 1-57

section_name .. 1-57

INPUT_SECTIONS() ... 1-58

expression ... 1-59

FILL(hex number) .. 1-59

PLIT{plit_commands} .. 1-59

OVERLAY_INPUT(overlay_commands) 1-60

Advanced Linker Features and Commands 1-62

Memory Overlays and Overlay Memory Manager 1-62

The Concept of Memory Overlays 1-63

The Concept of Overlay Manager 1-65

Memory Overlay Support ... 1-66

Overlay Manager Example .. 1-70

Reducing Overlay Manager Overhead 1-78

OVERLAY_GROUP{} Command ... 1-82

Ungrouped Overlay Execution .. 1-83

Grouped Overlay Execution .. 1-85

PLIT{} Command ... 1-86

PLIT Syntax ... 1-86
vi VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

CONTENTS
Allocating Space for PLITs .. 1-88

PLIT Examples ... 1-89

What PLIT Does – Summary .. 1-90

Using PLIT and Overlay Manager .. 1-91

Linker Command-Line Reference .. 1-95

Command-Line Syntax .. 1-95

Object Files in the Linker Command Line 1-96

Switch Format in the Linker Command Line 1-97

File Names on the Linker Command Line 1-98

Linker Command-Line Switch Summary 1-100

Command-Line Switch Descriptions 1-102

objects .. 1-102

<null> ... 1-103

@ file .. 1-103

-Darchitecture .. 1-103

-L path ... 1-103

-M .. 1-104

-MM .. 1-104

-Map file ... 1-104

-MDmacro[=def] .. 1-104

-S ... 1-104

-T file ... 1-104

-e .. 1-105

-es secName .. 1-105
VisualDSP++ 3.0 Linker and Utilities Manual vii
for Blackfin DSPs

CONTENTS
-ev ... 1-105

-h|-help .. 1-105

-i path .. 1-105

-ip .. 1-106

-jcs2l .. 1-106

-jcs2l+ .. 1-106

-keep symName .. 1-107

-o filename ... 1-107

-pp ... 1-107

-proc ProcessorID ... 1-107

-s ... 1-107

-sp ... 1-108

-t ... 1-108

-v ... 1-108

-version .. 1-108

-warnonce .. 1-108

-xref filename ... 1-108

LDF Programming Examples .. 1-109

Linking for Single-Processor System 1-110

Linking Large Uninitialized Variables 1-111

Linking for Assembly Source File ... 1-113

Linking for C Source File – Example 1 1-115

Linking for Complex C Source File – Example 2 1-118

Linking for Overlay Memory Example 1-123
viii VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

CONTENTS
EXPERT LINKER

Expert Linker Overview .. 2-2

Launching the Create LDF Wizard .. 2-4

Step 1: Specifying Project Information 2-5

Step 2: Specifying System Information 2-6

Step 3: Completing the LDF Wizard .. 2-8

Expert Linker Window Overview .. 2-9

Using the Input Sections Pane ... 2-12

Using the Input Sections Menu .. 2-12

Mapping an Input Section to an Output Section 2-13

Viewing Icons and Colors .. 2-14

Sorting Objects ... 2-16

Using the Memory Map Pane .. 2-18

Using the Context Menu ... 2-20

Tree View Memory Map Representation 2-23

Graphical View Memory Map Representation 2-24

Specifying Pre- and Post-Link Memory Map View 2-29

Zooming In and Out on the Memory Map 2-29

Inserting a Gap into Memory Segment 2-33

 Working with Overlays ... 2-34

Viewing Section Contents .. 2-36

Viewing Symbols ... 2-37

Managing Object Properties .. 2-41

Managing Global Properties ... 2-42
VisualDSP++ 3.0 Linker and Utilities Manual ix
for Blackfin DSPs

CONTENTS
Managing Processor Properties .. 2-43

Managing PLIT Properties for Overlays 2-45

Managing Elimination Properties .. 2-46

Managing Symbols Properties .. 2-48

Managing Memory Segment Properties 2-52

Managing Output Section Properties 2-53

Managing Packing Properties ... 2-55

Managing Alignment and Fill Properties 2-56

Managing Overlay Properties ... 2-58

Managing Stack and Heap in DSP Memory 2-60

LOADER

Loader Guide ... 3-2

Hardware Reset and Boot Sources .. 3-3

ADSP-21535 DSP Boot Mode Selection Information 3-3

ADSP-21532 DSP Boot Mode Selection Information 3-5

Booting Sequence ... 3-6

ADSP-21532 DSP Booting ... 3-7

ADSP-21535 DSP Booting ... 3-8

Boot Loading and Boot Kernel .. 3-11

Loader Input Files ... 3-11

What ELFLOADER.EXE Does ... 3-12

Using the Loader .. 3-13

Running the Loader from a Command Line 3-13

Loader Command-Line Switches ... 3-15
x VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

CONTENTS
Configuring the Loader ... 3-19

Specifying Basic Loader Settings .. 3-19

Specifying Loader Settings for Boot Kernel Loading 3-21

Loader Boot Streams .. 3-23

ADSP-21535 DSP Boot Stream with Boot Kernel 3-24

ADSP-21535 DSP Boot Stream without Boot Kernel 3-30

ADSP-21532 DSP Boot Stream ... 3-32

Loader Output Files and Formats ... 3-33

Rebuilding the Boot Kernel ... 3-35

ARCHIVER

Archiver Guide ... 4-2

Creating an Archive From VisualDSP++ 4-2

Filename Conventions ... 4-3

Making Archived Functions Usable .. 4-3

Writing Archive Routines: Creating Entry Points 4-4

Using Archive Routines ... 4-5

Archiver Command-Line Reference ... 4-6

Running the Archiver .. 4-6

Archiver File Search ... 4-8

Command-Line Switch Descriptions .. 4-8

FILE FORMATS

Source Files .. A-2

C/C++ Source Files ... A-2
VisualDSP++ 3.0 Linker and Utilities Manual xi
for Blackfin DSPs

CONTENTS
Assembly Source Files (.ASM) ... A-3

Assembly Initialization Data Files (.DAT) A-3

Header Files (.H) .. A-4

Linker Description Files (.LDF) .. A-4

Linker Command-Line Files (.TXT) .. A-5

Build (Processed) Files .. A-6

Assembler Object Files (.DOJ) .. A-6

Archiver Archive Files (.DLB) .. A-6

Linker Executable Files (.DXE, .SM, .OVL, .dlb) A-7

Linker Memory Map Files (.MAP) ... A-7

Loader Hex Format Files (.LDR) ... A-7

Loader ASCII Format Files (.LDR) .. A-10

Loader Include Format Files (.LDR) A-10

Loader Binary Format Files (.LDR) A-11

Debugger Files .. A-12

Format References .. A-13

UTILITIES

ELF File Dumper ... B-1

Using the Archiver and Dumper For Disassembly B-3

Dumping Overlay Archive Files ... B-4

INDEX
xii VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

 PREFACE

Thank you for purchasing Analog Devices development software for digi-

tal signal processors (DSPs).

Purpose of This Manual
The VisualDSP++ 3.0 Linker & Utilities Manual for Blackfin DSPs con-
tains information about the linker and utilities programs for Blackfin™
DSPs. These are 16-bit, fixed-point digital signal processors from Analog
Devices for use in computing, communications, and consumer
applications.

This manual provides information on the linking process and describes
the syntax for the linker’s command language—a scripting language that
the linker reads from the linker description file. The manual leads you
through using the linker, archiver, and loader to produce DSP programs
and provides reference information on the file utility software.

Intended Audience
The primary audience for this manual is DSP programmers who are famil-
iar with Analog Devices DSPs. This manual assumes that the audience has
a working knowledge of the appropriate DSP architecture and instruction
set. Programmers who are unfamiliar with Analog Devices DSPs can use
this manual but should supplement it with other texts, such as Hardware
Reference and Instruction Set Reference manuals, that describe your target
architecture.
VisualDSP++ 3.0 Linker and Utilities Manual xiii
for Blackfin DSPs

Manual Contents
Manual Contents
The manual contains:

• Chapter 1, “Linker”

This chapter provides an overview of the linker software and com-
mand-line switches; shows how to use the linker description file to
define your target DSP system for linking.

• Chapter 2, “Expert Linker”

This chapter describes Expert Linker which is an interactive graph-
ical tool to set up and map DSP memory.

• Chapter 3, “Loader”

This chapter provides an overview of the loader software and com-
mand-line switches; describes boot sequence, shows how to use the
different boot-kernels for booting various Blackfin DSPs and creat-
ing boot-loadable files.

• Chapter 4, “Archiver”

This chapter provides an overview of the archiver software and
command-line switches. An archiver is used for creating libraries of
partially linked objects, speeding linking of often used routines

• Appendix A, “File Formats”

This appendix lists and describes the file formats that the develop-
ment tools use as inputs or produce as outputs

• Appendix B, “Utilities”

This appendix describes the file utilities that provide legacy and file
conversion support
 xiv VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Preface
What�s New in This Manual
This edition of the manual documents support for all Blackfin processors.
In addition to documenting all existing linker and archiver features, this
manual describes new macros, commands and switches, including syntax
and code examples.

Chapter 2, “Expert Linker” provides a description of the Expert Linker�
a new interactive tool to set up and map DSP memory. Chapter 3,
“Loader” provides descriptions on new booting sequences, boot loadable
formats, boot kernels and command-line switches.

Technical or Customer Support
You can reach DSP Tools Support in the following ways:

• Visit the DSP Development Tools website at
http://www.analog.com/technology/dsp/development-

Tools/index.html

• Email questions to
dsptools.support@analog.com

• Phone questions to 1-800-ANALOGD

• Contact your ADI local sales office or authorized distributor

• Send questions by mail to:

Analog Devices, Inc.
DSP Division
One Technology Way
P.O. Box 9106
Norwood, MA 02062-9106
USA
VisualDSP++ 3.0 Linker and Utilities Manual xv
for Blackfin DSPs

Supported Processors
Supported Processors
The name “Blackfin” refers to a family of Analog Devices 16-bit,
fixed-point processors. VisualDSP++ currently supports the following
Blackfin processors:

• ADSP-21532 DSP

• ADSP-21535 DSP

Product Information
You can obtain product information from the Analog Devices website,
from the product CD-ROM, or from the printed publications (manuals).

Analog Devices is online at www.analog.com. Our website provides infor-
mation about a broad range of products—analog integrated circuits,
amplifiers, converters, and digital signal processors.

MyAnalog.com
MyAnalog.com is a free feature of the Analog Devices website that allows
customization of a webpage to display only the latest information on
products you are interested in. You can also choose to receive weekly email
notification containing updates to the webpages that meet your interests.
MyAnalog.com provides access to books, application notes, data sheets,
code examples, and more.

Registration:

Visit www.myanalog.com to sign up. Click Register to use MyAnalog.com.
Registration takes about five minutes and serves as means for you to select
the information you want to receive.
 xvi VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Preface
If you are already a registered user, just log on. Your user name is your
email address.

DSP Product Information
For information on digital signal processors, visit our website at
www.analog.com/dsp, which provides access to technical publications,
datasheets, application notes, product overviews, and product
announcements.

You may also obtain additional information about Analog Devices and its
products in any of the following ways.

• Email questions or requests for information to
dsp.support@analog.com

• Fax questions or requests for information to
1-781-461-3010 (North America)
089/76 903-557 (Europe)

• Access the Digital Signal Processing Division’s FTP website at
ftp ftp.analog.com or ftp 137.71.23.21
ftp://ftp.analog.com

Related Documents
For information on product related development software, see the follow-
ing publications:

VisualDSP++ 3.0 Getting Started Guide for Blackfin DSPs

VisualDSP++ 3.0 User’s Guide for Blackfin DSPs

VisualDSP++ 3.0 C/C++ Compiler and Library Manual for Blackfin DSPs

VisualDSP++ 3.0 C/C++ Assembler and Preprocessor Manual for Blackfin DSPs

VisualDSP++ 3.0 Linker and Utilities Manual for Blackfin DSPs
VisualDSP++ 3.0 Linker and Utilities Manual xvii
for Blackfin DSPs

Product Information
Online Technical Documentation
Online documentation comprises VisualDSP++ Help system and tools
manuals, Dinkum Abridged C++ library and FlexLM network license
manager software documentation. You can easily search across the entire
VisualDSP++ documentation set for any topic of interest. For easy print-
ing, supplementary .PDF files for the tools manuals are also provided.

A description of each documentation file type is as follows.

If documentation is not installed on your system as part of the software
installation, you can add it from the VisualDSP++ CD-ROM at any time
by rerunning the Tools installation.

Access the online documentation from the VisualDSP++ environment,
Windows Explorer, or Analog Devices website.

VisualDSP++ 3.0 Product Bulletin

VisualDSP++ Kernel (VDK) User’s Guide

VisualDSP++ Component Software Engineering User’s Guide

Quick Installation Reference Card

File Description

.CHM Help system files and VisualDSP++ tools manuals.

.HTML Dinkum Abridged C++ library and FlexLM network license manager software doc-
umentation. Viewing and printing the .HTML files require a browser, such as Inter-
net Explorer 4.0 (or higher).

.PDF VisualDSP++ tools manuals in Portable Documentation Format, one .PDF file for
each manual. Viewing and printing the .PDF files require a PDF reader, such as
Adobe Acrobat Reader (4.0 or higher).
 xviii VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Preface
From VisualDSP++

• Access VisualDSP++ online Help from the Help menu’s Contents,
Search, and Index commands.

• Open online Help from context-sensitive user interface items (tool-
bar buttons, menu commands, and windows).

From Windows

In addition to any shortcuts you may have constructed, there are many
ways to open VisualDSP++ online Help or the supplementary documenta-
tion from Windows.

Help system files (.CHM files) are located in the Help folder, and .PDF files
are located in the Docs folder of your VisualDSP++ installation. The Docs
folder also contains the Dinkum Abridged C++ library and FlexLM net-
work license manager software documentation.

Using Windows Explorer

• Double-click any file that is part of the VisualDSP++ documenta-
tion set.

• Double-click the vdsp-help.chm file, which is the master Help sys-
tem, to access all the other .CHM files.

Using the Windows Start Button

• Access VisualDSP++ online Help by clicking the Start button and
choosing Programs, VisualDSP, and VisualDSP++
Documentation.

• Access the .PDF files by clicking the Start button and choosing
Programs, VisualDSP, Documentation for Printing, and the
name of the book.
VisualDSP++ 3.0 Linker and Utilities Manual xix
for Blackfin DSPs

Product Information
From the Web

To download the tools manuals, point your browser at
http://www.analog.com/technology/dsp/developmentTools/

gen_purpose.html.

Select a DSP family and book title. Download archive (.ZIP) files, one for
each manual. Use any archive management software, such as WinZip, to
decompress downloaded files.

Printed Manuals
For general questions regarding literature ordering, call the Literature
Center at 1-800-ANALOGD (1-800-262-5643) and follow the prompts.

VisualDSP++ Documentation Set

VisualDSP++ manuals may be purchased through Analog Devices Cus-
tomer Service at 1-781-329-4700; ask for a Customer Service
representative. The manuals can be purchased only as a kit. For additional
information, call 1-603-883-2430.

If you do not have an account with Analog Devices, you will be referred to
Analog Devices distributors. To get information on our distributors, log
onto http://www.analog.com/salesdir/continent.asp.

Hardware Manuals

Hardware reference and instruction set reference manuals can be ordered
through the Literature Center or downloaded from the Analog Devices
website. The phone number is 1-800-ANALOGD (1-800-262-5643).
The manuals can be ordered by a title or by product number located on
the back cover of each manual.
 xx VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Preface
Datasheets

All datasheets can be downloaded from the Analog Devices website. As a
general rule, any datasheet with a letter suffix (L, M, N) can be obtained
from the Literature Center at 1-800-ANALOGD (1-800-262-5643) or
downloaded from the website. Datasheets without the suffix can be down-
loaded from the website only—no hard copies are available. You can ask
for the datasheet by a part name or by product number.

If you want to have a datasheet faxed to you, the phone number for that
service is 1-800-446-6212. Follow the prompts and a list of datasheet
code numbers will be faxed to you. Call the Literature Center first to find
out if requested datasheets are available.

Contacting DSP Publications
Please send your comments and recommendation on how to improve our
manuals and online Help. You can contact us by:

• Emailing dsp.techpubs@analog.com

• Filling in and returning the attached Reader’s Comments Card
found in our manuals

Notation Conventions
The following table identifies and describes text conventions used in this
manual.

� Additional conventions, which apply only to specific chapters, may
appear throughout this document.
VisualDSP++ 3.0 Linker and Utilities Manual xxi
for Blackfin DSPs

Notation Conventions
Example Description

Close command
(File menu)

Text in bold style indicates the location of an item within the
VisualDSP++ environment’s menu system. For example, the Close
command appears on the File menu.

{this | that} Alternative required items in syntax descriptions appear within curly
brackets and separated by vertical bars; read the example as this or
that.

[this | that] Optional items in syntax descriptions appear within brackets and sepa-
rated by vertical bars; read the example as an optional this or that.

[this,…] Optional item lists in syntax descriptions appear within brackets
delimited by commas and terminated with an ellipsis; read the example
as an optional comma-separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with
letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

A note, providing information of special interest or identifying a
related topic. In the online version of this book, the word Note appears
instead of this symbol.

A caution, providing information about critical design or program-
ming issues that influence operation of a product. In the online version
of this book, the word Caution appears instead of this symbol.
 xxii VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

1 LINKER

The VisualDSP++ linker, linker.exe, consumes object and library files

and produces executable files, which can be loaded onto the target proces-
sor or the simulator. It can also produce map files and other output,
containing information to be used by the debugger. Debug information is
embedded in the executable file.

This chapter contains:

• “Linking Process Overview” on page 1-3 — provides an overview
of linking process, introduces the Linker Description File, and
gives an overview of linking environment.

• “Getting Started” on page 1-7 — provides an overview of
VisualDSP++ environment, describes the memory map, inputs and
output code sources, the Linker Description File, and how the
LDF enables your code to run in your target environment to pro-
duce an executable.

• “Linker Guide” on page 1-30 — describes Linker Description File
syntax, LDF commands, macros and operators. and provides an
overview of programming techniques.

• “Advanced Linker Features and Commands” on page 1-62 —
describes memory overlays and how they are used with ADI DSPs
as well as advanced LDF commands.
VisualDSP++ 3.0 Linker and Utilities Manual 1-1
for Blackfin DSPs

• “Linker Command-Line Reference” on page 1-95 — lists linker
command-line switches and their syntax.

• “LDF Programming Examples” on page 1-109 — provides a series
of programming examples for different types of systems.

The VisualDSP++ linker is one of the components of the VisualDSP++
Integrated Development and Debugging Environment (VisualDSP++
IDDE) that provides complete graphical control of DSP project develop-
ment process.

� This chapter provide an overview of how to link executables for
single-processor systems, such as Blackfin’s ADSP-21535 and
ADSP-21532 DSPs. No multiprocessor support information is
provided in this manual.

Most code examples in this manual correspond to the use of the
ADSP-21535 DSP.
1-2 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
Linking Process Overview
Figure 1-1 illustrates the DSP software development flow. The process of
linking can be split into three phases:

1. Input — C (.C), C++ (.CPP), or assembly (.ASM) source files

2. Linking and the Linker Description File (LDF)

3. Output — an executable file (.DXE) as well as shared memory (.SM)
and overlay files (.OVL), where applicable

The process starts with source files, which contain code written in C, C++,
or assembly. The compiler, or the developer writing assembly code, will
organize each distinct sequence of instructions or data into named sec-
tions. These sections will become the main components acted upon by the
linker

 For more information about input files, see “Inputs — C/C++ and
Assembly Sources” on page 1-16.

Figure 1-1. Software Development Flow

S o u rc e F ile s
(.C a n d .A S M)

D e b u g g e r
(In -C ircu it E m u la to r,

S im u la to r , o r E Z -K IT L ite)

D e b u g g e r
(In -C ircu it E m u la to r,

S im u la to r , o r E Z -K IT L ite)

B o o t Im a g e
(.L D R)

B oo t K e rn e l
(.D X E)

B o o t K e rn e l
(.D X E)

L o a d e r

B o o t Im a g e
(.L D R)

B oo t K e rn e l
(.D X E)

B o o t K e rn e l
(.D X E)

L o a d e r

C o m p ile r &
A ss em b le r

O b je c t F ile s
(.D O J)

C o m p ile r &
A ss em b le r

O b je c t F ile s
(.D O J)

E xe cu ta b le
(.D X E)

L in k e r
D e s c rip tio n
F ile (.L D F)

L in ke r
D e sc rip tio n
F ile (.L D F)

L in k e r

E xe cu ta b le
(.D X E)

L in k e r
D e s c rip tio n
F ile (.L D F)

L in ke r
D e sc rip tio n
F ile (.L D F)

L in k e r

L in k e r
D e s c rip tio n
F ile (.L D F)

L in ke r
D e sc rip tio n
F ile (.L D F)

L in k e rL in k e r
VisualDSP++ 3.0 Linker and Utilities Manual 1-3
for Blackfin DSPs

Linking Process Overview
The next step towards producing an executable is compiling and/or assem-
bling sources into their respective object files (.DOJ). Each source file
produces one object file, comprise of object sections, such that each object
section is allocated and labeled according to its respective source file, as
shown on Figure 1-2.

Whether you want to link a C/C++ function or an assembly routine, the
mechanism is the same. Once all of the source files have been converted
into objects, the linker combines all of the objects into one integrated exe-
cutable file (.DXE) using directives in the Linker Description File (LDF).
This executable may be loaded into a simulator for testing.

Each DSP project must include one LDF file. The LDF specifies the link-
ing process by defining the target memory and the desired mapping of
code and data into DSP memory. You can write your own LDF or modify
an existing LDF, which is often the easier alternative if you are not dealing

Figure 1-2. Assembly Source and Object Section Names
1-4 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
with large changes in your system’s hardware or software. VisualDSP++
provides a default LDF to support default mapping for the selected DSP
chip.

Just like the object file, the executable consists of different segments,
known as Output Sections. Input Section names are completely indepen-
dent of the output section names. Because they exist in different
namespaces, you can have an input section name that is exactly the same
as an output section name.

� The executable file structure is dictated by the Executable and
Linkable Format (ELF) standard, to which the .DXE files conform.

Linker operations depend on two types of controls: linker options and
linker commands.

Linker options allow you to control how the linker processes your object
and library files, specifying such features as search directories, map file
output, and dead-code elimination. These options come from linker com-
mand-line switches (see “Linker Command-Line Reference” on
page 1-95) or, when used within the VisualDSP++ environment, from set-
tings on the Link page of the Project Options dialog box.

Linker commands, in your project’s Linker Description File, define the
memory map of your DSP system and the placement of your program’s
sections within DSP memory. You place the information needed to link
your code in the text of these commands.

� The VisualDSP++ environment treats the .LDF file as a source file
in the Project window, but this file acts only as command input to
the linker.
VisualDSP++ 3.0 Linker and Utilities Manual 1-5
for Blackfin DSPs

Linking Process Overview
Using commands in the LDF, the linker:

• Reads the input sections in object files and maps them to output
sections in the executable. More than one input section may be
placed in an output section.

• Maps each output section in the executable to a Memory Segment, a
contiguous range of memory addresses on the target DSP. More
than one output section can be placed into a single memory seg-
ment. See “LDF Syntax Overview” on page 1-28 for more
information. For a detailed description of the LDF commands,
refer to “Linker Guide” on page 1-30.
1-6 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
Getting Started
This section provides an overview of VisualDSP++ environment, describes
the memory map, inputs and output code sources, the Linker Description
File, and how it enables your code to run in your target environment to
produce an executable.

This section contains:

• “Linking Environment Overview”

• “Describing the Link Target” on page 1-10

• “Inputs — C/C++ and Assembly Sources” on page 1-16

• “LDF Overview” on page 1-18

• “Placing Code on the Target” on page 1-26

• “LDF Syntax Overview” on page 1-28

• “Outputs — DSP Executables” on page 1-28

Linking Environment Overview
VisualDSP++ IDDE is intuitive interactive interface for DSP program-
ming. When you open VisualDSP++, you have a work area that contains
everything you need to build, manage, and debug your DSP project,
including writing an .LDF file, mapping code or data to specific memory
segments in the .LDF file, and generating an executable file.

The linker runs from an operating system command line, which can be
issued manually or automatically from the VisualDSP++ environment.

Figure 1-3 shows the VisualDSP++ environment with the Project window
and an .LDF file open in the Editor window.
VisualDSP++ 3.0 Linker and Utilities Manual 1-7
for Blackfin DSPs

Getting Started
When using VisualDSP++, you can specify tool settings for your project
builds. You may modify the linker option settings in the VisualDSP++
IDDE. You can do this via the Link page of the Project Project Options
dialog box (selected in the Project menu). Figure 1-4 shows the Link
property page.

� Refer to VisualDSP++ online help for more information on
VisualDSP++ environment features. The online Help provides a
powerful search capability—to get information on a code item,
parameter or error, select this item in a window/pane and press F1
to display appropriate information.

Figure 1-3. VisualDSP++ Environment
1-8 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
Callouts refer to the corresponding linker command-line switches.
The Additional options field is used to enter the appropriate file names
and options that do not have corresponding controls on the Link page but
are available as linker switches. See “Linker Command-Line Reference” on
page 1-95 for more information).

The VisualDSP++ IDDE also features an Expert Linker which is a
VisualDSP++ graphical tool that allows you to interactively map code or
data to specific memory segments. The Expert Linker takes available
project information (object files, LDF macros, libraries and a target mem-
ory description) in an .LDF file as input and graphically displays it.

Figure 1-4. Specifying Linker Options
VisualDSP++ 3.0 Linker and Utilities Manual 1-9
for Blackfin DSPs

Getting Started
You can then use drag-and-drop techniques to arrange the object files in a
graphical memory mapping representation. When you are satisfied with
the memory layout, you can generate the executable file (.DXE).

Figure 1-5 shows the Expert Linker window with the Input Sections and
Memory Map (Output Sections) panes. Refer to Chapter 2 “Expert
Linker” for information on the Expert Linker.

Describing the Link Target
Before you define your DSP system’s memory and program placement
with linker commands, you must analyze the target DSP system and
describe it in terms that the linker can process. You then produce an .LDF
file for your project, which describes your system attributes:

• DSP system’s physical memory map

• Program placement within your DSP system’s memory map

Figure 1-5. Expert Linker Window
1-10 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
If you do not include an LDF, the linker uses a default LDF that matches
the -DPROCESSOR switch on the linker’s command line or VisualDSP++
processor selection option. The examples in this manual are for the
ADSP-21535 DSP.

ADSP-21535 DSP Memory Architecture Overview

This section is using the Blackfin ADSP-21535 DSP as an example for
describing memory architecture and memory map organization. Other
DSPs in the Blackfin DSP family have different memory architectures.

The Blackfin ADSP-21535 DSP includes the L1 memory sub-system,
with 16K-byte instruction SRAM/cache, a dedicated 4K-byte data
scratchpad, and 32K-byte data SRAM/cache, configured as two indepen-
dent 16K-byte banks (memories). Each independent bank can be
configured as SRAM or cache.

The ADSP-21535 DSP also has an L2 SRAM memory that provides
2M bits (256K bytes) of memory. The L2 memory is unified; that is, it is
directly accessible by the instruction and data ports of the ADSP-21535
DSP. The L2 memory is organized as a multi-bank architecture of sin-
gle-ported SRAMs (there are eight sub-banks in L2), such that multiple
accesses can occur in parallel, as long as they are to different banks.

There are two ports into the L2 memory: one dedicated to core requests,
the other dedicated to system DMA and PCI requests. The processor units
can process 8-, 16-, 32-, and 40-bit data, depending on the type of func-
tion being performed.

Figure 1-6 shows the ADSP-21535 DSP system block diagram.
VisualDSP++ 3.0 Linker and Utilities Manual 1-11
for Blackfin DSPs

Getting Started
The memory spaces are listed in Table 1-1. The address ranges not listed
in the table are reserved.

Figure 1-6. ADSP-21535 DSP System Block Diagram

Table 1-1. ADSP-21535 DSP Memory Map Addresses

Memory Range Range Description

0xFFE00000 - 0xFFFFFFFF Core MMR registers (2MB)

0xFFC00000 - 0xFFDFFFFF System MMR registers (2MB)

0xFFB00000 - 0xFFB00FFF Scratchpad SRAM (4K)

0xFFA00000 - 0xFFA03FFF Instruction SRAM (16K)

0xFF900000 - 0xFF903FFF Data Memory Bank 2 SRAM (16K)

0xFF800000 - 0xFF803FFF Data Memory Bank 1 SRAM (16K)
1-12 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
The memory sections (defined in Listing 1-1 on page 1-20) assume that
only L1 and L2 SRAM are available, and that L1 is unused. See the file
VisualDSP/Blackfin/lib/src/libc/basiccrt.s for the default startup
code, which can be made to initialize the L1 SRAM as cache for L2 (by
defining L1CACHE while assembling basiccrt.s).

� For memory architecture of your DSP system, refer to the appro-
priate Hardware Reference manual.

Representing Memory Architecture

Use the LDF’s MEMORY command to represent the memory architecture of
your DSP system. The linker uses this information to place your execut-
able file in the system’s memory. Use the following steps to write a MEMORY
command:

• List the ways that your program uses memory in your system. Typ-
ical uses for memory segments include interrupt tables,
initialization data, program code, data, heap space, and stack space.
Refer to “Specifying the Memory Map”.

• List the types of memory in your system and the address ranges of
each type of memory and word width. For Blackfin DSPs, memory
can be qualified as RAM or ROM.

0xF0040000 - 0xFF7FFFFF Reserved RAM

0xF0000000 - 0xF003FFFF L2 Memory Bank SRAM (256K)

0xEF000400 - 0xEFFFFFFF Reserved ROM

0xEF000000 - 0xEF0003FF Boot ROM (1K)

0x00000000 - 0xEEFFFFFF Unpopulated

Table 1-1. ADSP-21535 DSP Memory Map Addresses

Memory Range Range Description
VisualDSP++ 3.0 Linker and Utilities Manual 1-13
for Blackfin DSPs

Getting Started
Note: For Blackfin DSPs, word width is always 8 (bits). See
“INPUT_SECTION_ALIGN()” on page 1-48 for more
information.

• Construct a MEMORY command that combines the information in
these two lists to declare the memory segments in your system.
Use Listing 1-1 on page 1-20 as code example.

Specifying the Memory Map

Your program must conform to the constraints imposed by the processor’s
data path (bus) widths and addressing capabilities.The steps that follow
show a representative LDF associated with a hypothetical project. This
LDF specifies several memory segments that support the SECTIONS com-
mand (see Table 1-2).

The three steps involved in allocating memory for such a project are dem-
onstrated below:

1. Memory usage — Input section names are generated by the com-
piler or are specified in the assembly source code. Memory segment
names and output section names are defined in the LDF.

The default LDF handles all the input sections that might be gen-
erated by the compiler (the column “Input Section” in Table 1-2).
The produced .DXE file has appropriate “Output Section” for
which material (the corresponding “Input Section”) was found in
the project’s object file. Although not typically used by program-
mers, the output section labels are only used by downstream tools.

For example, you can invoke elfdump.exe to dump the contents of
the dxe_data1 output section of an executable file. See “ELF File
Dumper” on page B-1 for more information on this utility.
1-14 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
Table 1-2 shows Input - Output - Memory correspondences used
in the default ADSP-21535’s LDF.

� You can modify your LDF to allow for object placement into L1
memories when they are configured as SRAM.

2. Memory characteristics — Blackfin DSPs have a 32-bit addressing
range to support memory addresses from 0x0 to 0xFFFFFFFF.

Note: Some portions of the Blackfin DSP memory are reserved.
For more information, refer to the Memory chapter in the proces-
sor-specific Hardware Reference manual (also see Table 1-1).

3. Linker MEMORY{} Command — referring to steps 1 and 2, spec-
ify the target’s memory with the MEMORY{} command in Listing 1-1
on page 1-20.

Table 1-2. Memory vs. Sections Usage for ADSP-21535 LDF

Input Section Output Section Memory Section

program dxe_program MEM_PROGRAM

data1 dxe_program MEM_PROGRAM

constdata dxe_program MEM_PROGRAM

heap dxe_heap MEM_HEAP

stack dxe_stack MEM_STACK

sysstack dxe_sysstack MEM_SYSSTACK

bootup dxe_bootup MEM_BOOTUP

ctor dxe_program MEM_PROGRAM

argv dxe_argv MEM_ARGV
VisualDSP++ 3.0 Linker and Utilities Manual 1-15
for Blackfin DSPs

Getting Started
Inputs � C/C++ and Assembly Sources
The first step towards producing an executable is to compile or assemble
C, C++ or assembly source files into object files. The VisualDSP++ devel-
opment software gives object files a .DOJ extension.

The object files produced by the compiler (via the assembler) and by the
assembler itself consist of sections, referred to as Input Sections. Each input
section contains a particular type of compiled/assembled source code. For
example, an input section could hold program opcodes or data such as
variables (of various widths).

Some input sections also can contain information used to enable
source-level debugging and other VisualDSP++ IDDE features. The linker
maps each input section (via a corresponding output section in the execut-
able) to a Memory Segment, a contiguous range of memory addresses on
the target DSP. Each input section in the LDF has a unique name, which
you specify in the source code. Depending on whether the source is C,
C++ or assembly, there are different conventions for naming an input sec-
tion (see “LDF Overview” on page 1-18).

Input Section Directives in Assembly Code

The section directive defines a section in assembly source and must pre-
cede code or data in an assembly source file. For example,

.SECTION Library_Code_Space; /* Section Directive */

.global _abs;
_abs:
 R0 = ABS R0; /* Take absolute value of input */
 RTS;

 _abc.end

In this example, the VisualDSP++ assembler places the global sym-
bol/label _abs and the following code into the input section
Library_Code_Space, as it processes this file into object code.
1-16 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
 Section Directives in C/C++ Source Files

Typically, your code does not specify an input section name, and the com-
piler uses a default name. The default compiler section names are program
(for code) and data1 (for data); additional section names are defined in
LDF files for use by the linker.

In a C/C++ source file, you can use the optional section(“name”) C lan-
guage extension to define “Sections”. As the compiler processes the source
(as shown in the following example), the compiler stores the code gener-
ated from func1 in a separate section of the .DOJ file named ext_code and
the temp variable in the section called ext_data.

...
section("ext_data") int temp; /* section directive */
section("ext_code") void func1(void) { int x = 1; }
...

Note that the section(“name”) extension is optional as shown in the fol-
lowing example. For more information on LDF sections, refer to
“Specifying the Memory Map” on page 1-14.

section("ext_data") int temp;
section("external") void func1(void) { int x = 1; }
void func2(void) { return 13; } /* new */

For information on the compiler’s default section names, see the
VisualDSP++ C/C++ Compiler & Library Manual for Blackfin DSPs and
Table 1-2 on page 1-15 (column 1).

� It is important to identify the difference between Input Section
names, Output Section names, and Memory Segment names
because these types of names appear in the LDF. Usually, default
name conventions are used. However, there may be a situation
when you may want to specify non-default names. This happens
when various functions or variables (in the same source file) are to
be placed into different memory segments.
VisualDSP++ 3.0 Linker and Utilities Manual 1-17
for Blackfin DSPs

Getting Started
LDF Overview
The Linker Description File (LDF) is used to direct linking operation by
mapping code or data to specific memory segments. The linker maps your
program code (and data) within the system memory and processor(s),
assigning an address to every global symbol, where

symbol = label/function_name or variable name)

If you neither write nor import an LDF into your project, the
VisualDSP++ IDDE uses a default LDF to link your code. The default
LDF is based on the processor specified in the project options. The default
LDF file is packaged with your DSP tool distribution kit in a subdirectory
specific to your target processor's family (for example, Blackfin DSPs or
TigerSHARC DSPs).

One default LDF is provided for each DSP supported by your
VisualDSP++ installation. The default LDF reflects your target processor
architecture, as specified by your project’s options, and is set according the
“processor” selection.

You can use your own LDF. However, modifying an existing or a default
LDF is often the easier alternative if you are not dealing with large
changes in your system’s hardware or software.

Figure 1-7 shows how the LDF combines information, directing the linker
to place program sections in an executable according to the memory avail-
able in the DSP system.
1-18 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
� The linker may output warning messages and error messages. Be
sure to resolve errors to enable the linker to produce valid output.
See “Linker Error and Warning Messages” on page 1-43 for more
information.

The linking process is based on the following:

1. Each source file produces one object file.

2. Your source code specifies one or more input sections as destina-
tions for its compiled/assemble object(s).

3. The compiler and assembler produce object code, with labels
directing which portion(s) are allocated to which input sections.

Figure 1-7. LDF File in Linking Process

LINKER
DESCRIPTION

(.LDF)

C SOURCE
(.C)

EXECUTABLE
PROGRAM

(.DXE)

TARGET
SYSTEM

ASSEMBLY
SOURCE
(.ASM)

C++ SOURCE
(.CPP .CXX)
VisualDSP++ 3.0 Linker and Utilities Manual 1-19
for Blackfin DSPs

Getting Started
4. The linker maps each input section in the object code to an output
section, as directed by the LDF.

5. The linker maps each output section to a memory segment, which
is a contiguous range of memory on the target, as specified by the
LDF.

� Each input section may contain multiple code items, but a code
item appears in only one input section. More than one input sec-
tion can be placed in any output section. Each memory segment
may have its own (allowed) width. Contiguous addresses on differ-
ent-width hardware must be in different segments. More than one
output section may map to a single memory segment if these out-
put sections fit completely in the memory segment.

Listing 1-1 shows an example of a basic LDF file (formatted for easy read-
ing). Note that this LDF file includes two commands (MEMORY and
SECTIONS) that combine program and system information. For more infor-
mation refer to “Notes on Basic LDF Example” on page 1-22.

� Other LDF examples for assembly and C source files are in “LDF
Programming Examples” on page 1-109.

Listing 1-1. Default Sample LDF -- Basic Example

ARCHITECTURE(ADSP-21535)
SEARCH_DIR($ADI_DSP\Blackfin\lib)
$OBJECTS = CRT, $COMMAND_LINE_OBJECTS ENDCRT;

MEMORY /* Define/label system memory */
{ /* List of global Memory Segments */
 MEM_L2
 { TYPE(RAM) START(0xF0000000) END(0xF002FFFF) WIDTH(8) }
 MEM_HEAP
 { TYPE(RAM) START(0xF0030000) END(0xF0037FFF) WIDTH(8) }
 MEM_STACK
 { TYPE(RAM) START(0xF0038000) END(0xF003DFFF) WIDTH(8) }
 MEM_SYSSTACK
 { TYPE(RAM) START(0xF003E000) END(0xF003FDFF) WIDTH(8) }
1-20 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
 MEM_ARGV
 { TYPE(RAM) START(0xF003FE00) END(0xF003FFFF) WIDTH(8) }
}

PROCESSOR p0 /* The processor in the system */
{
 OUTPUT($COMMAND_LINE_OUTPUT_FILE)

 SECTIONS
 { /* List of sections for processor P0 */

 dxe_L2
 {
 INPUT_SECTION_ALIGN(2)
 /* Align all code sections on 2 byte boundary */
 INPUT_SECTIONS($OBJECTS(program) $LIBRARIES(program))
 INPUT_SECTION_ALIGN(1)
 INPUT_SECTIONS($OBJECTS(data1) $LIBRARIES(data1))
 INPUT_SECTION_ALIGN(1)
 INPUT_SECTIONS($OBJECTS(constdata)
 $LIBRARIES(constdata))
 INPUT_SECTION_ALIGN(1)
 INPUT_SECTIONS($OBJECTS(ctor) $LIBRARIES(ctor))
 } >MEM_L2

 stack
 {
 ldf_stack_space = .;
 ldf_stack_end =
 ldf_stack_space + MEMORY_SIZEOF(MEM_STACK) - 4;
 } >MEM_STACK

 sysstack
 {
 ldf_sysstack_space = .;
 ldf_sysstack_end =
 ldf_sysstack_space + MEMORY_SIZEOF(MEM_SYSSTACK) - 4;
 } >MEM_SYSSTACK

 heap
 { /* Allocate a heap for the application */
 ldf_heap_space = .;
 ldf_heap_end =
 ldf_heap_space + MEMORY_SIZEOF(MEM_HEAP) - 1;
VisualDSP++ 3.0 Linker and Utilities Manual 1-21
for Blackfin DSPs

Getting Started
 ldf_heap_length = ldf_heap_end - ldf_heap_space;
 } >MEM_HEAP

 argv
 { /* Allocate argv space for the application */
 ldf_argv_space = .;
 ldf_argv_end =
 ldf_argv_space + MEMORY_SIZEOF(MEM_ARGV) - 1;
 ldf_argv_length =
 ldf_argv_end - ldf_argv_space;
 } >MEM_ARGV

 } /* end SECTIONS */

} /* end PROCESSOR p0 */

As previously noted, the linker is automatically invoked for builds using
the VisualDSP++ IDDE, but can also be run from the command line.

Notes on Basic LDF Example

In the following discussion, commands for connecting your program to
the target DSP are MEMORY and SECTIONS. For information on all LDF
commands and their syntax, see “Linker Guide” on page 1-30.

You can define new symbols within the LDF; this example defines the
starting stack address, the highest possible stack address, and the heap’s
starting location and size. These newly created symbols are entered in the
executable’s symbol table.The INPUT_SECTIONS statement specifies the
object file that the linker uses to resolve the mapping.
1-22 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
These notes describe the features of the LDF presented in Listing 1-1.

• ARCHITECTURE(x) names the target architecture. It thereby specifies
possible memory widths and address ranges, the register set, and
other structural information for use by the debugger, linker, loader,
splitter and utility software. The target architecture (x) must be
installed in VisualDSP++.

• SEARCH_DIR specifies path name(s) to search for libraries and object
files. This example shows one search directory, the single argument
to the SEARCH_DIR command. For more information, see
“SEARCH_DIR()” on page 1-55.

The linker can support a sequence of search directories presented as
an argument list (dir1, dir2,...). When searching for an object
or library file, the linker follows this sequence and stops at the first
match.

• $OBJECTS is an example of a string macro, which are used to make
the LDF easier to read; you can substitute short macros for long
text strings. While conceptually similar to preprocessor macro sup-
port (#defines), also available in the LDF, the string macros are
independent. In this listing, $OBJECTS is synonymous with
$COMMAND_LINE_OBJECTS, and expands to a comma-delimited list of
object files to be linked together.

Note: In this code example and in the default LDFs accompanying
VisualDSP++, $OBJECTS is used in the SECTIONS() command to
specify which object files should be searched for specific INPUT
SECTIONS.

For example, $ADI_DSP expands to the home directory for
VisualDSP++.

• $COMMAND_LINE_OBJECTS (see more on page 1-41) is an LDF com-
mand-line macro, which expands to list all of the input object
(.DOJ) files in the linker’s command line. Remember that all linker
VisualDSP++ 3.0 Linker and Utilities Manual 1-23
for Blackfin DSPs

Getting Started
invocations from the VisualDSP++ IDDE have command-line
equivalents. When using VisualDSP++, $COMMAND_LINE_OBJECTS
includes the .DOJ file from every source file in the VisualDSP++
Project window.

Note: The order in which the linker processes object files (for
example, the order in which input sections and symbols are
assigned addresses in memory segments) is determined by the order
that they are listed in the SECTIONS() command. As noted above,
this order is the typically the order listed in
$OBJECTS ($COMMAND_LINE_OBJECTS).

VisualDSP++ currently uses a linker’s command line that lists
objects in alphabetical order which carries through to the $OBJECTS
macro. One may customize the LDF to link objects in any order
desired. Rather than use macros such as $OBJECTS as the defaults
do, each INPUT_SECTION command could have one or more explicit
object names. The following examples are functionally identical.

$DOJS = main.doj, fft.doj;

dxe_program { INPUT_SECTIONS($DOJS(program)) > mem_program

dxe_program { INPUT_SECTIONS(main.doj(program)

fft.doj(program)) } > mem_program

• Each PROCESSOR command (see more on page 1-53) encapsulates
the linker commands to generate a single executable.

• The MEMORY command (see more on page 1-50) defines the target
system’s physical memory. Its argument list partitions memory into
memory segments and assigns labels to each, specifying start and
end addresses, memory width and memory type (program, data,
stack...). It thereby connects your program to the target system.
1-24 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
Note: Memory segments must have distinct names; however, the
memory names occupy different namespaces from input section
and output section names. Therefore, a memory segment and an
output section may have the same name. In this example, the mem-
ory segment and output section are named as MEM_L2 and DXE_L2
because the memory holds both program (program) and data
(data1) information.

• The OUTPUT() command (see more on page 1-54) directs the linker
to produce an executable (.DXE) file, specifying the filename. In
this listing, the argument to the OUTPUT command is the
$COMMAND_LINE_OUTPUT_FILE macro (see more on page 1-41).

Therefore, the linker names the executable according to the text
following the -o switch (which corresponds to the name specified
in the Project Options tab when the linker is invoked through the
VisualDSP++ IDDE).

 linker ... -o outputFilename

• SECTIONS (see more information on page 1-56) defines the place-
ment of code and data in physical memory. The linker takes
sections from object files as inputs, places them in output sections,
and maps output sections to the memory segments declared in the
MEMORY command.

The INPUT_SECTIONS command can be interspersed within an out-
put section with other directives, including location counter
information (see more information on page 1-58).

The INPUT_SECTIONS statement specifies the object file that the linker uses
as an input to resolve the mapping to the appropriate MEMORY segment
declared in the LDF. For example, in Listing 1-1, two input sections
(program and data1) are mapped into one memory segment (L2), as
shown below.
VisualDSP++ 3.0 Linker and Utilities Manual 1-25
for Blackfin DSPs

Getting Started
 dxe_L2

1 INPUT_SECTIONS_ALIGN (2)

2 INPUT_SECTIONS($OBJECTS(program)

 $LIBRARIES(program))

 3 INPUT_SECTIONS_ALIGN (1)
4 INPUT_SECTIONS($OBJECTS(data1)

 $LIBRARIES(data1))

 }>MEM_L2

• The second line directs the linker to place the object code assem-
bled from the source file's “program” input section (via the
“.section program” directive in the assembly source file), place the
output object into the “DXE_L2” output section, and map it to the
"MEM_L2" memory segment. The fourth line does the same for the
input section “data1” and output section “DXE_L2”, mapping them
to the memory segment “MEM_L2”.

• The two pieces of code follow each other in the program memory
segment. The INPUT_SECTIONS() commands are processed in order,
so the program sections appear first, followed by the data1 sec-
tions. The program sections will appear in the order the object files
appear in the $OBJECTS macro.

Placing Code on the Target
As the simple example above shows, the SECTIONS() command defines the
mapping of code and data into the physical memory of a processor in a
DSP system.

To write a linker SECTIONS{} command (per system architecture in
Figure 1-6 on page 1-12 and Listing 1-1 on page 1-20):

1. List the input sections defined by your source code.

When using an assembly file, list each of the assembly code
.SECTION directives in your DSP program, identifying their mem-
1-26 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
ory types (program or data1) and noting when location is critical to
their operation. These .SECTIONS portions include interrupt tables,
data buffers, and on-chip code or data.

When using a C/C++ source file, remember the compiler will gen-
erate sections with the names program and data1 for the code and
data. These sections correspond to your source if you do not spec-
ify a section through the section() operator.

2. Compare this list with the segments you defined in the MEMORY
command, identifying the memory segment in which each
.SECTION must be placed.

3. Combine the information from these two lists to write one or more
linker SECTIONS{} command(s). Combining the information from
steps 1 and 2, you could specify how to place code for the system
with the SECTIONS{} command in Listing 1-1 on page 1-20.

� SECTIONS() command always must appear within the context of a
PROCESSOR() or SHARED_MEMORY() command.

Passing Arguments for Simulation/Emulation
To support simulation/emulation, the linker should get the start address
and buffer length of the argument list from the ARGV section of the .LDF
file (see in Listing 1-1).

To set the address, you just have to edit your .LDF file (see changes in the
.LDF file in Listing 1-1):

1. In the MEMORY{} section, add a line to define the MEM_ARGV section.

2. Add a command to define the ARGV section and the values for
ldf_argv_space, ldf_argv_length, and ldf_argv_end.
VisualDSP++ 3.0 Linker and Utilities Manual 1-27
for Blackfin DSPs

Getting Started
If you modify the .LDF file and change the start or end of the MEM_ARGV sec-
tion within the .LDF file, update the entry in the VisualDSP++ IDDE as
well, via the following menu selection:

Settings->Simulator->Command Line Arguments->Command Line
Arguments Base Address

Refer to VisualDSP++ 3.0 User's Manual for Blackfin DSPs or online Help
for more information on simulator and command-line arguments.

� Do not try to use command-line arguments for ADSP-21535
linked programs without first modifying the .LDF file to allocate a
buffer suitable for your application.

LDF Syntax Overview
The LDF allows you to develop code for any system that contains a DSP.
The syntax of the LDF defines your system to the linker and specifies how
the linker processes executable code for your system. The LDF uses com-
mands, expression, operators, macros and keywords to control code
development and execution. Refer to “Linker Guide” on page 1-30 for
more information.

Outputs � DSP Executables
After you have compiled or assembled source files into object files, use the
linker to combine all of the object files into one integrated executable file.
By default, the development software gives executable files an .DXE
extension.

 Like object files, the executable is partitioned into Output Sections with
their own names. These output sections are defined by the ELF (Execut-
able and Linking Format) file standard that the development software
conforms to for executable files.
1-28 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
� The executable’s input and output section names occupy different
namespaces. Because they are independent of each other, you may
have sections with the same names. The linker uses input section
names as the labels in order to find the corresponding input sec-
tions within object files.

� It is important to understand the function of the .DXE executable
file. It is not loaded into the DSP, nor is it burned into an
EPROM. The .DXE file contains the raw code and data from the
object files, along with additional information which is used by
utilities (such as the debugger) to locate code in the target (DSP,
simulator, ICE, ...).

The loader is used to process the .DXE executable file to generate a
boot-loadable file for your target system. Refer to Chapter 3
“Loader” for more loader information.

Getting Started Summary
The “Getting Started” section showed how to assign code and data to
memory and how to create an executable. It is recommended to use the
linker’s predefined macros for file searches, input, and output in order to
write simple, maintainable linker description files.

For more information, see “Linker Guide” on page 1-30, “LDF Macros”
on page 1-40, and “LDF Programming Examples” on page 1-109.

After your .DXE file is created, use the simulator or emulator to test it.
Refer to the VisualDSP++ 3.0 User’s Guide for Blackfin DSPs for more
information on code testing and debugging.
VisualDSP++ 3.0 Linker and Utilities Manual 1-29
for Blackfin DSPs

Linker Guide
Linker Guide
The Linker Description File (LDF) allows you to develop a code for any
system that contains a DSP. The syntax of the LDF lets you define your
system to the linker and specify how the linker processes executable code
for your system. This reference describes LDF syntax and provides LDF
examples for typical systems.

This section contains:

• “LDF Structure” on page 1-31

• “LDF Expressions and Conventions” on page 1-32

• “Linker Keywords, Commands and Operators” on page 1-34

• “LDF Operators” on page 1-35

• “LDF Macros” on page 1-40

• “LDF Command Summary” on page 1-44

� Because the linker runs the preprocessor on the LDF, you can use
preprocessor commands (such as #defines) within your LDF. For
information on preprocessor commands, see the VisualDSP++ 3.0
Assembler and Preprocessor Manual for Blackfin DSPs.

Refer to “LDF Programming Examples” on page 1-109 for LDF
examples and discussions supporting several typical system models
and source files.

� The Blackfin DSP architecture does not support MULTIPROCESSOR,
PACKING, and SHARED_MEMORY commands.
1-30 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
LDF Structure
One way to produce a simple, maintainable LDF is to structure the file so
that it parallels the structure of your DSP system. Using your system as a
model, follow these guidelines for structuring your LDF:

• Split the LDF into a set of PROCESSOR{} commands, one for each
DSP in your system.

• Put each MEMORY{} command in the LDF scope that matches your
system, defining memory that is unique to a processor within the
scope of the corresponding PROCESSOR{} command. Define com-
mon memory definitions (shared) are declared in the global LDF
scope, before any PROCESSOR{} commands.

• Place the SHARED_MEMORY{} command in the global LDF scope if
they apply to your system. This command represents system
resources available as shared resources.

For more information on LDF structure, see “Describing the Link Target”
on page 1-10, “Placing Code on the Target” on page 1-26, and “LDF Pro-
gramming Examples” on page 1-109.

Command Scoping

The two LDF scopes are global and command. A command scope applies to
all commands that appear between the braces { } of another command,
such as a PROCESSOR{} or PLIT{} command.

The global scope occurs outside commands. Commands and expressions
that appear in the global scope are available globally and visible in all sub-
sequent scopes.

The effects of commands and expressions that appear in the command
scopes are limited to those scopes. Note that LDF macros are available
globally, regardless of the scope where the macro is defined (see “LDF
Macros” on page 1-40).
VisualDSP++ 3.0 Linker and Utilities Manual 1-31
for Blackfin DSPs

Linker Guide
Figure 1-8 demonstrates some scoping issues.

For example, the MEMORY{} command that appears in the global LDF
scope is available in all the command scopes, but the MEMORY{} commands
that appear in the command scopes are restricted to those scopes.

LDF Expressions and Conventions
Table 1-3 lists the linker’s non-keyword operators and conventions.

Figure 1-8. LDF Command Scoping Example

Table 1-3. Linker Non-Keyword Operators and Conventions

Convention Description

. A dot in an address expression refers to the current location counter
(described on page 1-39).

0xnumber A “0x” prefix indicates a hexadecimal number

MEMORY{}
{

TYPE
START
LENGTH\END
WIDTH

}

PROCESSOR P0
{

OUTPUT()
MEMORY{}
SECTIONS{}
RESOLVE{}

}

Scope of MEMORY {}

Scope of PROCESSOR P0 {}

Global

LDF

Scope
1-32 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
Linker commands may contain arithmetic expressions. These expressions
follow the same syntax rules as C/C++ language expressions. The linker
handles expressions as follows.

• The linker evaluates all expressions as type unsigned long and
treats all constants as type unsigned long.

• The linker supports all C/C++ language arithmetic operators.

• The linker lets you define and refer to symbolic constants in the
linker description file.

• The linker lets you refer to global variables in the program being
linked.

• The linker recognizes labels conforming to the following
constraints:

• Must start with a letter, underscore, or point
• May contain any letters, underscores, digits, and points
• Are white space delimited
• Do not conflict with any keywords, and are unique

number A number without a prefix is a decimal number

numberk (or K) A decimal number multiplied by 1024

/* comment */ C style comments: can cross newline boundaries until */ is encoun-
tered.

// comment A “//” string precedes single-line C++ style comments

Table 1-3. Linker Non-Keyword Operators and Conventions (Cont’d)

Convention Description
VisualDSP++ 3.0 Linker and Utilities Manual 1-33
for Blackfin DSPs

Linker Guide
Linker Keywords, Commands and Operators
Descriptions of linker keywords from Table 1-4 appear in the following
sections.

• “Miscellaneous LDF Keywords” on page 1-35

• “LDF Operators” on page 1-35

• “LDF Macros” on page 1-40

• “LDF Command Summary” on page 1-44

� Keywords are case-sensitive; the linker only recognizes a keyword
when the entire word is in UPPERCASE letters.

Table 1-4. Linker Keywords Summary

ABSOLUTE ADDR ALGORITHM

ALIGN ALL_FIT ARCHITECTURE

BEST_FIT BOOT COMAP

DEFINED DYNAMIC

ELIMINATE ELIMINATE_SECTIONS END

FALSE FILL FIRST_FIT

INCLUDE INPUT_SECTION_ALIGN INPUT_SECTIONS

KEEP LENGTH LINK_AGAINST

MAP MEMORY MEMORY_SIZEOF

NUMBER_OF_OVERLAYS OUTPUT

OVERLAY_GROUP OVERLAY_ID OVERLAY_INPUT

OVERLAY_OUTPUT PACKING PLIT

PLIT_DATA_
OVERLAY_IDS

PLIT_SYMBOL_
ADDRESS

PLIT_SYMBOL_
OVERLAYID

PROCESSOR RAM
1-34 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
Miscellaneous LDF Keywords
The miscellaneous linker keywords are not operators, macros, or com-
mands. They are:

• BOOT—Boot memory from which a Blackfin DSP can be booted.

• FALSE—A constant with a value of 0.

• TRUE—A constant with a value of 1.

• XREF—A cross-reference option setting.

For more information about other linker keywords, see “LDF Operators”
on page 1-35, “LDF Macros” on page 1-40 and “LDF Command Sum-
mary” on page 1-44.

LDF Operators
LDF operators in expressions support memory address operations. Expres-
sions containing these operators terminate with a semicolon, except when
you use the operator as a variable for an address. The linker responds to
several LDF operators: ABSOLUTE, ADDR, DEFINED, MEMORY_SIZEOF, SIZEOF,
and . (location counter).

RESOLVE RESOLVE_LOCALLY ROM

SEARCH_DIR SECTIONS SHARED_MEMORY

SHT_NOBITS SIZE SIZEOF

START TRUE TYPE

VERBOSE WIDTH XREF

Table 1-4. Linker Keywords Summary (Cont’d)
VisualDSP++ 3.0 Linker and Utilities Manual 1-35
for Blackfin DSPs

Linker Guide
ABSOLUTE () Operator

Syntax:

 ABSOLUTE(expression)

The linker returns the value “expression”. Use it to assign an absolute
address to a symbol. The expression can be:

• A symbolic expression, in parentheses. Note that

ldf_start_expr = ABSOLUTE((start + 8));

gives ldf_start_expr the value corresponding to the address of the
symbol start, plus 8, as in

Ldf_start_expr = start + 8;

• An integer in one of the following forms: hexadecimal, decimal, or
decimal followed by “K” for kilo (x 1024) or “M” for Mega (x 1024
x 1024).

• The period, indicating the current location (see “Location Counter
(.)” on page 1-39).

• The statement defining the bottom of stack space in the LDF

 ldf_stack_space = .;

could also be written as

ldf_stack_space = ABSOLUTE(.);

• A symbol name.
1-36 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
ADDR(section name) Operator

Syntax:

 ADDR(section_name)

This operator returns the start address of the named section � an “output
section” defined in the LDF. The operator is useful for assigning a sec-
tion’s absolute address to a symbol. For example, if an .LDF file defines
some output sections as:

 Program
 {
 INPUT_SECTIONS($OBJECTS(program) $LIBRARIES(program))
 }> MEM_PROGRAM

 ctor
 {
 INPUT_SECTIONS($OBJECTS(program) $LIBRARIES(program))
 }> MEM_PROGRAM

then the LDF may contain the command

 ldf_start_ctor = ADDR(ctor)

The linker generates the constant ldf_start_ctor, assigning the start
address of the ctor output section.

DEFINED Operator

Syntax:

 DEFINED(symbol)

The linker returns the value 1 if the symbol appears in the linker’s symbol
table and the value 0 if the symbol is not defined. This operator is useful
for assigning default values to symbols.
VisualDSP++ 3.0 Linker and Utilities Manual 1-37
for Blackfin DSPs

Linker Guide
For example, if an assembly object linked by the LDF defines the global
symbol test, then the statement

 test_present = DEFINED(test)

sets the constant test_present to 1; otherwise the constant will have the
value 0.

MEMORY_SIZEOF Operator

Syntax:

 MEMORY_SIZEOF(segment_name)

This operator returns the size, in words, of the memory segment
segment_name. This operator is useful when knowing a segment’s size
helps with moving the current location counter to an appropriate location.

The following code example (from a default LDF) demonstrates use of the
location counter and the MEMORY_SIZEOF operator to set linker-generated
constants.

 sec_stack {
 ldf_stack_limit = .;
 ldf_stack_base = . + MEMORY_SIZEOF(mem_stack) - 1;
 } > mem_stack

This code example defines the sec_stack section to consume the entire
mem_stack segment.

SIZEOF Operator

Syntax:

 SIZEOF(section_name)

This operator returns the size, in bytes, of the section section_name.
1-38 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
The operator is useful when knowing a section’s size helps with moving
the current location counter to an appropriate memory location.

The following fragment of LDF defines an LDF constant _sizeofdata1
whose value is the size of the section data1.

 Data1
 {
 INPUT_SECTIONS($OBJECTS(data1) $LIBRARIES(data1))
 _sizeofdata1 = SIZEOF(data1);
 } > MEM_DATA1

Location Counter (.)

The linker treats a . (period) surrounded by spaces as the symbol for the
current location counter. Because “. “ only refers to a location in an out-
put section, this operator may only appear within an output section in a
SECTIONS{} command.

When manipulating the . operator:

• Use it anywhere that a symbol is allowed in expressions.

• Assigning a value to the . operator moves the location counter,
leaving voids or gaps in memory.

• The location counter may not be decremented.

For an example of location counter usage, see the sample code in
Listing 1-1 on page 1-20.
VisualDSP++ 3.0 Linker and Utilities Manual 1-39
for Blackfin DSPs

Linker Guide
LDF Macros
Macros are names of text strings. They may be assigned values, textual or
procedural, or simply declared to exist. The linker supports three way of
treating macros in LDFs:

• Substituting the string value for the name. Normally the string
value is longer than the name, so the macro “expands” to its textual
length.

• Performing actions conditional on the existence or value of the
macro.

• Assigning a value to the macro, possibly as the result of a proce-
dure, then use that value in further processing.

Some macros are built-ins, with predefined procedures or values, which
may be system-specific. These are called linker (or LDF) macros, and are
described in this section. Others, called user macros, are user-defined.

Macros are identified with leading dollar signs ($).

LDF macros funnel input from the linker command line into predefined
macros and provide support for user-defined macro substitutions. Linker
macros are available globally in the LDF regardless of where they are
defined. For more information on these topics, see “Command Scoping”
on page 1-31 and “LDF Macros and Command-Line Interaction” on
page 1-42.

� LDF macros are independent of preprocessor macro support which
is also available in the LDF. Preprocessor macros (or other prepro-
cessor commands) are placed by the preprocessor into source files.
The preprocessor macros are useful for repeating instruction
sequences in your source code or defining symbolic constants.
These macros facilitate text replacement, file inclusion, and condi-
1-40 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
tional assembly and compilation. For example, the assembler’s
preprocessor use the #define command to define macros and sym-
bolic constants.

Refer to VisualDSP++ 3.0 C/C++ Compiler & Library Manual for
Blackfin DSPs and VisualDSP++ 3.0 Assembler and Preprocessor
Manual for Blackfin DSPs for more information on preprocessor
functions.

LDF Macro List

The linker provides the following LDF macros:

• $COMMAND_LINE_OBJECTS

The linker expands into the list of object (.DOJ) and library (.DLB)
files that are input on the linker’s command line. Use this macro
within the INPUT_SECTIONS{} syntax of the linker’s SECTIONS{}
command. This macro provides a comprehensive list of object file
input that the linker searches for input sections.

• $COMMAND_LINE_LINK_AGAINST

The linker expands to the list of executable (.DXE or .SM) files that
are input on the linker’s command line. For multiprocessor links,
this macro is useful within the RESOLVE() and PLIT{} syntax of the
linker’s SECTIONS{} command. This macro provides a comprehen-
sive list of executable file input that the linker searches when
resolving external symbols.

• $COMMAND_LINE_OUTPUT_FILE

The linker expands to the output executable file name, which is set
with the linker’s -o switch. This file name corresponds to the
VisualDSP++ 3.0 Linker and Utilities Manual 1-41
for Blackfin DSPs

Linker Guide
<projectname.dxe> set via VisualDSP++ Project settings. Use this
macro only once in your LDF for file name substitution within an
OUTPUT() command.

• $ADI_DSP

The linker expands this macro into the path to the installation
directory. Use this macro to control how the linker searches for
files.

• $macro = file1, file2, file3, ... ;

The linker supports user-defined macros for file lists. Use this syn-
tax to define $macro as a comma-delimited file1, file2, etc.
After you define a $macro, the linker substitutes files for the
$macro where it subsequently appears in the LDF. Terminate a
$macro declaration with a semicolon. The linker processes the files
in the order that they appear.

LDF Macros and Command-Line Interaction

Whether you run the linker automatically from the VisualDSP++ IDDE
or explicitly from a command line, the linker gets its commands through a
command-line interface. Many linker operations, such as input, output,
and link-against files can be controlled through the command line entries.
Using LDF macros, you can apply these command-line inputs throughout
your LDF.

Whether you should use the command-line inputs in the LDF or control
the linker with LDF code depends on these two criteria:

• Writing an .LDF file that uses command-line inputs can produce a
more generic LDF that you can use for multiple projects. Because
you can only specify a single output from the command line, an
.LDF file that relies on command-line input should be written to
produce one output file for a single-processor system.
1-42 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
• Writing an .LDF file that does not use command-line inputs can pro-
duce a more specific LDF that you can use with more complex
linker features.

Linker Error and Warning Messages
The linker writes link warnings and errors to the VisualDSP++ Output
window (or standard output in the command-line version of the linker).
Linker warning and error messages describe problems that the linker
encountered when processing the Linker Description File.

A linker warning message indicates a processing error which does not keep
the linker from producing a valid output file. For example, the presence of
an unused symbol in your code will produce a warning.

The linker issues an error message when it encounters an error that pre-
vents it from producing a valid output file. Typically, these messages
include the LDF name, line number containing the error, and a brief
description of the error condition.

For example,

>linker -T nofile.ldf

[Error li1002] The linker description file 'NOFILE.LDF'
could not be found

Linker finished with 1 error(s) 0 warning(s)

When developing within the VisualDSP++ environment, the Output win-
dow’s Build page displays project build status and error messages. In most
cases, you can double-click on a message or error number to display the
line in the source file that contains the error. You can access all linker’s
error messages and their descriptions through Error Messages in the
VisualDSP++ online Help.
VisualDSP++ 3.0 Linker and Utilities Manual 1-43
for Blackfin DSPs

Linker Guide
Some build errors—such as a bad or missing cross-reference to an object
or executable file—do not correlate directly to source files. These errors
often stem from omissions in the LDF.

For example, if an input section from the object file is not placed by the
LDF, there will be a cross-reference error in every object that refers to
labels in the missing section. You can solve this problem by reviewing the
LDF and correcting it by specifying all sections that need placement.

For more information, see the VisualDSP++ 3.0 User's Manual for Blackfin
DSPs

LDF Command Summary
Commands in the LDF define the target system and specify the order in
which the linker processes output for that system. Linker commands oper-
ate within a scope, influencing the operation of other commands that
appear within the range of that scope. For more information, see “Com-
mand Scoping” on page 1-31.

This linker supports the following LDF commands:

• “ALIGN()” on page 1-45

• “ARCHITECTURE()” on page 1-45

• “ELIMINATE()” on page 1-47

• “ELIMINATE_SECTIONS()” on page 1-47

• “DYNAMIC()” on page 1-46

• “INCLUDE()” on page 1-47

• “INPUT_SECTION_ALIGN()” on page 1-48

• “KEEP()” on page 1-49

• “LINK_AGAINST()” on page 1-49

• “MAP(filename)” on page 1-50
1-44 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
• “MEMORY{}” on page 1-50

• “OVERLAY_GROUP{} Command” on page 1-82

• “PLIT{} Command” on page 1-86

• “PROCESSOR{}” on page 1-53

• “RESOLVE()” on page 1-55

• “SEARCH_DIR()” on page 1-55

• “SECTIONS{}” on page 1-56

� The Blackfin DSP architecture currently does not support
MULTIPROCESSOR, PACKING, and SHARED_MEMORY commands.

ALIGN()

The linker uses the ALIGN(address_boundary_expression) command to
align the address of the current location counter to the next address that is
a multiple (power of 2) of address_boundary_expression. The
address_boundary_expression is a word boundary (address), which
depends on the word size of the segment where the ALIGN() is taking place.

ARCHITECTURE()

The ARCHITECTURE() command specifies the processor in your target sys-
tem. Your LDF may contain only one ARCHITECTURE() command. The
command must appear with global LDF scope, applying to the entire
linker description file. The syntax for this command is:

 ARCHITECTURE(processor)

The ARCHITECTURE() command is case sensitive. Hence, ADSP-21535 is a
legal value but adsp-21535 is not.
VisualDSP++ 3.0 Linker and Utilities Manual 1-45
for Blackfin DSPs

Linker Guide
If you do not specify the target processor with the ARCHITECTURE() com-
mand, it must be in the command line (linker -D<architecture> ...).
Otherwise, the linker cannot link your program. If the processor-specific
MEMORY{} commands in the LDF conflict with the processor type, the
linker issues an error message and halts.

� To test whether your VisualDSP++ installation accommodates a
particular processor, type:

linker -D<your target architecture>

at a command line. If the architecture is not installed, the linker
prints out a message to that effect.

DYNAMIC()

The DYNAMIC() command allows a creation of a Dynamic Linking Object
(DLO) to be located at runtime by a run-time operating system with a
dynamic linker component. The names of the overlay output files (.OVL)
are written out in the .DYNAMIC section. The syntax for this command is:

 DYNAMIC ([resolve_locally], outputFileName, sections, [plit]);

The arguments are defined as follows:

• resolve_locally — A boolean variable indicating whether the
linker should generate PLIT entries for function calls that can be
resolved within the DLO. A value of TRUE (the default) instructs
the linker not to generate PLIT entries for function calls that can be
resolved within the DLO; a value of FALSE instructs the linker to
generate PLIT entries for each and every function call.

• outputFileName — The name of the linker output file for this pro-
cessor. The specified name must be a DLO file.
1-46 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
• sections — The output section for this processor.
See “SECTIONS{}” on page 1-56 for more information about the
sections command.

• plit — A processor-specific PLIT description. See “PLIT{} Com-
mand” on page 1-86 for more information about PLITs.

ELIMINATE()

The linker uses the ELIMINATE() command to turn on object elimination,
removing symbols from the executable if they are not called. If the
VERBOSE keyword is added (for example, ELIMINATE(VERBOSE)), the linker
reports on objects as they are eliminated. This command is performs the
same function as the -e command-line switch.

ELIMINATE_SECTIONS()

The linker uses the ELIMINATE_SECTIONS(sectionList) command to turn
on section elimination, removing symbols ONLY from the listed sections
of the executable if they are not called. The sectionList is a comma-delim-
ited list of sections. Verbose elimination can also be obtained by
specifying ELIMINATE(VERBOSE). This command performs the same func-
tion as the -es command-line switch.

INCLUDE()

This command specifies an additional LDF that the linker processes
before processing the remainder of the current LDF. You may specify any
number of additional files. Supply one filename per INCLUDE() command.

Each LDF must specify the same Architecture(), though only one is
obligated to do so. Normally, that is the top-level LDF, which calls the
other LDFs.
VisualDSP++ 3.0 Linker and Utilities Manual 1-47
for Blackfin DSPs

Linker Guide
INPUT_SECTION_ALIGN()

The INPUT_SECTION_ALIGN() command instructs the linker to align each
input section (instruction or data) placed in an output section to an
address satisfying the address_boundary_expression. The address bound-
ary expression (a power of 2) is a word boundary (address). Legal values
for this expression depend on the word size of the segment that receive the
output section being aligned.

The linker fills any “holes” created by the INPUT_SECTION_ALIGN() instruc-
tions with zeroes (by default), or with the value specified with the
preceding FILL command valid for the current scope. For more informa-
tion, see FILL on page 1-59.

The INPUT_SECTION_ALIGN(address_boundary_expression) command is
valid only within the scope of an output section. For more information,
see “Command Scoping” on page 1-31. For more information on output
sections, see the syntax description for “SECTIONS{}” on page 1-56.)

In the following example, the input sections from a.doj, b.doj, and c.doj
will be aligned on even addresses. However, the input sections from d.doj
and e.doj will not be aligned, because the INPUT_SECTION_ALIGN(1) com-
mand indicates the subsequent sections are not subject to the input
section alignment.

SECTIONS
{
 program
 {
 // Align all code sections on 2 byte boundary
 INPUT_SECTION_ALIGN(2)
 INPUT_SECTIONS($OBJECTS(program) $LIBRARIES(program))
 INPUT_SECTION_ALIGN(1)
 INPUT_SECTIONS($OBJECTS(data1) $LIBRARIES(data1))
 INPUT_SECTION_ALIGN(1)
 INPUT_SECTIONS($OBJECTS(constdata)
 $LIBRARIES (constdata))
 INPUT_SECTION_ALIGN(1)
1-48 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
 INPUT_SECTIONS($OBJECTS(ctor) $LIBRARIES(ctor))
 }>MEM_PROGRAM
}

KEEP()

The linker uses the KEEP(keepList) command when section elimination is
on, retaining the listed objects in the executable even when they are not
called. The keepList is the comma delimited list of objects.

LINK_AGAINST()

The LINK_AGAINST() command directs the linker to check specific execut-
ables to resolve variables and labels that have not been resolved locally.

� To link multiprocessor programs, you must use the
LINK_AGAINST() command in your LDF. The Blackfin DSP archi-
tecture currently does not support multiprocessor systems.

This command is an optional part of the PROCESSOR{}, SHARE_MEMORY{},
and OVERLAY_INPUT{} commands. The syntax of the LINK_AGAINST() com-
mand (as part of a PROCESSOR{} command) is:

PROCESSOR Pn
{
 ...
 LINK_AGAINST (executable_file_names)
 ...
}

where:

• Pn � the processor name (typically 0, 1, ...). For example, p0 or 01.

• executable_file_names � a list of one or more executable (.DXE)
or shared memory (.SM) files. If a list of file names is given, the
names are separated by white space.
VisualDSP++ 3.0 Linker and Utilities Manual 1-49
for Blackfin DSPs

Linker Guide
The linker searches the executable files in the order listed in the
LINK_AGAINST() command. Once a symbol’s definition is found, the
linker stops searching.

You can override the search order for a specific variable or label by using
the RESOLVE() command (see on page 1-55), which directs the linker to
ignore LINK_AGAINST() for a specific symbol. LINK_AGAINST() for other
symbols still applies. Example LDFs containing the LINK_AGAINST() and
RESOLVE() commands are useful for seeing how this process works. For
more information, see Listing 1-10 on page 1-112.

MAP(filename)

The MAP(filename) command outputs a link map file with the specified
name. You must supply a file name. You can place this command any-
where in the LDF.

This command corresponds to and is overridden by the -Map <filename>
command line switch. If the VisualDSP++ project’s options include gener-
ating a symbol map (via the Link page of the Project Options dialog box),
the linker runs with -Map <projectname>.map asserted, and your LDF’s
MAP() command generates a warning.

MEMORY{}

The linker’s MEMORY{} command specifies the memory map of your target
system. After you declare memory segment names with this command,
you can use the memory segment names for placing program SECTIONs
through the SECTIONS{} command.

The LDF may contain a MEMORY{} command that applies to each proces-
sor’s scope, and must contain a MEMORY{} command for any global
memory on your target system. There is no limit to the number of seg-
ments you can declare within each MEMORY{} command. For more
information, see “Command Scoping” on page 1-31.
1-50 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
In each scope scenario, follow the MEMORY{} command with a SECTIONS{}
command. Use the memory segment names for placing program SECTIONs.
Only memory segment declarations may appear within the MEMORY{}
command. There is no limit on section name lengths.

If you do not specify the target processor’s memory map with the
MEMORY{} command, the linker cannot link your program. If the com-
bined sections directed to a segment require more space than exists in the
segment, the linker issues an error message and halts the link.

The syntax for the MEMORY{} command appears in Figure 1-9, followed by
definitions for the command’s component.

Definitions for the parts of the MEMORY{} command’s syntax are as follows:

• segment_commands

Declares your target processor’s memory segments. Although your
LDF may contain only one MEMORY{} command that applies to each

Figure 1-9. Syntax Tree of the MEMORY{} Command

segment_name {

TYPE(PM | DM RAM | ROM | PORT)

START(address_expression)

LENGTH(length_expression) | END(address_expression)

WIDTH(width_expression)

}

MEMORY{segment_commands}
VisualDSP++ 3.0 Linker and Utilities Manual 1-51
for Blackfin DSPs

Linker Guide
scope of the LDF, there is no limit to the number of segments that
you can declare within each MEMORY{} command.

Each segment declaration must contain a segment_name, a TYPE()
command, a START() command, a LENGTH() or END() command, and
a WIDTH() command.

• a segment_name command

Identifies the reference segment_name of the memory region. The
segment_name starts with a letter, underscore, or point, and may
include any letters, underscores, digits, and points. The
segment_name must not conflict with any linker keywords.

• a segment TYPE command: TYPE(string)

Identifies the architecture-specific type of memory within the seg-
ment. The linker stores this information in the executable for use
by other development tools. The TYPE command identifies the
memory’s functional or hardware location: RAM or ROM.

• a START(address_expression) command

Identifies the segment’s start address. The address_expression
must be an absolute address or an expression that evaluates to an
absolute address.

• a LENGTH(length_expression) or END(address_expression) com-
mand

Identifies the segment length in bytes or sets the segment’s end
address. When stating the length, length_expression must be the
number of addressable words within the region or an expression
that evaluates to the number of words. When stating the end
1-52 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
address, address_expression must be an absolute address or an
expression that evaluates to an absolute address, such as
START_1 + LENGTH_1 = END_1.

• a WIDTH(width_expression) command

Identifies the bit width of the addressable memory words within
the segment. The width_expression must be a number or an
expression that evaluates to that number.

PROCESSOR{}

The PROCESSOR{} command declares a processor and its related link infor-
mation. A PROCESSOR{} command contains the MEMORY{}, SECTIONS{},
RESOLVE{} and other linker commands that apply only to that processor.

The linker produces one executable file from each PROCESSOR{} command.
If you do not specify the type of link with a PROCESSOR{} command, the
linker cannot link your program.

The syntax for the PROCESSOR{} command appears in Figure 1-10.

Figure 1-10. Syntax of the PROCESSOR{} Command

PROCESSOR processor_name
{
OUTPUT(file_name.DXE)
[MEMORY{segment_commands}]
[PLIT{plit_commands}]
SECTIONS{section_commands}
RESOLVE(symbol, resolver)

}

VisualDSP++ 3.0 Linker and Utilities Manual 1-53
for Blackfin DSPs

Linker Guide
The PROCESSOR{} command syntax is defined as follows:

• processor_name

Assigns a processor_name to the processor. Processor names follow
the same rules as any linker label. For more information, see “LDF
Expressions and Conventions” on page 1-32.

• OUTPUT(file_name.DXE)

Selects the output file name for the executable (.DXE). Note that an
OUTPUT() command in an LDF scope must appear before a
SECTIONS{} command in that scope.

• MEMORY{segment_commands}

Defines memory segments that apply only to this processor. Use
LDF command scoping to define these segments outside the
PROCESSOR{} command. For more information, see “Command
Scoping” on page 1-31 and “MEMORY{}” on page 1-50.

• PLIT{plit_commands}

Defines Procedure Linkage Table (PLIT) commands that apply
only to this processor. For more information, see “PLIT{} Com-
mand” on page 1-86.

• SECTIONS{section_commands}

Defines sections for placement within the executable (.DXE). For
more information, see “SECTIONS{}” on page 1-56.
1-54 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
RESOLVE()

The RESOLVE(symbol_name, resolver) command directs the linker to
resolve a particular symbol (variable or label) to an address using the
resolver. The resolver is an absolute address or a file (.DXE or .SM) contain-
ing the definition of the symbol. If a linker does not find the symbol in
the designated file, it issues an error.

� When you resolve a C/C++ variable, prefix it with an underscore in
the RESOLVE() statement (for example, _symbol_name).

Use the RESOLVE()command, which directs the linker to ignore a
LINK_AGAINST() for a specific symbol, to override the search order for a
specific variable or label. See Listing 1-10 on page 1-112 for more
information.

SEARCH_DIR()

The SEARCH_DIR() command specifies one or more directories that the
linker searches for input files. You may specify multiple directories within
SEARCH_DIR commands, delimiting each path with a semicolon (;) and
enclosing long directory names within straight quotes.

The search order follows the order that directories appear. This command
appends search directories to the directory selected with the -L linker
command line switch. Place this command at the beginning of the LDF,
so the linker applies the command to all file searches.

For example,

 ARCHITECTURE(ADSP-21535)
 MAP(SINGLE-PROCESSOR.MAP) // Generate a MAP file

 SEARCH_DIR($ADI_DSP\Blackfin\lib)
 // $ADI_DSP is a predefined linker macro that expands
 // to the VDSP install directory. Search for objects in
 // directory Blackfin/lib relative to the install directory
VisualDSP++ 3.0 Linker and Utilities Manual 1-55
for Blackfin DSPs

Linker Guide
SECTIONS{}

The SECTIONS{} command specifies the placement of your program’s
SECTIONs in memory, using segments defined with the MEMORY{} com-
mand. The syntax for the SECTIONS{} command is shown in Figure 1-11.

The LDF may contain a SECTIONS{} command within each PROCESSOR{}
command. The SECTIONS{} command must be preceded by a MEMORY{}
command, defining the memory segments in which the linker places the
sections.

Figure 1-11. Syntax Tree of the SECTIONS{} Command

INPUT_SECTIONS(file_source [archive_member (input_labels)])

expression

FILL(hex number)

OVERLAY_OUTPUT(file_name.OVL)
INPUT_SECTIONS(input_section_commands)
ALGORITHM(ALL_FIT)
SIZE(expression)
RESOLVE_LOCALLY(TRUE|FALSE)

SECTIONS{section_statements}

expression
section_name [section_type] {section_commands} [> memory_segment]

LDF macro
list_of_files

OVERLAY_INPUT(overlay_commands) [>overlay_memory_segment]

PLIT{plit_commands}
1-56 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
The following sections describe definitions for the parts of the SECTIONS{}
command’s syntax.

section_commands or expressions

This argument defines expressions or output sections (section_name).
Use expressions to manipulate symbols or position the current location
counter. Use output section commands to declare your program’s sec-
tions. While your LDF may contain only one SECTIONS{} command
within each LDF scope, there is no limit to the number of output sections
that you can declare within each SECTIONS{} command. For more infor-
mation, see “Command Scoping” on page 1-31.

section_name

The output section, section_name declaration, has the following syntax
rules:

• A section_name starts with a letter, underscore, or period and may
include any letters, underscores, digits, and points. A section_name
must not conflict with any linker keywords. The special
section_name.plit, indicates the Procedure Linkage Table (PLIT)
section that the linker generates when resolving symbols in overlay
memory. You must place this section in non-overlay memory to
manage references to items in overlay memory.

• section_type

The section_type is optional and assigns an ELF section type. The
only legal section type keyword is SHT_NOBITS. This section type
contains uninitialized data, so even if it is large, it can download
quickly: space is allocated but not written. For an example of how
to use SHT_NOBITS, see Listing 1-10 on page 1-112.
VisualDSP++ 3.0 Linker and Utilities Manual 1-57
for Blackfin DSPs

Linker Guide
• section_commands

The section_commands may contain any combination of the fol-
lowing commands: an INPUT_SECTIONS() command, an
expression, a FILL() command, a PLIT{} command, or an
OVERLAY_INPUT() command.

• memory_segment

The memory_segment at the end of a section definition declares that
the section is placed in the specified memory segment.

The memory_segment is optional. Some sections, such as those for
debugging, do not need to be included in the memory image of the
executable, but are needed for other development tools that read
the executable file. By omitting a memory segment assignment for
a section, you direct the linker to generate the section in the exe-
cutable, but prevent section content from appearing in the memory
image of the executable.

INPUT_SECTIONS()

This part of the syntax in an output_section_command identifies the parts
of your program to place in the executable with input_section_commands.
When placing an input section, specify the file_source, archive_member
(if the file_source is an archive), and input_labels of the sections.

An INPUT_SECTIONS() command has the following syntax rules:

• file_source may be a list of files or any LDF macro that expands
into a file list, such as $COMMAND_LINE_OBJECTS. The list may con-
tain object or archive files. Use commas to delimit files within the
list.
1-58 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
• archive_member names the source-object file within an archive.
The archive_member parameter and the left/right brackets, [], are
only required if the file_source of the input_label is an archive.

• input_labels come from the run-time .SECTION names in your
assembly program. Use commas to delimit .SECTION names within
the list.

expression

In a section_command, the expression manipulates symbols or positions
the current location counter, specified by a period (see “Location Counter
(.)” on page 1-39). It is an assembly directive.

FILL(hex number)

In a section_command, the FILL is used to fill with hexadecimal numbers
any gaps that you create by aligning or advancing the current location
counter (see “Location Counter (.)” on page 1-39).

By default, the linker fills these gaps with zeroes. Specify only one FILL()
command per output section. For example,

 FILL (0x0)
FILL (0xFFFF)

PLIT{plit_commands}

In a section_command, the PLIT command declares a locally1 scoped Pro-
cedure Linkage Table (PLIT). It contain its own labels and expressions.
For more information, see “PLIT{} Command” on page 1-86.

1 In that section only.
VisualDSP++ 3.0 Linker and Utilities Manual 1-59
for Blackfin DSPs

Linker Guide
OVERLAY_INPUT(overlay_commands)

In a section_command, the OVERLAY_INPUT() command identifies parts of
the program to place in an overlay executable with overlay_commands. For
more information on overlays, see “Memory Overlays and Overlay Mem-
ory Manager” on page 1-62 and “Linking for Overlay Memory Example”
on page 1-123.

The overlay_commands part of the syntax must contain at least one of the
following commands: INPUT_SECTIONS() command, OVERLAY_ID() com-
mand, NUMBER_OF_OVERLAYS() command, OVERLAY_OUTPUT() command,
ALGORITHM() command, RESOLVE_LOCALLY() command, or SIZE()
command.

The overlay_memory_segment determines whether the section is placed in
an overlay segment and is optional. Some overlay sections, such as those
loaded from a host, do not need to be included in the overlay memory
image of the executable, but are needed for other development tools that
read the executable file.

By omitting an overlay memory segment assignment for a section, you
direct the linker to keep the section in the executable, but mark the sec-
tion for exclusion from the overlay memory image of the executable.

An OVERLAY_INPUT() command supports the following syntax rules.

• The OVERLAY_OUTPUT() command directs the linker to output a
overlay file (.OVL) for the overlay with the specified name. Note
that a OVERLAY_OUTPUT() command in an OVERLAY_INPUT() com-
mand must appear before any INPUT_SECTIONS() for that overlay.

• The INPUT_SECTIONS() command has the same syntax within an
OVERLAY_INPUT() command as when it appears within a
output_section_command, except that you may not place the .PLIT
section in overlay memory. For more information, see
“INPUT_SECTIONS()” on page 1-58.
1-60 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
• The OVERLAY_ID() command directs the linker to return the over-
lay ID of the resolved symbol.

• The ALGORITHM() command directs the linker to use the specified
overlay linking algorithm. The linker supports the ALL_FIT algo-
rithm only. Therefore, the linker tries to fit all the
OVERLAY_INPUT() into a single overlay that can overlay into the
output_section’s run-time memory segment

• The RESOLVE_LOCALLY() command, when applied to an overlay,
controls whether the linker generates PLIT entries for function
calls that are resolved within the overlay.

For RESOLVE_LOCALLY(TRUE), the linker does not generate PLIT
entries for locally resolved functions within the overlay. For
RESOLVE_LOCALLY(FALSE), the linker generates PLIT entries for all
functions, whether or not they are locally resolved within the over-
lay. The default is TRUE.

• The SIZE() command directs the linker to set an upper limit on
the size of the memory that may be occupied by an overlay.
VisualDSP++ 3.0 Linker and Utilities Manual 1-61
for Blackfin DSPs

Advanced Linker Features and Commands
Advanced Linker Features and
Commands

The Blackfin DSP linker’s advanced features support linking executables
for systems with overlay memory. This section discusses the concept of
memory overlays and how they are used with Analog Devices DSPs, as
well as the OVERLAY_GROUP and PLIT commands.

• “Memory Overlays and Overlay Memory Manager”

• “OVERLAY_GROUP{} Command” on page 1-82

• “PLIT{} Command” on page 1-86

• “Using PLIT and Overlay Manager” on page 1-91

� The VisualDSP++ 3.0 linker’s advanced features also support link-
ing executables for systems with multiprocessor and shared
memory using MULTIPROCESSOR, PACKING and SHARED_MEMORY com-
mands. However, currently these features are not supported by
Blackfin DSP linker.

Memory Overlays and Overlay Memory Manager
In order to reduce DSP system costs, many applications use DSPs with
smaller amounts of on-chip memory — placing much of the program code
and data off chip. In order to run the applications efficiently, memory
overlays are used.

This section discusses the concept of memory overlays and how they are
used with Analog Devices DSPs, including the following topics and
examples:

• “The Concept of Memory Overlays” on page 1-63

• “The Concept of Overlay Manager” on page 1-65
1-62 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
• “Memory Overlay Support” on page 1-66

• “Overlay Manager Example” on page 1-70

• “Reducing Overlay Manager Overhead” on page 1-78

All of the code segments used in the following discussion are parts of the
two example programs that appear at the end of this section. Refer to
“Linking for Overlay Memory Example” on page 1-123 for a complete
code example of an LDF with overlay.

The Concept of Memory Overlays

Memory overlays provide support for applications whose entire program
instructions do not fit in the internal memory of the processor. In such a
case, program instructions are partitioned and stored in external memory
until they are required for program execution. The partitions are referred
to as memory overlays and the routines that call and execute them overlay
managers.

Overlays are a “many to one” memory mapping system. Several overlays
“live” (are stored) in unique locations in external memory, but “run” (or
execute) in a common location in internal memory. Throughout this sec-
tion, the storage location of overlays are referred to as the “live” location,
and the internal location where instructions are executed are referred to as
the “run” (run-time) space.

The overlay functions are written to overlay files (*.OVL) which can be
used as one of linker’s executable output files and can be read by the
loader to generate a .LDR file.

Figure 1-12 demonstrates the concept of memory overlays. There are two
memory spaces: internal and external. The external memory is partitioned
into five overlays. The internal memory contains the main program, an
overlay manager function, and two segments reserved for execution of
overlay program instructions.
VisualDSP++ 3.0 Linker and Utilities Manual 1-63
for Blackfin DSPs

Advanced Linker Features and Commands
In this example, Overlay 1 and 2 share the same run-time location within
internal memory. Overlays 3 and 4 also share a common run-time mem-
ory. If FUNC_B is required, the overlay manager loads Overlay 2 (including
FUNC_B) in the location within internal memory where Overlay 2 is desig-
nated to run. If FUNC_D is required, the overlay manager loads Overlay 3
into its designated run-time memory.

The transfer is typically implemented by using the Direct Memory Access
(DMA) capability of the processor. The overlay manager can also handle
more advanced functionality, such as checking if the requested overlay is
already in run-time memory, executing another function while loading an
overlay, and tracking recursive overlay function calls.

Figure 1-12. Memory Overlays

Overlay 1

Overlay 2

Overlay 3

Overlay 4
Overlay 3 and 4
Runtime Memory

Overlay 1 and 2
Runtime Memory

OverlayManager

Main: call FUNC_H
call .plt_FUNC_A

FUNC_A

FUNC_C
FUNC_B

FUNC_E
FUNC_D

FUNC_F
FUNC_G

External Memory Internal Memory
1-64 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
The Concept of Overlay Manager

The overlay manager is a user-defined routine that is responsible for load-
ing a referenced overlay function or data buffer into internal memory (run
time space). This is done with the aid of the linker-generated constants
and the PLIT commands. The linker-generated constants tell the overlay
manager the addresses of the live overlay, where the overlay resides for exe-
cution, and the number of words in the overlay. The PLIT commands tell
the overlay manager such information as which overlay is required and the
run time address of the referenced symbol.

The main objective of overlay managers is to transfer overlays to their
run-time location when required. However, overlay managers may also be
required to:

• Set up a stack to store register values.

• Check if a referenced symbol has already been transferred into its
run-time space as a result of a previous reference.

If the overlay is already in internal memory, the overlay transfer is
bypassed and execution of the overlay routine can begin
immediately.

• Load an overlay while executing a function from a second overlay
(or a non overlay function).

You may need your overlay manager to perform other specialized tasks to
satisfy the special needs of a given application.
VisualDSP++ 3.0 Linker and Utilities Manual 1-65
for Blackfin DSPs

Advanced Linker Features and Commands
Memory Overlay Support

The overlay support provided by the DSP tools includes the following:

• Specification of the live and run location of each overlay

• The generation of constants

• The redirection of overlay function calls to a jump table

The overlay support is partially designed by the user in the LDF. The user
can specify which overlays share run-time memory and which memory
segments establish the live and run space.

Listing 1-2 shows the section of an LDF defining two overlays. The over-
lay declaration configures two overlays to share a common run-time
memory space. The OVERLAY_INPUT command syntax is described
on page 1-60.

• OVLY_one contains FUNC_A and lives somewhere in memory segment
ovl_code.

• OVLY_two contains functions FUNC_B and FUNC_C. It also lives in
memory segment ovl_code.

Listing 1-2. Overlay Declaration in LDF

.program
 { OVERLAY_INPUT
 OVERLAY_OUTPUT(OVLY_one.ovl)
 INPUT_SECTIONS(FUNC_A.doj(program))
 }>ovl_code
 { OVERLAY_INPUT
 OVERLAY_OUTPUT(OVLY_two.ovl)
 INPUT_SECTIONS(FUNC_B.doj(program) FUNC_C.doj(program))
 } >ovl_code
} >MEM_PROGRAM

The common run-time location shared by overlays OVLY_one and OVLY_two
is within the memory segment program.
1-66 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
The LDF tells the linker how to configure the overlays as well as provides
the information necessary for the overlay manager routine to load the
overlays. The information provided by the linker includes the following
linker-generated overlay constants (where N = Overlay ID).

 _ov_startaddress_N
 _ov_endaddress_N
 _ov_size_N
 _ov_word_size_run_N
 _ov_word_size_live_N
 _ov_runtimestartaddress_N

Each overlay has a word size and an address, which the overlay manager
uses to determine where the overlay resides and where it is executed.
Exception is the _ov_size_N, that specifies the total size in bytes.

The overlay live and run word sizes are different if the internal and exter-
nal memory widths are different. A system containing 16-bit wide external
memory may require data packing (depending upon the processor's exter-
nal bus hardware support) to store an overlay containing instructions in an
architecture using, for example, 24-bit instructions. The overlay live word
size (number of words in the overlay) is based on the number of 16-bit
words required to pack all of the 24-bit instructions.

� The Blackfin DSP architecture supports byte addressing�it uses
16- or 32-bit opcodes. Therefore, no data packing is required.

Along with providing constants, the linker replaces overlay symbol refer-
ences within your code to the overlay manager routine. This redirection is
accomplished using a procedure linkage table (PLIT). The PLIT is essen-
tially a jump table that executes user-defined code, then jumps to the
overlay manager. The linker replaces an overlay symbol reference (func-
tion call) with a jump to a location in the PLIT.
VisualDSP++ 3.0 Linker and Utilities Manual 1-67
for Blackfin DSPs

Advanced Linker Features and Commands
The PLIT code is defined within the linker description file (LDF) by the
programmer. This code prepares the overlay manager to handle the over-
lay containing the referenced symbol. The code generally initializes
registers to contain the overlay ID and the referenced symbol’s run-time
address.

The following is an example call instruction to an overlay function:

 R0 = [I0];
 R1 = R0 * R2;
 CALL FUNC_A; /* Call to function in overlay */
 [I3] = R1;

If FUNC_A is in an overlay, the linker replaces the function call with the fol-
lowing instruction:

 R0 = [I0];
 R1 = R0 * R2;
 CALL .plt_FUNC_A; / * Call to PLIT entry */
 [I3] = R1;

The .plt_FUNC_A is the entry in the PLIT containing your defined
instructions. These instructions prepare the overlay manager to load the
overlay containing FUNC_A. The instructions executed in the PLIT are
specified within the LDF.

Listing 1-3 is an example PLIT definition from an LDF, where the register
R0 is set to the value of the overlay ID that contains the referenced symbol,
and register R1 is set to the run-time address of the referenced symbol.
(PLIT_SYMBOL_OVERLAY_ID and PLIT_SYMBOL_ADDRESS are linker key-
words.). The last instruction branches to the overlay manager that uses the
initialized registers to determine which overlay to load, and where to jump
to execute the overlay function called.
1-68 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
Listing 1-3. PLIT Definition in LDF

 PLIT
 {
 R0.h = PLIT_SYMBOL_OVERLAY_ID;
 R0.l = PLIT_SYMBOL_OVERLAY_ID;
 R1.h = PLIT_SYMBOL_ADDRESS;
 R1.l = PLIT_SYMBOL_ADDRESS;
 JUMP OverlayManager
 }

The linker expands the PLIT definition into individual entries in a table.
An entry is created for each overlay symbol as shown in Listing 1-4. The
redirect function calls the PLIT table for overlays 1 and 2. For each entry,
the linker replaces the generic assembly instructions with specific instruc-
tions (where applicable).

Figure 1-13. Expanded PLIT Table

.p lt_ F U N C _ A : R 0 .h = 0 x 0 0 0 0 ;
R 0 .l = 0 x 0 0 0 1 ;
R 1 .h = 0 x 0 0 0 0 ;

ju m p O v e r la y M a n a g e r ;

.p lt_ F U N C _ B :

.p lt_ F U N C _ C : R 0 .h = 0 x 0 0 0 0 ;

R 1 .l = 0 x 2 3 0 0 ;
ju m p O v e r la y M a n a g e r ;

O v e r la y 1
F U N C _ A

O v e r la y 2
F U N C _ B
F U N C _ C

In te rn a l M e m o ry

c a l l .p l t_ F U N C _ A
.

.

c a l l .p l t_ F U N C _ C
c a l l .p l t_ F U N C _ B

M a in : P li t_ ta b le
:

R 1 .l = 0 x 2 2 0 0 ;

R 0 .h = 0 x 0 0 0 0 ;
R 0 .l = 0 x 0 0 0 1 ;
R 1 .h = 0 x 0 0 0 0 ;

ju m p O v e r la y M a n a g e r;

.

R 1 .l = 0 x 2 2 0 0 ;

R 0 .l = 0 x 0 0 0 2 ;
R 1 .h = 0 x 0 0 0 0 ;
VisualDSP++ 3.0 Linker and Utilities Manual 1-69
for Blackfin DSPs

Advanced Linker Features and Commands
For example, the first entry in the PLIT shown in Listing 1-4 is for the
overlay symbol FUNC_A. The linker replaces the constant name
PLIT_SYMBOL_OVERLAYID with the ID of the overlay containing FUNC_A.
The linker also replaces the constant name PLIT_SYMBOL_ADDRESS with the
run time address of FUNC_A.

When the overlay manager subroutine is called via the jump instruction of
the PLIT table, r0 contains the referenced function’s overlay ID, and r1
contains the referenced function’s run-time address. The overlay manager
subroutine uses the overlay ID and run-time address to load and execute
the referenced function.

Overlay Manager Example

The example in this section has two overlays, each of which contain two
functions. Overlay 1 contains the functions fft_first_two_stages and
fft_last_stage. Overlay 2 contains functions fft_middle_stages and
fft_next_to_last.

For the sample overlay manager source code, see the examples that come
with the development software. In the following example, the overlay
manager:

• Creates and maintains a stack for the registers it uses

• Determines if the referenced function is in internal memory

• Sets up a DMA transfer

• Executes the referenced function

Several code segments for the LDF and the Overlay Manager are displayed
and explained in the text.
1-70 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
Listing 1-4. FFT Overlay Example 1

 OVERLAY_INPUT

 {
 ALGORITHM(ALL_FIT)
 OVERLAY_OUTPUT(fft_one.ovl)
 INPUT_SECTIONS(Fft_1st_last.doj(program))
 } >ovl_code // Overlay to live in section ovl_code
 OVERLAY_INPUT
 {
 ALGORITHM(ALL_FIT)
 OVERLAY_OUTPUT(fft_two.ovl)
 INPUT_SECTIONS(Fft_mid.doj(program))
 } >ovl_code // Overlay to live in section ovl_c

Two overlays are defined: fft_one.ovl and fft_two.ovl. Both overlays
live in segment ovl_code (defined in the MEMORY{} command), and run in
section program. All instruction and data defined in segments named
program within the file Fft_1st_last.doj are part of overlay
fft_one.ovl. All instructions and data defined in segments named pro-
gram within the file Fft_mid.doj are part of overlay fft_two.ovl. The
result is two functions within each overlay.

The first and the last functions called are in overlay fft_one. The two
middle functions called are in overlay fft_two. When the first function,
fft_one, is referenced during code execution, overlay id=1 is transferred
to internal memory. When the second function, fft_two, is referenced,
overlay id=2 is transferred to internal memory. Since the third function
is in overlay fft_two, when it is referenced, the overlay manager recog-
nizes that it is already in internal memory and an overlay transfer does not
occur.

To verify whether an overlay is already in internal memory, place the over-
lay ID of each overlay already loaded and the overlay to be loaded in
registers, for example P0 and P1, and compare:
VisualDSP++ 3.0 Linker and Utilities Manual 1-71
for Blackfin DSPs

Advanced Linker Features and Commands
 CC = p0 == p1; /* Is overlay already in internal memory? */
 if CC jump skipped_DMA_setup;
 /* If so, bypass transferring it in.*/

Finally, when the last function, fft_one, is referenced, overlay overlay
id=1 is again transferred to internal memory for execution.

The following code segment calls the four FFT functions.

 fftrad2:
 call fft_first_2_stages;
 call fft_middle_stages;
 call fft_next_to_last;
 call fft_last_stage;
 wait: idle;
 jump wait;

The linker replaces each of the overlay function calls with calls to the
appropriate entry in the procedure linkage table (PLIT). For this example,
only three instructions are placed in each entry of the PLIT, as shown
below.

 PLIT
 {
 R0.h = PLIT_SYMBOL_OVERLAYID;
 R0.l = PLIT_SYMBOL_OVERLAYID;
 R1.h = PLIT_SYMBOL_ADDRESS;
 R1.l = PLIT_SYMBOL_ADDRESS;
 JUMP _OverlayManager;
 }

Register R0 contains the overlay ID that contains the referenced symbol
and register R1 contains the run-time address of the referenced symbol.
The final instruction causes the program counter (PC) to jump to the
starting address of the overlay manager function. The overlay manager
routine uses the overlay ID in conjunction with the overlay constants gen-
1-72 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
erated by the linker to transfer the proper overlay into internal memory.
Once the transfer is complete, the overlay manager sends the PC to the
address of the referenced symbol stored on R1.

The linker generates these constants used by the overlay manager:

 .EXTERN _ov_word_size_run_1;
 .EXTERN _ov_word_size_run_2;
 .EXTERN _ov_word_size_live_1;
 .EXTERN _ov_word_size_live_2;
 .EXTERN _ov_startaddress_1;
 .EXTERN _ov_startaddress_2;
 .EXTERN _ov_runtimestartaddress_1;
 .EXTERN _ov_runtimestartaddress_2;

These constants provide the following information to the overlay
manager.

• The overlays’ sizes, in both run time word sizes and live word sizes

• the starting address of the live space

• the starting address of the run space.

The overlay manager code places the constants in arrays as shown below.
The arrays are referenced by using the overlay ID as the index to the array.
The index or ID is stored in a modify (m#) register and the beginning
address of the array is stored in the (i#) register.

 .VAR liveAddresses[2] = _ov_startaddress_1,
 _ov_startaddress_2;
 .VAR runAddresses[2] = _ov_runtimestartaddress_1,
 _ov_runtimestartaddress_2;
 .VAR runWordSize[2] = _ov_word_size_run_1,
 _ov_word_size_run_2;
 .VAR liveWordSize[2] = _ov_word_size_live_1,
 _ov_word_size_live_2;
VisualDSP++ 3.0 Linker and Utilities Manual 1-73
for Blackfin DSPs

Advanced Linker Features and Commands
Before preparing the Direct Memory Access (DMA), the overlay manager
stores the values contained in each register it uses onto a run-time stack.
The stack stores the values of all data registers, address generator registers,
and any other registers consumed by the overlay manager.

The overlay manager also stores the ID of an overlay currently in internal
memory. When an overlay is transferred to internal memory, the overlay
manager stores the overlay ID in internal memory in the buffer labeled
ov_id_loaded. Before another overlay is transferred, the overlay manager
compares the required overlay ID with that stored in the ov_id_loaded
buffer. If they are equal, the required overlay is already in internal memory
and a transfer is not required. The PC is sent to the proper location to exe-
cute the referenced function. If they are not equal, the value in
ov_id_loaded is updated and the overlay is transferred.

The following segment of the overlay manager function creates the
run-time stack, stores the overlay ID in a modify register, and checks the
overlay ID stored in ov_id_loaded.

/* _overlayID is defined as R0, set in the PLIT of LDF.
 Set up DMA transfer to internal memory. Store values of
 registers used by the overlay manager on the stack. */
[sp++]=i1;
[sp++]=p0;
[sp+]=m3;
[sp++]=R2;

/* Use the overlay id as an index (must subtract one) */
R0=R0-1; /* Overlay ID -1 */
m3=R0; /* Offset into the arrays containing linker
 defined overlay constants. */
p0.l = ov_id_loaded;
p0.h = ov_id_loaded;

R2=[p0];
CC=R0 ==R2;
if CC jump continue;
[p0]=m3;
1-74 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
R0=i0; [sp++]=R0;
R0=m0; [sp++]=R0;
R0=l0; [sp++]=R0;

The overlay manager uses the value of the linker-generated constants to set
up the DMA transfer as shown in the following code segment of the over-
lay manager function.

// program sDMA (aka read channel) to read from the external
// memory; sDMA fills the FIFO;
// program pDMA (aka write channel) to write to internal
// memory, drains the FIFO.
// create the descriptor for the read:Live_DMA_Hdr.
P3.l = liveAddresses;
P3.h = liveAddresses;
P4.l = runAddresses;
P4.h = runAddresses;
//simplifying assumption: the transfer can be completed in
//one work unit.
P1.L = Live_DMA_Desc; // address of descriptor for block to
 // read
P1.H = Live_DMA_Desc;
P2.l = Run_DMA_Desc; // address of descriptor for block to
 // write
P2.H = Run_DMA_Desc; // fill the descriptors
r1 = [P3];

[P1 + 4]=r1; // start address for read
r1 = [P4];
[P2 + 4]=r1; // start address for write
P3.l = liveWordSize;
P4.l = runWordSize;
r1 = W[P3];
W[P1+ 2]=r1; // live mem size for read count
r1 = W[P4];
W[P2+ 2]=r1; // run mem size for write count
 // read channnel clear fifo & disable DMA
P3.L = MDR_DCFG & 0XFFFF;
P3.H = (MDR_DCFG >> 16) & 0XFFFF;
R1 = W[P3];
VisualDSP++ 3.0 Linker and Utilities Manual 1-75
for Blackfin DSPs

Advanced Linker Features and Commands
BITSET(R1,DMA_BUFCLR);
BITCLR(R1,DMA_EN);
W[P3] = R1;

 // Write channel clear fifo and disable DMA
P3.L = MDW_DCFG & 0XFFFF;
R1 = W[P3];
BITSET(R1,DMA_BUFCLR);
BITCLR(R1,DMA_EN);
W[P3] = R1;
//kick off DMA
R1 = P1;
P3.L = MDR_DND & 0XFFFF;
W[P3] = R1.L; // Write 16 LSBs of read header
 // descriptor block address to DMA
 // current descriptor pointer register
P3.L = DB_NDBP & 0xFFFF;
W[P3] = R1.H; // Write 16 MSBs of read header
 // descriptor block address to DMA
 // next descriptor base pointer
register
R1 = P2;
P3.L = MDW_DND & 0XFFFF;
W[P3] = R1.L; // Write 16 LSBs of write header
 // descriptor block address to DMA
 // current descriptor pointer register
P3.L = MDR_DCFG & 0XFFFF;
R1 = W[P3];
BITSET(R1,DMA_EN);
W[P3] = R1; // Enable read DMA

P3.L = MDW_DCFG & 0XFFFF;
R1 = W[P3];
BITSET(R1,DMA_EN);
W[P3] = R1; // Enable write DMA

Wait_for_DONE:
R1 = W[P2]; // Read config word of the write
 // block
1-76 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
cc = bittst(R1,15); // Poll ownership bit 15 of DMA
 // Config word to see if DMA is done
IF cc JUMP Wait_for_DONE;
cc = bittst(R1,14); // Check completion status
IF cc JUMP OvlMgr_ERROR; // Go to my error rtn if it did
 // not work

On completion of the transfer, the overlay manager restores register values
from the run-time stack, flushes the cache, and then jumps the PC to the
run-time location of the referenced function. It is very important to flush
the cache before jumping to the referenced function; when code is
replaced or modified, incorrect code execution may occur if the cache is
not flushed. If the program sequencer searches the cache for an instruc-
tion, and an instruction from the previous overlay is in the cache, the
cached instruction may be executed rather than receiving the expected
cache miss.

� The cache should only be flushed if cache is enabled. Cache flush-
ing is an optional step for the overlay manager and is done only if
cache is enabled in the user’s system.

In summary, the overlay manager routine does the following:

• Maintains a run-time stack for registers being used by the overlay
manager

• Compares the requested overlay’s ID with that of the previously
loaded overlay (stored in the ov_id_loaded buffer)

• Sets up the DMA transfer of the overlay (if it is not already in
internal memory)

• Jumps the PC to the run-time location of the referenced function.

These are the basic tasks that are performed by an overlay manager. More
sophisticated overlay managers may be required for individual
applications.
VisualDSP++ 3.0 Linker and Utilities Manual 1-77
for Blackfin DSPs

Advanced Linker Features and Commands
Reducing Overlay Manager Overhead

The example in this section incorporates the ability to transfer one overlay
to internal memory while the core executes a function from another over-
lay. Instead of the core sitting idle while the overlay DMA transfer occurs,
the core enables the DMA, then begins executing another function.

This example uses the concept of overlay function loading and executing.
A function load is a request to load the overlay function into internal
memory but not execute the function. A function execution is a request
to execute an overlay function that may or may not be in internal memory
at the time of the execution request. If the function is not in internal
memory a transfer must occur before execution.

There are several circumstances under which an overlay transfer can be in
progress while the core is executing another task. Each circumstance can
be labeled as deterministic or non-deterministic. A deterministic circum-
stance is one where you know exactly when an overlay function is required
for execution. A non-deterministic circumstance is one where you cannot
predict when an overlay function is required for execution. For example, a
deterministic application may consist of linear flow code except for func-
tion calls. A non-deterministic example is an application with calls to
overlay functions within an interrupt service routine where the interrupt
occurs randomly.

The software-provided example contains deterministic overlay function
calls. The time of overlay function execution requests are known as are the
number of cycles required to transfer an overlay. Therefore, an overlay
function load request can be placed such that the transfer is complete by
the time the execution request is made. The next overlay transfer (from a
load request) can be enabled by the core and the core can execute the
instructions leading up to the function execution request.

Since the linker handles all overlay symbol references in the same way
(jump to PLIT table then overlay manager) it is up to the overlay manager
to distinguish between a symbol reference requesting the load of an over-
1-78 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
lay function and a symbol reference requesting the execution of an overlay
function. In the example, the overlay manager uses a buffer in memory as
a flag to indicate whether the function call (symbol reference) is a load or
an execute request.

The overlay manager first determines if the referenced symbol is in inter-
nal memory. If not it sets up the DMA transfer. If the symbol is not in
internal memory and the flag is set for execution, the core waits for the
transfer to complete (if necessary) and then executes the overlay function.
If the symbol is set for load, the core returns to the instructions immedi-
ately following the location of the function load reference.

Every overlay function call requires initializing the load/execute flag
buffer. Here, the function calls are delayed branch calls. The two slots in
the delayed branch contain instructions to initialize the flag buffer. Regis-
ter P0 is set to the value that is placed in the flag buffer, and the value in
P0 is stored in memory; 1 indicates a load and 0 indicates an execution
call. At each overlay function call, the load buffer must be updated.

The following code is from the main FFT subroutine. Each of the four
function calls are execution calls so the pre-fetch (load) buffer is set to
zero. The flag buffer in memory is read by the overlay manager to deter-
mine if the function call is a load or an execute.

 R0=0;
 p0.h=prefetch;
 p0.l=prefetch;
 [P0] = R0;
 call fft_first_2_stages;
 R0=0;
 p0.h=prefetch;
 p0.l=prefetch;
 [P0] = R0;
call fft_middle_stages;
 R0=0;
 p0.h=prefetch;
 p0.l=prefetch;
 [P0] = R0;
VisualDSP++ 3.0 Linker and Utilities Manual 1-79
for Blackfin DSPs

Advanced Linker Features and Commands
call fft_next_to_last;
 R0=0;
 p0.h=prefetch;
 p0.l=prefetch;
 [P0] = R0;
call fft_last_stage;

The next set of instructions represents a load function call.

R0=1;
p0.h=prefetch;
p0.l=prefetch;
[P0] = R0;
 /* Set pre-fetch flag to 1 to indicate a load. */
call fft_middle_stages;
 /* This function call pre-loads */
 /* the function into the overlay run memory. */

The implementation executes the first function and transfers the second
function and so on. In this implementation, each function resides in a
unique overlay and requires reserving two run-time locations; while one
overlay is loading into one run-time location, a second overlay function is
executing in another run-time location.

The following code segment allocates the functions to overlays and forces
two run-time locations.

OVERLAY_INPUT
{
 ALGORITHM(ALL_FIT)
 OVERLAY_OUTPUT(fft_one.ovl)
 INPUT_SECTIONS(Fft_ovl.doj(program))
 } >ovl_code // Overlay to live in section ovl_code

OVERLAY_INPUT
{
 ALGORITHM(ALL_FIT)
 OVERLAY_OUTPUT(fft_three.ovl)
 INPUT_SECTIONS(Fft_ovl.doj(program))
 } >ovl_code // Overlay to live in section ovl_code
1-80 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
INPUT_SECTIONS(ovly_mgr.doj(program))

OVERLAY_INPUT
{
 ALGORITHM(ALL_FIT)
 OVERLAY_OUTPUT(fft_two.ovl)
 INPUT_SECTIONS(Fft_ovl.doj(program))
 } >ovl_code // Overlay to live in section ovl_code
OVERLAY_INPUT
{
 ALGORITHM(ALL_FIT)
 OVERLAY_OUTPUT(fft_last.ovl)
 INPUT_SECTIONS(Fft_ovl.doj(program))
 } >ovl_code // Overlay to live in section ovl_code

The first and third overlays share one run-time location and the second
and fourth overlays share the second run-time location. By placing an
input section between overlay declarations, multiple run-time locations
are allocated.

Additional instructions are included to determine if the function call is a
load or an execution call. If the function call is a load, the overlay manager
initiates the DMA transfer, then jumps the PC back to the location where
the call was made. If the call is an execution call the overlay manager
determines if the overlay is currently in internal memory. If so, the PC
jumps to the run-time location of the called function. If the overlay is not
in the internal memory, a DMA transfer is initiated and the core waits for
the transfer to complete.

The overlay manager pushes the appropriate registers on the run-time
stack. It checks to see if the requested overlay is currently in internal mem-
ory. If not, it sets up the DMA transfer. It then checks to see if the
function call is a load or an execution call.
VisualDSP++ 3.0 Linker and Utilities Manual 1-81
for Blackfin DSPs

Advanced Linker Features and Commands
 If it is a load, it begins the transfer and returns the PC back to the instruc-
tion following the call. If it is an execution call the core is idle until the
transfer completes (if the transfer was necessary) and then jumps the PC to
the run-time location of the function.

� The overlay managers in these examples are used universally. Spe-
cific applications may require some modifications. These
modifications may allow for the elimination of some instructions.
For instance, if your application allows for the free use of registers,
you may not need a run-time stack.

OVERLAY_GROUP{} Command
Memory overlays provide support for applications whose entire program
instructions and data do not fit in the internal memory of the processor.

 Overlays may be grouped or ungrouped. Use the OVERLAY_INPUT command
to support ungrouped overlays. See the OVERLAY_INPUT command descrip-
tion on page 1-60. Refer to “Memory Overlays and Overlay Memory
Manager” on page 1-62 for detailed description of overlay functionality.

The OVERLAY_GROUP command allows you to group overlays, so that each
group is brought into run-time memory, running the overlay for each
group from a different starting address in run-time memory.

Overlay declarations syntactically resemble SECTIONS{} commands: they
are portions of SECTIONS{} commands.The OVERLAY_GROUP command syn-
tax is:

OVERLAY_GROUP{

 OVERLAY_INPUT{

 ALGORITHM(ALL_FIT)

 OVERLAY_OUTPUT()

 INPUT_SECTIONS()

 }
}

1-82 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
 Figure 1-14 demonstrates grouped overlays concept.

In the simplified examples in Listing 1-5 and Listing 1-6, the functions
are written to overlay files (*.OVL). It does not matter (except to a DMA
transfer that brings them in) whether these are disk files or memory seg-
ments. The overlays are active only when they are executed in run-time
memory, all of which is located in segment program.

Ungrouped Overlay Execution

In Listing 1-5, as the FFT progresses and the overlay functions are called
in turn, they are brought into run-time memory in sequence: four func-
tion transfers.

� “Live” locations reside in several different memory segments. The
linker outputs the executable overlay (.OVL) files while allocating
destinations for them in program.

Figure 1-14. Overlays, Grouped

OVERLAY_GROUP{
OVERLAY_INPUT{

fft_one.ovl}
OVERLAY_INPUT{

fft_two.ovl}
}
OVERLAY_GROUP{

OVERLAY_INPUT{
fft_three.ovl}

OVERLAY_INPUT{
fft_last.ovl}

}

fft_one.ovl
overlay

fft_two.ovl
overlay

fft_three.ovl
overlay

fft_last.ovl
overlay

Overlay Group 1
Runtime
Memory

Overlay Manager

Main: call
call

Overlay Group 2
Runtime
Memory
VisualDSP++ 3.0 Linker and Utilities Manual 1-83
for Blackfin DSPs

Advanced Linker Features and Commands
Listing 1-5. LDF Overlays, Not Grouped

// This listing is part of the SECTIONS command for processor P0.
// Declare which functions reside in which overlay. The over-
// lays have been split up either into different segments in
// one file, or into different files.

OVERLAY_INPUT { // Overlays to live in section ovl_code
 ALGORITHM(ALL_FIT)
 OVERLAY_OUTPUT(fft_one.ovl)
 INPUT_SECTIONS(Fft_1st.doj(program)) } >ovl_code

OVERLAY_INPUT {
 ALGORITHM(ALL_FIT)
 OVERLAY_OUTPUT(fft_two.ovl)
 INPUT_SECTIONS(Fft_2nd.doj(program)) } >ovl_code

OVERLAY_INPUT {
 ALGORITHM(ALL_FIT)
 OVERLAY_OUTPUT(fft_three.ovl)
 INPUT_SECTIONS(Fft_3rd.doj(program)) } >ovl_code

OVERLAY_INPUT {
 ALGORITHM(ALL_FIT)
 OVERLAY_OUTPUT(fft_last.ovl)
 INPUT_SECTIONS(Fft_4th.doj(program)) } >ovl_code
 INPUT_SECTIONS(Fft_last.doj(program)) } >ovl_code
1-84 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
Grouped Overlay Execution

Listing 1-6 shows a different implementation of the same algorithm. The
overlaid functions are grouped in pairs. Since each pair of the four rou-
tines is resident simultaneously, the processor can execute both routines
before paging.

Listing 1-6. LDF Overlays, Grouped

OVERLAY_GROUP { // Declare first overlay group

 OVERLAY_INPUT { // Overlays to live in section ovl_code

 ALGORITHM(ALL_FIT)

 OVERLAY_OUTPUT(fft_one.ovl)

 INPUT_SECTIONS(Fft_1st.doj(program)) } >ovl_code

 OVERLAY_INPUT {

 ALGORITHM(ALL_FIT)

 OVERLAY_OUTPUT(fft_two.ovl)

 INPUT_SECTIONS(Fft_mid.doj(program)) } >ovl_code

}

OVERLAY_GROUP { // Declare second overlay group

 OVERLAY_INPUT { // Overlays to live in section ovl_code

 ALGORITHM(ALL_FIT)

 OVERLAY_OUTPUT(fft_three.ovl)

 INPUT_SECTIONS(Fft_last.doj(program)) } >ovl_code

 OVERLAY_INPUT {

 ALGORITHM(ALL_FIT)

 OVERLAY_OUTPUT(fft_last.ovl)

 INPUT_SECTIONS(Fft_last.doj(program)) } >ovl_code

}

VisualDSP++ 3.0 Linker and Utilities Manual 1-85
for Blackfin DSPs

Advanced Linker Features and Commands
PLIT{} Command
The linker resolves function calls and variable accesses, both direct and
indirect, across overlays. This support requires that the linker generate
extra code in order to transfer control to a user-defined routine (an overlay
manager) that handles the loading of overlays. Linker-generated code goes
in a special section of the executable, which has the section name .PLIT.

The linker’s PLIT{} (Procedure Linkage Table) commands in your LDF
allow you to insert assembly instructions that handle calls to functions in
overlays.The assembly commands are specific to an overlay and are exe-
cuted each time a call to a function in that overlay is detected.

The PLIT{} commands provide a template from which the linker generates
assembly code whenever a symbol resolves to a function in overlay mem-
ory. These instructions typically handle a call to a function in overlay
memory by calling an overlay memory manager. Refer to “Memory Over-
lays and Overlay Memory Manager” on page 1-62 for detailed description
of overlay and PLIT functionality.

A PLIT{} command may appear in the global LDF scope within a
PROCESSOR{} command or within a SECTIONS{} command. For an example
of using a PLIT, see “Using PLIT and Overlay Manager” on page 1-91.

PLIT Syntax

When you write the PLIT{} command in the LDF, the linker generates an
instance of the PLIT, with appropriate values for the parameters involved,
for each symbol defined in overlay code.

Figure 1-15 shows the general syntax of the PLIT{} command indicating
how the linker handles a symbol (symbol) local to an overlay function.

The linker first evaluates the plit_commands, a sequence of assembly code.
Each line is passed to a processor-specific assembler, which supplies values
for the symbols and expressions.
1-86 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
After evaluation, the linker puts the returned bytes in the .PLIT output
section. It also manages addressing in that output section.

plit_commands include instructions that are assembly instructions or
expressions. There may be none, one, or more instructions. They may
occur in any reasonable order in the command structure, may precede or
may follow the symbols discussed in the next few paragraphs.

To help you write an overlay manager, the linker generates the PLIT con-
stants for each symbol in an overlay: Data can be overlaid, just like code.

The following two PLIT_SYMBOL constants contain information about sym-
bol and the overlay where it occurs. You must supply instructions to
handle that information.

• The PLIT_SYMBOL_OVERLAYID command directs the linker to return
the overlay ID of the resolved symbol.
symbol_1 is a register name.

• The PLIT_SYMBOL_ADDRESS command directs the linker to return
the absolute address of the resolved symbol in run-time memory.
symbol_2 is a register name.

If your overlay-resident function calls for additional data overlays, you
need to include an instruction for finding them.

Figure 1-15. Syntax Tree of the PLIT{} Command

PLIT{plit_commands}

expression-instruction

symbol = PLIT_SYMBOL_OVERLAYID [symbol]

symbol = PLIT_SYMBOL_ADDRESS

symbol = PLIT_DATA_OVERLAY_IDS
VisualDSP++ 3.0 Linker and Utilities Manual 1-87
for Blackfin DSPs

Advanced Linker Features and Commands
The PLIT_DATA_OVERLAY_ID command directs the linker to return the
address of an array containing the IDs of overlays that hold data used by
the resolved symbol’s function. The array terminates with the null ID “0”.
symbol_n is typically a register name or memory location, which is loaded
with that (start) address.

After the setup and variable identification are completed, the overlay itself
must be brought (via DMA transfer) into run-time memory. That hap-
pens under the control of a piece of assembly code called the overlay
manager.

� The branch instruction, such as jump OverlayManager, is normally
the last instruction in the PLIT command.

Allocating Space for PLITs

The LDF must allocate space in memory to hold any PLITs your linker
builds. Typically, that memory resides in the program code (program1)
Memory section. A typical LDF declaration for that purpose appears
below.

 // ... [In the SECTIONS command for Processor P0]
 // Plit code is to reside and run in PROGRAM section
 .plit {} > MEM_PROGRAM

A PLIT{} command may appear in the global LDF scope within a
PROCESSOR{} command, or within a SECTIONS{} command.

• There is no input section associated with the .plit output section:
the LDF is allocating space for linker-generated routines, not con-
taining any of your (input) data objects.

1 Whatever you name your program code Memory Segment.
1-88 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
• This segment allocation does not take any parameters. You write
the structure of this command per PLIT syntax. The linker creates
an instance of the command for each symbol that resolves to an
overlay. The linker stores each instance in the .PLIT output section
which becomes part of the program code’s memory segment.

PLIT Examples

The following are two examples of LPLIT command implementation.

• Simple PLIT - no state saved

• A PLIT that saves register contents

Simple PLIT � No State Saved
A simple PLIT merely copies the symbol’s address and overlay ID into
registers, and jumps to the overlay manager, as shown in Listing 1-7. This
fragment was extracted from the global scope (just after the MEMORY{}
command) of sample fft_group.ldf.

Listing 1-7. A Simple PLIT{} Command

/* The global PLIT to be used whenever a PROCESSOR or OVERLAY
specific PLIT description is not provided. The plit initializes a
register to the overlay id and the overlay runtime address of the
symbol called. Be sure the registers used in the plit do not con-
tain values which cannot be overwritten. */

PLIT
{
 R0 = PLIT_SYMBOL_OVERLAYID;
 R1 = PLIT_SYMBOL_ADDRESS;
 JUMP _OverlayManager;
}

In this case, you are responsible for verifying the contents of R0 and R1 are
either safe or irrelevant.
VisualDSP++ 3.0 Linker and Utilities Manual 1-89
for Blackfin DSPs

Advanced Linker Features and Commands
A PLIT that Saves Register Contents
The PLIT{} command in the code fragment below saves the contents of R0
and R1 in data memory before being overwritten.

PLIT{
p0.l = save_r0; // p0 points to memory mapped
p0.h = save_r0; // save_r0 variable
[p0] = r0; // save r0 to "save_r0" variable
p0.l = save_r1; // p0 points to memory mapped
p0.h = save_r1; // save_r1 variable
[p0] = r1; // save r1 to "save_r1" variable
r0 = PLIT_SYMBOL_OVERLAYID;
r1 = PLIT_SYMBOL_ADDRESS;
jump _OverlayManager;
}

Note that the p0 register gets trashed in this example, so it would need to
be saved before calling the overlay function.

As a general case, you want to minimize the overlay transfer traffic.
Designing your code so overlay functions are imported and used with
minimal (perhaps zero) reloading has a performance payoff.

What PLIT Does � Summary

A PLIT is a template of instructions for loading an overlay. For each over-
lay routine in the program, the linker builds and stores a list of PLIT
instances according to that template, as it builds its executable. It may
include saving registers or stacking context information.The linker does
not accept a PLIT without any arguments. If you do not want the linker
to redirect function calls in overlays, you should omit the PLIT com-
mands entirely.

To help you to write an overlay manager, the linker generates the
PLIT_SYMBOL constants for each symbol in an overlay:
1-90 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
The overlay manager can also:

• Helped by user’s manual intervention, save the target’s state on the
stack or in memory before loading and executing an overlay func-
tion, so it continues correctly on return. However, you can
implemented this feature within the PLIT section of your LDF.

Note: Your program may not need this information saved.

• Initiate (jump to) the routine that transfers the overlay code to
internal memory, given the previous information about its identity,
size and location: _OverlayManager. “Smart” overlay managers first
check whether the overlay function is already in internal memory,
and avoid reloading it.

Using PLIT and Overlay Manager
The PLIT{} command allows you to insert assembly instructions that han-
dle calls to functions in overlays. The assembly commands are specific to
an overlay and are executed each time a call to a function in that overlay is
detected.

Refer to “PLIT{} Command” on page 1-86 for basic syntax information.
Refer to “Memory Overlays and Overlay Memory Manager” on page 1-62
for detailed information on overlays.

Figure 1-16 shows the interaction between a PLIT and an overlay man-
ager. To make this kind of interaction possible, the linker generates some
special symbols for overlays. These overlay symbols are:

_ov_startaddress_#
_ov_endaddress_#
_ov_size_#
_ov_runtimestartaddress_#
VisualDSP++ 3.0 Linker and Utilities Manual 1-91
for Blackfin DSPs

Advanced Linker Features and Commands
The # in these symbols indicates the overlay number.

� Note that the overlay number starts from 1, not 0. This is done to
avoid confusion when placing these elements into an array or
buffer which will be used by an overlay manager.

The two functions, in Figure 1-16, are on different overlays. By default,
the linker generates PLIT code only when an unresolved function refer-
ence is resolved to a function definition in overlay memory.

Figure 1-16. PLITs & Overlay Memory; main() Calls to Overlays

main()
{
int (*pf)() = X;
Y();

}
/* PLIT & software-manager handle calls,
using the PLIT for resolving calls and
loading overlays as needed */

.plt_X: // setup OM information
call OM

.plt_Y: // setup OM information
call OM

OM: load overlay defined in setup (from
.plt), branch to address defined in
setup

X() {...} // function X defined

Y() { ... } // function Y defined

Runtime Overlay Memory

Overlay 1

Overlay 2

// currently loaded overlay

Code in Non-Overlay Memory
1-92 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
The main function calls functions X() and Y(), which are defined in over-
lay memory. Because the linker cannot resolve these functions locally, the
linker replaces the symbols X and Y with .plit_X and .plit_Y. Any unre-
solved references to X and Y are resolved to .plit_X and .plit_Y.

In cases where both the reference and the definition reside in the same
executable, the linker does not generate PLIT code. However, you can
force the linker to output a PLIT, even when all references can be resolved
locally.

The .plit command sets up data for the overlay manager, which will first
load the overlay that defines the desired symbol, and then branch to that
symbol.

PLITs allows you to resolve interoverlay calls, as shown in Figure 1-17.
You should structure your LDF in such a way the PLIT code that the
linker generates for inter-overlay function references is part of the .plit
section for main(), which is stored in non-overlay memory.

� The .plit section should always be stored in non-overlay memory.

The linker resolves all references to variables in overlays, and the PLIT lets
an overlay manager handle the overhead of loading and unloading over-
lays. One way to optimize overlays is to not put global variables in
overlays. This avoids the difficulty of making sure the proper overlay is
loaded before a global gets called.
VisualDSP++ 3.0 Linker and Utilities Manual 1-93
for Blackfin DSPs

Advanced Linker Features and Commands
Figure 1-17. PLITs and Overlay Memory; Inter-Overlay Calls

F1: // function F1 defined
call F2
call F3

/* PLIT & software-manager handle
calls, using the PLIT for resolving
calls and loading overlays as needed */

.plit_F2: // set up OM information
jump OM

.plit_F3: // set up OM information
jump OM

OM: load overlay defined in setup (from
.plt), branch to address defined in setup

F2: // function F2 defined
call F1
call .plit_F3

Runtime Overlay Memory

Overlay 1

Overlay 2

// currently loaded overlay

Code in Non-Overlay Memory

F3: // function F3 defined
call F1
call .PLIT_F2
1-94 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
Linker Command-Line Reference
This section provides reference information on the linker command line
and linking, including:

• “Command-Line Syntax”

• “Linker Command-Line Switch Summary” on page 1-100

• “Command-Line Switch Descriptions” on page 1-102

You can load the results of the link into the VisualDSP++ debugger for
simulation, testing, and profiling.

� When you use the linker via VisualDSP++, the settings in the Link
property page correspond to linker’s command-line switches. The
VisualDSP++ calls the linker with those switches when you link
your code. For more information, use see the VisualDSP++ 3.0
User’s Manual for Blackfin DSP and VisualDSP++ online Help.

Command-Line Syntax
You can run the linker using one of the following normalized formats for
the linker command line.

linker -Darchitecture -switch [-switch …] object [object …]

linker -proc processorID -switch [-switch …] object [object …]

linker -T target.ldf -switch [-switch …] object [object …]

The linker (the command itself) and either -Darchitecture or -T<ldf
name> must be provided for the link to proceed. The LDF specified fol-
lowing the -T switch must contain an -Darchitecture command if the
command line does not have -Darchitecture.

The command line must also have at least one object (an object file name).
Other switches are optional, and some commands are mutually exclusive.
VisualDSP++ 3.0 Linker and Utilities Manual 1-95
for Blackfin DSPs

Linker Command-Line Reference
For example,

linker -DADSP-21535 p0.doj p1.doj -T target.ldf -t -o program.dxe

When using the linker’s command line, make sure you are familiar with
the following topics:

• “Object Files in the Linker Command Line”

• “Switch Format in the Linker Command Line” on page 1-97

• “File Names on the Linker Command Line” on page 1-98

� Analog Devices suggest that you use -proc processorID instead of
-Darchitecture on the command line to make the target processor
selection. See Table 1-6 on page 1-100 for more information.

Object Files in the Linker Command Line

The command line must list at least one (typically more) object file(s) to
be linked together. These files may be of several different types.

• The standard object file is produced by the assembler and has a
.DOJ extension.

• The command line may list archives (libraries) each of one or more
files, with a .DLB extension. Examples include C run-time and
math libraries delivered with VisualDSP++. Developers may create
archives of common or specialized objects. Special libraries may be
obtained from DSP algorithm vendors.

• It may also be an executable (.DXE) file to be linked against1.

� Object file names are not case-sensitive. But linker switches are case
sensitive. For example, linker -t is not the same as linker -T.

1 “Link Against” is described on page 1-41, under $COMMAND_LINE_LINK_AGAINST
1-96 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
An object filename has the following characteristics:

• It can include the drive, directory path, file name, and file
extension

• Its path may be absolute or relative to the directory where the
linker is invoked

• It should enclose long file names within straight-quotes.

If the file exists before the link starts, the linker opens it and verifies its
type before processing the file. If the file is created during the link, the
linker uses the file’s extension to determine the type of file to create.

Table 1-2 on page 1-15 lists the valid extensions and matching linker
operations.

Switch Format in the Linker Command Line

The linker has many optional switches that can be used to select the oper-
ations and modes for the compiler and other tools. The standard linker
switch syntax is as follows:

-switch [argument] — name of the switch to be processed, plus its
parameters (if any). Different switches require (or prohibit) white
space between the switch and its parameter.

As noted above, the linker command line (except for filenames) is case
sensitive. For example, the command line:

linker p0.doj p1.doj p2.doj -T target.ldf -t -o program.dxe

calls the linker as described below.
VisualDSP++ 3.0 Linker and Utilities Manual 1-97
for Blackfin DSPs

Linker Command-Line Reference
Note the difference between the -T and -t switches:

• p0.doj, p1.doj and p2.doj — Links object files together into an
executable.

• (-T target.ldf) — Uses the LDF listed to specify executable pro-
gram placement

• (-t) — Turns on trace information, echoing each link object’s
name to stdout as it is processed

• -o program.dxe — Names the linked, executable output file.

File Names on the Linker Command Line

Many linker switches take a file name as an optional parameter. Table 1-5
on page 1-99 lists the types of files, names, and extensions that the linker
expects on filename arguments.

The linker supports relative and absolute directory names, default directo-
ries, and user-selected directories for file search paths. File searches occur
as follows:

• Specified path — If you include relative or absolute path informa-
tion on the command line, the linker searches in that location for
the file.

• User -selected directories — If you do not include path information
on the command line and the file is not in a default directory, the
linker searches for the file in search directories that you select with
the -L (path) command-line switch and SEARCH_DIR commands in
the LDF. The linker searches these directories in the order that
they appear on the command line or in the LDF.

• Default directory — If you do not include path information in the
LDF named in the -T switch, the linker searches for the LDF
named in the current working directory. If you use a default LDF
1-98 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
by omitting any LDF information in the command line and
instead specifying -Darchitecture, the linker searches in the
processor-specific LDF directory; for example,
...\$ADI_DSP\Blackfin\ldf.

For more information on file searches, see “LDF Macros” on page 1-40.

When you provide an input or output file name as a command line
parameter, use the following guidelines:

• Use a space to delimit file names in a list of input files.

• Enclose long file names within straight quotes; for example, “long
file name”.

• Include the appropriate name extension to each file. The linker
opens existing files and verifies their type before processing. When
the linker creates a file, it uses the file extension to determine the
type of file to create.

The linker follows the conventions for file name extensions that appear in
Table 1-5

Table 1-5. File Name Extension Conventions

Extension File Description

.dlb Library (archive) file

.doj Object file

.dxe Executable file

.ldf Linker description file

.ovl Overlay file
VisualDSP++ 3.0 Linker and Utilities Manual 1-99
for Blackfin DSPs

Linker Command-Line Reference
Linker Command-Line Switch Summary
This section describes the linker command-line switches. A list of all
linker’s command-line switches appears in Table 1-6. Refer to “Com-
mand-Line Switch Descriptions” on page 1-102 for full description of
each switch.

A brief description of each switch includes information on case sensitivity,
equivalent switches, switches overridden/contradicted by the one
described, and naming and spacing constraints on parameters:

• Switches may be used in any order on the command line. Items
shown in [] are optional; items in italics are user-defined and are
described with each switch.

• Path names may be relative or absolute.

• File names containing white space or colons must be enclosed by
double quotation marks, though relative path names such as
..\..\test.dxe do not.

Table 1-6. Linker Command-Line Switches

Switch Description

object(s)
on page 1-102

Specifies object files involved in the linking; process files that are not
parameters to a switch.

<null> on page 1-103 Displays a summary of command line options and exit.

@ file on page 1-103 Directs the linker to use the specified file as input on the command
line.

-Darchitecture
on page 1-103

Specifies the target architecture (processor).

-L pathon page 1-103 Adds the path name to search libraries for objects.

-M on page 1-104 Produces dependencies.

-MM on page 1-104 Builds and produces dependencies.
1-100 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
-Map file
on page 1-104

Outputs a map of link symbol information to a file.

-MDmacro[=def]
on page 1-104

Defines and assigns value def to a preprocessor macro.

-S on page 1-104 Omits debugging symbol information from the output file.

-T filename
on page 1-104

Names the LDF.

-e on page 1-105 Directs the linker to eliminate unused symbols from the executable.

-es secName
on page 1-105

Names sections (secName list) to which elimination algorithm is
being applied.

-ev on page 1-105 Eliminates unused symbols verbosely.

-h|help on page 1-105 Outputs the list of command-line switches and exits.

-i path on page 1-105 Includes search directory for preprocessor include files.

-ip on page 1-106 Fills in fragmented memory with individual data objects that fit.
Also requires objects to have been assembled using the assembler’s
-ip switch.

-jcs2l on page 1-106 Directs the linker to convert out-of-range short calls and jumps to
the longer form.

-jcs2l+ on page 1-106 Enables -jcs2l and allows the linker to convert out-of-range
branches to indirect calls/jumps sequences.

-keep symName
on page 1-107

Retains unused symbols.

-o filename
on page 1-107

Outputs the named executable file.

-pp on page 1-107 Stops after preprocessing.

-proc ProcessorID
on page 1-107

Directs the linker to select a target processor.

-s on page 1-107 Strips symbol information from the output file.

-sp on page 1-108 Skips preprocessing.

Table 1-6. Linker Command-Line Switches (Cont’d)

Switch Description
VisualDSP++ 3.0 Linker and Utilities Manual 1-101
for Blackfin DSPs

Linker Command-Line Reference
Command-Line Switch Descriptions

objects

When naming or specifying the files (or objects) that are not parameters
to a switch, the linker uses a file’s type to determine how to handle it. The
linker gets a file’s type as follows:

• Existing files are opened and examined to determine their type;
their names can be anything.

• Files created during the link are named with the appropriate exten-
sion and formatted accordingly. A map file is formatted as text and
given the extension .map, while an executable is written in the ELF
format and given the extension .dxe.

The linker treats object (.doj) and library (.dlb) files that appear on the
command line as object files to be linked. The linker treats executable
(.dxe) and shared-memory (.sm) files on the command line as executables
to be linked against.

For more information on objects, see the $COMMAND_LINE_OBJECTS linker
macro (see on page 1-41). For information on executables, see the
$COMMAND_LINE_LINK_AGAINST linker macro (see on page 1-41).

-t on page 1-108 Directs the linker to output the names of link objects.

-v on page 1-108 Verbose: directs the linker to output status information.

-versionon page 1-108 Directs the linker to output its version and exit.

-warnonce
on page 1-108

Warns only once for each undefined symbol.

-xref filename
on page 1-108

Outputs a list of all cross-referenced symbols.

Table 1-6. Linker Command-Line Switches (Cont’d)

Switch Description
1-102 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
If you do not specify any link objects on the command line or in the linker
description file, the linker generates an appropriate information/error
message.

<null>

Displays a summary of command line options and exit. Same as
linker -help.

@ file

Uses file as input to the linker command line. This switch allows you cir-
cumvent environmental command line length restrictions. The file may
not start with “linker” (it can’t be a linker command line). Any white
space in file serves to separate tokens, including “newline”.

-Darchitecture

Specifies target architecture/processor. For example, -DADSP-21535 or
-DBlackfin. No white space is permitted between -D and architecture.
The “architecture” entry is case-sensitive, and must be available in your
VisualDSP++ installation. This option must be used if no LDF is specified
on the command line (see -T option). It also must be used if the specified
LDF does not specify ARCHITECTURE(). Architectural inconsistency
between this option and LDF causes an error.

� It is preferable to use -proc processorID instead of -Darchitec-
ture on the command line to make the target processor selection.

-L path

Adds path name to search libraries and objects. Not case-sensitive; spacing
is unimportant. The path parameter enables searching for any file, includ-
ing the LDF itself. May be repeated to add multiple search paths. Paths
named in this command are searched before the arguments in the LDF’s
SEARCH_DIR{} command.
VisualDSP++ 3.0 Linker and Utilities Manual 1-103
for Blackfin DSPs

Linker Command-Line Reference
-M

Directs the linker to check a dependency and to output the result to
stdout.

-MM

Directs the linker to check a dependency and to output the result to std-
out, and also to perform the build.

-Map file

Outputs a map of link symbol information to a file, which can have any
name. The file parameter is obligatory and has a .MAP extension, pro-
vided by the Linker. The white space is obligatory before file. Otherwise,
the link fails.

-MDmacro[=def]

Defines and assigns value def to preprocessor macro named macro.
For example, the linker’s -MDTEST=BAR... means code following #ifdef
TEST==BAR in the LDF is executed (but not code following #ifdef
TEST==XXX). If =def is not included, macro is defined and set to “1”, so
code following #ifdef TEST is executed. May be repeated.

-S

Omits debugging symbol information (not all symbol information) from
the output file. Compare with -s switch, on page 1-107.

-T file

Uses file to name an LDF.
The LDF specified following the -T switch must contain an
ARCHITECTURE() command if the command line does not have
-Darchitecture.
1-104 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
The linker “requires” the -T switch when linking for a processor for which
no IDDE support has been installed (e.g., the processor ID does not show
up in the Target processor field of the Project Options dialog box.)

A file must exist and can be found (e.g. via the -L option); there must be
white space before file. A file’s name is unconstrained, but must be valid;
for example, a.b works if it is a valid LDF, where .LDF is a valid extension
but not a requirement.

-e

Eliminates unused symbols from the executable.

-es secName

Names sections (secName list) to which elimination algorithm is to be
applied. This option restricts elimination to the named input sections.

-ev

Eliminates unused symbols and verbose — report on each symbol
eliminated.

-h|-help

Displays a summary of command-line options and exit.

-i path

Includes a search directory; directs the preprocessor to append the direc-
tory to the search path for include files.
VisualDSP++ 3.0 Linker and Utilities Manual 1-105
for Blackfin DSPs

Linker Command-Line Reference
-ip

Fills in fragmented memory with individual data objects that fit.
When the -ip switch is specified on the linker’s command line or via the
VisualDSP++ IDDE, the default behavior of the linker — placing data
blocks in consecutive memory addresses — is overridden. The -ip switch
allows individual placement of a grouping of data in the DSP memory,
providing more efficient memory packing.

The -ip switch works only with objects assembled with the assembler’s
-ip switch.

Absolute placements take precedence over data/program section place-
ments in contiguous memory locations. When remaining memory space is
not sufficient for the entire section placement, the link fails. The -ip
switch allows the linker to extract a block of data for individual placement
and fill in fragmented memory spaces.

The -noip option (in assembler) turns off the individual placement
option. See the VDSP++ 3.0 Assembler and Preprocessor Manual for Black-
fin DSPs.

-jcs2l

Directs the linker to convert out-of-range short calls and jumps to the
longer form. Refer to Branch expansion instruction on the Link property
page.

-jcs2l+

Enables the -jcs2l switch and allows the linker to convert out-of-range
branches (-0x800000 to 0x7FFFFF) to indirect calls/jumps sequences using
the p1 register. This option can be useful for automatically expending
jumps from L1 to L2 memory (or vice versa) on Blackfin DSP architec-
ture. Refer to Branch expansion instruction on the Link property page.
1-106 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
-keep symName

Retains unused symbols; directs the linker (while -e or -ev is enabled) to
keep listed symbols in the executable even if they are unused.

-o filename

Outputs the executable file with the specified filename. If filename is
not specified, the linker outputs “a.dxe” in the project’s home directory.
Alternatively, you may use the LDF’s OUTPUT command in an LDF to
name the output file.

-pp

Ends after preprocessing; directs the linker to stop after the preprocessor
runs without linking. The output (preprocessed source code) prints to
stdout.

-proc ProcessorID

Directs the linker to select a target processor.

• To select ADSP-21535 DSP, enter -proc ADSP-21535

• To select ADSP-21532 DSP, enter -proc ADSP-21532

-s

Strips all symbols—directs the linker to omit all symbol information from
the output file.

� Some debugger functionality, including “run to main”, all stdio
functions, and the ability to stop at the end of program execution
all rely on the debugger being able to find certain symbols in the
executable. These symbols are also removed when using this switch.
VisualDSP++ 3.0 Linker and Utilities Manual 1-107
for Blackfin DSPs

Linker Command-Line Reference
-sp

Skips preprocessing—links without preprocessing the LDF.

-t

Outputs the names of link objects to standard output as the linker pro-
cesses them.

-v

Verbose — outputs status information while linking.

-version

Directs the linker to output its version to stderr and exit.

-warnonce

Warns only once for each undefined symbol, rather than once for each ref-
erence to that symbol.

-xref filename

Outputs a list of all cross-referenced symbols (and where they are used) in
the link to the named file.
1-108 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
LDF Programming Examples
This section shows several typical LDFs. As you modify these examples,
refer to the syntax descriptions in “LDF Command Summary” on
page 1-44.

This section provides the following examples:

• “Linking for Single-Processor System” on page 1-110

• “Linking Large Uninitialized Variables” on page 1-111

• “Linking for Assembly Source File” on page 1-113

• “Linking for C Source File – Example 1” on page 1-115

• “Linking for Complex C Source File – Example 2” on page 1-118

• “Linking for Overlay Memory Example” on page 1-123

� The source code for several programs is bundled with your devel-
opment software. Each program includes an LDF. For working
examples of the linking process, examine the LDF files that come
with the examples. These examples are in the directory:

<VisualDSP++ InstallPath>\Blackfin\examples

� A variety of per-processor default LDF files come with the develop-
ment software, providing an example LDF for each processor’s
internal memory architecture. These default LDFs are in the
directory:

<VisualDSP++ InstallPath>\Blackfin\ldf
VisualDSP++ 3.0 Linker and Utilities Manual 1-109
for Blackfin DSPs

LDF Programming Examples
Linking for Single-Processor System
When linking an executable for a single-processor system, the LDF
describes the processor’s memory and places code for that processor. The
LDF in Listing 1-8 shows a single-processor LDF. Note the following
commands in this LDF:

• ARCHITECTURE() defines the processor type

• SEARCH_DIR() commands add the lib and current working direc-
tory to the search path

• $OBJS and $LIBS macros get object (.DOJ) and library (.DLB) file
input

• MAP() outputs a map file

• MEMORY{} defines memory for the processor

• PROCESSOR{} and SECTIONS{} commands define a processor and
place program sections for that processor’s output file, using the
memory definitions

Listing 1-8. Single-Processor System LDF Example

ARCHITECTURE(ADSP-21535)

SEARCH_DIR($ADI_DSP\Blackfin\lib)

MAP(SINGLE-PROCESSOR.MAP) // Generate a MAP file

// $ADI_DSP is a predefined linker macro that expands
// to the VDSP install directory. Search for objects in
// directory Blackfin/lib relative to the install directory

LIBS libc.dlb, libevent.dlb, libsftflt.dlb, libcpp_blkfn.dlb,
libcpprt_blkfn.dlb, libdsp.dlb
$LIBRARIES = LIBS, librt.dlb;
1-110 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
// single.doj is a user generated file. The linker will be
// invoked as follows
// linker -T single-processor.ldf single.doj.
// $COMMAND_LINE_OBJECTS is a predefined linker macro
// The linker expands this macro into the name(s) of the
// the object(s) (.doj files) and archives (.dlb files)
// that appear on the command line. In this example,
// $COMMAND_LINE_OBJECTS = single.doj

$OBJECTS = $COMMAND_LINE_OBJECTS;

// A linker project to generate a DXE file

PROCESSOR P0
{
 OUTPUT(SINGLE.DXE) // The name of the output file

 MEMORY // Processor specific memory command
 { INCLUDE(“21535_memory.ldf”) }

 SECTIONS // Specify the Output Sections
 {
 INCLUDE(“21535_sections.ldf”)
 } // end P0 sections
} // end P0 processor

Linking Large Uninitialized Variables
When linking an executable file that contains large uninitialized variables,
you can reduce the size of the file by using the SHT_NOBITS section quali-
fier (Section Header Type No Bits).

A variable defined in a source file normally takes up space in an object and
executable file even if that variable is not explicitly initialized when
defined. For large buffers this can result in large executables filled mostly
with zeros. Such files take up excess disk space and can incur large down-
load times when using with the emulator. This also may occur when
booting from a loader file (because of the increased file size). Listing 1-10
shows an example using the SHT_NOBITS section to avoid initialization of a
segment.
VisualDSP++ 3.0 Linker and Utilities Manual 1-111
for Blackfin DSPs

LDF Programming Examples
The LDF can specify that an output section be omitted from the output
file. The SHT_NOBITS output section qualifier directs the linker to omit
data for that section from the output file.

� The SHT_NOBITS technique corresponds to using the /UNINIT seg-
ment qualifier in previous (.ACH) development tools.
Even if you do not use the SHT_NOBITS technique, the boot loader
removes variables initialized to zeros from the .LDR file and replaces
them with instructions for the loader kernel to zero out the vari-
able. This reduces the loader’s output file size, but still requires
execution time for the processor to initialize the memory with
zeros.

Listing 1-9. Large Uninitialized Variables: Assembly Source

.Section extram_area; /* 1Mx8 EXTRAM */

.byte huge_buffer[0x006000];

Listing 1-10. Large Uninitialized Variables: LDF Source

ARCHITECTURE(ADSP-Blackfin)
$OBJECTS = $COMMAND_LINE_OBJECTS; // Libraries & objects from
 // the command line
MEMORY {
 mem_extram {
 TYPE(RAM) START(0x10000) END(0x15fff) WIDTH(8)
 } // end segment
 } // end memory

PROCESSOR P0 {
 LINK_AGAINST($COMMAND_LINE_LINK_AGAINST)
 OUTPUT($COMMAND_LINE_OUTPUT_FILE)
 // SHT_NOBITS section isn’t written to the output file
 SECTION {
 extram_ouput SHT_NOBITS {
 INPUT_SECTIONS($OBJECTS (extram_area))} >mem_extram;
 } //end section
 } // end processor P0
1-112 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
Linking for Assembly Source File
Listing 1-12 shows an example LDF (for ADSP-21535 DSP) that
describes a simple memory placement of an assembly source file
(Listing 1-11) which contains code and data that is to reside in, and exe-
cute from, L2 SRAM. This example assumes that the code and data
declared in L2 memory is cacheable within L1 code and data memories.
The LDF file includes two commands, MEMORY and SECTIONS, which are
used to describe specific memory and system information. Refer to Notes
for Listing 1-1 on page 1-20 for information on items in this basic
example.

Listing 1-11. MyFile.ASM

.section program;

.global main;
main:

p0.l = (myArray & 0xffff);
p0.h = (myArray >> 16);
r0 = [p0++];
…

.section data1;

.global myArray;
var myArray[256] = "myArray.dat";

Listing 1-12. Simple LDF Based on Assembly Source File Only

#define L2_START 0xf0000000
#define L2_END 0xf003ffff

// Declare specific DSP Architecture here (for linker)
ARCHITECTURE(ADSP-21535)
// LDF macro which equals all object files in project command
line
$OBJECTS = $COMMAND_LINE_OBJECTS;

 // Describe the physical system memory below
VisualDSP++ 3.0 Linker and Utilities Manual 1-113
for Blackfin DSPs

LDF Programming Examples
MEMORY{
 // 256KB L2 SRAM memory segment for user code and data L2SRAM
 {TYPE(RAM) START(L2_START) END(L2_END) WIDTH(8)}
}

PROCESSOR p0{
 OUTPUT($COMMAND_LINE_OUTPUT_FILE)

 SECTIONS{
 DXE_L2SRAM{
 // Align L2 instruction segments on a 2-byte boundaries
 INPUT_SECTION_ALIGN(2)
 INPUT_SECTIONS($OBJECTS(program) $LIBRARIES(program))
 // Align L2 data segments on 1-byte boundary
 INPUT_SECTION_ALIGN(I
 INPUT_SECTIONS($OBJECTS(data1) $LIBRARIES(data1))
 >L2SRAM
// end SECTIONS
// end PROCESSOR p0

Figure 1-18. Assembly-to-Memory Code Placement
1-114 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
Linking for C Source File � Example 1
Listing 1-14 shows an example LDF that describes the memory placement
of a simple C source file (Listing 1-13) which contains code and data that
is to reside in, and execute from, L2 SRAM. This example also assumes
that the code and data declared in L2 memory is cacheable within L1 code
and data memories. The LDF file includes two commands, MEMORY and
SECTIONS, which are used to describe specific memory and system infor-
mation. Refer to Notes for Listing 1-1 on page 1-20 for information on
items in this basic example.

Listing 1-13. Simple C Source File Example 1

int myArray[256];

void main(void){
 int i;

for(i=0; i<256; i++)
 myArray[i] = i;

}// end main()

Listing 1-14. Simple C-based LDF Example for ADSP-21535 DSP

ARCHITECTURE(ADSP-21535)
SEARCH_DIR($ADI_DSP\Blackfin\lib)

#define LIBS libc.dlb, libevent.dlb, libsftflt.dlb,
libcpp_blkfn.dlb, libcpprt_blkfn.dlb, libdsp.dlb, idle.doj

$LIBRARIES = LIBS, librt.dlb;

$OBJECTS = $COMMAND_LINE_OBJECTS;

MEMORY{
 // 248KB of L2 SRAM memory segment for user code and data
 MemL2SRAM{TYPE(RAM) START(0xf0000000) END(0xF003dfff) WIDTH(8)}
VisualDSP++ 3.0 Linker and Utilities Manual 1-115
for Blackfin DSPs

LDF Programming Examples
 // 4KB of L2 SRAM memory segment for C runtime stack (user mode)
 MemStack {TYPE(RAM) START(0xf003e000) END(0xf003efff) WIDTH(8)}
 // 4KB of L2 SRAM for stack memory segment (supervisor mode)
 MemSysStack {TYPE(RAM) START(0xf003f000) END(0xf003ffff)
 WIDTH(8)}
 // 4KB of Scratch SRAM for Heap memory segment
 MemHeap {TYPE(RAM) START(0xFFB00000) END(0xFFB00FFF) WIDTH(8)}
}

PROCESSOR p0{

 OUTPUT($COMMAND_LINE_OUTPUT_FILE)

 SECTIONS{}
 // Declare L2 Input objects below…
 DXE_L2_SRAM{
 // Align L2 instruction segments on a 2-byte boundaries
 INPUT_SECTION_ALIGN(2)
 INPUT_SECTIONS($OBJECTS(program) $LIBRARIES(program))
 // Align L2 data segments on a 1-byte boundary
 INPUT_SECTION_ALIGN(1)
 INPUT_SECTIONS($OBJECTS(data1) $LIBRARIES(data1))
 // Align L2 constructor data segments on a 1-byte boundary
 // (C++ only)
 INPUT_SECTION_ALIGN(1)
 INPUT_SECTIONS($OBJECTS(constdata) $LIBRARIES(constdata))
 }>MemL2SRAM

 // Allocate memory segment for C runtime stack segment stack{
 // assign start address of stack to 'ldf_stack_space'
 // variable using the LDF's current location counter " ."
 ldf_stack_space = .;
 // assign end address of stack to 'ldf_stack_end' variable
 ldf_stack_end = ldf_stack_space + MEMORY_SIZEOF(MemStack) - 4;
 }>MemStack

 // Allocate memory segment for system stack sysstack{
 // assign start address of sys stack to 'ldf_sysstack_space'
 // variable using the LDF's current location counter " ."
 ldf_sysstack_space = .
1-116 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
 // assign end address of stack to 'ldf_sysstack_end' variable
 ldf_sysstack_end = ldf_sysstack_space + MEMORY_SIZEOF
 (MemSysStack) - 4;
 }>MemSysStack

 // Allocate a heap segment (for dynamic memory allocation)
 // heap{
 //assign start address of heap to 'ldf_heap_space' variable
 // using the LDF's current location counter " ."
 ldf_heap_space = .;
 // assign end address of heap to 'ldf_heap_length' variable
 ldf_heap_end = ldf_heap_space + MEMORY_SIZEOF(MemHeap) - 1;
 // assign length of heap to 'ldf_heap_length' variable
 ldf_heap_length = ldf_heap_end - ldf_heap_space;
 }>MemHeap

}// end SECTIONS{}
// end PROCESSOR p0{}
VisualDSP++ 3.0 Linker and Utilities Manual 1-117
for Blackfin DSPs

LDF Programming Examples
Linking for Complex C Source File � Example 2
Listing 1-3 shows an example LDF that describes the memory placement
of a C source file, which contains code and data that is to reside in, and
execute from, L1, L2, and Scratchpad SRAM, as well as external SDRAM
Banks 0 through 3. The LDF file includes two commands, MEMORY and
SECTIONS, which are used to describe specific memory and system infor-
mation. Refer to Notes for Listing 1-1 on page 1-20 for information on
items in this complex example.

Listing 1-15. Complex C Source File Example

static section ("Fast_Code") void MEM_DMA_ISR(void){

...

...

}

static section ("SDRAM_0") int page_buff1[0x08000000];
static section ("SDRAM_1") int page_buff2[0x08000000];
static section ("SDRAM_2") int page_buff3[0x08000000];
static section ("SDRAM_3") int page_buff4[0x08000000];

static section ("Data_BankA") int coeffs1[256];
static section ("Data_BankB") int input_array[0x2000];

int x, y, z;
void main(void){

int i;
x = 0x5555;

...
}

The following is an example of an LDF file (for ADSP-21535 DSP) which
is based on the complex C source from Listing 1-13.
1-118 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
Listing 1-16. C LDF File Example - SDRAM.LDF

ARCHITECTURE(ADSP-21535)

SEARCH_DIR($ADI_DSP\Blackfin\lib
#define OMEGA idle.doj
#define LIB1 libc.dlb, libevent.dlb, libsftflt.dlb
#define LIB2 libcpp_blkfn.dlb, libcpprt_blkfn.dlb, libdsp.dlb

$LIBRARIES = LIB1, LIB2, OMEGA, librt.dlb;
$OBJECTS = $COMMAND_LINE_OBJECTS;

// Define physical system memory below…
MEMORY{
 // 16KB of user code in L1 SRAM segment
 Mem_L1_Code_SRAM{TYPE(RAM) START(0xFFA00000) END(0xFFA03FFF)
 WIDTH(8)}
 // 16KB of user data in L1 Data Bank A SRAM
 Mem_L1_DataA_SRAM{TYPE(RAM) START(0xFF800000) END(0xFF803FFF)
 WIDTH(8)}
 // 16KB of user data in L1 Data Bank B SRAM
 Mem_L1_DataB_SRAM{TYPE(RAM) START(0xFF900000) END(0xFF903FFF)
 WIDTH(8)}

 // 4KB of L1 Scratch memory for C runtime stack (user mode)
 Mem_Scratch_Stack{TYPE(RAM) START(0xFFB00000) END(0xFFB007FF)
 WIDTH(8)}

 // 248KB of user code and data in L2 SRAM segment
 Mem_L2_SRAM{TYPE(RAM) START(0xF0000000) END(0xF003DFFF) WIDTH(8)}
 // 4KB for heap segment in L2 SRAM (for dynamic memory allocation)
 Mem_Heap{TYPE(RAM) START(0xF003E000) END(0xF003EFFF) WIDTH(8)}

 // 4KB for system stack in L2 SRAM (supervisor mode stack)
 Mem_SysStack{TYPE(RAM) START(0xF003F000) END(0xF003FFFF) WIDTH(8)}

 // 4 x 128MB External SDRAM memory segments
 Mem_SDRAM_Bank0{TYPE(RAM) START(0x00000000) END(0x07FFFFFF)
 WIDTH(8)}
 Mem_SDRAM_Bank1{TYPE(RAM) START(0x08000000) END(0x0FFFFFFF
VisualDSP++ 3.0 Linker and Utilities Manual 1-119
for Blackfin DSPs

LDF Programming Examples
 WIDTH(8)}
 Mem_SDRAM_Bank2{TYPE(RAM) START(0x10000000) END(0x17FFFFFF)
 WIDTH(8)}
 Mem_SDRAM_Bank3{TYPE(RAM) START(0x18000000) END(0x1FFFFFFF)
 WIDTH(8)}
}// end MEMORY{}

PROCESSOR p0{
 OUTPUT($COMMAND_LINE_OUTPUT_FILE)

 SECTIONS{
 // Input section declarations for L1 code memory
 DXE_L1_Code_SRAM{
 // Align L1 code segments on a 2-byte boundary
 INPUT_SECTION_ALIGN(2)
 INPUT_SECTIONS($OBJECTS(Fast_Code))
 }>Mem_L1_Code_SRAM

 // Input section declarations for L1 data bank A memory
 DXE_L1_DataA_SRAM{
 // Align L1 data segments on a 1-byte boundary
 INPUT_SECTION_ALIGN(1)
 INPUT_SECTIONS($OBJECTS(Data_BankA)
 }>Mem_L1_BankA_SRAM

 // Input section declarations for L1 data bank B memory
 DXE_L1_BankB_SRAM{
 // Align L1 data segments on a 1-byte boundary
 INPUT_SECTION_ALIGN(1)
 INPUT_SECTIONS($OBJECTS(Data_BankB))
 }>Mem_L1_BankB_SRAM

 stack{
 ldf_stack_space = .;
 ldf_stack_end = ldf_stack_space +
 MEMORY_SIZEOF(Mem_Scratch_Stack) - 4;
 }>Mem_Scratch_Stack

 sysstack{
 ldf_sysstack_space = .;
1-120 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
 ldf_sysstack_end = ldf_sysstack_space +
 MEMORY_SIZEOF(Mem_SysStack) - 4;
 }>Mem_SysStack

 heap{
 ldf_heap_space = .;
 ldf_heap_end = ldf_heap_space + MEMORY_SIZEOF(Mem_Heap) - 1;
 ldf_heap_length = ldf_heap_end - ldf_heap_space;
 }>Mem_Heap

 DXE_L2_SRAM{
 // Align L2 code segments on a 2-byte boundary
 INPUT_SECTION_ALIGN(2)
 INPUT_SECTIONS($OBJECTS(program) $LIBRARIES(program))
 // Align L2 data segments on a 1-byte boundary
 INPUT_SECTION_ALIGN(1)
 INPUT_SECTIONS($OBJECTS(data1) $LIBRARIES(data1))
 // Align L2 constructor data segments on a 1-byte boundary
 // (C++ only)
 INPUT_SECTION_ALIGN(1)
 INPUT_SECTIONS($OBJECTS(constdata) $LIBRARIES(constdata))
 }>Mem_L2_SRAM

 DXE_SDRAM_0{
 // Align external SDRAM data segments on a 1-byte boundary
 INPUT_SECTION_ALIGN(1)
 INPUT_SECTIONS($OBJECTS(SDRAM_0))
 }>Mem_SDRAM_Bank0

 DXE_SDRAM_1{
 // Align external SDRAM data segments on a 1-byte boundary
 INPUT_SECTION_ALIGN(1)
 INPUT_SECTIONS($OBJECTS(SDRAM_1))
 }>Mem_SDRAM_Bank1

 DXE_SDRAM_2{
 // Align external SDRAM data segments on a 1-byte boundary
 INPUT_SECTION_ALIGN(1)
 INPUT_SECTIONS($OBJECTS(SDRAM_2))
 }>Mem_SDRAM_Bank2
VisualDSP++ 3.0 Linker and Utilities Manual 1-121
for Blackfin DSPs

LDF Programming Examples
 DXE_SDRAM_3{
 // Align external SDRAM data segments on a 1-byte boundary
 INPUT_SECTION_ALIGN(1)
 INPUT_SECTIONS($OBJECTS(SDRAM_3))
 }>Mem_SDRAM_Bank3

} // End Sections{}
}// End PROCESSOR p0{}

Figure 1-19. C-to-Memory Code Placement
1-122 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
Linking for Overlay Memory Example
When linking executable files for an overlay memory system, the LDF
describes the overlay memory, the processor(s) that use the overlay mem-
ory, and each processor’s unique memory. The LDF places code for each
processor and the special PLIT{} section.

Listing 1-17 shows an example overlay memory LDF. For more informa-
tion on this LDF, see the comments in the listing.

Listing 1-17. Overlay-Memory System LDF Example

ARCHITECTURE(ADSP-21535)

SEARCH_DIR($ADI_DSP\Blackfin\lib)

{

MAP(overlay.map)

// This simple example uses internal memory for overlays

// (Real overlays would never “live” in internal memory)

MEMORY

{

 MEM_PROGRAM

 { TYPE(RAM) START(0xF0000000) END(0xF002FFFF) WIDTH(8) }

 MEM_HEAP

 { TYPE(RAM) START(0xF0030000) END(0xF0037FFF) WIDTH(8) }

 MEM_STACK

 { TYPE(RAM) START(0xF0038000) END(0xF003DFFF) WIDTH(8) }

 MEM_SYSSTACK

 { TYPE(RAM) START(0xF003E000) END(0xF003EFFF) WIDTH(8) }

 MEM_OVLY

 { TYPE(RAM) START(0) END(0x08000000) WIDTH(8) }

}

PROCESSOR p0
VisualDSP++ 3.0 Linker and Utilities Manual 1-123
for Blackfin DSPs

LDF Programming Examples
{

 LINK_AGAINST($COMMAND_LINE_LINK_AGAINST)

 OUTPUT($COMMAND_LINE_OUTPUT_FILE)

 SECTIONS

 {

 dxe_reset { INPUT_SECTIONS($OBJECTS(IVreset))

 } >MEM_PROGRAM

 dxe_itab { INPUT_SECTIONS($OBJECTS(IVpwrdwn))

// Processor and application specific assembly language

// instructions, generated for each symbol that is resolved

// in overlay memory.

PLIT {

 R0.h = PLIT_SYMBOL_OVERLAYID;

 // overlay ID of the resolved symbol

 R1.h = PLIT_SYMBOL_ADDRESS;

 //run address of the resolved symbol

 R0.l = PLIT_SYMBOL_OVERLAYID;

 // overlay ID of the resolved symbol

 R1.l = PLIT_SYMBOL_ADDRESS;

 //run address of the resolved symbol

 p0.h=_overlayID;

 p0.l=_overlayID;

 [p0] = R0;

 p0.h=_pf;

 p0.l=_pf;

 [p0] = R1;

 JUMP _OverlayManager;

}

LIBS libc.dlb, libevent.dlb, libsftflt.dlb, libcpp_blkfn.dlb,

libcpprt_blkfn.dlb, libdsp.dlb

$LIBRARIES = LIBS, librt.dlb;
1-124 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
$OBJECTS = $COMMAND_LINE_OBJECTS;

PROCESSOR P0 {

 $P0_OBJECTS = main.doj , manager.doj;

 OUTPUT(mgrovly.dxe)

 OUTPUT($COMMAND_LINE_OUTPUT_FILE)

 SECTIONS

 {

 program

 {

 // Align all code sections on 2 byte boundary

 INPUT_SECTION_ALIGN(2)

 INPUT_SECTIONS

 ($OBJECTS(program) $LIBRARIES(program))

 INPUT_SECTION_ALIGN(1)

 INPUT_SECTIONS

 ($OBJECTS(data1) $LIBRARIES(data1))

 INPUT_SECTION_ALIGN(1)

 INPUT_SECTIONS

 ($OBJECTS(constdata) $LIBRARIES(constdata))

 INPUT_SECTION_ALIGN(1)

 INPUT_SECTIONS($OBJECTS(ctor) $LIBRARIES(ctor))

 } >MEM_PROGRAM

 stack

 {

 INPUT_SECTIONS($OBJECTS(stack))

 } >MEM_STACK

 heap

 {
VisualDSP++ 3.0 Linker and Utilities Manual 1-125
for Blackfin DSPs

LDF Programming Examples
 // Allocate a heap for the application

 ldf_heap_space = .;

 ldf_heap_end =

 ldf_heap_space + MEMORY_SIZEOF(MEM_HEAP) - 1;

 ldf_heap_length = ldf_heap_end - ldf_heap_space;

 } >MEM_HEAP

OVERLAY_INPUT {

 // The output archive file “overlay1.ovl” will

 // contain the code and symbol table for this

 // overlay

OVERLAY_OUTPUT(overlay1.ovl)

 /* Only take the code from the file overlay1.doj.

 If this code needs data, it must be either the INPUT of a

 data overlay or the INPUT to non-overlay data memory. */

 INPUT_SECTIONS(overlay1.doj(program))

 // Tell the linker that all of the code in the overlay must

 // fit into the “run” memory all at once. ALGORITHM(ALL_FIT)
 // would allow the linker to break the code into several

 // overlays as necessary (in the event that not all of

 // the code fits).

 ALGORITHM(ALL_FIT)

 SIZE(0x100)

} > mem_ovly

 // This is the second overlay. Note that these

 // OVERLAY_INPUT commands must be contiguous in the LDF

 // in order for them to occupy the same “runtime” memory.

 OVERLAY_INPUT {
1-126 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Linker
 OVERLAY_OUTPUT(overlay2.ovl)

 INPUT_SECTIONS(overlay2.doj(program)))

 ALGORITHM(ALL_FIT)

 SIZE(0x100)

 } > mem_ovly

} > program

 /* The instructions generated by the linker in the .plit

 section must be placed in non-overlay memory. Here is

 the sole specification telling the linker where to

 place these instructions */

 .plit { // linker insert instructions here

 } > MEM_PROGRAM

 DXE_DATA1 {

 INPUT_SECTIONS($OBJECTS(data1) $LIBRARIES(data1))

 INPUT_SECTION_ALIGN(1)

 INPUT_SECTIONS($OBJECTS(constdata) $LIBRARIES(constdata))

 INPUT_SECTION_ALIGN(1)

 INPUT_SECTIONS($OBJECTS(ctor) $LIBRARIES(ctor))

 } >MEM_PROGRAM

 stack

 {

 INPUT_SECTIONS($OBJECTS(stack))

 } >MEM_STACK

 heap

 {

 // Allocate a heap for the application

 ldf_heap_space = .;
VisualDSP++ 3.0 Linker and Utilities Manual 1-127
for Blackfin DSPs

LDF Programming Examples
 ldf_heap_end =

 ldf_heap_space + MEMORY_SIZEOF(HEAP) - 1;

 ldf_heap_length = ldf_heap_end - ldf_heap_space;

 }>MEM_HEAP

 }
1-128 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

2 EXPERT LINKER

The linker (linker.exe) combines object files into a single executable

object module. Using the linker, you can create a new Linker Description
File (LDF), modify an existing LDF, and produce an executable file(s).
The linker is described in Chapter 1 “Linker” of this manual.

You can also use the Expert Linker tool for linking data and creating an
executable. The Expert Linker is a VisualDSP++ graphical tool that pro-
vides an interactive graphic environment of mapping code or data to
specific memory segments.

This chapter contains:

• “Expert Linker Overview” on page 2-2

• “Launching the Create LDF Wizard” on page 2-4

• “Expert Linker Window Overview” on page 2-9

• “Using the Input Sections Pane” on page 2-12

• “Using the Memory Map Pane” on page 2-18

• “Managing Object Properties” on page 2-41
VisualDSP++ 3.0 Linker and Utilities Manual 2-1
for Blackfin DSPs

Expert Linker Overview
Expert Linker Overview
The Expert Linker (EL) is a graphical tool that lets its users:

• Define a DSP target’s memory map

• Place a project’s object sections into that memory map

• View how much of their stack or heap has been used after running
their DSP program

EL takes available project information in an .LDF file as input (object files,
LDF macros, libraries and a target memory description) and graphically
displays it. You can then use drag-and-drop action to arrange the object
files in a graphical memory mapping representation. When you are satis-
fied with the memory layout, you can generate the executable file (.DXE)
via VisualDSP++ project options.

� You can use [default] LDF files that come with your DSP and
VisualDSP++ tools, or you can use an interactive wizard, provided
in the Expert Linker, to create new LDF files.

When you open Expert Linker in a project that has an existing .LDF file,
Expert Linker parses the .LDF file and graphically displays the DSP target’s
memory map and the object mappings. The memory map displays in the
Expert Linker window.

Use this display to modify the memory map or the object mappings.
When the project is about to be built, Expert Linker saves the changes to
the .LDF file.

EL is able to show graphically how much space is allocated for your pro-
gram’s heap and stack. After loading and running the program, it can
show how much of the heap and stack has been used. You can interactively
reduce the amount of space allocated to heap or stack if they are using up
too much memory. This allows you to free up the memory to store other
things like your DSP code or data.
2-2 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Expert Linker
There are three ways to launch the Expert Linker from VisualDSP++:

• Double-click the .LDF file in the Project window

• Right-click the .LDF file in the Project window to display a menu
and then select Open in Expert Linker

• From the VisualDSP++ main menu, choose Tools -> Expert
Linker-> Create LDF
VisualDSP++ 3.0 Linker and Utilities Manual 2-3
for Blackfin DSPs

Launching the Create LDF Wizard
Launching the Create LDF Wizard
From the VisualDSP++ main menu, choose Tools -> Expert Linker->
Create LDF. When you choose Create LDF, EL invokes a wizard that
allows you to create and customize a new .LDF file. The Create LDF
option is mostly used when you create a new project.

If there is already an LDF in the project, you are prompted to confirm
whether you wish to create a new .LDF file to replace the existing one. This
menu command is disabled if VisualDSP++ does not have a project
opened. Press Next to run the wizard.

Figure 2-1. Welcome Page of the Create LDF Wizard
2-4 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Expert Linker
Step 1: Specifying Project Information
The first wizard window is displayed.

You may use or specify the default file name for the .LDF file. The default
file name is “project_name.ldf” where project_name is the name of the
currently opened project.

The Project type selection specifies whether the LDF is for a C, C++,
assembly, or a VDK project. The default setting depends on the source
files in the project. For example, if there are .C files in the project, the

Figure 2-2. Selecting File Name and Project Type
VisualDSP++ 3.0 Linker and Utilities Manual 2-5
for Blackfin DSPs

Launching the Create LDF Wizard
default is C; if there is a VDK.H file in the project, the default is VDK, etc.
This setting determines which base template is used as a starting point.

Press Next.

Step 2: Specifying System Information
You must now choose whether the project is for a single-processor system
or multiprocessor (MP) system.

Figure 2-3. Selecting System and Processor Types
2-6 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Expert Linker
• If it is for a single processor system, the Processors list shows only
one processor and the MP address columns disappear.

• If it is for a multiprocessor system, you must add the list of proces-
sors, name each processor, and set the processor order, which will
determine each processor's memory’s address range.

The Processor type specifies the processor architecture used in the DSP
system. This setting defaults to the processor target used in the current
project in VisualDSP++.

If you select Set up system from debug session settings, the processor
information (i.e., the number of processors and the processor names) will
be filled automatically from the current settings in the debug session.

You can also specify the Output file name and Executables to link against
(object libraries, macros, etc.).

When you select a processor in the Processors list, the output file name
and Executables to link against files for that processor are shown to
the right of the Processors list. You can change these files by typing a new
file name. The file name may include a relative path and/or an LDF
macro.

� Blackfin DSPs do not support the multiprocessor (MP) system
architecture. However, for multiprocessor systems, the window will
show the list of processors in the project and the MP address range
for each processor.

For example, if the current debug session is “multiprocessor”, the
Multiprocessor button is automatically selected and processor
names from the debug session are shown in the Processors list.
In addition, if EL can detect the ID of the processor, it places the
processor in the right position in the processor list.

Press Next to advance to the Wizard Completed Page.
VisualDSP++ 3.0 Linker and Utilities Manual 2-7
for Blackfin DSPs

Launching the Create LDF Wizard
Step 3: Completing the LDF Wizard
The system displays the Wizard Completed pane. You can use it to go
back and verify and/or modify choices made up to this point.

When you click the Finish button, EL makes a copy of the base template
.LDF file and places it in the same directory as the project file. The new
.LDF file is added to the current project. The EL pane is displayed with a
new .LDF file.

Figure 2-4. Wizard Completed Page of the Create LDF Wizard
2-8 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Expert Linker
Expert Linker Window Overview
The Expert Linker window, which can dock or float in VisualDSP++, con-
tains two main panes:

• An Input Sections pane uses a tree to display the list of input sec-
tions (see “Using the Input Sections Pane” on page 2-12)

• A Memory Map pane displays each memory map in a tree or
graphical representation (see “Using the Memory Map Pane” on
page 2-18)

Using commands in LDF, the linker reads the Input Sections in object
files and places them in Output Sections in the executable file. The LDF
defines the DSP’s memory and indicates where within that memory the
linker has to place the Input Sections.

Using the Expert Linker, you can map an input section to an output sec-
tion in the memory map by dragging-and-dropping it onto the output
section. Each memory segment may have one or more output sections
under it. Input sections that have been mapped to an output section dis-

Figure 2-5. Expert Linker Window
VisualDSP++ 3.0 Linker and Utilities Manual 2-9
for Blackfin DSPs

Expert Linker Window Overview
play under that output section. For more information, refer to “Using the
Input Sections Pane” on page 2-12 and “Using the Memory Map Pane”
on page 2-18.

� You can access various functions of the Expert Linker using the
right button on your mouse. Right-click the mouse to display
appropriate menus and make function selections.

The following code example shows an example .LDF (formatted for easy
reading). The linker (linker.exe) maps your program code (and data) to
the external system memory and processor memory. The linker uses the
target system’s memory map (as determined in the .LDF) and segments
(defined in your source file) to create an executable program. Note that
the .LDF file includes two commands (MEMORY and SECTIONS) that combine
program and system information.

ARCHITECTURE(ADSP-21535)
SEARCH_DIR($ADI_DSP\Blackfin\lib)
$OBJECTS = $COMMAND_LINE_OBJECTS */
MEMORY /* Define/label system memory */
{ /* List of global Memory Segments */
 MEM_PROGRAM
 { TYPE(RAM) START(0xF0000000) END(0xF002FFFF) WIDTH(8) }
 MEM_HEAP
 { TYPE(RAM) START(0xF0030000) END(0xF0037FFF) WIDTH(8) }
 MEM_STACK
 { TYPE(RAM) START(0xF0038000) END(0xF003DFFF) WIDTH(8) }
 MEM_SYSSTACK
 { TYPE(RAM) START(0xF003E000) END(0xF003FDFF) WIDTH(8) }
 MEM_ARGV
 { TYPE(RAM) START(0xF003FE00) END(0xF003FFFF) WIDTH(8) }
}
PROCESSOR p0 /* The processor in the system */
{
 OUTPUT($COMMAND_LINE_OUTPUT_FILE)
 SECTIONS
 { /* List of sections for processor P0 */
 program
 {
 INPUT_SECTION_ALIGN(2)
 /* Align all code sections on 2 byte boundary */
2-10 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Expert Linker
 INPUT_SECTIONS($OBJECTS(program) $LIBRARIES(program))
 INPUT_SECTION_ALIGN(1)
 INPUT_SECTIONS($OBJECTS(data1) $LIBRARIES(data1))
 INPUT_SECTION_ALIGN(1)
 INPUT_SECTIONS(
 $OBJECTS(constdata)
 $LIBRARIES(constdata))
 INPUT_SECTION_ALIGN(1)
 INPUT_SECTIONS($OBJECTS(ctor) $LIBRARIES(ctor))
 } >MEM_PROGRAM

 stack
 {
 ldf_stack_space = .;
 ldf_stack_end =
 ldf_stack_space + MEMORY_SIZEOF(MEM_STACK) - 4;
 } >MEM_STACK

 sysstack
 {
 ldf_sysstack_space = .;
 ldf_sysstack_end =
 ldf_sysstack_space + MEMORY_SIZEOF(MEM_SYSSTACK) - 4;
 } >MEM_SYSSTACK

 heap
 { /* Allocate a heap for the application */
 ldf_heap_space = .;
 ldf_heap_end =
 ldf_heap_space + MEMORY_SIZEOF(MEM_HEAP) - 1;
 ldf_heap_length = ldf_heap_end - ldf_heap_space;
 } >MEM_HEAP

 argv
 { /* Allocate argv space for the application */
 ldf_argv_space = .;
 ldf_argv_end =
 ldf_argv_space + MEMORY_SIZEOF(MEM_ARGV) - 1;
 ldf_argv_length =
 ldf_argv_end - ldf_argv_space;
 } >MEM_ARGV

 } /* end SECTIONS */

} /* end PROCESSOR p0 */
VisualDSP++ 3.0 Linker and Utilities Manual 2-11
for Blackfin DSPs

Using the Input Sections Pane
Using the Input Sections Pane
The Input Sections pane (Figure 2-5 on page 2-9) initially displays a list
of all the input sections, referenced by the .LDF file, and all input sections
contained in the object files and libraries. Under each input section, there
may be a list of LDF macros, libraries, and object files contained in that
input section. You can add or delete input sections, LDF macros, or
objects/library files in this pane.

Using the Input Sections Menu
When you right-click an object in the Input Sections pane, the menu is
displayed.

The main menu functions include:

• Sort by — Allows you to sort objects by input sections or LDF
macros. These selections are mutually exclusive.

Figure 2-6. Input Sections Right-Click Menu
2-12 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Expert Linker
• Add — Allows you to add input sections, object/library files, and
LDF macros. Appropriate menu selections are grayed out if you
right-click on a position (area) in which you cannot create a corre-
sponding object.

You can create an input section as a shell, without any
object/library files or LDF macros in it. You can even map this sec-
tion to an output section. However, sections without data are
grayed out.

• Delete — Allows you to delete the selected object (input sections,
object/library files, or LDF macros).

• View Legend… — Displays the Legend dialog box that shows all
possible Icons and Colors that can be used by the Expert Linker.

• View Section Contents — Opens the Section Contents dialog
box, which displays the contents of the input. This command is
available only after you link or build the project and then
right-click on an input.

• View Global Properties… — Displays a Global Properties dialog
box that provides the map file name (of the map file generated after
linking the project) as well as access to some processor and setup
information (see Figure 2-31 on page 2-42).

Mapping an Input Section to an Output Section

Using the Expert Linker, you can map an input section to an output sec-
tion. To do that, use Windows drag and drop action—click on the input
section, drag the mouse cursor to an output section, and then release the
mouse button and drop the input section onto the output section.

All objects, like an LDF macro or object file under that input section, map
to the output section. Once an input section has been mapped, the icon
next to the input section changes to denote that.
VisualDSP++ 3.0 Linker and Utilities Manual 2-13
for Blackfin DSPs

Using the Input Sections Pane
If an input section is dragged into a memory segment with no output sec-
tion in it, an output section with a default name is automatically created
and displayed.
The red cross mark on a icon (for example,) indicates that this
object/file is unmapped yet. Once an input section has been complete
mapped (all object files that contain the section are mapped), the icon
next to the input section changes to indicate that it has been mapped; the
'x' disappears. See Figure 2-7 on page 2-15.

While dragging the input section, the icon changes to a circle with a diag-
onal slash if it is over an object where you are not allowed to drop the
input section.

Viewing Icons and Colors
Use the Legend dialog box to displays all possible icons in the tree pane
and a short description of each icon (Figure 2-7 on page 2-15).

� The red cross mark on a icon indicates this object/file was not
mapped yet.

Click the Colors tab to view the Colors pane (Figure 2-8 on page 2-15). It
contains a list of colors used in the [graphical] memory map view; each
item’s color can be customized.

To change a color:

1. Double-click the color. You can also right-click on a color and
select Properties.

The system displays the Select a Color dialog box (Figure 2-9).

2. Select a color and click OK.

Click Other to select other colors from the advanced palette.
2-14 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Expert Linker
Figure 2-7. Legend Dialog Box�Icons Pane

Figure 2-8. Legend Dialog Box�Colors Pane
VisualDSP++ 3.0 Linker and Utilities Manual 2-15
for Blackfin DSPs

Using the Input Sections Pane
Use the Reset button to reset all memory map colors to the default colors.

Sorting Objects
Objects in the Input Sections pane can be sorted by input sections
(default) or by LDF macros, like $OBJECTS or $COMMAND_LINE_OBJECTS.
The Input Sections and LDF Macros menu selections are mutually exclu-
sive—only one can be selected at a time. For example,

Under each macro, there may be other macros, object files, or libraries.
Under each object file, there are input sections contained in that object
file.

Figure 2-9. Selecting Colors

Figure 2-10. Expert Linker Window�Sorted by Input Sections
2-16 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Expert Linker
� When the tree is sorted by LDF macros, only input sections can be
dragged onto output sections.

Figure 2-11. Expert Linker Window � Sorted by LDF Macros
VisualDSP++ 3.0 Linker and Utilities Manual 2-17
for Blackfin DSPs

Using the Memory Map Pane
Using the Memory Map Pane
In an .LDF file, the linker’s MEMORY() command defines the target system’s
physical memory. Its argument list partitions memory into Memory Seg-
ments and assigns labels to each, specifying start and end addresses,
memory width, and memory type (program, data, stack...). It thereby con-
nects your program to the target system. The OUTPUT() command directs
the linker to produce an executable (.DXE) file, specifying the file name.

In the Expert Linker, the Memory Map pane contains tabbed pages
(panes) that can display memory maps for a processor or shared memory.
This window provides two viewing modes—a tree view and a graphical
view.

You can select these views and other memory map features using the con-
text (or right-click) menu. All procedures involving memory map
handling assume that the Expert Linker window is open.

Figure 2-12. Expert Linker Window � Memory Map

Processor tab
2-18 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Expert Linker
The Memory Map window displays tooltips when you move the mouse
cursor over an object in the display. The tooltip shows the object's name,
address, and size. The system also uses representations of overlays, which
display in “run” space and “live” space.

Invalid Memory Segment Notification:
If a memory segment is invalid (for example, the memory range overlaps
another memory segment, the memory width is invalid, and so on), the
tree shows an Invalid Memory Segment icon (see also Figure 2-7 on
page 2-15). When you move the mouse cursor over the icon, a tooltip dis-
plays a message, describing why the segment is invalid.

Figure 2-13. Memory Map with Invalid Memory Segment icons

 Invalid Memory
 Segment Icon
VisualDSP++ 3.0 Linker and Utilities Manual 2-19
for Blackfin DSPs

Using the Memory Map Pane
Using the Context Menu
To display the context menu, right-click in the Memory Map pane. The
context (right-click) menu allows you to select and perform the major
functions including:.

View Mode

• Memory Map Tree — Displays the memory map in a “tree “repre-
sentation (see Figure 2-15 on page 2-23).

• Graphical Memory Map — Displays the memory map in graphical
blocks (see Figure 2-16 on page 2-24).

Figure 2-14. Context (Right-Click) Menu
2-20 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Expert Linker
View

• Mapping Strategy (Pre-Link) — Displays the memory map that
shows where you plan to place your object sections.

• Link Results (Post-Link) — Displays the memory map that shows
where the object sections were actually placed.

New

• Memory Segment… — Allows you to specify the name, address
range, type, size, and so on of the memory segment you want to
add.

• Output Section — Adds an output section to the selected memory
segment (right-click on the memory segment to access this com-
mand). This menu option is disabled if you do not right-click on a
memory segment.

The options are: Name, Overflow (output section to overflow or
None), Packing, and Number of bytes (number of bytes to be
re-ordered at one time. This value does not include the number of
null bytes inserted into memory).

• Overlay… — Invokes a dialog box that allows you to add a new
overlay to the selected output section or memory segment. The
selected output section is the new overlay’s run space (see
Figure 2-43 on page 2-58).

Delete — Deletes the selected object.

Pin to Output Section — Displayed only if you right-clicked on an object
section that is part of an output section specified to overflow to another
output section. Pinning an object section to an output section prevents it
from overflowing to another output section.
VisualDSP++ 3.0 Linker and Utilities Manual 2-21
for Blackfin DSPs

Using the Memory Map Pane
View Section Contents… — Available only after linking or building the
project and then right- clicking on an input or object section. Invokes a
dialog box that displays the contents of the input or output section (see
Figure 2-27 on page 2-37).

View Symbols… — Available only after linking the project and then
right-clicking on a processor, overlay, or input section. Invokes a dialog
box that displays the symbols for the project, overlay, or input section (see
Figure 2-30 on page 2-40).

Properties — Displays a Properties dialog box for the selected object. The
Properties menu is context-sensitive; different properties display for dif-
ferent objects. If you right-click a memory segment and then choose
Properties, you can specify each memory segment's attributes (name, start
address, end address, size, width, memory space, ROM/RAM, and inter-
nal/external flag).

View Legend… — Displays a Legend dialog box that shows all possible
icons in the tree window and a short description of each icon. On the Col-
ors page, there is a list of colors used in the graphical memory map. Each
object's color can be customized. See Figure 2-7 on page 2-15 and
Figure 2-8 on page 2-15.

View Global Properties — Displays a Global Properties dialog box that
lists the map file generated after linking the project. It also provides access
to some processor and setup information (see Figure 2-31 on page 2-42).
2-22 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Expert Linker
Tree View Memory Map Representation
In the tree view, chosen via the View Mode -> Memory Map Tree menu
selection, the memory map displays with memory segments at the
top-level.

Each memory segment may have one or more output sections under it.
Input sections that have been mapped to an output section display under
that output section.

The start address and size of the memory segments display in separate col-
umns. The start address and the size of each output section display if
available (for example, after linking the project).

Figure 2-15. Expert Linker Window � Memory Map
VisualDSP++ 3.0 Linker and Utilities Manual 2-23
for Blackfin DSPs

Using the Memory Map Pane
Graphical View Memory Map Representation
In the graphical view, chosen via the View Mode -> Graphical Memory
Map menu selection, the graphical memory map displays the processor's
hardware memory map (refer to your DSP’s Hardware Reference Manual
or datasheet). Each hardware memory segment contains a list of memory
segments defined by the user.

You can view the memory map from two perspectives—pre-link and
post-link (see “Specifying Pre- and Post-Link Memory Map View” on
page 2-29).

A graphical memory map might look like this.

Figure 2-16. Graphical Memory Map Representation

 Zoom

 options
2-24 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Expert Linker
In graphical view, the pane displays blocks of different colors, representing
memory segments, output sections, objects, and so on. The memory map
is drawn with the following rules:

• The output section is drawn as a vertical header with a group of
object to the right of it.

• A memory segment’s border and text change to red (from its nor-
mal black color) to indicate that it is invalid. When you move the
mouse cursor over the invalid memory segment, a tooltip displays a
message, describing why the segment is invalid.

Figure 2-17. Viewing Sections and Segments in Memory Map
VisualDSP++ 3.0 Linker and Utilities Manual 2-25
for Blackfin DSPs

Using the Memory Map Pane
• The height of the memory segments is not scaled as a percentage of
the total memory space. However, the width of the memory seg-
ments is scaled as a percentage of the widest memory.

• Object sections are drawn as horizontal blocks stacked on top of
each other. Before linking, the object section sizes are not known
and display in equal sizes within the memory segment. After link-
ing, the height of the objects is scaled as a percentage of the total
memory segment size. The object section name is displayed only if
there is enough room to display it.

• Addresses are ordered in ascending order from top to bottom.

You can zoom in/out incrementally or zoom in/out completely using the
three buttons at the top right of the memory pane. If there is not enough
room to display the memory map when zoomed in, there are horizontal
and/or vertical scroll bars available to view the entire memory map (for

Figure 2-18. Adjusting Memory Segment Size
2-26 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Expert Linker
more information, see “Zooming In and Out on the Memory Map” on
page 2-29

You can drag-and-drop any object except memory segments.

Memory segments, when selected, have a border box around them. If the
box is clicked and dragged to reduce the size of the memory segment, the
size of both the selected and adjacent memory segments change.

When the mouse cursor is on top of the box, the resize cursor appears as

� When an object is selected in the memory map, it is highlighted as
shown in Figure 2-20. If you move the mouse cursor over an object
in the graphical memory map, a yellow tooltip box appears con-
taining the information about the object, for example, its name,
address, and size.

Figure 2-19. Dragging-and Dropping Objects
VisualDSP++ 3.0 Linker and Utilities Manual 2-27
for Blackfin DSPs

Using the Memory Map Pane
Figure 2-20. Memory Map Showing Highlighted Memory Segment

 Highlighted

 object
2-28 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Expert Linker
Specifying Pre- and Post-Link Memory Map View
You can view the memory map from two perspectives: pre-link and
post-link. Pre-link view is typically used to view where you wanted to
place your input sections. Post-link view is typically used to view where
the input sections got placed after linking your project. There is other
information available after linking (like being able to see the sizes of each
section, viewing symbols, and viewing the contents of each section).

• To enable pre-link view from the Memory Map pane, right-click
and choose View and Mapping Strategy (Pre-Link)
Figure 2-21 illustrates memory map before linking.

• To enable post-link view from the Memory Map pane, right-click
and choose View and Link Result (Post-Link).
Figure 2-22 illustrates memory map after linking.

Zooming In and Out on the Memory Map
From the Memory Map pane, you can zoom in or out incrementally or
zoom in or out completely. Three buttons at the top right of the pane
allow you to perform zooming operations. Horizontal and/or vertical
scroll bars appear when there is not enough room to display a zoomed
memory map in the Memory Map pane.

You can:

• To zoom in, click on the magnifying glass icon with the + sign
above the upper right corner of the memory map window.

• To zoom out, click on the magnifying glass icon with the - sign
above the upper right corner of the memory map window.

• To exit zoom, click on the magnifying glass icon with the 'x' above
the upper right corner of the memory map window.
VisualDSP++ 3.0 Linker and Utilities Manual 2-29
for Blackfin DSPs

Using the Memory Map Pane
• To view a memory object by itself, double-click on the memory
object.

• To view the memory object containing the current memory object,
double-click on the white space around the memory object

Figure 2-21. Memory Map � Pre-Link View
2-30 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Expert Linker
Figure 2-22. Memory Map � Post-Link View
VisualDSP++ 3.0 Linker and Utilities Manual 2-31
for Blackfin DSPs

Using the Memory Map Pane
Figure 2-23. Memory Map � Zoom Options

 Zoom

 options
2-32 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Expert Linker
Inserting a Gap into Memory Segment
A gap may be inserted into a memory segment in the graphical memory
map.

To insert a gap:

1. Right-click on a memory segment.

2. Select Insert gap... in the menu. The Insert Gap dialog box
appears.

You may insert a gap at the start of the memory segment or the end of it.
If the start is chosen, the Start address for the gap is grayed out and you
must enter an end address or size (of the gap). If the end is chosen, the
End address of the gap is grayed out, and you must enter a start address or
size.

Figure 2-24. Insert Gap Dialog Box
VisualDSP++ 3.0 Linker and Utilities Manual 2-33
for Blackfin DSPs

Using the Memory Map Pane
 Working with Overlays
Overlays may appear in the memory map window in two places: the “run”
space and the “live” space. The “live” space is where the overlay is stored
until it is swapped into the “run” space. Because multiple overlays can
exist in the same “run” space, they display as multiple blocks on top of
each other in cascading fashion.

Figure 2-25 shows the overlay in live space and Figure 2-26 shows the
overlay in run space.

Overlays in a “run” space are displayed one at a time in the graphical
memory map. The scroll bar next to an overlay in “run” space allows you
to pick an overlay to be shown on top. You can drag the overlay on top to
another output section to change the “run” space for an overlay.

Figure 2-25. Graphical Memory Map Showing Overlay Live Space
2-34 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Expert Linker
You can use the Up/Down arrow in the header to display previous or next
overlay in the “run” space. You can also use the browse button to display
the list of all available overlays you can choose from. The header shows the
number of overlays in this run space and the current overlay number.

To create an overlay in the “run” space:

1. Right-click on an Output Section.

2. Choose New -> Overlay from the menu.

3. Select the “live” space from the Overlay Properties dialog box. The
new overlay is displayed in the “run” and “live” spaces in two dif-
ferent colors in the memory map.

4. Drag the overlay in the “live” space to a different output section.
This can change the “live” to “run” space.

Figure 2-26. Graphical Memory Map Showing Overlay Run Space

 Browse button
VisualDSP++ 3.0 Linker and Utilities Manual 2-35
for Blackfin DSPs

Using the Memory Map Pane
Viewing Section Contents
You can view the contents of an input or output section including a par-
ticular memory address and specifying the display’s format.

Use this feature to employ elfdump to obtain the section contents and dis-
play it in a window that is similar to a Memory window in VisualDSP++.
Multiple Section Contents dialog boxes may be displayed.

For example, to display the contents of an output section:

1. In the Memory Map pane, right-click an output section.

2. Choose View Section Contents... from the menu.
The Output Section Contents dialog box appears.

By default, the memory section content is displayed in Hex format.

3. Right-click anywhere in the section view to display a menu with
these selections:

• Go To � Allows you to display an address in the window.

• Select Format � Provides a list of formats: Hex, Hex and
ASCII, and Hex and Assembly. Select a format type to specify
the memory format.

Figure 2-28 and Figure 2-29 illustrate other memory data formats avail-
able for the selected output section.
2-36 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Expert Linker
Viewing Symbols
Symbols can be displayed per processor program (.DXE), per overlay (.OVL),
or per input section. Initially the symbol data is in the same order that it
appears in the linker’s map output. You can sort symbols by name,
address, etc. by clicking the column headings.

To view symbols:

1. In the post-link view of the Memory Map pane, select the item
(memory segment, output section, or input section) whose symbols
you want to view.

Figure 2-27. Output Section Contents in Hex Format
VisualDSP++ 3.0 Linker and Utilities Manual 2-37
for Blackfin DSPs

Using the Memory Map Pane
2. Right-click to choose View Symbols….

The View Symbols dialog box appears displaying the selected
item's symbols. The symbol's address, size, binding, file name, and
section appear beside the symbol's name.

Figure 2-28. Output Section Contents in Hex and ASCII Format
2-38 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Expert Linker
Figure 2-29. Output Section Contents in Hex and Assembly Format
VisualDSP++ 3.0 Linker and Utilities Manual 2-39
for Blackfin DSPs

Using the Memory Map Pane
Figure 2-30. View Symbols Dialog Box
2-40 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Expert Linker
Managing Object Properties
You can display different properties for each type of object. Since different
objects may share certain properties, their Properties dialog boxes share
property pages. All these procedure assume that the Expert Linker win-
dow is open.

To display a property dialog box, right-click an object and choose
Properties from the menu. You may choose the following functions:

• “Managing Global Properties” on page 2-42

• “Managing Processor Properties” on page 2-43

• “Managing PLIT Properties for Overlays” on page 2-45

• “Managing Elimination Properties” on page 2-46

• “Managing Symbols Properties” on page 2-48

• “Managing Memory Segment Properties” on page 2-52

• “Managing Output Section Properties” on page 2-53

• “Managing Packing Properties” on page 2-55

• “Managing Alignment and Fill Properties” on page 2-56

• “Managing Overlay Properties” on page 2-58

• “Managing Stack and Heap in DSP Memory” on page 2-60
VisualDSP++ 3.0 Linker and Utilities Manual 2-41
for Blackfin DSPs

Managing Object Properties
Managing Global Properties
Use the context menu to display Global Properties:

1. Right-click in a section pane of the Expert Linker window.

2. In the context menu, choose Global Properties.
The Global Properties dialog box appears.

The Global Properties dialog box provides the following selections:

• The Linker map file displays the map file generated after linking
the project �Read-only field.

• If Show stack/heap usage is selected, after you run a project, EL is
going to show how much of the stack and heap were used.

Figure 2-31. Global Properties - General Tab
2-42 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Expert Linker
Managing Processor Properties
To specify Processor Properties:

1. Right-click the Processor tab anywhere in the Expert Linker
window.

2. Choose Properties.
The Global Properties dialog box appears.

The Processor tab allows you to reconfigure the processor setup.

Figure 2-32. Global Properties � Processor Tab
VisualDSP++ 3.0 Linker and Utilities Manual 2-43
for Blackfin DSPs

Managing Object Properties
With a Processor tab window in focus, you can:

• Specify System Type � Use the Single processor selection.

• Select a Processor type (such as ADSP-21535 or ADSP-21532).

• Specify an Output file name �The file name may include a relative
path and/or LDF macro.

• Specify Executables to link against --- Multiple files names are per-
mitted, but must be separated with space characters. The files must
be .SM, .DLB, or .DXE files. A file name may include a relative path
and/or LDF macro.

Additionally, you can rename a processor by selecting the processor,
right-clicking and choosing Rename Processor.

Then type the new name.
2-44 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Expert Linker
Managing PLIT Properties for Overlays
The PLIT pane allows you to view and edit the function template used in
overlays. You can type in assembly instructions, same as syntax-colored
assembly code specified via the Editor.

� You can only enter assembly code�no comment entry is allowed.

To view and edit PLIT information:

1. Right-click in the Input Sections pane of the EL window.

2. Choose Properties. The Global Properties dialog box appears.

3. Click the PLIT tab.

Figure 2-33. Global Properties � PLIT Tab
VisualDSP++ 3.0 Linker and Utilities Manual 2-45
for Blackfin DSPs

Managing Object Properties
Managing Elimination Properties
You can eliminate unused code from the target .DXE file. Specify the input
sections from which to eliminate code and symbols you want to keep

The Elimination tab allows you to perform elimination.

The Enable elimination of unused objects option allows you to enable
elimination. This checkbox is grayed out when elimination is enabled
through the linker command line or when the .LDF file is read-only.

If Verbose linker output of eliminated objects is selected, the eliminated
objects will be shown as linker output in the Output window’s Build tab
of VisualDSP++ during linking. This checkbox is grayed out if Enable

Figure 2-34. Global Properties � Elimination Tab
2-46 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Expert Linker
elimination of unused objects is unchecked. It is also grayed out when
elimination is enabled through the linker command line or when the .LDF
file is read-only.

The Sections to apply elimination box lists all input sections with a check
box next to each section. The elimination applies to the sections that are
selected. By default, all input sections are selected.

Symbols to keep is a list of symbols that you want to keep.The linker will
not remove these symbols. If you right-click in this list box, a menu pops
up that allows you to:

• Add a symbol by typing in the new symbol name in the edit box
appearing at the end of the list

• Remove the selected symbol
VisualDSP++ 3.0 Linker and Utilities Manual 2-47
for Blackfin DSPs

Managing Object Properties
Managing Symbols Properties
You can view the list of symbols that the linker is to resolve. You can also
add and remove symbols from the list of symbols kept by the linker. The
symbols can be resolved to an absolute address or to a program file (.DXE).
It is assumed that you have enabled the elimination of unused code.

To add or remove a symbol:

1. Right-click in the Input Sections pane of the EL window.

2. Choose Properties. The Global Properties dialog box appears.

3. To add or remove a symbol, click the Elimination tab.

Figure 2-35. Elimination Properties � Symbols to Keep Window
2-48 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Expert Linker
4. Right-click in the Symbols to keep window.

Choose Add Symbol. In the ensuing dialog box, type new symbol
names at the end of the existing list. To delete a symbol, select the
symbol, right-click and choose Remove Symbol.

Specifying Symbol Resolution

1. In the Memory Map pane, right-click a processor tab.

2. Choose Properties. The Processor page of the Processor Proper-
ties dialog box appears. The Symbols tab allows you to specify how
symbols are to be resolved by the linker.

Figure 2-36. Processor Properties � Symbols Tab
VisualDSP++ 3.0 Linker and Utilities Manual 2-49
for Blackfin DSPs

Managing Object Properties
The symbols can be resolved to an absolute address or to a program file
(.DXE). When you right-click in the Symbols field, a displayed menu
enables you to add or remove symbols.

Choosing Add Symbol from the menu invokes the Add Symbol to
Resolve dialog box which allows you to pick a symbol by either typing the
name or browsing for a symbol. Using Resolve with, you can also decide
whether to resolve the symbol from a known absolute address or file name
(.DXE or .SM file).

The Browse button is grayed out when no symbol list is available; for
example, if the project has not been linked yet. When this button is active,
click it to display the Browse Symbols dialog box with a list of all the sym-
bols (see Figure 2-38).

You can select a symbol from that list and it will appear in the Symbols
box.

Figure 2-37. Add Symbol to Resolve Dialog Box
2-50 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Expert Linker
Deleting a Symbol from the Resolve List

Use the Browse button to display the Symbols to resolve list in the
Symbols pane (Figure 2-36). Select a symbol you want to delete.
Right-click and choose Remove Symbol.

Figure 2-38. Browse Symbols Dialog Box
VisualDSP++ 3.0 Linker and Utilities Manual 2-51
for Blackfin DSPs

Managing Object Properties
Managing Memory Segment Properties
You can specify/change the memory segment's name, start address, end
address, size, width, memory space, ROM/RAM, and internal/external
flag.

� The PM/DM option buttons are grayed out if the current proces-
sor architecture has a unified memory space (such as Blackfin
DSPs, SHARC DSPs or TigerSHARC DSPs).

To display the Memory Segment Properties dialog box:

1. Right-click a memory segment (for example, PROGRAM) in the
Memory Map pane.

2. Choose Properties. The selected segment properties are displayed.

Figure 2-39. Memory Segment Properties � Memory Segment Tab
2-52 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Expert Linker
Managing Output Section Properties
The Output Section tab allows you to change the output section’s name
or to set the overflow. The overflow means objects that do not fit in the
current output section can overflow to the specified output section. By
default, all objects that do not fit overflow to the specified section, except
for objects that are manually pinned to the current output section.

To display the Output Section Properties dialog box:

1. Right-click an output section in the Memory Map pane.

2. Choose Properties.

Figure 2-40. Output Section Properties � Output Section Tab
VisualDSP++ 3.0 Linker and Utilities Manual 2-53
for Blackfin DSPs

Managing Object Properties
The selections in the output section/segment list includes “None” (for no
overflow) and all output sections. Objects can be pinned to an output sec-
tion. To do that, right-click the object and then choose Pin to output
section.

You can:

• In Name, type a name for the output section.

• In Overflow, select an output section into which the selected out-
put section will overflow, or select None for no overflow. This
setting appears in the Placement box.

Before linking the project, the Placement box indicates the output
section's address and size as “Not available”. After linking, the box
displays the output section’s actual address and size.

You should also specify Packing and Alignment (with Fill Value) proper-
ties as needed.
2-54 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Expert Linker
Managing Packing Properties
The Packing tab allows you to specify the packing format that the linker
uses to place bytes into memory. The choices include No packing or Cus-
tom packing. You can view byte order, which defines the order that bytes
will be placed into memory. With Blackfin DSPs, No packing is the only
packing method available.

To display the Packing Properties dialog box:

1. Right-click a memory segment in the Memory Map pane.

2. Choose Properties and click the Packing tab.

Figure 2-41. Output Section Properties � Generic Packing Tab
VisualDSP++ 3.0 Linker and Utilities Manual 2-55
for Blackfin DSPs

Managing Object Properties
Managing Alignment and Fill Properties
The Alignment tab allows you to set the alignment and fill values for the
output section. When the output section is aligned on an address, the
linker fills the gap with zeroes (0), NOP instructions, or a specified value.

To display the Alignment Properties dialog box:

1. Right-click a memory segment in the Memory Map pane.

2. Choose Properties.

3. Click the Alignment tab.

No Alignment specifies no alignment.

Figure 2-42. Output Section Properties � Alignment Tab
2-56 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Expert Linker
If you select Align to the next address that is a multiple of, select an inte-
ger value from the drop-down list to specify the output section alignment.

When the output section is aligned on an address, there is a gap that is
filled by the linker. Based on the processor architecture, the Expert Linker
determines the opcode for the NOP instruction.

The Fill value is either 0, a NOP instruction, or a user-specified value (a
hexadecimal value entered in the entry box)
VisualDSP++ 3.0 Linker and Utilities Manual 2-57
for Blackfin DSPs

Managing Object Properties
Managing Overlay Properties
The Overlay property tab allows you to choose the output file for the
overlay, its live memory, and its linking algorithm.

To display the Overlay Properties dialog box:

1. Right-click an overlay object in the Memory Map pane.

2. Choose Properties.

Live Memory contains a list of all output sections or memory segments
with one output section. The live memory is where the overlay is stored
before it is swapped into memory.

Figure 2-43. Overlay Properties � Overlay Tab
2-58 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Expert Linker
The Overlay linking algorithm box shows the only allowed overlay algo-
rithm: ALL_FIT. The Expert Linker would not allow you to change that
setting. When using ALL_FIT, the linker tries to fit all of the [mapped]
objects into one overlay.

The Browse button is available only if the overlay has already been built
and the symbols are available. When you click the Browse button, the
Browse Symbols dialog box (see Figure 2-38 on page 2-51) is displayed.

You can choose the address for the symbol group or let the linker choose
the address.
VisualDSP++ 3.0 Linker and Utilities Manual 2-59
for Blackfin DSPs

Managing Object Properties
Managing Stack and Heap in DSP Memory
The Expert Linker is able to show graphically how much space is allocated
for your program's heap and stack. For Blackfin DSPs, be aware of these
stack/heap restrictions:

• The heap, stack, and system stack must be defined in output sec-
tions named HEAP, STACK, and SYSSTACK, respectively.

• The HEAP, STACK, and SYSSTACK must be the only items in those
output sections. You cannot have other objects placed into these
sections.

Figure 2-44 shows stack/heap output sections in the Memory Map pane.
Right-click on either of them to display properties.

Figure 2-44. Memory Map Window with STACK/HEAP Sections
2-60 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Expert Linker
Use the Global Properties page to select Show stack/heap usage to graph-
ically display the stack/heap usage in the memory (Figure 2-46).

The Expert Linker can:

• Locate stacks and heaps and fill them with a marker value.

This occurs after you load the program into a DSP target. The
stacks and heaps are located by their output section names, which
may vary across processor families.

• Search the heap and stack for the highest memory locations written
to by the DSP program.

This occurs when the target halts after running the program.
Assume this as the start of the unused portion of the stack or heap.
The Expert Linker updates the memory map to show how much of
the stack and heap are unused.

Use this information to adjust the size of your stack and heap making bet-
ter use of your DSP memory more if the stack and heap segments use up
too much memory.

The following code example shows stack and heap sections of an example
LDF file.

Figure 2-45. Global Properties � Selecting Stack/Heap Usage
VisualDSP++ 3.0 Linker and Utilities Manual 2-61
for Blackfin DSPs

Managing Object Properties
MEMORY /* Define/label system memory */
{ /* List of global Memory Segments */
 MEM_PROGRAM
 { TYPE(RAM) START(0xF0000000) END(0xF002FFFF) WIDTH(8) }
 MEM_HEAP
 { TYPE(RAM) START(0xF0030000) END(0xF0037FFF) WIDTH(8) }
 MEM_STACK
 { TYPE(RAM) START(0xF0038000) END(0xF003DFFF) WIDTH(8) }
 MEM_SYSSTACK
 { TYPE(RAM) START(0xF003E000) END(0xF003FDFF) WIDTH(8) }
}
PROCESSOR p0 /* The processor in the system */
{
 OUTPUT($COMMAND_LINE_OUTPUT_FILE)
 SECTIONS
 { /* List of sections for processor P0 */
 program
 {
 INPUT_SECTION_ALIGN(2)
 /* Align all code sections on 2 byte boundary */
 INPUT_SECTIONS($OBJECTS(program) $LIBRARIES(program))
 INPUT_SECTION_ALIGN(1)
 INPUT_SECTIONS($OBJECTS(data1) $LIBRARIES(data1))
 INPUT_SECTION_ALIGN(1)
 INPUT_SECTIONS(
 $OBJECTS(constdata)
 $LIBRARIES(constdata))
 INPUT_SECTION_ALIGN(1)
 INPUT_SECTIONS($OBJECTS(ctor) $LIBRARIES(ctor))
 } >MEM_PROGRAM

 stack
 {
 ldf_stack_space = .;
 ldf_stack_end =
 ldf_stack_space + MEMORY_SIZEOF(MEM_STACK) - 4;
 } >MEM_STACK

 sysstack
 {
 ldf_sysstack_space = .;
 ldf_sysstack_end =
 ldf_sysstack_space + MEMORY_SIZEOF(MEM_SYSSTACK) - 4;
 } >MEM_SYSSTACK
2-62 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Expert Linker
 heap
 { /* Allocate a heap for the application */
 ldf_heap_space = .;
 ldf_heap_end =
 ldf_heap_space + MEMORY_SIZEOF(MEM_HEAP) - 1;
 ldf_heap_length = ldf_heap_end - ldf_heap_space;
 } >MEM_HEAP
 } /* end SECTIONS */
} /* end PROCESSOR p0 */

Use the graphical view, chosen via the View Mode -> Graphical Memory
Map menu selection, to display stack/heap memory map blocks.
Figure 2-46 shows a possible memory map after running a Blackfin DSP
project program.

Figure 2-46. Graphical Memory Map Showing Stack/Heap Usage
VisualDSP++ 3.0 Linker and Utilities Manual 2-63
for Blackfin DSPs

Managing Object Properties

2-64 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

3 LOADER

The loader (elfloader.exe) generates a boot-loadable file for Blackfin

ADSP-2153x DSPs by processing executable files (for file name exten-
sions, see Table 3-3 on page 3-15). To generate a loadable file, the loader
processes data from a boot kernel file (.DXE), the linker’s executable file
(.DXE) and, in some cases, overlay files (.OVL).

� The ADSP-21535 DSP loader may or may not need a boot kernel
file. The ADSP-21532 DSP loader does not need a boot kernel file
to generate a loadable file. The ADSP-21535 DSP loader can use
the boot ROM only without a boot kernel file. Refer to “Booting
Sequence” on page 3-6 for more detailed information.

Once you have fully debugged your program, use the loader to generate a
set of boot-loadable files for your target system. You can load the loader
output into the a simulator session in the VisualDSP++ debugger; this
allows simulation of the boot process as well as of the boot loaded
application.

This chapter contains:

• “Loader Guide” on page 3-2

Provides information on booting and kernel use.

• “Using the Loader” on page 3-13

Provides reference information on loader commands, loader con-
figurations, and operations.
VisualDSP++ 3.0 Linker and Utilities Manual 3-1
for BLACKfin DSPs

Loader Guide
Loader Guide
The loader converts the DSP executable files produced by the linker into
boot-loadable files for an ADSP-2153x DSP. Programs can be automati-
cally downloaded to the internal memory of a DSP after power-up or after
a software reset. This process is called booting.

This section describes these loader features:

• “Hardware Reset and Boot Sources” on page 3-3

• “Booting Sequence” on page 3-6

• “Boot Loading and Boot Kernel” on page 3-11

• “Loader Input Files” on page 3-11

• “What ELFLOADER.EXE Does” on page 3-12

Loader options control how the loader processes your executable files, let-
ting you select features such as loader kernel, boot type, and file format.
These options are accessible either via the loader command-line switches
or the Load page of the Project Options dialog box in the VisualDSP++
environment. See “Configuring the Loader” on page 3-19 for more
information.

Before selecting options for the loader’s operation, you should understand
how the loader’s features apply to the boot type that you are using. This
section describes the boot types for ADSP-2153x DSPs and relates loader
features that support these boot types (the booting process).
3-2 VisualDSP++ 3.0 Linker and Utilities Manual
for BLACKfin DSPs

Loader
Hardware Reset and Boot Sources
The ADSP-2153x chip reset is an asynchronous reset event. The RESET
input pin must be deasserted to perform a hardware reset.

A hardware-initiated reset results in a system-wide reset that includes both
core and peripherals. After the RESET pin is deasserted, the ADSP-2153x
DSPs ensure that all asynchronous peripherals have recognized and com-
pleted a reset. After the reset, the DSP transitions into the boot mode
sequence configured by the BMODE input pins. These pins determine the
boot sequence and execution start address (the reset vector).

The ADSP-2153x DSPs can be booted via a variety of methods including
execution from an external 16-bit memory, or booting from the on-chip
ROM configured to load code from 8-bit FLASH memory or a serial
ROM (8- or 16-bit address range).

� See appropriate datasheets for more information. Also refer to the
Hardware Reference Manual of the appropriate processor for more
information on system configuration, registers, peripherals, etc.

ADSP-21535 DSP Boot Mode Selection Information

Table 3-1 shows the supported pin configurations for ADSP-21535 Sys-
tem Reset Configuration Register (SYSCR).

If the BMODE [2:0] pins indicate booting from FLASH or Serial ROM, the
reset vector points to the start of the internal boot ROM, where a small
bootstrap kernel resides. The bootstrap code reads the System Reset Con-
figuration Register to determine the value of the BMODE [2:0] pins, which
determine the appropriate boot sequence.

The various configuration parameters are distributed to the appropriate
destinations from SYSCR (see Figure 3-1).
VisualDSP++ 3.0 Linker and Utilities Manual 3-3
for BLACKfin DSPs

Loader Guide
Table 3-1. ADSP-21535 Reset Vector Addresses and Boot Mode
Selections

Boot Source BMODE[2:0] Execution Start
Address

Execute from 16-bit external memory (Async Bank
0); Bypass boot ROM

000 0x2000 0000

Use boot ROM to boot from 8-bit FLASH memory 001 0xF000 0000

Use boot ROM to configure and load code from
SPI0 serial EEROM (8-bit address range)

010 0xF000 0000

Use boot ROM to configure and load code from
SPI0 serial EEROM (16-bit address range)

011 0xF000 0000

Reserved 100 � 111 N/A

Figure 3-1. ADSP-21535 System Reset Configuration Register (SYSCR)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

BMODE 2-0 - RO
 000 - Bypass boot ROM,
 execute from 16-bit-wide
 external memory.
 001 - Use boot ROM to load
 from 8-bit flash.
 010 - Use boot ROM to configure
 and load boot code from
 SPI0 serial ROM
 (8-bit address range).
 011 - Use boot ROM to configure
 and load boot code from
 SPI0 serial ROM
 (16-bit address range).
 100-111 - Reserved

0 0 0 0 0 0 0 0 0 0 0 0 X X X Reset = dependent on pin values

System Reset Configuration Register (SYSCR)

X - state is initialized from mode pins during hardware reset

No Boot on Software Reset
 0 - Use BMODE to determine
 boot source.
 1 - Start executing from the
 beginning of on-chip L2 memory
 (or the beginning of ASYNC Bank 0
 when BMODE[2:0] = b#000).
3-4 VisualDSP++ 3.0 Linker and Utilities Manual
for BLACKfin DSPs

Loader
If the BMODE[2:0] pins indicate to bypass boot ROM, the reset vector
points to the start of the external asynchronous memory region (0x2000
0000). In this mode, the internal boot ROM is not used. To support reads
from this memory region, the External Bus Interface Unit (EBIU) uses the
default external memory configuration that results from hardware reset.

The values of the BMODE[2:0] pins are latched into the System Reset Con-
figuration register (SYSCR) upon the deassertion of the RESET pin. They are
made available for software access and modification after the hardware
reset sequence. Software can modify only the No Boot on Software Reset
bit.

ADSP-21532 DSP Boot Mode Selection Information

Table 3-2 shows the supported pin configurations for ADSP-21532 Sys-
tem Reset Configuration Register (SYSCR).

The values of the BMODE [1:0] pins are latched into the System Reset Con-
figuration register upon the deassertion of the RESET pin. They are made
available for software access after the hardware reset sequence. Software
can modify only the No Boot on Software Reset bit.

Table 3-2. ADSP-21532 DSP Reset Vector Addresses and Boot Mode
Selections

Boot Source BMODE[1:0] Execution Start
Address

Execute from 16-bit external memory (Async Bank
0); Bypass boot ROM

00 0x2000 0000

Use boot ROM to boot from 8-bit FLASH memory 01 0xFFA0 0000

Use boot ROM to configure and load code from SPI
serial EEROM (8-bit address range)

10 0xFFA0 0000

Use boot ROM to configure and load code from SPI
serial EEROM (16-bit address range)

11 0xFFA0 0000
VisualDSP++ 3.0 Linker and Utilities Manual 3-5
for BLACKfin DSPs

Loader Guide
The various configuration parameters are distributed to the appropriate
destinations from SYSCR (see Figure 3-2).

Booting Sequence
At powerup, after the reset, the DSP transitions into the boot mode
sequence configured by the BMODE state. All ADSP-2153x DSPs can be
booted from an 8-bit FLASH memory, a serial ROM (8- or 16-bit address
range), or from an external 16-bit memory.

The ADSP-2153x DSPs uses one on-chip ROM bootstrap kernel for auto-
matic booting from an external memory device (see “ADSP-21532 DSP
Booting” on page 3-7”). In addition, the ADSP-21535 DSP is supported
by a variety of loader kernels (see “ADSP-21535 DSP Booting” on
page 3-8 on page 3-8).

Figure 3-2. ADSP-21532 System Reset Configuration Register (SYSCR)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0

BMODE[1:0] (Boot Mode)- RO
 00 - Bypass boot ROM,
 execute from 16-bit-wide
 external memory.
 01 - Use boot ROM to load
 from 8-bit flash.
 10 - Use boot ROM to configure
 and load boot code from
 SPI serial ROM
 (8-bit address range).
 11 - Use boot ROM to configure
 and load boot code from
 SPI serial ROM
 (16-bit address range).

0 0 0 0 0 0 0 0 0 0 0 0 0 X X Reset = dependent on pin values

System Reset Configuration Register (SYSCR)

X - state is initialized from mode pins during hardware reset

No Boot on Software Reset
 0 - Use BMODE to determine
 boot source.
 1 - Start executing from the
 beginning of on-chip L1
 memory or the beginning of
 ASYNC Bank 0 when
 BMODE[1:0] = b#00).
3-6 VisualDSP++ 3.0 Linker and Utilities Manual
for BLACKfin DSPs

Loader
ADSP-21532 DSP Booting

The internal bootstrap ROM includes a small boot kernel that can either
be bypassed or used to load user code from an external memory device
(FLASH/PROM memory or SPI EEPROM). The boot kernel reads the
BMODE [1:0] pin state at reset to determine the download source (see
Table 3-2 on page 3-5).

For each boot mode (except the Bypass mode), user code read in from the
memory device is placed at the starting location of L1 memory (0xFFA0
8000). Additional sections are read into internal memory as specified
within headers in the loader file (refer to “ADSP-21532 DSP Boot
Stream” on page 3-32).

The boot kernel terminates the boot process with a jump to the start of
the L1 instruction memory space. The processor then begins execution
from this address.

Figure 3-3. Booting from on-chip ROM
VisualDSP++ 3.0 Linker and Utilities Manual 3-7
for BLACKfin DSPs

Loader Guide
� When in Bypass mode, the processor is set to execute from 16-bit
wide external memory at address 0x2000 0000. If booting from SPI,
the general-purpose flag pin 2 is used as the SPI chip select. This
line must be connected for proper operation.

ADSP-21535 DSP Booting

The ADSP-21535 DSPs are supported by two boot kernels:

• The on-chip ROM bootstrap kernel for automatic booting from
FLASH/PROM memory or SPI EEPROM.

• The boot kernel that can boot from an external FLASH/PROM
memory or SPI EEPROM (boot kernel supplied).

The booting and application loading sequence includes (see Figure 3-4
and Figure 3-5):

Figure 3-4. Loading Boot Kernel
3-8 VisualDSP++ 3.0 Linker and Utilities Manual
for BLACKfin DSPs

Loader
1. On reset, the DSP downloads N words (boot kernel) from the
FLASH/PROM memory to address 0xF0000000 in L2 memory.
The bootstrap code reads the BMODE [2:0] pin state at reset to iden-
tify the download source.

2. The DSP begins executing instructions.

3. The boot kernel moves itself to the bottom of L2 memory, to
memory block range specified by the upper and lower addresses
should be large enough to store the boot kernel.

The upper address is specified in the SEG_LDR input section of the
file. When the loader utility parses the .DXE file, it extracts this
address and places it into the .LDR file. This address is then used by
the kernel to determine where to move the boot kernel.

The lower address is 0xF003FFFF, opening space for application
code and data.

Note: Do not initialize this memory block range for application-
code. However, this space becomes available after the boot process
is done.

4. The boot kernel imports the application (code and data) from
FLASH/PROM or SPI EEPROM into internal (or external) mem-
ory of the processor.

The booting is complete.

5. The boot kernel jumps to the start of the L2 memory space (the
beginning of the application) and starts application execution (see
Figure 3-5).

The boot kernel is not needed if the application code resides only
VisualDSP++ 3.0 Linker and Utilities Manual 3-9
for BLACKfin DSPs

Loader Guide
in L2 memory (starting at location 0xF000 0000) and does not have
sections that are far apart. In this case, the application has to be
loaded from a FLASH/SPI/PROM device, as shown in Figure 3-5.

� For each boot mode other than BMODE[2:0] = 000, the user code
read in from the memory device is placed at the starting location of
L2 memory (0xF0000000). The DSP then starts executing the ker-
nel or application code from this address.

In Bypass mode (BMODE[2:0] = 000), the processor is set to execute
from 16-bit external memory at address 0x20000000 (ASYNC Bank
0).

Figure 3-5. Executing the Application
3-10 VisualDSP++ 3.0 Linker and Utilities Manual
for BLACKfin DSPs

Loader
Boot Loading and Boot Kernel
The application code must start from 0xF0000000 if the loader output file
is using ROM booting only (without a boot kernel). The loader issues an
error message if the address of the application starts from any other loca-
tion other than 0xF0000000 because the output loader file has no address
information to be passed and the ROM booting assumes every application
code starts from the same memory address 0xF0000000.

Boot kernel loading supports booting from FLASH/PROM or SPI
EEPROM external devices. It is much more efficient than bootstrap ROM
booting because it provides flexible data placement and much smaller boot
image (.LDR file). The boot kernel copies only the necessary data and uses
zero fills to reduce the buffer size of the boot image. It also supports a
complete memory map of the system including both L1 and L2 memory.

Although the on-chip ROM kernel is included with your DSP, you can
use and modify the boot kernel while developing your applications.

Loader Input Files
The input files for the loader are:

• An executable (.DXE) as well as associated overlay files (.OVL) from
the linker. The executable file is required for any invocation of the
loader. Overlay files are also required if the executable references
the overlay files.

The loader processes the single input file and places the processed
data in an output file (.LDR).

• A boot kernel (.DXE). The boot kernel, which may be used with
ADSP-21535 DSPs, is not supported by ADSP-21532 DSPs. By
default, the loader searches the predetermined directory for the
boot kernel and includes this kernel in the loader output file.
VisualDSP++ 3.0 Linker and Utilities Manual 3-11
for BLACKfin DSPs

Loader Guide
The loader does not search for the boot kernel if you decide to boot
from the on-chip ROM only (by setting the “-no2kernel” com-
mand-line switch).

The boot kernels currently available are:
535_prom8.dxe, 535_prom16.dxe and 535_spi.dxe.
The 535_prom8.dxe kernel supports the 8-bit width output for
PROM and FLASH, and the 535_prom16.dxe kernel supports the
16-bit output.

Ensure that a segment named “code” is defined in your Linker
Description File. The boot loader should have a code segment
defined in the associated .LDF file, and all the code for the kernel is
located in this segment. You can find the source for this segment in
the default .LDF file located in the ...\Blackfin\ldr directory.

What ELFLOADER.EXE Does
The elfloader loader utility is used to convert the input files (.DXE and
.OVL) into a boot image file (.LDR).

The loader first converts the boot kernel file (.DXE) into the SPI or PROM
boot image, adding all the necessary information for the boot kernel load-
ing. Then, the loader converts the application file (.DXE) into the boot
image (.LDR), adding all the necessary information from the boot kernel.

� Currently, only the ADSP-21535 DSPs use the boot kernel files.

As a final step, the loader concatenates these two formatted boot images
into a single output file (.LDR).
3-12 VisualDSP++ 3.0 Linker and Utilities Manual
for BLACKfin DSPs

Loader
Using the Loader
This section describes how to set up and run the loader. It provides refer-
ence information on loader command-line switches and VisualDSP++
IDDE option settings for the loader.

When developing a DSP project, you may modify the loader’s default
option settings in the VisualDSP++ environment. This is done using
command-line switches or the Load page on the Project Options dialog
box.

This section contains the following information:

• “Running the Loader from a Command Line” on page 3-13

• “Loader Command-Line Switches” on page 3-15

• “Configuring the Loader” on page 3-19

• “Loader Boot Streams” on page 3-23

Running the Loader from a Command Line
The following syntax represents the generic single-processor loader com-
mand line

 elfloader -proc ADSP-2153x sourcefile -switch [-switch …]

where:

sourcefile — This is the name of the executable file (.DXE) to be pro-
cessed for a single boot-loadable file. A file name can include the drive,
directory, file name and file extension.

-switch — This is the switch to be processed. The loader has many
optional switches that select the operations and modes for the loader.
VisualDSP++ 3.0 Linker and Utilities Manual 3-13
for BLACKfin DSPs

Using the Loader
-proc ADSP-2153x — This is the name of a target processor.
You must specify your target as ADSP-21532 or ADSP-21535 using either
the -Dprocessor or -proc processorID switch. Refer to Table 3-4 on
page 3-15 for switch descriptions.

The loader command line is case sensitive. For example,

 elfloader -proc ADSP-21535 -bSPI Input.dxe <switches>

Some loader switches take a file name as an optional parameter. File
searches are important in the loader’s process. The loader supports relative
and absolute directory names. File searches are performed via:

• Specified path — If you include relative or absolute path informa-
tion with a file name, the loader searches only in that location for
the file.

• Default directory — If you do not include path information with
the file name, the loader searches for the file in the current
directory.

When you provide an input or output file name as a command-line
parameter:

• Enclose long file names within straight quotes, “long file name”.

• Append the appropriate file name extension to each file.

� The loader recognizes overlay memory (.OVL) files, but does not
expect these files on the command line. Place .OVL files in the same
directory as the .DXE that refers to them, so the loader can find the
these files when generating the .LDR file.

The loader follows the conventions for file name extensions that appear in
Table 3-3.
3-14 VisualDSP++ 3.0 Linker and Utilities Manual
for BLACKfin DSPs

Loader
Loader Command-Line Switches
Table 3-4 provides a summary of the loader’s command-line switches.

Table 3-3. File Name Extension Conventions

Extension File Description

.dxe Executable files and boot-kernel files (input files)

.ldr Loader output files

.knl Loader output files containing kernel code only

Table 3-4. Loader Command-Line Switches

Switch Description

-b type The -b (boot-type) switch directs the loader to prepare a boot-load-
able file for a specific booting mode.
Valid type selections are FLASH, PROM and SPI.
If the -b switch does not appear on the command line, the default
setting is -bPROM.
Note: The boot-type that you select with the -b switch must corre-
spond to the boot-kernel that you select with the -l switch and the
file format that you select with the -f switch.

-baudrate # The -baudrate # switch accepts a baud rate for SPI booting only.
The valid baud rates and corresponding input values are:

500K = 500 kHz (default)
1M = 1 MHz
2M = 2 MHz

Both 8-bit addressable SPI serial PROMs are supported.
Boot kernel loading supports an SPI baud rate up to 2 MHz.
Note: Currently supported only for ADSP-21535 DSPs.
VisualDSP++ 3.0 Linker and Utilities Manual 3-15
for BLACKfin DSPs

Using the Loader
-f format The -f (boot file format) switch directs the loader to prepare a
boot-loadable file in the specified format. Valid formats depend on
the -b switch’s boot type selection. The boot-type formats are as fol-
lows:

 For FLASH/PROM — hex (Intel Hex)

 For SPI — ASCII or binary
If the -f switch does not appear on the command line, the default
format for boot types are: Hex for FLASH/PROM and ASCII for SPI.

-h The -h (help) switch outputs the list of command-line switches to
standard output.

-HoldTime # The -HoldTime # switch allows the loader to specify a number of
hold-time cycles for FLASH boot. The valid values are from 0
through 3. Default value is 3.

-kb KernelBootMode The -kb KernelBootMode switch specifies the boot mode for the
boot kernel output file if you select to generate two output files
from the loader: one for the boot kernel and another for the user
application code.
This switch must used in conjunction with the -o2 switch.
If the -kb KernelBootMode switch is absent on a command line,
the loader generates the file for the boot kernel in the same boot
mode as used to output the user application code file.
Note: Currently supported only for ADSP-21535 DSPs.

-kf KernelFormat The· -kf KernelFormat switch specifies the output file format for

the boot kernel if you select to output two files from the loader: one
for the boot kernel and another for the user application code.
This switch must be used in conjunction with the -o2 switch. If the
-kf KernelFormat switch is absent on the command line, the
loader generates the file for the boot kernel in the same format as for
the user application code file.
Note: Currently supported only for ADSP-21535 DSPs.

Table 3-4. Loader Command-Line Switches (Cont’d)

Switch Description
3-16 VisualDSP++ 3.0 Linker and Utilities Manual
for BLACKfin DSPs

Loader
-kWidth # The -kWidth # switch specifies the width of the boot kernel output
file in case there are two output files: one for boot kernel and the
other for user application code.
The valid values are 8 and 16 for PROM/FLASH and 8 for SPI.
If this switch is absent from a command line, the file width is:

• The -width # switch value when booting from
PROM/FLASH, or

• The default value (8), when booting from SPI.
This switch should be used in conjunction with the -o2 switch.
Note: Currently supported only for ADSP-21535 DSPs.

-l userkernel The -l userkernel (boot-kernel) switch specifies the boot kernel.
The loader uses this user-specified kernel and ignores the default
boot kernel if this switch is present in a command-line.
Note: Currently supported only for ADSP-21535 DSPs.

-no2kernel The -no2kernel switch produces the output file without the boot
kernel, but using the bootstrap code (from the internal boot RAM).
In this case, the boot stream generated by the loader is different
from the one with the boot kernel loader.
Note: Currently supported only for ADSP-21535 DSPs.

-o2 The -o2 switch directs the loader to produce two output files: one
for the boot kernel and another for the user application code.
If you want the output kernel file to have a different format from
the application code output file, use the -kf switch to specify the
format for the output kernel file.
Note: Currently supported only for ADSP-21535 DSPs.

-o filename The -o (output file) switch specifies the loader’s output file. If not
specified, the default name is sourcefile.ldr. If you choose to
have two output files, one for the boot kernel and another for user
application code, both files will have the same root name with dif-
ferent extensions:

• The boot kernel file has a.KNL extension
• The user application code file has an.LDR extension

Table 3-4. Loader Command-Line Switches (Cont’d)

Switch Description
VisualDSP++ 3.0 Linker and Utilities Manual 3-17
for BLACKfin DSPs

Using the Loader
-proc ProcessorID The -proc (processor) switch selects a target processor:
ADSP-21532 or ADSP-21535
The processor parameter allows the loader to select a kernel from
the default kernel directory based on the specified processor. Alter-
natively, you can use the -l option to specify a particular loader ker-
nel.

 -waits # The -waits # switch specifies the number of the wait states for
external access. The valid inputs are 0 through 15. The wait states
apply to the FLASH/PROM mode only. Default is 15.
Note: Currently supported only for ADSP-21535 DSPs.

-width # The -width # switch specifies the word width of the loader output
file. The valid values are 8 and 16, depending on the boot mode.

The default value is 8 (bits).
The switch has no effect on boot kernel code processing. The loader
processes the kernel in 8-bit widths regardless of selection of the
output data width.
For FLASH/PROM booting, the size of the output file
depends on the -width # switch.
For SPI booting, the size of the output .LDR file is the same for
both -width 8 and -width 16. The only difference is
in the header information.
Note: Currently supported only for ADSP-21535 DSPs.

-v The -v (verbose loader messages) switch outputs status information
as the loader processes your files.

Table 3-4. Loader Command-Line Switches (Cont’d)

Switch Description
3-18 VisualDSP++ 3.0 Linker and Utilities Manual
for BLACKfin DSPs

Loader
Configuring the Loader
You can configure the loader for boot loading and output file generation via
the Load property page of the Project Options dialog box. The Load property
page may consist of one or two panes opened consequently.

The ADSP-21532 loader does not use the boot kernel and uses only one
Load page. The ADSP-21535 DSP loader can be booted with or without
the boot kernel; it may use two Load panes.

You can also configure the loader using the command-line switches. The
following sections provides examples of loader configuration using the
Load property page:

• “Specifying Basic Loader Settings”

• “Specifying Loader Settings for Boot Kernel Loading” on
page 3-21

Specifying Basic Loader Settings

For all ADSP-2153x DSPs, the default Load pane is the same. For exam-
ple, this is the default Load pane for booting from SPI EEPROM.

When you open the Load page, the default loader settings for the selected
DSP are already set (see Figure 3-6 on page 3-20). Using the Load pane,
you can modify loader settings if you do not wish to use default settings.
Using the Load page, you can:

1. Select or modify basic settings:

• Use the Category drop-down box to select booting modes. The
selections are default Loader file options (without boot kernel)
and Boot kernel options (with boot kernel) described
on page 3-21. If you do not use the boot kernel, the second
Load pane appears with all kernel option fields grayed out.

• Boot source—PROM, FLASH, or SPI
VisualDSP++ 3.0 Linker and Utilities Manual 3-19
for BLACKfin DSPs

Using the Loader
• Output file format—Hex, ASCII, or Binary

• Output file word width —8 or 16 bits

• Verbose—Generates status information as the loader processes
the files

• Output file—Enter the name of the loader’s output file (.LDR).

• Additional options—Enter the appropriate file names and
options that do not have corresponding controls on the Load
page are available as loader switches.
See Table 3-4 on page 3-15 for more information).

Figure 3-6. Loader Setting Options in Default Load Pane
3-20 VisualDSP++ 3.0 Linker and Utilities Manual
for BLACKfin DSPs

Loader
2. If you are satisfied with default settings, do not change any settings
and click OK to complete the loader setup. The loader will be set
up to produce one output file (.LDR).

Specifying Loader Settings for Boot Kernel Loading

Figure 3-7 shows, as an example, the second, boot kernel-oriented, Load
pane that supports booting from SPI EEPROM.

Whence the first Load pane allows you to use default settings, the second
Load pane provides additional boot kernel and output settings.

Figure 3-7. Setting for Boot Loading using Boot Kernel
VisualDSP++ 3.0 Linker and Utilities Manual 3-21
for BLACKfin DSPs

Using the Loader
To configure the loader for boot loading and output file generation using
the boot kernel:

1. Use the default Load property pane to set up basic booting options.

2. Select Boot kernel options from the Category drop-down box to
open the second Load property pane with boot kernel settings.

3. Select Use boot kernel.

4. If you want to produce two output files (boot kernel file and appli-
cation code file), select the Output kernel in separate file check
box.

5. You can also enter the Kernel file (.DXE).

The following boot kernels are currently available:
 535_prom8.dxe, 535_prom16.dxe and 535_spi.dxe.

The 535_prom8.dxe kernel supports the 8-bit width output for
PROM and FLASH, and the 535_prom16.dxe kernel supports the
16-bit output.

6. Select boot kernel output file parameters, such as Boot source,
Format, Word width, etc.

7. Click OK to complete the loader setup.

The loader will be set up to produce one output file (.LDR) or two
output files (.LDR and .KLN) depending on your selections.
3-22 VisualDSP++ 3.0 Linker and Utilities Manual
for BLACKfin DSPs

Loader
Loader Boot Streams
The loader generates the boot stream and places the boot stream in one or
two output files. The ADSP-21532 DSP loader generates only one output
file. The ADSP-21535 DSP loader may generate one or two output files.
The loader prepares the boot stream in such a way that the boot kernel can
correctly load the application code and data to the DSP memory; there-
fore, the boot stream contains not only the user application code and
kernel code but also overhead information that is used by the boot kernel.

The ADSP-2153x DSP supports the following boot stream structures:

• “ADSP-21535 DSP Boot Stream with Boot Kernel”

• “ADSP-21535 DSP Boot Stream without Boot Kernel”

• “ADSP-21532 DSP Boot Stream”

The following application code example for ADSP-21535 DSPs illustrates
the bootstream structure as shown in Figure 3-8.

 .SECTION program1;
 r0=1234; // header1 describes this entry
 .
 .
 .
 .SECTION data2;
 .var temp(1000)=0,0,...; // header2 describes this entry

 .SECTION data3;
 .var array[]=1,2,3,...; // header3 describes this entry
VisualDSP++ 3.0 Linker and Utilities Manual 3-23
for BLACKfin DSPs

Using the Loader
ADSP-21535 DSP Boot Stream with Boot Kernel

Figure 3-8 illustrates the information included in the boot stream that
uses the boot kernel.

The boot stream includes:

• The 4-byte count for the boot kernel code, which stores the total
byte count of the boot kernel code. The byte count does not
include padded zeros. This information is required to import the
boot kernel from the internal boot ROM.

• The boot kernel.

Figure 3-8. Bootstream Output for ADSP-21535 DSP
3-24 VisualDSP++ 3.0 Linker and Utilities Manual
for BLACKfin DSPs

Loader
• The 4-byte global header, which contains information (hold time,
wait states, baud rate, etc.). The boot kernel sets the booting condi-
tion based on the information given in the global header, code, and
user application code. The kernel needs this information to set up
the processor correctly.

• The input section byte counter, which contains byte count of the
first input section (header s and data).

• User’s application code (Code 1) and data block (or data blocks)
each with a 10-byte block header (header1, header2, etc.). In each
header, the first four bytes store the start address of that data block,
the second four bytes store the byte count of that data block, and
the last two bytes store the flags indicating whether the data block
is a last (final) block or a zero block (zero fill).

If it is a zero fill, the block contains only a header without data.
Thus, there is no Data 2 block in Figure 3-8. The boot kernel pop-
ulates the specified memory block with a number of zeros given by
the byte count starting at the given start address from the block
header. If it is the last data block, the kernel stops loading the data
after the data of this block is loaded, and the user application code
starts to execute.

The loader accepts the input file (.DXE) and processes it. The loader counts
the bytes (including these of the instructions, data, and the block headers
in the boot stream) and places the byte count number on the top of the
boot stream for each of the input section.

A 4-byte space in a boot stream is allocated to hold the byte count number
for each input section. This allows the boot kernel to selectively load the
code from one or more input sections or switch the code from one input
section to another at runtime by tracing the byte count of each input sec-
tion and determining the size in bytes of each input section.
VisualDSP++ 3.0 Linker and Utilities Manual 3-25
for BLACKfin DSPs

Using the Loader
The loader is set to produce a zero block for the L1 memory with its byte
count always in a multiple of 8 (for both 8-bit and 16-bit outputs). The
loader also fills a non-zero block with zeros to make its byte count be a
multiple of 8 (for 8-bit output only).

To support this feature, the loader is doing the following.

• Sorts all the input sections from an input .DXE file before processing
the data in the sections to avoid overwriting because of padding.
The sorting is used for all types of the processes.

• Split a struct directive in the data-linked list with a value of zero
into two — one with its byte count being a multiple of 8 and the
other with its byte count less than 8. This step helps to avoid any
padding to a zero block and to minimize overall padding zeros.

• Fill a non-zero block in a “non-multiple-of-8-byte” count with
zeros to make its byte count be a multiple of 8.

8-Bit Data Structure

The 8-bit boot stream format is:

D7 D0

LSB of boot kernel byte count

Bits 8-15 of boot kernel byte count

Bits 16-23 of boot kernel byte count

MSB of boot kernel byte count

Byte3 of boot kernel

Byte2 of boot kernel

Byte1 of boot kernel

Byte0 of boot kernel

LSB of boot kernel start address

Bits 8-15 of boot kernel start address

Bits 16-23 of boot kernel start address

MSB of boot kernel start address
3-26 VisualDSP++ 3.0 Linker and Utilities Manual
for BLACKfin DSPs

Loader
 :

LSB of the Global Header

 Bits 8-15 of the Global Header

Bits 16-23 of the Global Header

MSB of the Global Header

LSB of the 1st input (.dxe) section

Bits 8-15 of the 1st input (.dxe) section

Bits 16-23 of the 1st input (.dxe) section

Bits 24-31 of the 1st input (.dxe) section

LSB of the address of the 1st data block

Bits 8-15 of the address of the 1st data block

Bits 16-23 of the address of the 1st data block

MSB of the address of the 1st data block

LSB of the byte count of the 1st data block

Bits 8-15 of the byte count of the 1st data block

Bits 16-23 of the byte count of the 1st data block

MSB of the byte count of the 1st data block

LSB of the 1st data block flags

MSB of the flags of the 1st data block

Byte3 of the 1st data block

Byte2 of the 1st data block

Byte1 of the 1st data block

Byte0 of the 1st data block

 :

LSB of the address of the nth data block

Bits 8-15 of the address of the nth data block

Bits 16-23 of the address of the nth data block

MSB of the address of the nth data block

LSB of the byte count of the nth data block

Bits 8-15 of the byte count of the nth data block

Bits 16-23 of the byte count of the nth data block

MSB of the byte count of the nth data block
VisualDSP++ 3.0 Linker and Utilities Manual 3-27
for BLACKfin DSPs

Using the Loader
16-Bit Data Structure

There are two types of the data in a boot stream if the word width is
selected to be 16 bit.

• The first data type is the boot kernel, which always has an 8-bit
width (with an 8-bit padded zero) in the loader output file.

• The second data type, which includes the Global Header and the
user application code, has a 16-bit width.

Although the loader pads a zero following each byte in a 16-bit wide boot
stream, the image in the FLASH memory is reversed from the boot stream
in the loader file.

The 16-bit wide data image format in the FLASH memory is:

LSB of the flags of the nth data block

MSB of the flags of the nth data block

Byte1 of the nth data block

Byte0 of the nth data block

 :

 :

D15 D8 D7 D0

00 LSB of boot kernel byte count

00 Bits 8-15 of boot kernel byte count

00 Bits 16-23 of boot kernel byte count

00 MSB of boot kernel byte count

00 Byte3 of boot kernel (24-31)

00 Byte2 of boot kernel (16-23)

00 Byte1 of boot kernel (8-15)

00 Byte0 of boot kernel (0-7)

 :

00 LSB of boot kernel start address
3-28 VisualDSP++ 3.0 Linker and Utilities Manual
for BLACKfin DSPs

Loader
00 Bits 8-15 of boot kernel start address

00 Bits 16-23 of boot kernel start address

00 MSB of boot kernel start address

 Bits 0-15 of the Global Header

 Bits 16-31 of the Global Header

 Bits 0-15 of the byte count of the 1st input section

 Bits 16-31 of the byte count of the 1st input section

 Bits 0-15 of the address of the 1st data block

 Bits 16-31 of the address of the 1st data block

 Bits 0-15 of the byte count of the 1st data block

 Bits 16-31 of the byte count of the 1st data block

 Flag of the 1st data block

 Byte3 of the 1st data block | Byte2 of the 1st data block (16-31)

 Byte1 of the 1st data block | Byte0 of the 1st data block (0 -23)

 :

 Bits 0-15 of the address of the nth data block

 Bits 16-31 of the address of the nth data block

 Bits 0-15 of the byte count of the nth data block

 Bits 16-31 of the byte count of the nth data block

 Flag of the nth data block

 Byte1 of the nth data block | Byte0 of the nth data block (0-15)

 :

 :
VisualDSP++ 3.0 Linker and Utilities Manual 3-29
for BLACKfin DSPs

Using the Loader
ADSP-21535 DSP Boot Stream without Boot Kernel

The loader accepts a single input file (.DXE file). The boot stream contains:

• The 4-byte header that provides the total word (byte) count for the
data block.

• Data without a global header and data block headers. There is only
one data block following the 4-byte header which contains the total
byte count of the data block. This type of the data format is gener-
ally used for small applications.

The loader has to fill any address gaps between data segments with zeros to
make the data address in the loader file contiguous. The loader needs to
calculate the number of the bytes to be filled in a gap.

8-Bit Data Structure

The 8-bit boot stream format is:

D7 D0

Byte0 (0-7 of the data byte count)

Byte1 (8-15 of the data byte count)

Byte2 (16-23 of the data byte count)

Byte3 (21-31 of the data byte count)

Byte1 (8-15 of 16-bit data)

Byte0 (0-7 of 16-bit data)

Byte3 (24-31 of 32-bit data)

Byte2 (16-23 of 32-bit data)

Byte1 (8-16 of 32-bit data)

Byte0 (0-7 of 32-bit data)

:

:

3-30 VisualDSP++ 3.0 Linker and Utilities Manual
for BLACKfin DSPs

Loader
16-Bit Data Structure

The 16-bit boot stream format used with booting from the FLASH mem-
ory is:

D15 D8 D7 D0

Byte0 (0-7 of the data byte count) 00

Byte1 (8-15 of the data byte count) 00

Byte2 (16-23 of the data byte count) 00

Byte3 (24-31 of the data byte count) 00

Byte1 (8-15 of 16-bit data) 00

Byte0 (0-7 of 16-bit data) 00

Byte3 (24-31 of 32-bit data) 00

Byte2 (16-23 of 32-bit data) 00

Byte1 (8-16 of 32-bit data) 00

Byte0 (0-7 of 32-bit data) 00

: :

: :
VisualDSP++ 3.0 Linker and Utilities Manual 3-31
for BLACKfin DSPs

Using the Loader
ADSP-21532 DSP Boot Stream

The ADSP-21532 DSP boot stream is similar to the boot stream that uses
the boot kernel with ADSP-21535 DSPs. However, since this DSP does
not employ a boot kernel, its boot stream does not include the kernel code
and the associated 4-byte header on the top of the kernel code. There is
also no 4-byte global header. The ADSP-21532 DSP boot stream
contains:

• The input section byte counter which stores four bytes.

• A number of data block headers, similar to the ones used with
ADSP21535 DSP.s

• A number of the data blocks, which have the same data format as
data blocks used with ADSP-21535 DSPs.

8-Bit Data Structure

The 8-bit boot stream format is:

 D7 D0

LSB of the 1st input (.dxe) section

Bits 8-15 of the 1st input (.dxe) section

Bits 16-23 of the 1st input (.dxe) section

Bits 24-31 of the 1st input (.dxe) section

LSB of the address of the 1st data block

Bits 8-15 of the address of the 1st data block

Bits 16-23 of the address of the 1st data block

MSB of the address of the 1st data block

LSB of the byte count of the 1st data block

Bits 8-15 of the byte count of the 1st data block

 Bits 16-23 of the byte count of the 1st data block

MSB of the byte count of the 1st data block

LSB of the 1st block flags
3-32 VisualDSP++ 3.0 Linker and Utilities Manual
for BLACKfin DSPs

Loader
Loader Output Files and Formats
The Blackfin DSP loader produces the output file(s) per target DSP:

• For ADSP-21532 DSPs, the loader generates one output file
(.LDR). The ADSP-21532 DSP loader does not support any boot
kernel options available for the ADSP-21535 DSP loader.

• For ADSP-21535 DSPs, the loader generates one or two output
files depending on the switches selected on the loader’s command
line.

The loader output file formats are:

MSB of the 1st block flags

Byte3 of the 1st data block

Byte2 of the 1st data block

Byte1 of the 1st data block

Byte0 of the 1st data block

:

LSB of the address of the nth data block

Bits 8-15 of the address of the nth data block

Bits 16-23 of the address of the nth data block

MSB of the address of the nth data block

LSB of the byte count of the nth data block

Bits 8-15 of the byte count of the nth data block

Bits 16-23 of the byte count of the nth data block

MSB of the byte count of the nth data block

LSB of the flags of the nth data block

MSB of the flags of the nth data block

Byte1 of the nth data block

Byte0 of the nth data block

 :
VisualDSP++ 3.0 Linker and Utilities Manual 3-33
for BLACKfin DSPs

Using the Loader
By default, the ADSP-21535 DSP loader generates one output file, which
includes both the boot kernel and user application code. However, you
have an option to generate two separate output files�one file for the boot
kernel and another for the user application code. You can even choose dif-
ferent boot modes and file formats for these two output files (.LDR and
.KLN).

With ADSP-21535 DSPs, you can choose to produce two separate output
files. You can specify the loader’s output by:

• Using the -o (output file) switch (described in Table 3-4 on
page 3-15), or

• Selecting the Output kernel in separate file check box on the Load
page (see Figure 3-7 on page 3-21)

If not specified, the default name for the loader’s output is specified by the
sourcefile.ldr file. If you choose to have two output files—one for the
kernel and another for user application code, both files will have the same
root name with different extensions:

• The output file for the kernel has the extension of .KNL.

• The output file for the user application code has the extension of
.LDR.

Use the -no2kernel switch (described in Table 3-4 on page 3-15) to select
automatic bootstrap (ROM) loading only, therefore, selecting not to use
or include the boot kernel in the output file. If this switch is set, the loader
generates the output file with the extension of .LDR. You can do the same
by not choosing Boot kernel options in the default Load pane.

Boot Mode Data Width (bits) File Format

FLASH/PROM 8 (default), 16 Intel Hex

SPI 8 (default), 16 ASCII (default)
Binary
3-34 VisualDSP++ 3.0 Linker and Utilities Manual
for BLACKfin DSPs

Loader
Rebuilding the Boot Kernel
The boot kernel (used in the project definition) can be rebuild from the
VisualDSP++ IDDE. If VisualDSP++ is not used, the following command
lines demonstrate how to rebuild default boot kernels for the
ADSP-2153x DSPs.

For example, the default boot kernel for FLASH booting is FLASH.asm.
After copying the default file to my_FLASH.asm and modifying it to suit
your system, use the following command lines to rebuild the boot kernel:

 easmblkfn -adsp21535 my_FLASH.asm

or

 easmblkfn -proc ADSP21535 my_FLASH.asm
 linker -T 21535ldr.ldf my_FLASH.doj

 :
VisualDSP++ 3.0 Linker and Utilities Manual 3-35
for BLACKfin DSPs

Using the Loader
3-36 VisualDSP++ 3.0 Linker and Utilities Manual
for BLACKfin DSPs

4 ARCHIVER

The VisualDSP++ archiver1, elfar.exe, combines object files2 into

archive (library) files, which can serve as a reusable resource for code
development. The linker can rapidly search the archive files for routines
(archive members) referred to in other objects and link these routines into
your executable program. You can run the archiver from a command line,
or produce an archive file as the output of a VisualDSP++ project.

This chapter contains the following information on the archiver:

• “Archiver Guide” on page 4-2 introduces the archiver’s functions

• “Archiver Command-Line Reference” on page 4-6 reference infor-
mation on archiver operations

1 Also called “librarian.”
2 The archiver is general-purpose: it can combine (and extract) arbitrary files. This manual refers to

DSP object files because they are relevant to DSP code development.
VisualDSP++ 3.0 Linker and Utilities Manual 4-1
for Blackfin DSPs

Archiver Guide
Archiver Guide
The elfar.exe combines and indexes object (or any other) files, produc-
ing a searchable archive file. It can perform the following operations, as
directed by options on its command line:

• Append one or more object files to an existing archive file

• Create an archive file from a list of object files.

• Delete file(s) from an archive file.

• Extract file(s) from an archive file.

• List the filename contents of an existing archive file (to stdout)

• Replace file(s) in an existing archive file

The archiver can only run one of these operations at a time. However, for
commands that can take a list of files as arguments, it can input a file con-
taining the names of object files (separated by white space) which makes
long lists easily manageable.

Creating an Archive From VisualDSP++
Within the VisualDSP++ IDDE, you can choose to create an archive file
as your project’s output. To do so, specify Archive file as the target type in
the project’s property page. That property page appears when you create a
new project, or click Project Options menu option on an existing project.
4-2 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Archiver
VisualDSP++ writes its output to <projectname>.DLB. To modify or list
the contents of an archive file, or perform any other operations on it, you
must use the archiver from the command line.

Syntax: elfar -[a|c|d|e|p|r][-v][-i filename] library_file
object_file ..

Filename Conventions

To maintain consistency within your code, it is recommend you use the
conventions in Table 4-1. (Note that VisualDSP++ always writes out
<projectname>.DLB when it creates an archive.)

Making Archived Functions Usable
In order to use the archiver effectively, you must know how to write
archive files which make your DSP functions available to your code (via
the linker), and how to write code that accesses these archives.

Archive usage consists of two tasks, namely:

• Writing archive routines, functions which can be called from other
programs.

• Using archive routines: accessing archived functions in your code.

This section describes both tasks.

Table 4-1. File Name Extension Conventions

Extension File Description

.dlb Archive file

.doj Object file -- input to archiver

.txt Archiver -i switch input (list file)
VisualDSP++ 3.0 Linker and Utilities Manual 4-3
for Blackfin DSPs

Archiver Guide
Writing Archive Routines: Creating Entry Points

An archive routine is simply a routine in your code that can be accessed by
other programs. Each such routine must have a globally visible start label
(entry point). Any code accessing that routine must know the entry point’s
name and declare it as an external variable in the calling code.

To create these entry points, use the following steps:

1. Declare the start label of each routine as a global symbol with the
assembler’s .GLOBAL directive. That is the entry point.

The following code fragment has two entry points, dIriir and FAE.

 ...

 .global dIriir;

 .section data1;

 .byte2 FAE = 0x1234,0x4321;

.section program;

.global FAE;

dIriir: R0=N-2;

P2 = FAE;

2. Assemble and archive the code containing these routines. You can
do so in two ways.

• Direct the VisualDSP++ IDDE to produce an archive (see
above on how to do so). When you build the project, your
object code containing the entry points is packaged in <pro-
jectname>.DLB. [You can extract the object (.DOJ) whenever
you want, for example to incorporate it in another project.]

• If you create executable or unlinked object files from the
IDDE, you can archive them afterward from the command
line. The result is the same.
4-4 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Archiver
Using Archive Routines

Programs that call an archive routine must define the routine’s start label
as an external label with the assembler’s .EXTERN directive. When you link
the program, you specify the archive file (.DLB) to the linker, along with
the names of the object files to link. The linker then searches the library
files to resolve symbols and links the appropriate routines into the execut-
able file.

Any file containing a label referenced by your program is linked into the
executable output file. The advantage of linking archives over using indi-
vidual object files is that the linker can search archives faster, and you do
not need to enter all of the file names, just the archive name.

In the following example, the archiver creates the filter.dlb archive,
containing the object files: taps.doj, coeffs.doj, and go_input.doj:

elfar -c filter.dlb taps.doj coeffs.doj go_input.doj

If you then run the linker with the following command line, the linker
links the object files main.doj, sum.doj, and graph.doj; uses the default
linker description file, 062.ldf; and creates the executable file (main.dxe):

linker -DADSP-21535 main.doj sum.doj graph.doj filter.dlb

Assuming that one or more library routines from filter.dlb are called
from one or more of the object files, the linker searches the archive,
extracts the required routines, and links the routines into the executable.
VisualDSP++ 3.0 Linker and Utilities Manual 4-5
for Blackfin DSPs

Archiver Command-Line Reference
Archiver Command-Line Reference
The archiver processes object files into an archive file. Its output is an
archive file with the file name extension .DLB1. It can also append, delete,
extract, or replace member files in an archive, as well as list them to
stdout.

This section provides reference information on the archiver command line
and linking.

Running the Archiver
Use the following syntax to run elfar from the archiver command line.
Table 4-2 describes each switch.

elfar -[a|c|d|e|p|r][-v][-i filename] library_file object_file ..

This command line is subject to the following constraints:

• You may select exactly one action switch (a, c, d, e, p, r) in a single
command.

• The verbose operation switch -v, must not be in a position where it
can be mistaken for an object file, meaning it may not follow the
library_file on append or create.

• The file include switch, -i, must immediately precede the include
file name.

• Use the archive filename first, following the switches. [-i and -v
are not operational switches, and can appear later.]

• Enclose file names containing white space or colons within straight
quotes.

1 .DLB is the default extension for archive files,
.DOJ is the default extension for object files. You can use any name.
4-6 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Archiver
• Append the appropriate file name extension to each file. The
archiver assumes nothing, and will not do it for you.

• You cannot use “wild cards”. To perform an archive operation on a
list of member files, write the list into a text file and use it as input
to the command line (with the -i switch).

• object_file — The name of an object file (.DOJ) to be added,
removed, or replaced in the library_file.

Note that the archiver’s -i switch lets you input a list of members
from a text file, instead of listing all the members on the command
line. Also note that when you use the archiver’s -p switch, you do
not need to identify any members on the command line.

The archiver’s command line is not case-sensitive. For example, the fol-
lowing command line

 elfar -v -c my_lib.dlb fft.doj sin.doj cos.doj tan.doj

runs the archiver with

-v — Selects verbose mode for the archiver

-c my_lib.dlb — Creates an archive file named my_lib.dlb

fft.doj sin.doj cos.doj tan.doj — Uses object files that the
archiver puts in the archive file

The archiver takes file names as parameters. Table 4-1 on page 4-3 lists
the relevant types of files, names, and extensions normally used in
VisualDSP++.
VisualDSP++ 3.0 Linker and Utilities Manual 4-7
for Blackfin DSPs

Archiver Command-Line Reference
Archiver File Search
File searches are important in the archiver’s process. The archiver supports
relative and absolute directory names, default directories, and user-speci-
fied directories for file search paths. File searches include:

• Specified path—If you include relative or absolute path information
in a file name, the archiver only searches in that location for the
file.

• Default directory—If you do not include path information in the
file name, the archiver searches for the file in the current working
directory.

Command-Line Switch Descriptions
When you provide an input or output file name as a command line
parameter, use the following guidelines:

Table 4-2 describes each archiver parameter and switch1.

Table 4-2. Archiver Command-Line Switches

Switch Description

archive-file The archive that the archiver modifies. This parameter appears after
the switch.

member-file One or more object files that the archiver uses when modifying the
archive. This parameter appears after archive-file. You can use
the -i switch to input object file names as a list.

[-a] Append one or more member files to the end of the named archive
file.

1 The switches in Table 4-2 must appear before the archive-file name on the command line,
except that the -i switch appears in place of the member-files. Items shown in [] are
optional. Items shown in italics are user defined.
4-8 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Archiver
[-c] Create a new archive-file containing the member-files on the
command line.

[-d] Delete one or more member-files from the selected
archive-file.

[-i] <list file> Use list-file, containingmember-file names, as input. This file
lists the member-files to add or modify in the selected
archive-file (.DLB).

[-p] The -p (print archive contents) switch directs the archiver to print
to standard output a list of the member-files (.DOJ) in the
selected archive-file (.DLB).

[-r] Replace the named archive file in the library.

[-v] The -v (verbose archiver messages) switch directs the archiver to
output status information as the archiver processes your files.

Table 4-2. Archiver Command-Line Switches (Cont’d)

Switch Description
VisualDSP++ 3.0 Linker and Utilities Manual 4-9
for Blackfin DSPs

Archiver Command-Line Reference
4-10 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

A FILE FORMATS

The development tools support many file formats, in some cases several

for each development tool. This appendix describes the formats of files
that you prepare as input for the tools and points out features of files pro-
duced by the tools.

The three types of file formats that you can learn about in this appendix
are:

• “Source Files” on page A-2

• “Build (Processed) Files” on page A-6

• “Debugger Files” on page A-12

Most of the development tools use industry standard file formats. Sources
that describe these formats appear in “Format References” on page A-13.
VisualDSP++ 3.0 Linker and Utilities Manual A-1
for Blackfin DSPs

Source Files
Source Files
This section describes the following types of input file formats:

• “C/C++ Source Files” on page A-2

• “Assembly Source Files (.ASM)” on page A-3

• “Assembly Initialization Data Files (.DAT)” on page A-3

• “Header Files (.H)” on page A-4

• “Linker Description Files (.LDF)” on page A-4

• “Linker Command-Line Files (.TXT)” on page A-5

C/C++ Source Files
These are text files (with such extensions as .C, .CPP, .CXX, etc.) contain-
ing C/C++ code, compiler directives, possibly a mixture of assembler code
and directives, and (typically) preprocessor commands.

Several “dialects” of C code are supported: pure (portable) ANSI C, and at
least two subtypes1 of ANSI C with ADI extensions. These extensions
include memory type designations for certain data objects, and segment
directives, used by the linker to structure and place executable files.

For information on using the C/C++ compiler and associated tools, as well
as a definition of ADI extensions to ANSI C, see the VisualDSP++ 3.0
C/C++ Compiler & Library Manual for Blackfin DSPs.

For information on specifying the C dialect and general C code handling
within VisualDSP++, see the VisualDSP++ 3.0 User’s Guide for Blackfin
DSPs and VisualDSP++ online Help.

1 With and without builtin function support; a minimal differentiator. There are others.
A-2 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

File Formats
Assembly Source Files (.ASM)
Assembly source files are text files containing assembly instructions,
assembler directives, and (optionally) preprocessor commands. For infor-
mation on assembly instructions, see the Instruction Set Reference manual
for the corresponding DSP.

The DSP’s instruction set is supplemented with assembler directives. Pre-
processor commands control macro processing and conditional assembly
or compilation.

For information on the assembler and preprocessor, see the VisualDSP++
Assembler and Preprocessor Manual for Blackfin DSPs.

Assembly Initialization Data Files (.DAT)
These are text files containing fixed-point data. These files can provide the
initialization data for an assembler .VAR directive or serve in other tool
operations. When a .VAR directive uses a .DAT file for initialization data,
the assembler reads the data file and initializes the buffer in the output
object file (.DOJ). Data files have one data value per line and may have any
number of lines.

The .DAT extension is merely explanatory or mnemonic. A directive to
#include <file> can of course take any file name (or extension) as an
argument.

Fixed-point values (integers) in data files may be signed, and they may be
decimal-, hexadecimal-, octal-, or binary-base values. The assembler uses
the prefix conventions in Table A-1 for identifying a fixed-point value’s
numeric base.

For all numeric bases, the assembler uses 16-bit words for data storage;
24-bit data is for the program code only. The largest word in the buffer
determines the size for all words in the buffer. If you have some 8-bit data
VisualDSP++ 3.0 Linker and Utilities Manual A-3
for Blackfin DSPs

Source Files
in a 16-bit wide buffer, the assembler loads the equivalent 8-bit value into
the most significant 8 bits into the 8-bit memory location and zero-fills
the lower eight bits.

Header Files (.H)
Header files are text files that contain macros or other preprocessor com-
mands that the preprocessor substitutes into source files. For information
on macros or other preprocessor commands, see the VisualDSP++ 3.0
Assembler and Preprocessor Manual for Blackfin DSP.

Linker Description Files (.LDF)
The linker’s .LDF files are ASCII text files that contain commands for the
linker in the linker’s scripting language. For information on this scripting
language see “Linker Guide” on page 1-30.

Table A-1. Fixed-Point Values in Data Files

Convention Description

0xnumber,
Hnumber
hnumber

An “0x”, “H#” or “h#” prefix indicates a hexadecimal number

number,
Dnumber
dnumber

A “#D”, “#d”, or no prefix indicates a decimal number

Onumber An “#O” or “#o” prefix indicates an octal number

Bnumber
bnumber

A “B#” or “b#” prefix indicates a binary number
A-4 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

File Formats
Linker Command-Line Files (.TXT)
The linker’s command-line files are ASCII text files that contain com-
mand-line input for the linker. For more information on the linkers
command line, see “Linker Command-Line Reference” on page 1-95.
VisualDSP++ 3.0 Linker and Utilities Manual A-5
for Blackfin DSPs

Build (Processed) Files
Build (Processed) Files
Build files are files that the development tools produce when building
your VisualDSP++ project. This section describes the following types of
build file formats:

• “Assembler Object Files (.DOJ)” on page A-6

• “Archiver Archive Files (.DLB)” on page A-6

• “Linker Executable Files (.DXE, .SM, .OVL, .dlb)” on page A-7

• “Linker Memory Map Files (.MAP)” on page A-7

Assembler Object Files (.DOJ)
The assembler’s output object files are binary, Executable-Linkable-File
(ELF) format. Object files contain relocatable code and debugging infor-
mation for your program’s segments. The linker processes your object files
into an executable file. For information on the ELF format used for object
files, see the “Format References” on page A-13.

Archiver Archive Files (.DLB)
The archiver’s output archive files are binary, Executable-Linkable-File
(ELF) format. Archive files contain one or more object files, called Archive
Elements. The linker searches through archive files for any archive ele-
ments that your code uses. For information on the ELF format used for
executable files, see the “Format References” on page A-13.
A-6 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

File Formats
Linker Executable Files (.DXE, .SM, .OVL, .DLB)
The linker’s output executable files are binary, Executable-Linkable-File
(ELF) format. Executable files contain your program’s code and debug-
ging information. The linker may fully or partially resolve addresses in
executable files, depending on the options given on the linker’s command
line and in your linker description file. For information on the ELF for-
mat used for executable files, see the TIS Committee texts cited in
“Format References” on page A-13.

Linker Memory Map Files (.MAP)
The linker’s memory map files are ASCII text files that contain memory
and symbol information for your executable file(s). The map contains a
summary of memory that you define with MEMORY{} commands in your
linker description file, and provides a listing of the absolute addresses of
all symbols.

Loader Hex Format Files (.LDR)
The loader’s output Hex-format files are in ASCII, Intel Hex-32 format.
Hex files from the loader support 8-bit wide PROMs. The files are used
with an industry-standard PROM programmer to program memory
devices for your hardware system. One file contains data for the whole
series of memory chips to be programmed.

The following example shows how the Intel Hex-32 format appears in the
loader’s output file. Each line in the Intel Hex-32 file contains either a
data record, an extended linear address record or the end of file record:

:020000040010E9 extended linear address record

:0A0004003C40343434261422260850 data record

:00000401FB end of file record
VisualDSP++ 3.0 Linker and Utilities Manual A-7
for Blackfin DSPs

Build (Processed) Files
The extended linear address record is used because a data record has only a
4-character (16-bit) address field, but the ADSP-2153x processors require
32 bits to address data memory and 24 bits to address program memory.
The extended linear address record specifies address bits 16-31 for the
data records that follow it. Data records are organized into the following
fields:

:0A0004003C40343434261422260850 example record

 : start character

 0A byte count of this record
 0004 address of first data byte
 00 record type
 3C first data byte
 08 last data byte
 50 checksum

Extended linear address records have the following fields:

:02000000340850

: start character

 02 byte count (always 02)

 0000 address (always 0000)

 00 record type

 3408 offset address

 50 checksum

The end of file record looks like this:

:00000001FF

: start character
A-8 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

File Formats
 00 byte count (zero for this record)

 0000 address of first byte

 01 record type

 FF checksum
VisualDSP++ 3.0 Linker and Utilities Manual A-9
for Blackfin DSPs

Build (Processed) Files
Loader ASCII Format Files (.LDR)
The loader’s ASCII-format file is similar to an assembler initialization data
file (.DAT). The data order is one 16-bit hexadecimal value per line, pro-
viding lower-, middle-, then upper-16-bits of each 48-bit instruction. Use
files of this format in the same manner as data files. For information on
this format, see “Assembly Initialization Data Files (.DAT)” on page A-3.

Loader Include Format Files (.LDR)
The loader’s include-format file is an ASCII text file that consists of 48-bit
instructions one per line with each instruction presented as three 16-bit
hexadecimal numbers. The data order is lower-, middle-, then
upper-16-bits of each 48-bit instruction. A few example lines from an
Include format file appear as follows:

0x005c, 0x0002, 0x0620,

0x0045, 0x0000, 0x1103,

0x00c2, 0x0002, 0x06be

This file format lets you include the loader file in a C program. To include
this file in a C program, use the following code:

const unsigned loader_file[] =

{

#include "foo.ldr"

};

const unsigned loader_file_count = sizeof loader_file / sizeof

loader_file[0];

loader_file_count reflects the actual number of elements in the array,
and can be used for processing the data.
A-10 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

File Formats
Loader Binary Format Files (.LDR)
The loader’s binary-format file supports a variety of PROM and micro-
controller storage options and uses less space than the other loader file
formats. The binary file contains 48-bit instructions in big-endian format
(most significant bit first).
VisualDSP++ 3.0 Linker and Utilities Manual A-11
for Blackfin DSPs

Debugger Files
Debugger Files
Debugger files provide input to the debugger to define support for simula-
tion or emulation of your program. The debugger supports all the
executable file types produced by the linker (.DXE, .SM, .OVL, .DLB). To
simulate I/O, the debugger also supports the data file formats (.DAT) from
the assembler and the loadable file formats from the loader (.LDR).

The standard hexadecimal format for a SPORT data file is a single integer
value per line. Hex numbers do not require the 0x prefix to indicate hexa-
decimal. A value can have any number of digits, but are read into the
SPORT register, as follows:

• The hexadecimal number is converted to binary

• The number of binary bits read in matches the word size set for the
SPORT register, which starts reading from the LSB. The SPORT
register then fills with zeros values that are shorter that the word
size or, conversely, truncates any bits beyond the word size on the
MSB end.

Example: a SPORT register is set for 20-bit words and the data file con-
tains hex numbers. The simulator converts these hex numbers to binary,
then fills/truncates to match the SPORT word size. In the following table,
the number A5A5 is filled and the number 123456 is truncated

Table A-2. SPORT Data File Example

Hex Number Binary Number Truncated/Filled

A5A5A 1010 0101 1010 0101 1010 1010 0101 1010 0101 1010

FFFF1 1111 1111 1111 1111 0001 1111 1111 1111 1111 0001

A5A5 1010 0101 1010 0101 0000 1010 0101 1010 0101

5A5A5 0101 1010 0101 1010 0101 0101 1010 0101 1010 0101
A-12 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

File Formats
Format References
The following texts define industry standard file formats supported by
VisualDSP++:

• (1993) Executable and Linkable Format (ELF) V1.1 from the Por-
table Formats Specification V1.1, Tools Interface Standards
Committee {available from ftp://ftp.intel.com/pub/tis}

• (1993) Debugging Information Format (DWARF) V1.1 from the
Portable Formats Specification V1.1, UNIX International, Inc.
{available from ftp://ftp.intel.com/pub/tis}

11111 0001 0001 0001 0001 0001 0001 0001 0001 0001 0001

123456 0001 0010 0011 0100 0101 0110 0010 0011 0100 0101 0110

Table A-2. SPORT Data File Example

Hex Number Binary Number Truncated/Filled
VisualDSP++ 3.0 Linker and Utilities Manual A-13
for Blackfin DSPs

Format References
A-14 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

B UTILITIES

Your Analog Devices development software comes with several file conver-

sion utilities, which only run from a command line. Some of these utilities
provide support for legacy code, and others are intended for a group of
users who prefer to use the command line version of the tools instead of
using them through the VisualDSP++ environment. This appendix
describes these utilities and their command lines.

ELF File Dumper
The ELF file dumper (elfdump.exe) extracts data from ELF format exe-
cutable files (.DXE) and provides a text output file that describes the ELF
file’s contents.

The ELF file dumper runs from the following command-line entry:

 C:\Program Files\Analog Devices\VisualDSP>elfdump

Usage: elfdump {option} {objectfile}

Table B-1. ELF File Dumper Command-Line Switches

Switch Description

-fh Print file header.

-arsym Print the archive symbol table

-arall Print every archive member

-ph Print program header table.
VisualDSP++ 3.0 Linker and Utilities Manual B-1
for Blackfin DSPs

ELF File Dumper
-sh Print section header table. The default is -sh if no options are specified.

-notes Print note segments(s).

-n name Print contents of the named section(s). Name may be a simple
‘glob’-style pattern, using ? and * as wild card characters. Each section’s
name and type determines its output format, unless overridden by a
modifier (see below).

-i x0[-x1] Print contents of the sections numbered x0 through x1, where x0 and x1
are decimal integers, and x1 defaults to x0 if omitted. Formatting rules
as are for -n.

-all Print everything. Same as -fh -ph -sh -notes -n ‘*’

-ost Omit string table sections.

objectfile File whose contents are to be printed. It can be a core file, executable,
shared library, or relocatable object file. If the name is in the form A(B),
A is assumed to be an archive and B is an ELF element in the archive. B
can be a pattern like the one accepted by -n. The-n and -i options can
have a modifier letter after the main option character which forces sec-
tion contents to be formatted in the following ways:

a Dump contents in hex and ASCII, 16 bytes per line.
x Dump contents in hex, 32 bytes per line.
xN Dump contents in hex, N bytes per group (default is N=4).
t Dump contents in hex, N bytes per line, where N is the section’s
 table entry size. If N is not in the range 1...32, 32 is used.
i Print contents as list of disassembled machine instructions.

Table B-1. ELF File Dumper Command-Line Switches (Cont’d)

Switch Description
B-2 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

Utilities
Using the Archiver and Dumper For Disassembly
The file utilities can become much more effective when you combine their
capabilities. One interesting application of these utilities is to disassemble
a library member, converting it to source code. This application can be
used when your source for a particularly useful routine is missing and is
only available as a library routine.

The following procedure lists the objects in a library, extracts an object,
and converts the object to a listing file. Using the following archiver com-
mand line, list the objects in the library and write the output to a text file:

elfar -p libc.dlb > libc.txt

� Assuming the current directory is:
C:\Program Files\Analog Devices\VisualDSP++\Blackfin\lib>

Open the text file, scroll through it, and find the object file that you need.
Then, use the following archiver command line to extract the object from
the library:

elfar -e libc.dlb fir.doj

To convert the object file to an assembly listing file with labels (almost
source, just needs the line numbers and opcodes removed), use the follow-
ing elfdump command line:

elfdump -ns * fir.doj > fir.asm

Using disassembly, you get a listing file with symbols. Assemble source
with symbols can be useful if you are familiar with the code and hopefully
have some documentation on what the code does. If symbols were
stripped during linking, there are no symbols in the dumped file.

� Using disassembly on a third party's library may violate the license
for the third party's software. Check on copyright and license issues
with the code’s owner before using this disassembly technique.
VisualDSP++ 3.0 Linker and Utilities Manual B-3
for Blackfin DSPs

ELF File Dumper
Dumping Overlay Archive Files
Use the elfar and elfdump commands to extract and view the contents of
the overlay archive file (*.OVL).

For example,

elfar -P CLONE2.OVL

will print the contents to CLONE2.ELF which will be an *.ELF file that
can be viewed with elfdump.

Use elfdump to view CLONE2.ELF

elfdump -all CLONE2.OVL(CLONE2.elf)

or extract CLONE2.ELF and dump

elfar -e CLONE2.elf

elfdump -all CLONE2.elf

(or use whatever elfdump options one wants).

These commands are case sensitive.
B-4 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

I INDEX

Symbols _ov_word_size_run_N constant 1-67

#define preprocessor commands 1-41
$ADI_DSP home directory 1-23
$ADI_DSP macro 1-42
$COMMAND_LINE_LINK_AGAIN

ST macro 1-41
$COMMAND_LINE_OBJECTS

macro 1-41
$COMMAND_LINE_OUTPUT_FIL

E linker macro 1-25
$COMMAND_LINE_OUTPUT_FIL

E macro 1-41
$macro = list_of_files 1-42
$OBJECTS linker macro 1-23
.OVL file B-4
@ file linker switch 1-103
_ov_endaddress_# overlay symbol 1-91
_ov_endaddress_N constant 1-67
_ov_runtimestartaddress_# overlay

symbol 1-91
_ov_runtimestartaddress_N constant

1-67
_ov_size_# overlay symbol 1-91
_ov_size_N constant 1-67
_ov_startaddress_# overlay symbol 1-91
_ov_startaddress_N constant 1-67
_ov_word_size_live_N constant 1-67

Numerics
BMODE 3-4, 3-5

A
-a (append to archive) archiver switch

4-8
absolute data placements 1-106
ABSOLUTE operator 1-36
adding

input sections 2-12
LDF macros 2-12
object/library files 2-12

ADDR operator 1-37
ALGORITHM linker command 1-61
ALIGN linker command 1-45
alignment properties 2-56
-all (print everything) dump switch B-2
ALL_FIT

linker command 1-61
overlay setting 2-59

application code start address 3-11
-arall (print archive) dump switch B-1
architecture file (see Linker Description

File)
VisualDSP++ 3.0 Linker and Utilities Manual I-1
for Blackfin DSPs

INDEX
ARCHITECTURE linker
command 1-45

archive file
parameter to archiver 4-8

archive file (see Archiver)
archived functions

making them usable 4-3
Archiver

command-line reference 4-6
guide 4-2
using in disassembly B-3

archiver command-line switches
-a (append) 4-8
archive-file 4-8
-c (create) 4-9
-d (delete) 4-9
-i (input list-file) 4-9
member-file 4-8
-p (print archive) 4-9
-r (replace archive file) 4-9
-v (print verbose text) 4-9

ARGV section 1-27
argv sections 1-15
-arsym (print archive symbol table)

dump switch B-1
Assembler

initialization data files (.DAT)
A-3

non-keyword operators and
conventions A-3

object files (.DOJ) A-6
source code 1-16
source files (.ASM) A-3

B
-b (boot-type) loader switch 3-15
-baudrates # loader switch 3-15
BMODE selections 3-3
boot file formats 3-16
boot image file 3-12
boot kernel 3-9, 3-11

file extension 3-17
files 3-12, 3-22
output file 3-16
rebuilding 3-35
user-specified 3-17

boot kernels 3-35
BOOT keyword 1-35
boot ROM

reading in user code 3-10
boot stream

contents 3-23, 3-24
with boot kernel 3-24
without boot kernel

(ADSP-21532) 3-32
without boot kernel

(ADSP-21535) 3-30
booting

bypass mode 3-10
described 3-2
sequence 3-6
type selections 3-15
without boot kernel 3-17

bootup
sections 1-15

branch expansion instruction 1-106
branch instruction 1-88
build (processed) files A-6
I-2 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

INDEX
build tool options
archiver 4-2
linker 1-8
loader 3-13

bypass mode 3-10
byte addressing 1-67

C
-c (create archive) archiver switch

4-9
C source file 1-17
cache

flushing 1-77
memory 1-11

color selection 2-14
command line

archiver 4-6
linker 1-95, 3-13
loader 3-13

constdata input section 1-15
conventions

assembler prefix A-3
file (in linker) 1-99

conventions, of this manual -xxi
converting

out-of-range short calls and jumps
1-106

Create LDF wizard 2-4
ctor input section 1-15
customer support -xv

D
-d (delete from archive) archiver

switch 4-9

-Darchitecture (target architecture)
linker switch 1-103

data placement 1-106
data1 input section 1-15
debugger files A-12
default directory 1-98
DEFINED operator 1-37
defining your DSP system to the

linker (see Linker Description
File)

direct memory access (DMA) 1-64
directories

supported by linker 1-98
disassembly

using the dumper for B-3
displaying help information

online help
displaying required topics 1-8

DLB files 1-99
DOJ files 1-99
DSP executables 1-28
DXE files 1-99
DYNAMIC linker command 1-46

E
-e (eliminate unused symbols) linker

switch 1-105
ELF file dumper

command-line switches B-1
extracting data B-1
overlay achive files B-4

ELF file format 1-28
elfar archiver B-3
elfdump 1-14, 2-36
VisualDSP++ 3.0 Linker and Utilities Manual I-3
for Blackfin DSPs

INDEX
ELIMINATE linker command
1-47

ELIMINATE(VERBOSE) linker
command 1-47

ELIMINATE_SECTIONS linker
command 1-47

elimination properties 2-46
END linker command 1-52
errors

displaying description 1-8
linking 1-43

-es (eliminate listed sections) linker
switch 1-105

-ev (eliminate unused symbols,
verbose) linker switch 1-105

Expert Linker 1-9, 2-1, 2-2
color selection 2-14
Input Sections pane 2-12
launching 2-3
mapping sections in 2-13
memory map window 2-18
object properties 2-41
resize cursor 2-27

extracting data from ELF executable
files B-1

F
-f (boot file format) loader switch

3-16
FALSE keyword 1-35
-fh (print file header) dump switch

B-1
file extensions

linker 1-97

file names
linker command-line input 1-98,

1-102
FILL linker command 1-48, 1-59
fixed-point value A-3
FLASH booting mode 3-15
FLASH/PROM boot file format

3-16
format references A-13
fragmented memory 1-106

G
gap

address 2-33
inserting 2-33

global properties setting 2-42

H
-h (command line help) loader

switch 3-16
hardware reset 3-3
heap

graphic representation 2-60
managing in memory 2-60
program section 1-15

-help (command line help) linker
switch 1-105

-HoldTime # loader switch 3-16
hold-time cycle selection 3-16

I
-i (include search directory) linker

switch 1-105
I-4 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

INDEX
-i (input to archive) archiver switch
4-9

-i (print numbered sections) dump
switch B-2

icons
Expert Linker 2-14

include format 3-16
INCLUDE linker command 1-47
individual data placement option

1-106
input sections 1-14, 1-19

names 1-14
Input Sections pane 2-12

menu selections 2-12
INPUT_SECTION_ALIGN

linker command 1-48
INPUT_SECTIONS linker

command 1-58
-ip (individual placement) linker

switch 1-106

J
-jcs21 (convert short calls) linker

switch 1-106
-jcs21+ (convert indirect

calls/jumps) linker switch
1-106

jump (_OverlayManager)
command 1-88

K
-kb KernelBootMode loader switch

3-16

-keep (keep unused symbols) linker
switch 1-107

KEEP linker command 1-49
-kf KernelFormat loader switch

3-16
-kWidth # loader switch 3-17

L
-l (boot-kernel) loader switch 3-17
-L path (libraries and objects) linker

switch 1-103
L1 memory 1-11

zero block 3-26
L2 memory 1-11
LDF

creating in Expert Linker 2-4
file extension 1-99
input sections 1-19
linker commands 1-44
macros 1-41
memory segments 1-20
operators 1-35
output sections 1-20
overview 1-3, 1-4

Legend dialog box selections 2-14
LENGTH linker command 1-52
Librarian

see Archiver 4-6
librarian archive files (.DLB) A-6
libraries (see Archiver)
LINK_AGAINST linker command

1-49
Linker

command-line files (.TXT) A-5
VisualDSP++ 3.0 Linker and Utilities Manual I-5
for Blackfin DSPs

INDEX
command-line syntax 1-95
executable files (.DXE, .SM,

.OVL, .DLO) A-7
file name conventions 1-99
keywords 1-34
memory commands 1-14
memory map files (.MAP) A-7
non-keyword operators 1-32
operators 1-35
overlay constants generated by

1-67
selecting a target processor 1-107

linker command-line switches
Darchitecture 1-103
-e 1-105
-es secName 1-105
-ev 1-105
-help 1-105
-i directory 1-105
-ip 1-106
-jcs21 1-106
-jcs21+ 1-106
-keep symName 1-107
-L path 1-103
-M 1-104
-Map file 1-104
-MDmacro =def 1-104
-MM 1-104
null 1-103
-o filename 1-107
-pp 1-107
-proc processor 1-107
-S 1-104
-s 1-107

-sp 1-108
-t 1-108
-T file 1-104
-v 1-108
-version 1-108
-warnonce 1-108
-xref filename 1-108

linker commands
ALIGN() 1-45
ARCHITECTURE() 1-45
DYNAMIC() 1-46
ELIMINATE() 1-47
ELIMINATE_SECTIONS()

1-47
INPUT_SECTION_ALIGN()

1-48
KEEP() 1-49
LINK_AGAINST() 1-49
MAP() 1-50
MEMORY{} 1-50
OVERLAY_GROUP{} 1-82
OVERLAY_INPUT{} 1-82
PLIT{} 1-86
PROCESSOR{} 1-53
RESOLVE() 1-55
SEARCH_DIR() 1-55
SECTIONS{} 1-56
TYPE 1-52

Linker Description File (.LDF)
1-30, A-4

overview 1-18, 1-30
linking

file with large uninitialized
variables 1-111
I-6 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

INDEX
overlay memory system 1-123
single-processor system 1-110

linking process 1-18, 1-30
Loader

boot file formats 3-16
command-line switches 3-13,

3-15
command-line syntax 3-13
elfloader.exe 3-1
file extensions 3-13
guide 3-2
input files 3-11, 3-12
option settings 3-13
output files 3-33
selecting output files 3-16

loader switches
-b type 3-15
-baudrates # 3-15
-f format 3-16
-HoldTime # 3-16
-kb KernelBootMode 3-16
-kf KernelFormat 3-16
-kWidth # 3-17
-l userkernel 3-17
-no2kernel 3-17
-o filename 3-17
-o2 (two output files) 3-17
-proc ProcessorID 3-18
-v (verbose) 3-18
-waits # 3-18
-width # (word width) 3-18

location counter 1-39

M
-M (dependency check and output)

linker switch 1-104
macros

linker 1-40
preprocessor 1-40
used in LDF 1-41

-Map (file) linker switch 1-104
MAP() linker command 1-50
mapping input section to output

section 2-14
-MDmacro =def (macro value)

linker switch 1-104
MEM_ARGV memory section

1-15
MEM_BOOTUP memory section

1-15
MEM_HEAP memory section 1-15
MEM_PROGRAM section 1-15
MEM_STACK memory section

1-15
MEM_SYSSTACK memory

section 1-15
member file

archiver parameter 4-8
memory

allocation 1-14
architecture 1-11
managing heap/stack in 2-60
overlays 1-62
partitions 2-18
segment declaration 1-14
segment gap 2-33
segments 2-18
VisualDSP++ 3.0 Linker and Utilities Manual I-7
for Blackfin DSPs

INDEX
types 1-14, 1-52
MEMORY linker command 1-13,

1-24, 1-50
memory map

graphical view 2-24
highlighted.objects in 2-27
menu selections 2-20
tree view 2-23
viewing 2-18

Memory Map pane 2-18, 2-20
overlays in 2-34

memory segments 1-14, 1-20
changing size of 2-27
properties 2-52
size 2-23
start address 2-23

MEMORY_SIZEOF operator 1-38
-MM (dependency check, output

and build) linker switch 1-104
modes

booting 3-3
multiple overlays 2-34
multiprocessor

system architecture 2-7

N
-n name (print section) dump

switch B-2
-no2kernel loader switch 3-17
NOP instruction 2-57
-notes (print notes) dump switch

B-2
null (options display) linker switch

1-103

O
-o (output file) linker switch 1-107
-o (output file) loader switch 3-17,

3-34
-o2 (two output files) loader switch

3-17
object (file name) 1-102
object properties

managing using Expert Linker
2-41

objectfile dump switch argument
B-2

objects
deleting 2-13
sorting 2-16

-ost (omit string sections) dump
switch B-2

output file formats
for ADSP-21532 DSP loader 3-33
for ADSP-21535 DSP loader 3-33

output files
loader 3-33

OUTPUT linker command 1-25,
2-18

output section properties 2-53
output sections 1-14, 1-20
ov_id_loaded buffer 1-74
overlay algorithm

ALL_FIT 2-59
overlay manager 1-62, 1-64, 1-70,

1-88
constants 1-73
major functions 1-65
placing constants 1-73
I-8 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

INDEX
routine steps 1-77
overlay memory

linking for 1-123
OVERLAY_GROUP linker

command 1-82
OVERLAY_ID linker command

1-61
OVERLAY_INPUT linker

command 1-60
OVERLAY_OUTPUT linker

command 1-60
overlays

achive files
dumping B-4

address 1-67
archive files B-4
constants 1-67, 1-72
grouped 1-82
grouping 1-82
in line space 2-34
in Memory Map pane 2-34
in run space 2-34
loading instructions with PLIT

1-90
manager overhead (reducing)

1-78
multiple 2-34
properties 2-58
symbols 1-91
ungrouped 1-82
word size 1-67

OVL files 1-60, 1-99

P
-p (print archive contents) archiver

switch 4-9
packing properties 2-55
-ph (print program headers) dump

switch B-1
pinning to output section 2-21
pins

selecting 16-bit external memory
booting 3-4, 3-5

selecting 16-bit SPI booting 3-4,
3-5

selecting 8-bit FLASH memory
booting 3-4, 3-5

selecting 8-bit SPI booting 3-4,
3-5

placing program in memory with
linker 1-56

PLIT
allocating space for 1-88
executing user-defined code 1-67
resolving inter-overlay calls 1-93
syntax 1-86

PLIT linker commands 1-86
PLIT_DATA_OVERLAY_ID

1-88
PLIT_SYMBOL_ADDRESS

1-87
PLIT_SYMBOL_OVERLAYID

1-87
saving register contents 1-90

PLIT properties 2-45
-pp (end after preprocessing) linker

switch 1-107
VisualDSP++ 3.0 Linker and Utilities Manual I-9
for Blackfin DSPs

INDEX
preprocessor
macros 1-41
run from linker 1-107

-proc (processor)
linker switch 1-107
loader switch 3-18

Procedure Linkage Table (PLIT)
1-86, 1-91

procedure linkage table. see PLIT
1-67

processor
properties 2-44
selection 1-103

PROCESSOR linker command
1-53

program
sections 1-15

program counter 1-72
PROM booting mode 3-15

R
-r (replace archive file) archiver

switch 4-9
RAM memory 1-52

location 1-52
reset

vector 3-5
RESET pin 3-3
resize cursor 2-27
RESOLVE linker command 1-50,

1-55
RESOLVE_LOCALLY linker

command 1-61
ROM memory 1-52

location 1-52

S
-s (strip all symbols) linker switch

1-107
-S (strip debug symbols) linker

switch 1-104
SEARCH_DIR linker command

1-55
section_commands 1-57
SECTION_NAME declaration

rules 1-57
SECTIONS linker command 1-27,

1-56
selecting a target processor 1-107
setting address 1-27
setting options

archiver 4-2
linker 1-8
loader 3-13

-sh (print section headers) dump
switch B-2

SHT_NOBITS
keyword 1-112
section qualifier 1-111, 1-112

SIZE linker command 1-61
SIZEOF operator 1-38
sorting

objects in input sections 2-16
sorting objects 2-16
source code

in input sections 1-16
source files

assembly instructions A-3
I-10 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

INDEX
C/C++ A-2
fixed-point data A-3

-sp (skip preprocessing) linker
switch 1-108

SPI
boot file format 3-16
booting mode 3-15

SPI baud rate 3-15
SPORT data file A-12
stack

graphic representation 2-60
managing in memory 2-60
sections 1-15

START linker command 1-52
stdio functions 1-107
symbol declaration 1-22
symbols

adding 2-50
deleting 2-51
properties 2-48, 2-50
viewing 2-37

sysstack
managing in memory 2-60
sections 1-15

T
-t (trace) linker switch 1-108
-T file (executable program

placement) linker switch 1-104
target processor

specifying 1-103
tree-view memory map 2-23
TRUE keyword 1-35
TYPE linker command 1-52

U
uninitialized variables 1-111
unmapped object icon 2-14
user application code

file extension 3-17
user-selected directories 1-98

V
-v (verbose archiver messages)

archiver switch 4-9
-v (verbose loader messages) loader

switch 3-18
-v (verbose) linker switch 1-108
VERBOSE keyword 1-47
-version (linker version) linker

switch 1-108
View Legend menu selection 2-13
VisualDSP++

archiver 4-1
Expert Linker 2-2
loader 3-1

W
wait states 3-18
-waits # loader switch 3-18
-warnonce (single symbol warning)

linker switch 1-108
-width # (word) loader switch 3-18
WIDTH linker command 1-53
wizard

creating LDF 2-4
word width used in loader output

file 3-18
VisualDSP++ 3.0 Linker and Utilities Manual I-11
for Blackfin DSPs

INDEX
writing and using archive routines
4-3

writing linker commands 1-26

X
-xref (external reference file) linker

switch 1-108

XREF keyword 1-35

Z
zero block 3-26
I-12 VisualDSP++ 3.0 Linker and Utilities Manual
for Blackfin DSPs

	Contents
	Preface
	Purpose of This Manual
	Intended Audience
	Manual Contents
	What’s New in This Manual
	Technical or Customer Support
	Supported Processors
	Product Information
	MyAnalog.com
	DSP Product Information
	Related Documents
	Online Technical Documentation
	From VisualDSP++
	From Windows
	From the Web

	Printed Manuals
	VisualDSP++ Documentation Set
	Hardware Manuals
	Datasheets

	Contacting DSP Publications

	Notation Conventions

	1 Linker
	Linking Process Overview
	Figure 1-1. Software Development Flow
	Figure 1-2. Assembly Source and Object Section Names

	Getting Started
	Linking Environment Overview
	Figure 1-3. VisualDSP++ Environment
	Figure 1-4. Specifying Linker Options
	Figure 1-5. Expert Linker Window

	Describing the Link Target
	ADSP-21535 DSP Memory Architecture Overview
	Figure 1-6. ADSP-21535 DSP System Block Diagram
	Table 1-1. ADSP-21535 DSP Memory Map Addresses

	Representing Memory Architecture
	Specifying the Memory Map
	Table 1-2. Memory vs. Sections Usage for ADSP-21535 LDF

	Inputs — C/C++ and Assembly Sources
	Input Section Directives in Assembly Code
	Section Directives in C/C++ Source Files

	LDF Overview
	Figure 1-7. LDF File in Linking Process
	Listing 1-1. Default Sample LDF -- Basic Example
	Notes on Basic LDF Example

	Placing Code on the Target
	Passing Arguments for Simulation/Emulation
	LDF Syntax Overview
	Outputs — DSP Executables
	Getting Started Summary

	Linker Guide
	LDF Structure
	Command Scoping
	Figure 1-8. LDF Command Scoping Example

	LDF Expressions and Conventions
	Table 1-3. Linker Non�Keyword Operators and Conventions �

	Linker Keywords, Commands and Operators
	Table 1-4. Linker Keywords Summary�

	Miscellaneous LDF Keywords
	LDF Operators
	ABSOLUTE () Operator
	ADDR(
	DEFINED Operator
	MEMORY_SIZEOF Operator
	SIZEOF Operator
	Location Counter

	LDF Macros
	LDF Macro List
	LDF Macros and Command-Line Interaction

	Linker Error and Warning Messages
	LDF Command Summary
	ALIGN()
	ARCHITECTURE()
	DYNAMIC()
	ELIMINATE()
	ELIMINATE_SECTIONS()
	INCLUDE()
	INPUT_SECTION_ALIGN()
	KEEP()
	LINK_AGAINST()
	MAP(filename)
	MEMORY{}
	Figure 1-9. Syntax Tree of the MEMORY{} Command

	PROCESSOR{}
	Figure 1-10. Syntax of the PROCESSOR{} Command

	RESOLVE()
	SEARCH_DIR()
	SECTIONS{}
	Figure 1-11. Syntax Tree of the SECTIONS{} Command
	section_commands or expressions
	section_name
	INPUT_SECTIONS()
	expression
	FILL(hex number)
	PLIT{plit_commands}
	OVERLAY_INPUT(overlay_commands)

	Advanced Linker Features and Commands
	Memory Overlays and Overlay Memory Manager
	The Concept of Memory Overlays
	Figure 1-12. Memory Overlays

	The Concept of Overlay Manager
	Memory Overlay Support
	Listing 1-2. Overlay Declaration in LDF
	Listing 1-3. PLIT Definition in LDF
	Figure 1-13. Expanded PLIT Table

	Overlay Manager Example
	Listing 1-4. FFT Overlay Example 1

	Reducing Overlay Manager Overhead

	OVERLAY_GROUP{} Command
	Figure 1-14. Overlays, Grouped
	Ungrouped Overlay Execution
	Listing 1-5. LDF Overlays, Not Grouped

	Grouped Overlay Execution
	Listing 1-6. LDF Overlays, Grouped

	PLIT{} Command
	PLIT Syntax
	Figure 1-15. Syntax Tree of the PLIT{} Command

	Allocating Space for PLITs
	PLIT Examples
	Listing 1-7. A Simple PLIT{} Command

	What PLIT Does – Summary

	Using PLIT and Overlay Manager
	Figure 1-16. PLITs & Overlay Memory; main() Calls to Overlays
	Figure 1-17. PLITs and Overlay Memory; Inter-Overlay Calls

	Linker Command-Line Reference
	Command-Line Syntax
	Object Files in the Linker Command Line
	Switch Format in the Linker Command Line
	File Names on the Linker Command Line
	Table 1-5. File Name Extension Conventions �

	Linker Command-Line Switch Summary
	Table 1-6. Linker Command-Line Switches �

	Command-Line Switch Descriptions
	objects
	<null>
	@ file
	-Darchitecture
	-L
	-M
	-MM
	-Map
	-MD
	-S
	-T
	-e
	-es
	-ev
	�h|-help
	-i
	-ip
	-jcs2l
	-jcs2l+
	-keep
	�o�
	-pp
	-proc
	�s
	-sp
	�t
	-v
	�version
	�warnonce
	-xref

	LDF Programming Examples
	Linking for Single-Processor System
	Listing 1-8. Single-Processor System LDF Example

	Linking Large Uninitialized Variables
	Listing 1-9. Large Uninitialized Variables: Assembly Source
	Listing 1-10. Large Uninitialized Variables: LDF Source

	Linking for Assembly Source File
	Listing 1-11. MyFile.ASM
	Listing 1-12. Simple LDF Based on Assembly Source File Only
	Figure 1-18. Assembly-to-Memory Code Placement

	Linking for C Source File – Example 1
	Listing 1-13. Simple C Source File Example 1
	Listing 1-14. Simple C-based LDF Example for ADSP-21535 DSP

	Linking for Complex C Source File – Example 2
	Listing 1-15. Complex C Source File Example
	Listing 1-16. C LDF File Example - SDRAM.LDF
	Figure 1-19. C-to-Memory Code Placement

	Linking for Overlay Memory Example
	Listing 1-17. Overlay-Memory System LDF Example

	2 Expert Linker
	Expert Linker Overview
	Launching the Create LDF Wizard
	Figure 2-1. Welcome Page of the Create LDF Wizard
	Step 1: Specifying Project Information
	Figure 2-2. Selecting File Name and Project Type

	Step 2: Specifying System Information
	Figure 2-3. Selecting System and Processor Types

	Step 3: Completing the LDF Wizard
	Figure 2-4. Wizard Completed Page of the Create LDF Wizard

	Expert Linker Window Overview
	Figure 2-5. Expert Linker Window

	Using the Input Sections Pane
	Using the Input Sections Menu
	Figure 2-6. Input Sections Right-Click Menu
	Mapping an Input Section to an Output Section

	Viewing Icons and Colors
	Figure 2-7. Legend Dialog Box–Icons Pane
	Figure 2-8. Legend Dialog Box–Colors Pane
	Figure 2-9. Selecting Colors

	Sorting Objects
	Figure 2-10. Expert Linker Window–Sorted by Input Sections
	Figure 2-11. Expert Linker Window – Sorted by LDF Macros

	Using the Memory Map Pane
	Figure 2-12. Expert Linker Window – Memory Map
	Figure 2-13. Memory Map with Invalid Memory Segment icons
	Using the Context Menu
	Figure 2-14. Context (Right-Click) Menu

	Tree View Memory Map Representation
	Figure 2-15. Expert Linker Window – Memory Map

	Graphical View Memory Map Representation
	Figure 2-16. Graphical Memory Map Representation
	Figure 2-17. Viewing Sections and Segments in Memory Map
	Figure 2-18. Adjusting Memory Segment Size
	Figure 2-19. Dragging-and Dropping Objects
	Figure 2-20. Memory Map Showing Highlighted Memory Segment

	Specifying Pre- and Post-Link Memory Map View
	Figure 2-21. Memory Map – Pre-Link View
	Figure 2-22. Memory Map – Post-Link View

	Zooming In and Out on the Memory Map
	Figure 2-23. Memory Map – Zoom Options

	Inserting a Gap into Memory Segment
	Figure 2-24. Insert Gap Dialog Box

	Working with Overlays
	Figure 2-25. Graphical Memory Map Showing Overlay Live Space
	Figure 2-26. Graphical Memory Map Showing Overlay Run Space

	Viewing Section Contents
	Figure 2-27. Output Section Contents in Hex Format
	Figure 2-28. Output Section Contents in Hex and ASCII Format
	Figure 2-29. Output Section Contents in Hex and Assembly Format

	Viewing Symbols
	Figure 2-30. View Symbols Dialog Box

	Managing Object Properties
	Managing Global Properties
	Figure 2-31. Global Properties - General Tab

	Managing Processor Properties
	Figure 2-32. Global Properties – Processor Tab

	Managing PLIT Properties for Overlays
	Figure 2-33. Global Properties – PLIT Tab

	Managing Elimination Properties
	Figure 2-34. Global Properties – Elimination Tab

	Managing Symbols Properties
	Figure 2-35. Elimination Properties – Symbols to Keep Window
	Figure 2-36. Processor Properties – Symbols Tab
	Figure 2-37. Add Symbol to Resolve Dialog Box
	Figure 2-38. Browse Symbols Dialog Box

	Managing Memory Segment Properties
	Figure 2-39. Memory Segment Properties – Memory Segment Tab

	Managing Output Section Properties
	Figure 2-40. Output Section Properties – Output Section Tab

	Managing Packing Properties
	Figure 2-41. Output Section Properties – Generic Packing Tab

	Managing Alignment and Fill Properties
	Figure 2-42. Output Section Properties – Alignment Tab

	Managing Overlay Properties
	Figure 2-43. Overlay Properties – Overlay Tab

	Managing Stack and Heap in DSP Memory
	Figure 2-44. Memory Map Window with STACK/HEAP Sections
	Figure 2-45. Global Properties – Selecting Stack/Heap Usage
	Figure 2-46. Graphical Memory Map Showing Stack/Heap Usage

	3 Loader
	Loader Guide
	Hardware Reset and Boot Sources
	ADSP-21535 DSP Boot Mode Selection Information
	Table 3-1. ADSP-21535 Reset Vector Addresses and Boot Mode Selections�
	Figure 3-1. ADSP-21535 System Reset Configuration Register (SYSCR)

	ADSP-21532 DSP Boot Mode Selection Information
	Table 3-2. ADSP-21532 DSP Reset Vector Addresses and Boot Mode Selections�
	Figure 3-2. ADSP-21532 System Reset Configuration Register (SYSCR)

	Booting Sequence
	ADSP-21532 DSP Booting
	Figure 3-3. Booting from on-chip ROM

	ADSP-21535 DSP Booting
	Figure 3-4. Loading Boot Kernel
	Figure 3-5. Executing the Application

	Boot Loading and Boot Kernel
	Loader Input Files
	What ELFLOADER.EXE Does

	Using the Loader
	Running the Loader from a Command Line
	Table 3-3. File Name Extension Conventions

	Loader Command-Line Switches
	Table 3-4. Loader Command-Line Switches�

	Configuring the Loader
	Specifying Basic Loader Settings
	Figure 3-6. Loader Setting Options in Default Load Pane

	Specifying Loader Settings for Boot Kernel Loading
	Figure 3-7. Setting for Boot Loading using Boot Kernel

	Loader Boot Streams
	ADSP-21535 DSP Boot Stream with Boot Kernel
	Figure 3-8. Bootstream Output for ADSP-21535 DSP

	ADSP-21535 DSP Boot Stream without Boot Kernel
	ADSP-21532 DSP Boot Stream

	Loader Output Files and Formats
	Rebuilding the Boot Kernel

	4 Archiver
	Archiver Guide
	Creating an Archive From VisualDSP++
	Filename Conventions
	Table 4-1. File Name Extension Conventions �

	Making Archived Functions Usable
	Writing Archive Routines: Creating Entry Points
	Using Archive Routines

	Archiver Command-Line Reference
	Running the Archiver
	Archiver File Search
	Command-Line Switch Descriptions
	Table 4-2. Archiver Command-Line Switches �

	A File Formats
	Source Files
	C/C++ Source Files
	Assembly Source Files (.ASM)
	Assembly Initialization Data Files (.DAT)
	Table A-1. Fixed-Point Values in Data Files �

	Header Files (.H)
	Linker Description Files (.LDF)
	Linker Command-Line Files (.TXT)

	Build (Processed) Files
	Assembler Object Files (.DOJ)
	Archiver Archive Files (.DLB)
	Linker Executable Files (.DXE, .SM, .OVL, .DLB)
	Linker Memory Map Files (.MAP)
	Loader Hex Format Files (.LDR)
	Loader ASCII Format Files (.LDR)
	Loader Include Format Files (.LDR)
	Loader Binary Format Files (.LDR)

	Debugger Files
	Table A-2. SPORT Data File Example

	Format References

	B Utilities
	ELF File Dumper
	Table B-1. ELF File Dumper Command-Line Switches �
	Using the Archiver and Dumper For Disassembly
	Dumping Overlay Archive Files

	I Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

