
W3.1
User’s Guide

for Blackfin Processors

Revision 3.1, April 2003

Part Number
82-000410-02

Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106 a

Copyright Information

©1996–2003 Analog Devices, Inc., ALL RIGHTS RESERVED. This
document may not be reproduced in any form without prior, express
written consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer

Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by
implication or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice

The Analog Devices logo, Blackfin, and EZ-ICE are registered trademarks
and VisualDSP++, the VisualDSP++ logo, EZ-KIT Lite, Apex-ICE, and
Summit-ICE are trademarks of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

Revision 3.1

CONTENTS
PREFACE

Purpose of This Manual ... xxi

Intended Audience ... xxi

Manual Contents .. xxii

What’s New in This Manual .. xxiii

Technical or Customer Support ... xxiii

Supported Processors .. xxiv

Product Information .. xxiv

MyAnalog.com ... xxiv

DSP Product Information .. xxv

Related Documents ... xxv

Online Documentation .. xxvi

From VisualDSP++ ... xxvii

From Windows ... xxvii

From the Web .. xxviii

Printed Manuals ... xxviii

VisualDSP++ Documentation Set xxviii

Hardware Manuals ... xxviii

Data Sheets .. xxix
VisualDSP++ 3.1 User’s Guide iii
for Blackfin Processors

CONTENTS
How to Contact DSP Publications .. xxix

Notation Conventions .. xxx

INTRODUCTION TO VISUALDSP++

VisualDSP++ Features .. 1-2

Integrated Development and Debugging Environment 1-2

Code Development Tools .. 1-2

Source File Editing Features .. 1-3

Project Management Features .. 1-4

Debugging Features ... 1-5

VDK Features ... 1-6

VisualDSP++ 3.1 Features ... 1-7

Project Development .. 1-9

DSP Project Development Stages ... 1-9

Simulation ... 1-9

Evaluation .. 1-10

Emulation .. 1-10

Simulation and Emulation .. 1-10

Targets .. 1-10

Simulation Targets .. 1-11

EZ-KIT Lite Targets ... 1-11

Emulation Targets .. 1-11

Platforms .. 1-11

Hardware Simulation .. 1-12

Debugging Overview .. 1-12
iv VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

CONTENTS
VisualDSP++ Kernel .. 1-14

Program Development Steps .. 1-14

Step 1: Create a Project ... 1-15

Step 2: Configure Project Options 1-15

Step 3: Add and Edit Project Source Files 1-15

Adding Files to Your Project .. 1-15

Creating Files to Add to Your Project 1-16

Editing Files .. 1-16

Managing Project Dependencies 1-16

Step 4: Define Project Build Options 1-16

Configuration ... 1-17

Project-Wide File and Tool Options 1-17

Individual File and Tool Options 1-17

Step 5: Build a Debug Version of the Project 1-18

Step 6: Create a Debug Session and Load the Executable 1-18

Step 7: Run and Debug the Program 1-18

Step 8: Build a Release Version of the Project 1-19

Background Telemetry Channel (BTC) 1-19

BTC Definitions in Your Program 1-19

BTC Priority ... 1-20

Code Development Tools .. 1-22

Compiler ... 1-23

C++ Runtime Libraries .. 1-24

Assembler .. 1-25
VisualDSP++ 3.1 User’s Guide v
for Blackfin Processors

CONTENTS
Linker ... 1-26

Expert Linker .. 1-28

Expert Linker Window ... 1-29

Stack and Heap Usage ... 1-30

Archiver .. 1-32

Splitter ... 1-32

Loader .. 1-33

VCSE ... 1-35

VCSE Components ... 1-35

VCSE Component Model Specification 1-36

VCSE Component Model ... 1-36

VCSE Tools .. 1-37

Use of VCSE Components with VisualDSP++ 1-37

VCSE User Interface ... 1-38

Tool Chain Integration ... 1-38

Wizards .. 1-39

Component Manager .. 1-39

Structure of VCSE .. 1-40

Interface Definition Language (IDL) and Compiler 1-42

DSP Projects .. 1-45

What is a Project? ... 1-45

Project Options ... 1-46

Makefiles .. 1-47

Rules .. 1-48
vi VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

CONTENTS
Output Window ... 1-48

Example Makefile ... 1-49

Project Configurations ... 1-51

Customized Project Configurations .. 1-52

Project Build ... 1-52

Build Options ... 1-53

File Building ... 1-54

Post-Build Options .. 1-54

Command Syntax .. 1-55

Project Dependencies .. 1-55

Project Rules ... 1-56

VisualDSP++ Help System .. 1-57

Using the Help Window .. 1-57

Invoking Online Help ... 1-58

Viewing Context-Sensitive Help .. 1-59

Viewing Menu, Toolbar, or Window Help 1-60

Viewing Dialog Box Button or Field Help 1-60

Viewing Window Help .. 1-61

Using Help Window Navigation Buttons 1-61

Copying Example Code from Help .. 1-62

Printing Help .. 1-63

Bookmarking Frequently Used Help Topics 1-63

Placing a Bookmark at a Topic .. 1-64

Opening a Bookmarked Topic ... 1-64
VisualDSP++ 3.1 User’s Guide vii
for Blackfin Processors

CONTENTS
Navigating in Online Help .. 1-64

Using the Search Features .. 1-66

Help System Search Rules ... 1-66

Rules for Full-Text Searches .. 1-66

Rules for Advanced Searches ... 1-67

Full-Text Searches ... 1-67

Advanced Search Techniques ... 1-69

Using Wildcard Expressions .. 1-69

Using Boolean Operators .. 1-70

Using Nested Expressions .. 1-71

Viewing Online Manuals ... 1-71

Printing Online Documents .. 1-72

ENVIRONMENT

Parts of the User Interface ... 2-1

Title Bar ... 2-3

Additional Information in Title Bars 2-4

Title Bar Right-Click Menus ... 2-4

Control Menu ... 2-5

Program Icons .. 2-5

Editor Windows ... 2-5

Debugging Windows .. 2-6

Menu Bar ... 2-6

Command Information ... 2-7

Toolbars and User Tools .. 2-7
viii VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

CONTENTS
Built-In Toolbars .. 2-8

Toolbar Customization .. 2-9

Toolbars: Docked vs. Floating ... 2-9

Toolbar Button Appearance ... 2-10

Toolbar Shape ... 2-12

Toolbar Rules .. 2-12

User Tools .. 2-13

Status Bar .. 2-13

VisualDSP++ Windows ... 2-15

Project Window .. 2-15

Project Page .. 2-16

Project Nodes ... 2-17

Project Page Right-Click Menus .. 2-18

Project Folders .. 2-18

Project Files .. 2-19

File Associations .. 2-20

Automatic File Placement .. 2-21

File Placement Rules ... 2-21

Example .. 2-22

Kernel Page ... 2-22

Project Window Right-Click Menus 2-24

Project Window Menu .. 2-24

Project Icon Menu .. 2-25

Folder Icon Menu ... 2-26
VisualDSP++ 3.1 User’s Guide ix
for Blackfin Processors

CONTENTS
File Icon Menu ... 2-27

Editor Windows .. 2-28

Right-Click Menu .. 2-29

Editor Tab Mode .. 2-29

Output Window ... 2-31

Output Window Tabs ... 2-31

Build Page .. 2-32

Console Page .. 2-32

Output Window Error Messages 2-33

Error Message Severity Hierarchy 2-34

Syntax of Help for Error Messages 2-34

How to Promote, Demote, and Suppress Error Messages 2-36

Log File .. 2-40

Output Window Customization .. 2-41

Right-Click Menu .. 2-42

Window Operations ... 2-43

Window Manipulation .. 2-43

Right-Click Menu Options ... 2-43

Scroll Bars and Resize Pull-Tab .. 2-44

Windows: Docked vs. Floating .. 2-44

Example of a Docked Window .. 2-45

Examples of Floating Windows ... 2-46

Window Position Rules ... 2-47

Standard Windows Buttons ... 2-48
x VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

CONTENTS
Debugging Windows ... 2-49

Disassembly Windows ... 2-51

Other Disassembly Window Features 2-53

Right-Click Menu ... 2-53

Disassembly Window Symbols .. 2-54

Expressions Window .. 2-55

Locals Window .. 2-56

Statistical/Linear Profiling Results Window 2-57

Window Components ... 2-57

Left Pane .. 2-57

Right Pane .. 2-59

Status Bar ... 2-59

Right-Click Menu ... 2-59

Window Operations .. 2-61

Changing the Window View ... 2-61

Displaying a Source File .. 2-61

Working with Ranges .. 2-62

Switching Display Modes .. 2-62

Filtering PC Samples with No Debug Information 2-64

Call Stack Window .. 2-65

Memory Windows ... 2-65

Memory Number Formats ... 2-66

Right-Click Menu ... 2-68

Expression Tracking in a Memory Window 2-69
VisualDSP++ 3.1 User’s Guide xi
for Blackfin Processors

CONTENTS
Memory Map Windows .. 2-71

Register Windows ... 2-72

Stack Windows ... 2-75

Custom Register Windows .. 2-75

Pipeline Viewer Window ... 2-76

Right-Click Menu .. 2-77

Pipeline Instruction Event Details 2-78

Cache Viewer .. 2-79

Configuration Page ... 2-79

Detailed View Page ... 2-80

History Page ... 2-81

Performance Page ... 2-83

Histogram Page .. 2-84

VDK Status Window .. 2-85

VDK State History Window .. 2-87

Thread Status and Event Colors .. 2-88

Window Operations ... 2-89

Right-Click Menu .. 2-89

Target Load Window .. 2-90

About Debugging Windows .. 2-91

Editor Window Features ... 2-91

Syntax Coloring .. 2-91

Right-Click Menu .. 2-92

Editor Window Symbols ... 2-93
xii VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

CONTENTS
Bookmarks .. 2-93

Context-Sensitive Expression Evaluation 2-93

Viewing an Expression .. 2-94

Highlighting an Expression ... 2-94

Source Mode vs. Mixed Mode ... 2-94

Source Mode ... 2-94

Mixed Mode ... 2-95

Expressions in an Expressions Window 2-96

About Expressions ... 2-96

Number Formats ... 2-97

Plot Windows ... 2-100

Plot Window Features ... 2-101

Status Bar ... 2-101

Right-Click Menu ... 2-102

Plot Window Statistics .. 2-104

Plot Configuration .. 2-105

Plot Window Presentation ... 2-106

Plot Presentation Options ... 2-108

Image Viewer .. 2-109

Right-Click Menu ... 2-111

Image Configuration Dialog Box 2-112

Gamma Correction Dialog Box 2-113

Export Image Dialog Box .. 2-114
VisualDSP++ 3.1 User’s Guide xiii
for Blackfin Processors

CONTENTS
DEBUGGING

Debug Sessions ... 3-2

Debug Session Management .. 3-3

Simulation vs. Emulation .. 3-3

Breakpoints .. 3-3

Watchpoints ... 3-4

Code Analysis Tools .. 3-4

Statistical Profiling and Linear Profiling 3-4

Simulation ... 3-5

Emulation .. 3-5

DSP Memory Plots ... 3-6

Program Execution Operations ... 3-7

Selecting a New Debug Session at Startup 3-7

Loading the DSP Executable Program 3-8

Using Program Execution Commands 3-8

Restarting the Program .. 3-9

Performing a Restart during Simulation 3-9

Performing a Restart during Emulation 3-10

Using Breakpoints ... 3-10

Using Unconditional and Conditional Breakpoints 3-11

Using Watchpoints .. 3-11

Simulation Tools .. 3-12

Interrupts ... 3-12

Input/Output Simulation (Data Streams) 3-12
xiv VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

CONTENTS
Image Viewer .. 3-13

Plots ... 3-14

Plot Types ... 3-14

Line Plots .. 3-15

X-Y Plots ... 3-16

Constellation Plots .. 3-17

Eye Diagrams .. 3-18

Waterfall Plots ... 3-19

Spectrogram Plots .. 3-21

Flash Programmer ... 3-22

Flash Devices .. 3-22

Flash Programmer Functions .. 3-22

Flash Driver .. 3-23

Flash Programmer Window .. 3-23

REFERENCE INFORMATION

Glossary ... A-2

File Types .. A-21

Keyboard Shortcuts .. A-23

Working with Files ... A-23

Moving within a File .. A-24

Cutting, Copying, Pasting, Moving Text A-25

Selecting Text within a File ... A-25

Working with Bookmarks in an Editor Window A-26

Building Projects .. A-27
VisualDSP++ 3.1 User’s Guide xv
for Blackfin Processors

CONTENTS
Using Keyboard Shortcuts for Program Execution A-27

Working with Breakpoints ... A-28

Obtaining Online Help ... A-28

Miscellaneous ... A-28

IDDE Command Line Parameters .. A-29

Extensive Scripting ... A-30

Toolbar Buttons .. A-33

Text Operations .. A-37

Regular Expressions vs. Normal Searches A-37

Specific Special Characters .. A-38

Special Rules for Sequences ... A-39

Repetition and Combination Characters A-40

Match Rules ... A-40

Tagged Expressions in Replace Operations A-41

Comment Start and Stop Strings ... A-42

SIMULATION OF BLACKFIN PROCESSORS

General-Purpose I/O (GPIO) or Flag I/O (FIO)Peripheral B-2

Serial Peripheral Interface (SPI) Peripheral B-2

Overview of SPI in the Simulator .. B-2

Global Status and Control ... B-3

SPI Signal Usage ... B-3

SPI with Streams ... B-3

Serial Port (SPORT) Peripheral ... B-4

Universal Asynchronous Receiver/Transmitter (UART) Peripheral .. B-5
xvi VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

CONTENTS
Timer (TMR)Peripheral ... B-5

WDTH_CAP Mode ... B-5

External Clock Mode .. B-6

Command Line Arguments .. B-6

Exception Handling ... B-7

Simulator Instruction Timing Analysis Overview B-9

Functional Simulator .. B-10

Post-Pass Instruction Timer .. B-10

About Delay in the Pipeline Viewer Window B-11

Pipeline Stages .. B-16

Pipeline Viewer Window Messages .. B-16

Stalls Detected Messages ... B-17

Kills Detected Messages .. B-21

Multicycle Instruction Messages B-21

Pipeline Viewer Window Event Icons B-23

Pipeline Viewer Known Limitations B-24

Abbreviations in Pipeline Viewer Messages B-25

Compiled Simulation ... B-26

Program Preparation Starting from Source Files B-27

Specifying a Session for Compiled Simulation B-28

Specifying Project Options for Compiled Simulation B-28

Program Preparation Starting from an Existing .DXE File B-30

Execution of an .Exe File from the Command Line B-31
VisualDSP++ 3.1 User’s Guide xvii
for Blackfin Processors

CONTENTS
TCL SCRIPTING

Overview of Tcl Scripting ... C-1

Analog Devices Tcl Commands ... C-1

Additional Tcl Resources ... C-2

Tcl Output ... C-2

Tcl Command Issuance .. C-3

Issuing Commands from the Output Window C-3

Issuing Commands from the File Menu C-4

Issuing Commands from an Editor Window C-4

Issuing Commands from a User Tool C-5

Examples of Tcl Scripts .. C-5

Step and Print Example ... C-5

Creating the Tcl Script ... C-5

Running the New Tcl Script ... C-6

Regression Test Example ... C-7

Types of Tcl Commands ... C-14

GUI Manipulation Commands ... C-14

Target Query and Manipulation Commands C-15

Project Build and Maintenance Commands C-17

Tcl Command Reference .. C-18

dspaddmenuitem .. C-19

dspaddstream ... C-21

dspcancelbreak ... C-23

dspcheckmenuitem ... C-24
xviii VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

CONTENTS
dspclickmenuitem .. C-25

dspdeleteallstream .. C-26

dspdeletemenuitem .. C-27

dspdeletestream .. C-28

dspenablemenuitem ... C-29

dspeval .. C-30

dspgetbreak .. C-32

dspgetmemblock .. C-34

dspgetmeminfo .. C-36

dspgetprocessors ... C-37

dspgetstate ... C-38

dspgetswstack .. C-39

dsphalt .. C-40

dspliststream .. C-41

dspload .. C-42

dsplookupline .. C-43

dsplookupsymbol ... C-44

dspmemorywin .. C-45

dspplotrotate .. C-47

dspplotwin ... C-48

dspprojectaddfile .. C-52

dspprojectaddfolder .. C-53

dspprojectbuild .. C-54

dspprojectclose ... C-55
VisualDSP++ 3.1 User’s Guide xix
for Blackfin Processors

CONTENTS
dspprojectinfo .. C-56

dspprojectload .. C-57

dspprojectremovefile ... C-58

dspprojectremovefolder ... C-59

dspregisterwin .. C-60

dspreset .. C-61

dsprestart ... C-62

dsprun ... C-63

dspset ... C-64

dspsetbreak ... C-65

dspsetmemblock ... C-67

dspsetswstack .. C-69

dspstepasm ... C-70

dspstepin .. C-71

dspstepout .. C-72

dspstepover ... C-73

dspwaitforhalt .. C-74

INDEX
xx VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

PREFACE

Thank you for purchasing VisualDSP++™, the development software for

Analog Devices processors.

Purpose of This Manual

The VisualDSP++ 3.1 User’s Guide for Blackfin Processors describes the fea-
tures, components, and functions of VisualDSP++. Use this guide as a
reference for developing programs for Blackfin® processors.

The User’s Guide does not include detailed procedures for building and
debugging projects. For how-to information, refer to the VisualDSP++
on-line Help and the VisualDSP++ 3.1 Getting Started Guide for Blackfin
Processors.

Intended Audience

This manual is primarily intended for digital signal processing (DSP) pro-
grammers who are familiar with Analog Devices processors, but are
unfamiliar with the VisualDSP++ environment. This manual assumes that
the audience has a working knowledge of the appropriate DSP architec-
ture and instruction set.

Programmers who are unfamiliar with Analog Devices processors can use
this manual, but they should supplement it with other texts (such as the
Hardware Reference and Instruction Set Reference manuals that describe
their target’s architecture and instruction set).
VisualDSP++ 3.1 User’s Guide xxi
for Blackfin Processors

Manual Contents
Manual Contents

This manual consists of:

• Chapter 1, “Introduction”

Describes VisualDSP++ features, new Release 3.1 features, project
development, code development tools, VCSE, and DSP projects

• Chapter 2, “Environment”

Describes the VisualDSP++ user interface, windows, environment
customization, window operations, and the debugging windows

• Chapter 3, “Debugging”

Describes debug sessions, code analysis tools, program execution
operations, simulation tools, Image Viewer, and plots

• Appendix A, “Reference Information”

Provides a glossary and information about file types, keyboard
shortcuts, command line parameters, scripting, toolbar buttons,
and text operations

• Appendix B, “Simulation of Blackfin Processors”

Provides information about using Blackfin peripherals to simulate
General Purpose I/O, Serial Peripheral Interface, Serial Port,
UART Port, and Timer; also describes command line arguments,
exception handling, simulator instruction timing analysis, and
compiled simulation

• Appendix C, “Tcl Scripting”

Describes the Tool Command Language (Tcl) and command syn-
tax, and shows examples of Tcl scripting used to test DSP systems
xxii VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Preface
What’s New in This Manual

The VisualDSP++ 3.1 User’s Guide for Blackfin Processors supports all
Blackfin processors, including the new ADSP-BF531, ADSP-BF533,
ADSP-DM102, and AD6532 processors. This edition also documents the
new compiled simulation feature, the new splitter, and the new support
for handling global uninitialized data.

Technical or Customer Support

You can reach DSP Tools Support in the following ways.

• Visit the DSP Development Tools Web site at

www.analog.com/technology/dsp/developmentTools/index.html

• Email questions to dsptools.support@analog.com

• Phone questions to 1-800-ANALOGD

• Contact your ADI local sales office or authorized distributor

• Send questions by mail to

Analog Devices, Inc.

DSP Division

One Technology Way

P.O. Box 9106

Norwood, MA 02062-9106

USA
VisualDSP++ 3.1 User’s Guide xxiii
for Blackfin Processors

Supported Processors
Supported Processors

The name “Blackfin” refers to the family of Analog Devices 16-bit,
fixed-point digital signal processors. VisualDSP++ currently supports the
following Blackfin processors.

• ADSP-BF531 processor

• ADSP-BF532 processor (formerly ADSP-21532)

• ADSP-BF533 processor

• ADSP-BF535 processor (formerly ADSP-21535)

• ADSP-DM102 processor

• AD6532 processor

Product Information

You can obtain product information from the Analog Devices Web site,
from the product CD-ROM, or from the printed publications (manuals).

Analog Devices is online at www.analog.com. Our Web site provides infor-
mation about a broad range of products—analog integrated circuits,
amplifiers, converters, and digital signal processors.

MyAnalog.com

MyAnalog.com is a free feature of the Analog Devices Web site that allows
customization of a webpage to display only the latest information on
products you are interested in. You can also choose to receive weekly email
notification containing updates to the webpages that meet your interests.
MyAnalog.com provides access to books, application notes, data sheets,
code examples, and more.
xxiv VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Preface
Registration:

Visit www.myanalog.com to sign up. Click Register to use MyAnalog.com.
Registration takes about five minutes and serves as means for you to select
the information you want to receive.

If you are already a registered user, just log on. Your user name is your
email address.

DSP Product Information

For information on digital signal processors, visit our Web site at
www.analog.com/dsp, which provides access to technical publications, data
sheets, application notes, product overviews, and product announcements.

You may also obtain additional information about Analog Devices and its
products in any of the following ways.

• Email questions or requests for information to
dsp.support@analog.com

• Fax questions or requests for information to
1-781-461-3010 (North America)
+49 (0) 089 76 903 157 (Europe)

• Access the Digital Signal Processing Division’s FTP Web site at
ftp ftp.analog.com or ftp 137.71.23.21
ftp://ftp.analog.com

Related Documents

For information on product related development software, see the follow-
ing publications.

VisualDSP++ 3.1 Getting Started Guide for Blackfin Processors

VisualDSP++ 3.1 C/C++ Compiler and Library Manual for Blackfin Processors
VisualDSP++ 3.1 User’s Guide xxv
for Blackfin Processors

Product Information
For hardware information, refer to your processor’s Hardware Reference,
Programming Reference, and data sheet.

All documentation is available online. Most documentation is available in
printed form.

Online Documentation

Online documentation comprises Microsoft HTML Help (.CHM), Adobe
Portable Documentation Format (.PDF), and HTML (.HTM and .HTML)
files. A description of each file type is as follows.

VisualDSP++ 3.1 C/C++ Assembler and Preprocessor Manual for Blackfin Processors

VisualDSP++ 3.1 Linker and Utilities Manual for Blackfin Processors

VisualDSP++ 3.1 Product Bulletin

VisualDSP++ Kernel (VDK) User’s Guide

VisualDSP++ Component Software Engineering User’s Guide

Quick Installation Reference Card

File Description

.CHM VisualDSP++ online Help system files and VisualDSP++ manuals are provided in
Microsoft HTML Help format. Installing VisualDSP++ automatically copies these
files to the VisualDSP\Help folder. Online Help is ideal for searching the entire
tools manual set. Invoke Help from the VisualDSP++ Help menu or via the
Windows Start button.

.PDF Manuals and data sheets in Portable Documentation Format are located in the
installation CD’s Docs folder. Viewing and printing a .PDF file requires a PDF
reader, such as Adobe Acrobat Reader (4.0 or higher). Running setup.exe on the
installation CD provides easy access to these documents. You can also copy .PDF
files from the installation CD onto another disk.

.HTM
 or
.HTML

Dinkum Abridged C++ library and FlexLM network license manager software
documentation is located on the installation CD in the Docs\Reference folder.
Viewing or printing these files requires a browser, such as Internet Explorer 4.0 (or
higher). You can copy these files from the installation CD onto another disk.
xxvi VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Preface
Access the online documentation from the VisualDSP++ environment,
Windows Explorer, or Analog Devices Web site.

From VisualDSP++

VisualDSP++ provides access to online Help. It does not provide access to
.PDF files or the supplemental reference documentation (Dinkum
Abridged C++ library and FlexLM network licence). Access Help by:

• Choosing Contents, Search, or Index from the VisualDSP++ Help
menu

• Invoking context-sensitive Help on a user interface item
(toolbar button, menu command, or window)

From Windows

In addition to shortcuts you may construct, Windows provides many ways
to open VisualDSP++ online Help or the supplementary documentation.

Help system files (.CHM) are located in the VisualDSP\Help folder.
Manuals and data sheets in PDF format are located in the Docs folder of
the installation CD. The installation CD also contains the Dinkum
Abridged C++ library and FlexLM network license manager software doc-
umentation in the \Reference folder.

To use Windows Explorer:

• Double-click any file that is part of the VisualDSP++ documenta-
tion set.

• Double-click vdsp-help.chm, the master Help system, to access all
the other .CHM files.
VisualDSP++ 3.1 User’s Guide xxvii
for Blackfin Processors

Product Information
From the Web

To download the tools manuals, point your browser at
www.analog.com/technology/dsp/developmentTools/gen_purpose.html.

Select a DSP family and book title. Download archive (.ZIP) files, one for
each manual. Use any archive management software, such as WinZip, to
decompress downloaded files.

Printed Manuals

For general questions regarding literature ordering, call the Literature
Center at 1-800-ANALOGD (1-800-262-5643) and follow the prompts.

VisualDSP++ Documentation Set

Printed copies of VisualDSP++ manuals may be purchased through
Analog Devices Customer Service at 1-781-329-4700; ask for a Customer
Service representative. The manuals can be purchased only as a kit. For
additional information, call 1-603-883-2430.

If you do not have an account with Analog Devices, you will be referred to
Analog Devices distributors. To get information on our distributors, log
onto http://www.analog.com/salesdir/continent.asp.

Hardware Manuals

Printed copies of hardware manuals can be ordered through the Literature
Center or downloaded from the Analog Devices Web site. The phone
number is 1-800-ANALOGD (1-800-262-5643). The manuals can be
ordered by title or by product number (located on the back cover of each
manual).
xxviii VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Preface
Data Sheets

All data sheets can be downloaded from the Analog Devices Web site. As a
general rule, printed copies of data sheets with a letter suffix (L, M, N, S)
can be obtained from the Literature Center at 1-800-ANALOGD
(1-800-262-5643) or downloaded from the Web site. Data sheets without
the suffix can be downloaded from the Web site only—no hard copies are
available. You can ask for the data sheet by part name or by product
number.

If you want to have a data sheet faxed to you, the phone number for that
service is 1-800-446-6212. Follow the prompts and a list of data sheet
code numbers will be faxed to you. Call the Literature Center first to find
out if requested data sheets are available.

How to Contact DSP Publications

Please send your comments and recommendation on how to improve our
manuals and online Help. You can contact us by:

• E-mailing dsp.techpubs@analog.com

• Filling in and returning the attached Reader’s Comments Card
found in our manuals
VisualDSP++ 3.1 User’s Guide xxix
for Blackfin Processors

Notation Conventions
Notation Conventions

The following table identifies and describes text conventions used in this
manual.

Additional conventions, which apply only to specific chapters, may
appear throughout this document.

Code has been formatted to fit this manual’s page width.

Example Description

Close command
(File menu) or OK

Text in bold style indicates the location of an item within the
VisualDSP++ environment’s menu system and user interface items.

{this | that} Alternative required items in syntax descriptions appear within curly
brackets separated by vertical bars; read the example as this or that.

[this | that] Optional items in syntax descriptions appear within brackets and sepa-
rated by vertical bars; read the example as an optional this or that.

[this,…] Optional item lists in syntax descriptions appear within brackets
delimited by commas and terminated with an ellipsis; read the example
as an optional comma-separated list of this.

.SECTION Commands, directives, keywords, code examples, and feature names
are in text with letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

Note: A note providing information of special interest or identifying a
related topic. In the online version of this book, the word Note appears
instead of this symbol.

Caution: A caution providing information about critical design or programming
issues that influence operation of a product. In the online version of
this book, the word Caution appears instead of this symbol.
xxx VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

1 INTRODUCTION TO
VISUALDSP++

This chapter describes VisualDSP++, a flexible management system that

provides a suite of tools for developing DSP applications and for DSP
projects.

VisualDSP++ includes:

• Integrated Development and Debugging Environment (IDDE)
with VisualDSP++ Kernel (VDK) integration

• C/C++ optimizing compiler with runtime library

• Assembler and linker

• Simulator software and example programs

This chapter contains the following topics.

• “VisualDSP++ Features” on page 1-2

• “Project Development” on page 1-9

• “Code Development Tools” on page 1-22

• “VCSE” on page 1-35

• “DSP Projects” on page 1-45

• “VisualDSP++ Help System” on page 1-57
VisualDSP++ 3.1 User’s Guide 1-1
for Blackfin Processors

VisualDSP++ Features
VisualDSP++ Features

VisualDSP++ includes all the tools you need to build and manage your
DSP projects.

Integrated Development and Debugging
Environment

The VisualDSP++ single, integrated project management and debugging
environment provides complete graphical control of the edit, build, and
debug process. In this integrated environment, you can move easily
between editing, building, and debugging activities.

Code Development Tools

Depending on the DSP development tools that you purchased,
VisualDSP++ includes one or more of the following components.

• C/C++ compiler with runtime library

• Assembler, linker, preprocessor, and archiver

• Splitter and loader

• Simulator

• Emulator (must be purchased separately from VisualDSP++)

VisualDSP++ supports ELF/DWARF-2 (Executable Linkable Format)
executable files. VisualDSP++ supports all executable file formats pro-
duced by the linker.

If your system is configured with third-party development tools,
you can select the compiler, assembler, or linker to use for a partic-
ular target build.
1-2 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Introduction to VisualDSP++
Source File Editing Features

VisualDSP++ simplifies tasks involving source files. You can easily per-
form all the activities necessary to create, view, print, move within, and
locate information.

• Edit text files. Create and modify source files and view listing or
map files generated by the DSP code development tools.

Source files are the C/C++ language or assembly language files that
make up your project.

DSP projects can include additional files such as data files and a
Linker Description File (.LDF), which contains command input for
the linker. For more information about .LDF files, see “Linker” on
page 1-26.

• Editor windows. Open multiple editor windows to view and edit
related files, or open multiple editor windows for a single file. The
VisualDSP++ editor is an integrated code-writing tool that enables
you to focus on code development.

• Specify syntax coloring. Configure options that specify the color of
text objects viewed in an editor window.

This feature enhances the view and helps you to locate portions of
the text, because keywords, quotes, and comments appear in dis-
tinct colors.

• Context-sensitive expression evaluation. Move the mouse pointer
over a variable that is in the scope and view the variable’s value.

• Status icons. View icons that indicate breakpoints, bookmarks, and
the current PC position.
VisualDSP++ 3.1 User’s Guide 1-3
for Blackfin Processors

VisualDSP++ Features
• Editor display format. Specify an editor window’s display format:
source mode or mixed mode.

• View offending code. Double-click on an error from the Output
window’s Build page to jump to the offending code in an editor
window.

Project Management Features

VisualDSP++ provides flexible project management for the development
of DSP applications, including access to all the activities necessary to cre-
ate, define, and build DSP projects.

• Define and manage projects. Identify files that the code develop-
ment tools process to build your project. Create this project
definition once, or modify it to meet changing development needs.

• Access and manage code development tools. Configure options to
specify how the DSP code development tools process inputs and
generate outputs.

Tool settings correspond to command line switches for code devel-
opment tools. Define these options once, or modify them to meet
your needs.

• View and respond to project build results. View project status
while a build progresses and, if necessary, halt the build.

Double-click on an error message in the Output window to view
the source file causing the error, or iterate through the error
messages.

• Manage source files. Manage source files and track file dependen-
cies in your project from the Project window to provide a display
of software file relationships. VisualDSP++ uses code development
tools to process your project and to produce a DSP program.
1-4 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Introduction to VisualDSP++
Debugging Features

While debugging your project, you can:

• View and debug mixed C/C++ and assembly code. View C/C++
source code interspersed with assembly code. Line number and
symbol information help you to source-level debug assembly files.

• Run Tcl command line scripts. Use Tcl and its ADI extensions to
customize key debugging features. VisualDSP++ supports Tool
Command Language (Tcl) version 8.3.

• Use memory expressions. Use expressions that refer to memory.

• Use breakpoints to view registers and memory. Quickly add and
remove, and enable and disable breakpoints.

• Set simulated watchpoints. Set watchpoints on stacks, registers,
memory, or symbols to halt program execution.

• Statistically profile the target processor’s PC (JTAG emulator
debug targets only). Take random samples and display them graph-
ically to see where the program uses most of its time.

• Linearly profile the target processor’s PC (Simulation only). Sam-
ple every executed PC and provide an accurate and complete
graphical display of what was executed in your program.

• Generate interrupts using streaming I/O. Set up serial port
(SPORT) or memory-mapped I/O.

• Create customized register windows. Configure a custom register
window to display a specified set of registers.

• Plot values from DSP memory. Choose from multiple plot styles,
data processing options, and presentation options.
VisualDSP++ 3.1 User’s Guide 1-5
for Blackfin Processors

VisualDSP++ Features
• View pipeline depth of assembly instructions. Display the pipeline
stage by querying the target processor or processors through the
pipeline interface.

For details, see the VisualDSP++ 3.1 Getting Started Guide for Blackfin
Processors.

VDK Features

The VisualDSP++ Kernel (VDK) is a scalable software executive specially
developed for effective operations on Analog Devices Blackfin processors.
Although the kernel is tightly integrated with VisualDSP++, you can also
use it via standard command line development tools.

The kernel enables you to abstract the details of the hardware implemen-
tation from the software design. As a result, you can concentrate on
processing algorithms.

The kernel provides all the basic building blocks required for application
development. Integration of the kernel is characterized as follows.

• Automatic. VisualDSP++ automatically generates source code
framework for each user-requested object in the user-specified
language.

• Deterministic. You can specify a function’s execution time.

• Multitasking. Kernel tasks (threads) are independent of one
another. Each thread has its own stack.

• Modular. The kernel comprises several components, including
message queues, a memory pool manager, semaphores, and device
flags.

• Portable. Most of the kernel components can be written in ANSI
Standard C or C++ and are portable to other Analog Devices
processors.
1-6 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Introduction to VisualDSP++
• Pre-emptive. The kernel’s priority-based scheduler enables the
highest priority thread not waiting for a signal to be run at any
time.

• Prototypical. The kernel and VisualDSP++ create an initial file set
based on a series of template files. The entire application is proto-
typed and ready to be tested.

• Reliable. Besides detecting as many errors as possible at build time,
the kernel supports multiple models for error handling.

• Scalable. If a project does not include a kernel feature, the support
code is not included in the target system.

VisualDSP++ 3.1 Features

VisualDSP++ 3.1 includes the following new features and enhancements.

• Compiled simulation. A traditional simulator decodes and inter-
prets one instruction at a time. Each executed instruction often
requires repeated decoding. Compiled simulation removes the
overhead of having to decode each instruction repeatedly.

Compiled simulation is process whereby the .DXE that may be
loaded into a traditional simulator is converted into an .EXE file
that will execute directly on the system hosting VisualDSP++. The
execution speed of a compiled simulation program is greater than
that of a standard .DXE program.

Compiled simulation employs a simulation compiler that prepro-
cesses instructions in the .DXE file and generates an intermediate
C++ source program. This program is compiled and linked with a
standard set of libraries to produce an .EXE file that effects the sim-
ulation of the original .DXE file.
VisualDSP++ 3.1 User’s Guide 1-7
for Blackfin Processors

VisualDSP++ Features
In the Project Options dialog box, a new tabbed page, Compiled
Simulation, lets you enable optimization and specify additional
options. For details about using compiled simulation, see “Com-
piled Simulation” on page B-26.

• New processor support. Release 3.1 supports these new Blackfin
processors: ADSP-BF531, ADSP-BF533, ADSP-DM102, and
AD6532.

• ROM Splitter. A ROM splitter is available from the Loader page
in the Project Options dialog box. Selecting ROM splitter options
from the Category pull-down menu lets you enable the splitter as
well as specify a Mask address and Additional options. For more
information about the splitter, see “Splitter” on page 1-32.

• New support for handling global uninitialized data. You can cre-
ate a smaller executable file (.DXE) by initializng the uninitialized
data section to zero at runtime.

A new check box, Global un-init data into bsz, was added to the
Compile page in the Project Options dialog box. Selecting this
option tells the compiler to capture all global uninitialized data
and put it in its own INPUT_SECTION. On the Link page a new
pull-down menu, Runtime initialization, lets you specify None
(do not perform runtime initialization) or bsz (perform runtime
initialization).

If you do not select bsz, the data is collected but is still in the .DXE
file. If you select bsz, the data is placed in a compressed format in
the .DXE file, and the original data is removed. At runtime the data
is expanded back in its original location.

For information about using the memory intializer tool with the
compiler and linker, see the VisualDSP++ 3.1 C/C++ Compiler and
Library Manual for Blackfin Processors and the VisualDSP++ 3.1
Linker and Utilities Manual for Blackfin Processors.
1-8 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Introduction to VisualDSP++
Project Development

During project development, VisualDSP++ helps you interactively observe
and alter the data in the processor and in memory.

DSP Project Development Stages

The typical project includes three phases: simulation, evaluation, and
emulation.

Simulation

You typically begin project development in a simulation environment
while hardware engineers are developing the new hardware (cell phone,
computer, and so on). Simulation mimics system memory and I/O, which
enables you to view portions of the target system hardware. You run Visu-
alDSP++ with a simulation target without a physical processor. You can
build, edit, and debug your DSP program.

Figure 1-1. Project Development Stages
VisualDSP++ 3.1 User’s Guide 1-9
for Blackfin Processors

Project Development
Evaluation

Use an EZ-KIT Lite™ evaluation system in your project’s early planning
stage to determine the DSP that best fits your needs. Your PC connects to
the EZ-KIT Lite board via cable, which enables you to monitor DSP
behavior.

Emulation

Once the hardware is ready, you move directly to a JTAG emulator that
connects your PC to the actual DSP board.

Simulation and Emulation

VisualDSP++ is the front end for all the available targets and platforms.
Use VisualDSP++ during both simulation and emulation.

A simulator is software that mimics the behavior of a DSP chip. Use simu-
lators to test and debug DSP code before a DSP chip is manufactured.

An emulator is hardware used to connect a PC to a DSP target board to
allow application software to be downloaded and debugged from within
the VisualDSP++. Emulator software performs the communications that
enable you to see how your DSP code affects DSP performance.

Targets

A target (or debug target) refers to the communication channel between
VisualDSP++ and a processor (or group of processors). A target can be a
simulator, EZ-KIT Lite evaluation board, or an emulator. Your system
may include multiple targets.

For example, the Blackfin JTAG emulator communicates with one or
more physical devices over the host PC’s PCI bus, and the Blackfin
Apex-ICE™ emulator communicates with a device via the PC’s USB port.
1-10 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Introduction to VisualDSP++
Simulation Targets

A simulation target, such as the ADSP-BF535 Family Simulator, is a pure
software module and does not require the presence of a processor for
debugging.

During simulation, VisualDSP++ reads an executable file (.DXE) and exe-
cutes it in software, similar to the way a processor executes a DSP image in
hardware. VisualDSP++ simulates the memory and I/O devices that you
specify in an .LDF file.

Compiled simulation is an optional process that converts a .DXE file into
an .EXE file, which executes directly on the system hosting VisualDSP++ to
increase speed. For details, see “Compiled Simulation” on page B-26.

EZ-KIT Lite Targets

An EZ-KIT Lite target is a development board that enables you to evaluate a
particular DSP. Analog Devices provides several EZ-KIT Lite evaluation sys-
tems, which include demonstration programs.

Emulation Targets

An emulation target is a module that controls a physical DSP connected to
a JTAG emulator system. For example, the Summit-ICE™ emulator
communicates with one or more physical devices through the host PC’s
PCI bus, and the Apex-ICE emulator communicates with a device
through the PC’s USB port.

Platforms

A platform refers to the configuration of processors with which a target
communicates. Several platforms may exist for a given debug target. For
example, if three emulators are installed on your system, you might select
emulator 2 as the platform that you want to use. The platform that you
use depends on your project development stage.
VisualDSP++ 3.1 User’s Guide 1-11
for Blackfin Processors

Project Development
Hardware Simulation

VisualDSP++ enables you to simulate a hardware environment when con-
nected to a simulation target. You can simulate the following.

• Random interrupts that can occur during program execution

• Data transfer through the processor’s I/O pins

• Processor booting from a PROM or host processor

Setting up VisualDSP++ to generate random interrupts during program
execution enables you to exercise interrupt service routines in your code.

Debugging Overview

Once you have successfully built your DSP project and have generated a
DSP executable file, you can debug the project. Projects developed in
VisualDSP++ are run as hardware and software debug sessions.

In the following table, the check mark indicates the various debug-
ging tools that you can use while building and debugging your DSP
program.

Table 1-1. Development Stages and Supported Platforms

Stage Platform

Simulation Typically one or more DSPs of the same type. By default,
the platform name is the identical DSP simulator.

Evaluation An EZ-KIT Lite evaluation system

Emulation Any combination of devices. You must configure the plat-
form for a particular target with the JTAG ICE Configura-
tor. When the debug target is a JTAG emulator, a platform
refers to a JTAG chain.
1-12 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Introduction to VisualDSP++
You can attach to and control the operation of any Analog Devices DSP or
DSP simulator. Download your application code to the processor and use
VisualDSP++’s debugging facilities to ensure that your application func-
tions as desired.

VisualDSP++ is your window into the inner workings of the target proces-
sor or simulator. From this user interface, you can:

• Run, step, and halt the program and set breakpoints and
watchpoints

• View the state of the processor’s memory, registers, and stacks

• Perform a cycle-accurate statistical profile or linear profile

Table 1-2. Tools Used for Simulation and Emulation

Tool Simulation Evaluation Emulation

Linear profiles

Interrupts

Streams

Watchpoints

Pipelining

Breakpoints

Plotting

Statistical profiles

Hardware breakpoints
VisualDSP++ 3.1 User’s Guide 1-13
for Blackfin Processors

Project Development
VisualDSP++ Kernel

A Blackfin project can optionally include the VisualDSP++ Kernel
(VDK), which is a software executive between DSP algorithms, peripher-
als, and control logic.

The Project window’s Kernel tab accesses a tree control for structuring
and scaling application development. From this tree control, you can add,
modify, and delete Kernel elements such as thread types, boot threads,
round-robin priorities, semaphores, events, event bits, interrupts, and
device drivers.

Two VDK-specific windows, VDK State History and Target Load, pro-
vide views of VDK information.

Another VDK window, VDK Status, provides thread status data when a
VDK-enabled program is halted.

Refer to the VisualDSP++ Kernel (VDK) User’s Guide for complete details.

Program Development Steps

In the VisualDSP++ environment, program development consists of the
following steps.

1. Create a project

2. Configure project options

3. Add and edit project source files

4. Define project build options

5. Build a debug version (executable file) of the project

6. Create a debug session and load the executable
1-14 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Introduction to VisualDSP++
7. Run and debug the program

8. Build a release version of the project

By following these steps, you can build DSP projects consistently and
accurately with minimal project management. This process reduces devel-
opment time and lets you concentrate on code development.

These steps, described below, are covered in detail in the online Help and
in the “Tutorial” chapter of the VisualDSP++ 3.1 Getting Started Guide for
Blackfin Processors.

Step 1: Create a Project

All development in VisualDSP++ occurs within a project. The project file
(.DPJ) stores your program’s build information: source files list and devel-
opment tools option settings.

Step 2: Configure Project Options

Define the target processor and set up your project options (or accept
default settings) before adding files to the project. The Project Options
dialog box provides access to project options, which enable the corre-
sponding build tools to process the project’s files correctly.

Step 3: Add and Edit Project Source Files

A project normally contains one or more C, C++, or assembly language
source files. After you create a project and define its target processor, you
add new or existing files to the project by importing or writing them. Use
the VisualDSP++ Editor to create new files or edit any existing text file.

Adding Files to Your Project

You can add any type of file to the project. The DSP development tools
selectively process only recognized file types when building the project.
VisualDSP++ 3.1 User’s Guide 1-15
for Blackfin Processors

Project Development
Creating Files to Add to Your Project

You can create new text files. The Editor can read or write text files with
arbitrary names. When you add files to your project, VisualDSP++
updates the project’s file tree in the Project window.

Editing Files

You can edit the file(s) that you add to the project. To open a file for edit-
ing, double-click on the file icon in the Project window.

The editor has a standard Windows-style user interface and can handle
normal editing operations and multiple open windows. Additional fea-
tures include customizable language- and DSP-specific syntax coloring,
and bookmark capabilities (creation and search).

Managing Project Dependencies

Project dependencies control how source files use information in other
files, and consequently determine the build order. VisualDSP++ maintains
a makefile, which stores dependency information for each file in the
project. VisualDSP++ updates dependency information when you change
the project’s build options, when you add a file to the project, or when
you choose Update Dependencies from the Project menu.

Step 4: Define Project Build Options

After you create a project, set the target processor, and add or edit the
project’s source files, you configure your project’s build options. You must
specify options or accept the default options in VisualDSP++ before using
the development tools that create your executable file. You can specify
options for a whole project or for individual files, or you can specify a cus-
tom build.

VisualDSP++ retains your changes to the build options. Settings
reflect your last changes, not necessarily the original defaults.
1-16 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Introduction to VisualDSP++
Configuration

A project’s configuration setting controls its build. By default, the choices
are Debug or Release.

• Selecting Debug and leaving all other options at their default set-
tings builds a project that can be debugged. The compiler generates
debug information.

• Selecting Release and leaving all other options at their default set-
tings builds a project with limited or no debug capabilities. Release
builds are usually optimized for performance. Your test suite
should verify that the Release build operates correctly without
introducing significant bugs.

You can modify VisualDSP++’s default operation for either configuration
by changing the appropriate entries in the compile, assemble, and link
property pages. You can create custom configurations that include the
build options and source files that you want.

Project-Wide File and Tool Options

Next, you must decide whether to use project-wide option settings or to
use individual file settings.

For projects built entirely within VisualDSP++ with no pre-existing object
or archive (library) files, you typically use project-wide options. New files
added to the project inherit these settings.

Individual File and Tool Options

Occasionally, you may want to specify tool settings for individual files.
VisualDSP++ 3.1 User’s Guide 1-17
for Blackfin Processors

Project Development
Each file is associated with two property pages: a General page, which lets
you choose output directories for intermediate and output files, and a
tool-specific property page (Compile, Assemble, Link, and so on), which
lets you choose options. For information about each tool’s options, see the
online Help or the manual for each tool.

Step 5: Build a Debug Version of the Project

Now you must build a debug version of the project.

Status messages from each code development tool appear in the Output
window as the build progresses.

The output file type must be an executable (.DXE) file to produce
debugger-compatible output.

Step 6: Create a Debug Session and Load the Executable

After you successfully build an executable file, you set up a debug session.
You run DSP projects that you develop as either hardware or software ses-
sions. After you specify target and processor information, you must load
your project’s executable file. On the General page in the Preferences dia-
log box, you can configure VisualDSP++ to load the file automatically and
advance to the main function of your code.

Step 7: Run and Debug the Program

After you successfully create a debug session and build and load your exe-
cutable program, you run and debug the program.

If the project is not current (has outdated source files or dependency
information), VisualDSP++ prompts you to build the project before load-
ing and debugging the executable file.
1-18 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Introduction to VisualDSP++
Step 8: Build a Release Version of the Project

After you finish debugging your application, you build a Release version
of your project to run on the product’s DSP.

Background Telemetry Channel (BTC)

Background telemetry channel (BTC) provides a mechanism through which
VisualDSP++ and a DSP can exchange data via the JTAG interface while the
DSP is executing. Before BTC, all communication between VisualDSP++ and
a DSP took place when the DSP was in a halted state.

BTC Definitions in Your Program

Background telemetry channels (BTCs) are defined on a per program (.DXE)
basis. The channels are defined when you load a specific program onto a DSP.
You define channels in your program by using simple macros.

The following example code shows channel definitions.

#include "btc.h"

.section data_a;

BTC_MAP_BEGIN_ASM

BTC_MAP_ENTRY_ASM (0, 'Channel0', 0xf0001000, 0x00100)

BTC_MAP_ENTRY_ASM (1, 'Channel1', 0xf0002000, 0x01000)

BTC_MAP_ENTRY_ASM (2, 'Channel2', 0xf0003000, 0x10000)

BTC_MAP_END_ASM (3)

The first step in defining channels in a program is to include the BTC macros
by using the #include btc.h statement. Then each channel is defined with
the macros. The definitions begin using BTC_MAP_BEGIN_ASM, which marks
the beginning of the BTC map. Next, each individual channel is defined with
the BTC_MAP_ENTRY_ASM macro, which takes the four parameters described in
Table 1-3 on page 1-20.
VisualDSP++ 3.1 User’s Guide 1-19
for Blackfin Processors

Project Development
Once the channels are defined, end the BTC map with the BTC_MAP_END_ASM
macro, which takes a single parameter. This macro indicates the total number
of channels being defined. After you add the channel definitions, you must
initialize the BTC during the applications startup code by calling the
_INIT_BTC function. After initialization, BTC commands from the host are
processed via the POLL_BTC function.

BTC Priority

You can call the _POLL_BTC function from a polling loop, the handler of an
interrupt, a thread, and so on. Because you decide when to call the _POLL_BTC
function, you can effectively change the priority of the BTC, as described in
Table 1-4.

Table 1-3. Parameters for the BTC_MAP_ENTRY_ASM Macro

Parameter Description

Channel ID Zero-based index for each channel

Name Name of the channel (32 characters max)

Starting address Starting address of the channel in memory

Length Length of the channel in bytes

Table 1-4. Changing BTC Priority

Placing the BTC Call Description

In the handler of a high-priority
interrupt

The BTC effectively becomes high priority.

In a low-priority interrupt han-
dler

The BTC effectively makes the BTC low priority.

In a polling loop It is difficult to predict the priority without
knowing the impact interrupts have on the over-
all system.
1-20 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Introduction to VisualDSP++
The priority of the BTC can impact the response time from when the host
requests data and the DSP responds. Once the DSP begins to service the
request, interrupts can still be serviced by the DSP. BTC performance is
affected by the frequency of system interrupts.

The following example shows a simple polling loop.

[--sp] = rets;

call _INIT_BTC;

rets = [sp++];

pollingLoop:

nop;

[--sp] = rets;

call _POLL_BTC;

rets = [sp++];

nop;

jump pollingLoop;

After adding the calls to the initialization and polling functions, you must link
with the BTC library (btc_lib.dlb), which contains the initialization and
polling functions and other functions that permit data transfer over the BTC.
VisualDSP++ 3.1 User’s Guide 1-21
for Blackfin Processors

Code Development Tools
Code Development Tools

This section describes the following DSP development tools.

• C/C++ compiler with runtime libraries

• Assembler and preprocessor

• Linker

• Expert Linker

• Archiver

• Splitter

• Loader

Available code development tools differ, depending on your processor.
The options available on the tab pages of the Project Options dialog box
enable you to specify tool preference.

VisualDSP++ supports ELF/DWARF-2 (Executable Linkable Format,
Debugging Information Format) executable files. VisualDSP++ supports
all executable file formats produced by the linker.

If your system is configured with third-party development tools, you can
select the compiler, assembler, or linker to use for a particular target build.
1-22 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Introduction to VisualDSP++
Compiler

The compiler processes C/C++ programs into assembly code. The term
compiler refers to the compiler utility shipped with the VisualDSP++
software.

The compiler generates a linkable object file by compiling one or more
C/C++ source files. The compiler’s primary output is a linkable object file
with a .DOJ extension.

You specify the compilation options that you need for your build. Visu-
alDSP++ groups compiler options into the categories described in
Table 1-5.

You access each category of options from the Compile page of the Project
Options dialog box.

Compilation options depend on your target DSP and your code
development tools.

For more information, refer to the VisualDSP++ 3.1 C/C++ Compiler and
Library Manual for Blackfin Processors.

Table 1-5. Groups of Compiler Options

Category Purpose

General Optimization, compilation, and termination options

Preprocessor Macro and directory search options

Warning Warning and error reporting options
VisualDSP++ 3.1 User’s Guide 1-23
for Blackfin Processors

Code Development Tools
C++ Runtime Libraries

You must run VisualDSP++ to use the C++ runtime libraries.

The C and C++ runtime libraries are collections of functions, macros, and
class templates that can be called from source programs. Many functions
are implemented in the DSP assembly language.

C and C++ programs depend on library functions to perform operations
that are basic to the C and C++ programming languages. These operations
include memory allocations, character and string conversions, and math
calculations. The libraries also include multiple signal processing func-
tions that ease DSP code development. Using the runtime library
simplifies software development by providing code for a variety of com-
mon needs.

The compiler provides a broad collection of C functions including those
required by the ANSI standard and additional Analog Devices-supplied
functions of value for DSP programming. In addition to the Standard C
Library, this release of the compiler software includes the Abridged
Library, a conforming subset of the Standard C++ Library.

For more information about the algorithms on which many of the C
library’s math functions are based, refer to the Cody and Waite text Soft-
ware Manual for the Elementary Functions from Prentice Hall (1980).

For more information about the C++ library portion of the ANSI/ ISO
Standard for C++, refer to the Plauger text Draft Standard C++ Library
from Prentice Hall (1994) (ISBN: 0131170031).
1-24 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Introduction to VisualDSP++
Assembler

The assembler generates an object file by assembling source, header, and
data files. The assembler’s primary output is an object file with a .DOJ
extension.

Assembler terms are defined as follows.

Instruction set

The set of assembly instructions that pertain to a specific DSP. For
information on the instruction set, refer to your processor’s Hard-
ware Reference

Preprocessor commands

Commands that direct the preprocessor to include files, perform
macro substitutions, and control conditional assembly

Assembler directives

Directives that tell the assembler how to process your source code
and set up DSP features. You use directives to structure your pro-
gram into logical segments or sections that support the use of a
Linker Description File (.LDF) to construct an image suited to the
target system.

For more information, refer to the VisualDSP++ 3.1 Assembler and Prepro-
cessor Manual for Blackfin Processors.
VisualDSP++ 3.1 User’s Guide 1-25
for Blackfin Processors

Code Development Tools
Linker

The linker links separately assembled files (object files and library files) to
produce executable files (.DXE), shared memory files (.SM), and overlay
files (.OVL), which can be loaded onto the target.

The linker’s primary output is an executable program file with a .DXE
extension. To make an executable file, the linker processes data from a
Linker Description File (.LDF) and one or more object files (.DOJ).

Linker terms are defined as follows.

Link against

Functionality that enables the linker to resolve symbols to which
multiple executables refer. For instance, shared memory executable
files (.SM) contain sections of code that other processor executables
(.DXE) link against. Through this process, a shared item is available
to multiple executables without being duplicated.

Link objects

Object files (.DOJ) that become linked and other items, such as exe-
cutables (.DXE, .SM, .OVL), that are linked against

.LDF file

File that contains the commands, macros, and expressions that
control how the linker arranges your program in memory

Memory

Definitions that provide the linker with a description of your target
DSP system
1-26 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Introduction to VisualDSP++
Overlays

Files that your overlay manager swaps in and out of runtime mem-
ory, depending on code operations. The linker produces overlay
files (.OVL).

Sections

Declarations that identify the content for each executable that the
linker produces

For more information, refer to the VisualDSP++ 3.1 Linker and Utilities
Manual for Blackfin Processors.

A Linker Description File (.LDF) describes the target system and maps
your program code with the system memory and processors.

The .LDF file creates an executable file by using:

• The target system memory map

• Defined segments in your source files

The parts of an .LDF file from the beginning to the end of the file, are
described as follows.

• Memory map – describes the processor’s physical memory, at the
beginning of the .LDF file

• SEARCH_DIR, $LIBRARIES, and $OBJECTS commands – define the
path names that the linker uses to search and resolve references in
the input files

• MEMORY command – defines the systems’ physical memory and
assigns labels to logical segments within it. These logical segments
define program, memory, and stack memory types.
VisualDSP++ 3.1 User’s Guide 1-27
for Blackfin Processors

Code Development Tools
• SECTIONS command – defines the placement of code in physical
memory by mapping the sections specified in program files to the
sections declared in the MEMORY command. The INPUT_SECTIONS
statement specifies the object file that the linker uses to resolve the
mapping.

For details, refer to the VisualDSP++ 3.1 Linker and Utilities Manual for
Blackfin Processors.

Expert Linker

Expert Linker is a graphical tool that enables you to:

• Define a DSP target’s memory map

• Place a project’s object sections into that memory map

• Determines how much stack or heap has been used after you run a
DSP program

Note: The Expert Linker works with the linker. For more information about
linking, refer to the VisualDSP++ 3.1 Linker and Utilities Manual for Black-
fin Processors.

This interactive tool speeds up the configuration of system memory. It uses
your application's target memory description, object files, and libraries to cre-
ate a memory map that you can manipulate to optimize your system’s use of
memory.

Expert Linker generates a new Linker Description File (.LDF) or modifies an
existing .LDF file. Use the Expert Linker wizard to create and customize a new
.LDF file.

When you open Expert Linker in a project that already includes a .LDF file,
Expert Linker parses the .LDF file and graphically displays the DSP target’s
memory map and the object mappings. The memory map appears in the
Expert Linker window (Figure 1-2 on page 1-29).
1-28 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Introduction to VisualDSP++
Expert Linker can graphically display space allocated to program heap and
stack. After you load and run your program, Expert Linker indicates the por-
tion of the heap and stack that has been used. You can then reduce the size of
the heap or stack to minimize the memory allocated for the heap and stack.
Freeing up memory in this way enables you to use it for storing other things
like DSP code or data.

Expert Linker Window

The Expert Linker window (Figure 1-2) enables you to modify the memory
map or the object mappings. When the project is about to be built, Expert
Linker saves the changes to the .LDF file.

The Expert Linker window contains two main panes:

• The Input Sections pane displays a tree structure of the input sections.

• The Memory Map pane displays each memory map in a tree or graph-
ical representation.

You can dock or float the Expert Linker window in the VisualDSP++ main
window.

Figure 1-2. Expert Linker Window
VisualDSP++ 3.1 User’s Guide 1-29
for Blackfin Processors

Code Development Tools
Stack and Heap Usage

Expert Linker enables you to adjust the size of the stack and heap, and make
better use of memory.

Expert Linker can:

• Locate stacks and heaps and fill them with a marker value

This operation occurs after you load the program into a DSP target.
The stacks and heaps are located by their memory segment names,
which may vary across processor families.

• Search the heap and stack for the highest memory locations written to
by the DSP program

This operation occurs when the target halts after you run the program.
Assume that these values are the start of the unused portion of the
stack or heap. The Expert Linker updates the memory map to show
how much of the stack and heap are unused.

Figure 1-3 on page 1-31 shows an example memory map after you run a
Blackfin program.
1-30 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Introduction to VisualDSP++
Figure 1-3. Memory Map Example After You Run a Blackfin Program
VisualDSP++ 3.1 User’s Guide 1-31
for Blackfin Processors

Code Development Tools
Archiver

The VisualDSP++ archiver, elfar.exe, combines object files (.DOJ) into
library files (.DLB), which serve as a reusable resource for project develop-
ment. The linker searches library files for routines (library members) that
are referred to by other objects and links them in your executable
program.

You can run the archiver from within VisualDSP++ or from the command
line. From VisualDSP++, you can create a library file as your project’s
output.

To modify or list the contents of a library file (or perform other operations
on it), you must run the archiver from a command line. Refer to your pro-
cessor’s Linker and Utilities Manual for details.

Splitter

The splitter builds boot-loadable files from DSP executables. After debugging
the .DXE file, you can process it through the splitter to create output used by
the actual processor. This bootloadable (.LDR) file may reside on another
processor (host) or may be burned into a PROM.

The splitter's primary output is a PROM file with these extensions:

• .S_#

• .H_#

• .STK

The splitter is typically used only for programs that execute from external
memory. For programs that execute from internal memory, use the loader,
which produces boot-loadable files.
1-32 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Introduction to VisualDSP++
Splitter terms are defined as follows.

Non-bootable PROM-image files

The splitter’s output, which consists of PROM files that cannot be
used to boot-load a system

Splitter

The splitter application, such as elfspl21k.exe, contained in the
software release

For more information about the splitter and options used to generate
loader files, refer to the VisualDSP++ 3.1 Linker and Utilities Manual for
Blackfin Processors.

Loader

The Blackfin loader (elfloader.exe) generates a boot-loadable file for
Blackfin processors by processing executable files. To generate a loadable
file, the loader processes data from a boot kernel file (.DXE), the linker’s
executable file (.DXE), and in some cases overlay files (.OVL). The
ADSP-BF532 processors use one on-chip ROM bootstrap kernel for
automatic booting from an external memory device. The ADSP-BF535
processors are supported by two booting kernels.

Once you have fully debugged your program, use the loader to generate a
set of boot-loadable files for your target system. The loader produces one
output file (.LDR) or two output files (boot kernel file .LDR and appli-
cation code file .KLN), depending on your loader setup selections.

Loading the loader output into a simulator session in the VisualDSP++
debugger enables you to simulate the boot process and the boot loaded
application.
VisualDSP++ 3.1 User’s Guide 1-33
for Blackfin Processors

Code Development Tools
Loader terms are defined as follows.

Boot kernel

The executable file that performs the memory initialization on the
target

Boot-loadable file

The loader’s output, which contains the boot loader and the for-
matted system configurations. This file is a bootable image file.

Boot loading

The process of loading the boot loader, initializing system memory,
and starting the application on the target

Loader

The loader application, such as elfloader.exe, contained in the soft-
ware release
1-34 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Introduction to VisualDSP++
VCSE

VCSE consists of a combination of tools and guidelines that simplify the
process of developing components and help to document and validate such
components. These tools and guidelines:

• Enable applications to incorporate and use software algorithm
components from other developers easily and with confidence

• Ensure that components from multiple vendors will not interact
with each other in unpredictable ways or have resource clashes

• Allow components to be developed in assembler, C, or C++ and be
used from applications developed in any of these languages

• Allow components to be reused easily

• Allow comparison of algorithms that offer the same functionality

• Encourage third party developers to provide the implementation of
algorithms as easily used components

For more information, refer to the VisualDSP++ Component Software
Engineering (VCSE) User’s Guide and Language Reference.

VCSE Components

VCSE provides support for creating and using software components that
are specifically targeted at the embedded space.
VisualDSP++ 3.1 User’s Guide 1-35
for Blackfin Processors

VCSE
VCSE Component Model Specification

Components that adhere to the VCSE Component Model specification
enable you to achieve these objectives:

• Create software algorithms as reusable components

• Use software algorithms as components from other developers

• Use components from an assembler, C, or C++ program irrespective of
the language that they were implemented in

• Use components from multiple sources predictably in any applica-
tion without resource conflicts

VCSE Component Model

The VCSE component model does the following.

• Defines a binary standard to allow component interoperability

• Specifies a mechanism that is language independent and usable by
assembly, C, and C++ components

• Provides a robust mechanism to cope with the evolution of compo-
nents over time

• Defines a naming standard to ensure the uniqueness of component
names

The binary standard defining the mechanism allows function calls
between components, and supports the grouping of available functions or
methods into interfaces that are accessible as a unit. Each component can
support more than one interface. Each component must support a base
interface that can be used to access any other interface that is supported by
the component.
1-36 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Introduction to VisualDSP++
VCSE Tools

VCSE tools enable you to create and use components without having to
become familiar with the detail of the model and the mechanisms it
involves. As a result, you can concentrate on the application itself.

VCSE consists of tools and guidelines that simplify the process of develop-
ing components and automate the conformance testing of such
components. VCSE components are integrated with VisualDSP++. They
simplify the process of incorporating and utilizing components from a
variety of developers.

Use of VCSE Components with VisualDSP++

VCSE automatically generates an interface header file that defines the ser-
vices it offers and provides access to those services from assembly, C, and
C++ files.

VCSE components can be integrated with VisualDSP++, so you can view
information on all the components that are available. From VisualDSP++,
you can view a list of all the registered components that shows all the com-
ponents that have been registered within VisualDSP++. Some components
may not have a complete implementation, but they are available for pur-
chase. You can access the information for each registered component and
view the list of interfaces it supports.

When you add a component to a project, VisualDSP++ adds the relevant
object and header files to the project, and the supported interfaces. You
can use the New Interface Wizard to create an interface and add methods
and parameters to it. This process generates the necessary Interface Defini-
tion Language (IDL) source code.
VisualDSP++ 3.1 User’s Guide 1-37
for Blackfin Processors

VCSE
VCSE User Interface

Integration of VCSE with VisualDSP++ simplifies the process of creating
components and of incorporating and utilizing components from a variety of
developers. VCSE menu options accessed from the Tools menu enable you
to:

• Use a wizard to create an new interface specification

• Use a wizard to create a VCSE component and a project to build
the component

• Create a project to support the creation of a VCSE component

• Install and a view components on the local system

• Download and install new or updated components from the ADI
web site

• Add an installed component to a project

Tool Chain Integration

You tell VisualDSP++ to produce a VCSE component library from the
Project page of the Project Options dialog box. Under Type, select VCSE
component library. Specify VCSE compiler options from the VIDL page
of the Project Options dialog box. Specify IDL font and color preferences
for editing on the editor page of the Preferences dialog box.
1-38 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Introduction to VisualDSP++
Wizards

VCSE wizards lead you through various tasks.

• New Component Project Wizard

Creating a new VCSE component project is simple with the New
Component Project wizard. After making the required decisions in
the wizard, a new VCSE Component Library project is created and
added to the current workspace. In addition, the IDL source code
describing your component is generated and added to the project.

• New Component Package Wizard

You create a new component package with the New Component
Package wizard. Select an XML component manifest, review com-
ponent information, and then include files in the component
package.

Creating a new interface is easy with the New Interface wizard. You
define methods and parameters for the new interface, and the wiz-
ard generates the IDL source code for that interface and adds it to
the current project.

Once you have downloaded and installed a component onto your system,
you can easily add the component to a project.

Component Manager

You can view the list of currently installed components, add installed
components to a project, and interactively view and download new com-
ponents from the Analog Devices Web site. Use the Component Manager
to browse components at various locations.
VisualDSP++ 3.1 User’s Guide 1-39
for Blackfin Processors

VCSE
From the Component Manager dialog box, you can:

• Browse components

View the list of installed components on your system or the new
and updated components on the ADI Web site. Each component
includes a description.

• Filter your view of the components

Sort the component list by name, category, company, status,
supported processor, or implemented interface.

• Install components

Install them directly from the Analog Devices Web site or from a
third party. You must download the component to your PC from a
Web site, or copy the component to your PC by any means.

• Uninstall components from your PC

Structure of VCSE

VCSE specifies the requirements that a component must meet, and pro-
vides a set of tools to help ensure that a component conforms to the ADI
component standard for DSP algorithms and other objects. VCSE greatly
simplifies the task of enabling components within a system to communi-
cate, and provides a degree of abstraction that offers greater flexibility in
the choice and use of components.

VCSE support for DSP algorithms makes it much easier for integrators to
exploit algorithms from one or more vendors. This support also provides
the algorithm developer with a standardized framework to make algo-
rithms more interoperable and usable at a minimal cost.
1-40 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Introduction to VisualDSP++
VCSE provides a set of specifications and tools that comprise:

• A software architecture that is designed to be efficient and effective
for DSP applications and processors. The language-neutral archi-
tecture provides support for inter-working between software
written in assembly, C, and C++. The architecture is designed to
operate within multiple environments such as single or
multi-threaded applications.

• A component model that provides encapsulation (hiding of the
implementation and other information) of the algorithms and
objects, and supports the idea of abstract interfaces and a single
inheritance model. The VCSE component model is specifically
designed for use within DSP and embedded applications.

• An Interface Definition Language (IDL) that supports simple bind-
ings for C, C++, and assembly. The IDL is supported by the VCSE
IDL (VIDL) compiler, which processes the IDL specified compo-
nent and interface definitions and generates interface headers,
component shells, and HTML-based documentation for the
component.

IDL incorporates support for documenting the interfaces, and
enables standardized documentation to be generated, which allows
other statements about the interface to be automatically validated
or even generated.

• A set of rules and guidelines to which each component must
adhere, if it is to be a conforming component or algorithm. Valida-
tion of conformance to some of these rules is effected automatically
by VisualDSP++.

• An interface wizard that provides a visual user interface to allow the
object or algorithm provider to define interfaces. The interface wiz-
ard generates an IDL specification of the interface, which you can
then compile by using the VIDL compiler.
VisualDSP++ 3.1 User’s Guide 1-41
for Blackfin Processors

VCSE
• Support for the inclusion of VCSE components in a project and
the display of associated component documentation

Each VCSE component can be packaged as a compressed package,
called a component package file (.VCP). You can install this file into
VisualDSP++ by using the same techniques used to install and
identify debug-targets from third-party suppliers. Each such pack-
age contains the component interface headers, documentation, and
(optionally) the implementation and any necessary license informa-
tion. Packages that do not contain the implementation provide a
means of promoting a component or algorithm in a form that is
convenient for VisualDSP++ developers.

Interface Definition Language (IDL) and Compiler

VCSE supports an Interface Definition Language (IDL) and compiler that
enable developers to specify and then create and use components without
having to become familiar with the detail of the model and its mecha-
nisms. The VIDL compiler processes the specification of the interfaces that a
component supports and generates the framework code needed to implement
the component. The developer of the component can then concentrate on
providing the implementation of the methods that the component is to pro-
vide. In addition, the VIDL compiler can generate a simple test harness to
help in testing the component.
1-42 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Introduction to VisualDSP++
The VIDL compiler compiles the supplied IDL definitions of interfaces
and components and generates up to four possible output items. These
items can be emitted for each interface:

• An interface header file that can be used by a client of the interface
to request services from the interface. Each interface header file can
be used within assembly, C, and C++ source files.

• An interface component shell, which provides a standard frame-
work for providing the implementation of each interface supported
by the component in the chosen implementation language.

This shell supports the interface but leaves the implementation of
each method to the developer. Consequently, the developer is free
to concentrate on the implementation of interface services without
having to know the details of the VCSE binary standard.

The binary standard requires all functions within the interface to
obey the C runtime model. The generated assembler shell for an
interface ensures that the requirement is met by using the appropri-
ate macros in the generated code. The component shell can be
generated in the assembly, C, or C++ language.

• HTML-based documentation of the component and all of its sup-
ported interfaces in a standardized way. The documentation is
derived from the IDL definition and the embedded auto-doc com-
ments that the developer is encouraged to provide as part of the
IDL definition.

• An .XML file, which can be used by the New Component Package
Wizard when a component is packaged for distribution.

The IDL language supports all the standard C/C++ base types as well as
arrays, structs, and enums, and the use of typedef. The only explicit
pointer types that IDL supports are interface pointers. All out parameters
are mapped to arrays or pointers. All in arrays and structs are also mapped
to arrays and pointers.
VisualDSP++ 3.1 User’s Guide 1-43
for Blackfin Processors

VCSE
The VIDL compiler inputs .IDL files and produces the files shown in
Figure 1-4.

Figure 1-4. Files Produced by the VIDL Compiler
1-44 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Introduction to VisualDSP++
DSP Projects

The project is the structure in which you build the DSP program. Visu-
alDSP++ provides flexibility in how you set up projects. You configure
settings for DSP code development tools and configurations, and specify
build settings for the project and for individual files. You can set up fold-
ers that contain your source files. A project can include VDK support.

What is a Project?

Your goal is to create a program that runs on a single processor system. All
your development in VisualDSP++ occurs within a project.

The term project refers to the collection of source files and tool configura-
tions used to create a DSP program. A project file (.DPJ) stores program
build information.

Use the Project window to manage projects from start to finish. Within
the context of a DSP project, you can:

• Specify DSP code development tools

• Specify project-wide and individual-file options for Debug or
Release configurations of project builds

• Create source files

VisualDSP++ facilitates movement among editing, building, and debug-
ging activities.

VisualDSP++ provides flexibility in how you set up projects. You config-
ure settings for DSP code development tools and configurations, and
specify build settings for the project and for individual files. You can set
up folders that contain your source files.
VisualDSP++ 3.1 User’s Guide 1-45
for Blackfin Processors

DSP Projects
Project Options

You specify project options, which apply to the entire DSP project.
Figure 1-5 shows the top of the Project Options dialog box.

For each code development tool (compiler, assembler, linker, splitter and
loader), a tabbed page provides options that control how each tool pro-
cesses inputs and generates outputs. The available pages depend on your
target. Options correspond to an individual tool’s command line switches.
You can define these options once or modify them to meet changing
development needs.

You can also access the tools from the operating system’s command
line.

Project options also specify the following information.

• Project target

• Tool chain

• Output file directories

• Post-build options

Figure 1-5. Top Portion of the Project Options Dialog Box
1-46 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Introduction to VisualDSP++
Makefiles

You can use a makefile (.MAK) to automate builds within VisualDSP++.
The output make rule is compatible with the gnumake utility (GNU
Make V3.77 or higher) or other make utilities. VisualDSP++ generates a
project make file that controls the orderly sequence of code generation in
the target. You can also export a makefile for use outside of VisualDSP++.
For more information about makefiles, go to:

http://www.gnu.org/manual/make/

A project can have multiple makefiles, but only one makefile can be
enabled (active).

The project in Figure 1-6 includes an active makefile (indicated by).

The active makefile, with its explicit gmake command line, builds the
project. When no makefile is enabled for a project, VisualDSP++ uses
specifications configured in the Project Options dialog box.

Figure 1-6. Enabled Makefile dot_product_asm.mak
VisualDSP++ 3.1 User’s Guide 1-47
for Blackfin Processors

DSP Projects
You can view a makefile’s command line. Use the Configuration box,
shown in Figure 1-7, to change the makefile’s target.

When you close a project, the make commands and the target list associ-
ated with each makefile are serialized into the project file (.DPJ).

Rules

You can enable only one makefile when you build a project. If you enable
more than one makefile, VisualDSP++ generates an error message. After
you build your project with an external makefile, the executable is not
automatically loaded (even when this option is configured).

Output Window

Make command error messages and standard output appear in the Output
window. Double-clicking on an error-message position opens the makefile in
an editor window to the line of code causing the error.

Keywords in the makefile are syntax colored.

Note: The error message format of gmake is parsed correctly when you dou-
ble-click on an error message. If you use another make utility, the double-click
feature does not function.

Figure 1-7. Configuration Box
1-48 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Introduction to VisualDSP++
Example Makefile

An example of a makefile appears below.

Generated by the VisualDSP++ IDDE
Note: Any changes made to this makefile
will be lost the next time the matching
project file is loaded into the IDDE.
To preserve changes, rename this file
and run it externally to the IDDE.
The syntax of this makefile is such that
GNU Make v3.77 or higher is required.
The current working directory should be the
directory in which this makefile resides.
Supported targets:
Debug
Debug_clean
Define ADI_DSP if it is not already defined.
Define this variable if you wish to run this
makefile on a host other than the host that
created it and VisualDSP++ may be installed
in a different directory.
ifndef ADI_DSP
ADI_DSP=C:\Program Files\Analog Devices\VisualDSP
endif
$VDSP is a gmake-friendly version of ADI_DIR
empty:=
space:= $(empty) $(empty)
VDSP_INTERMEDIATE=$(subst \,/,$(ADI_DSP))
VDSP=$(subst (space),\$(space),$(VDSP_INTERMEDIATE))
Define the command to use to delete files
(which is different on Win95/98
and Windows NT/2000)
ifeq ($(OS),Windows_NT)
RM=cmd /C del /F /Q
else
RM=command /C del
endif
#
Begin "Debug" configuration
#
ifeq ($(MAKECMDGOALS),Debug)
Debug : ./debug/dot_product_asm.dxe
VisualDSP++ 3.1 User’s Guide 1-49
for Blackfin Processors

DSP Projects
./debug/dotprod.doj : ./dotprod.c
$(VDSP)/ccblkfn
-c .\dotprod.c
-g -BF535
-o .\Debug\dotprod.doj -MM
./debug/dotprod_func.doj : ./dotprod_func.asm
$(VDSP)/easmBLKFN.exe -BF535
-o .\Debug\dotprod_func.doj
.\dotprod_func.asm -MM
./debug/dotprod_main.doj : ./dotprod_main.c
$(VDSP)/blackfin/include/stdio.h
$(VDSP)/blackfin/include/yvals.h
$(VDSP)/blackfin/include/stdlib.h
$(VDSP)/blackfin/include/math.h
$(VDSP)/blackfin/include/ymath.h
$(VDSP)/blackfin/include/ccblkfn.h
$(VDSP)/ccblkfn -c .\dotprod_main.c
-g -BF535
-o .\Debug\dotprod_main.doj -MM
./debug/dot_product_asm.dxe :
./debug/dotprod.doj ./debug/dotprod_func.doj
./debug/dotprod_main.doj ./dotprodasm.ldf
$(VDSP)/ccblkfn.exe .\Debug\dotprod.doj
.\Debug\dotprod_func.doj
\Debug\dotprod_main.doj
-T .\dotprodasm.ldf -BF535
-L .\Debug -o .\Debug\dot_product_asm.dxe
-flags-link -MM
endif
ifeq ($(MAKECMDGOALS),Debug_clean)
Debug_clean:
$(RM) ".\Debug\dotprod.doj"
$(RM) ".\Debug\dotprod_func.doj"
$(RM) ".\Debug\dotprod_main.doj"
$(RM) ".\Debug\dot_product_asm.dxe"
$(RM) ".\Debug*.ipa"
$(RM) ".\Debug*.opa"
$(RM) ".\Debug*.ti"
endif
1-50 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Introduction to VisualDSP++
Project Configurations

By default, a project includes two configurations, Debug and Release,
described in the following table. In previous software releases, the term
configuration was called “build type.”

Available configurations appear in the configuration box, which is part of
the Project toolbar, as shown in Figure 1-8.

You cannot delete the Release or Debug configuration.

Table 1-6. Default Project Configurations

Configuration Description

Debug Builds a project that enables you to use VisualDSP++
debugging capabilities

Release Builds a project with optimization enabled

Figure 1-8. Configuration Box
VisualDSP++ 3.1 User’s Guide 1-51
for Blackfin Processors

DSP Projects
Customized Project Configurations

You can add a configuration to your project. A customized project config-
uration can include various project options and build options to help you
develop your project. Figure 1-9 shows a customized configuration
(Version2) listed in the configuration box.

Project Build

The term build refers to the performance of processing operations (such as
preprocessing, assembling, and linking) on projects and files. During a
build, VisualDSP++ processes project files that have been modified since
the previous build as well as project files that include modified files.

A build differs from a rebuild all. When you run the Rebuild All com-
mand, VisualDSP++ processes all the files in the project, regardless of
whether they have been modified.

Building a project builds all outdated files in the project and enables you
to make your program. An outdated file is a file that has been modified
since the last time it was built or a file that includes a modified file. For
example, if a C file that has not been modified includes a header file that
has been modified, the C file is out of date.

Figure 1-9. Customized Configuration Version2
1-52 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Introduction to VisualDSP++
VisualDSP++ uses dependency information to determine which files, if
any, must be updated during a build.

Note the following.

• A file with an unrecognized file extension is ignored at build
time.

• If an included header file is modified, VisualDSP++ builds
the source files that include (#include) the header file,
regardless whether the source files have been modified since
the previous build.

• File icons in the Project window indicate file status (such as
excluded files or files with specific options that override
project settings).

Build Options

You can specify options for the entire project and for individual files.
Table 1-7 describes these build options.

Table 1-7. Build Options

Options Description

Project-wide You specify these options from a tabbed page (for example, Compile
or Link) for each of the DSP code development tools.

Individual file These settings override project-wide settings.

Custom build step For maximal flexibility, you can edit the command line(s) issued to
build a particular file. For example, you might call a third-party
utility.
VisualDSP++ 3.1 User’s Guide 1-53
for Blackfin Processors

DSP Projects
File Building

You build a single file to compile or assemble the file and to locate and remove
errors. The build process updates the source file’s output (.OBJ file), and
updates the output file’s debug information. Building a single file is very fast.
Large projects, however, may require hours to build.

You can build multiple files that you select. Similar to building an individual
file, this process enables you to update output files.

If you change a common header file that requires a full build, you can build
only the current file to ensure that your change fixes the error in the current
file.

Post-Build Options

Post-build options are typically DOS commands that execute after a
project has been successfully built. These commands invoke external tools.

For example, you can use a post-build command to copy the final output
file to another location on the hard drive or to invoke an application
automatically.

Automatically copying files and cleaning up intermediate files after a suc-
cessful build can be very useful.
1-54 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Introduction to VisualDSP++
Command Syntax

Depending on your operating system, you must place “cmd /C”or
“command /C” at the beginning of each DOS command line.

For example, to execute copy a.txt b.txt, use one of the commands shown
in the Table 1-8. The “C” after the slash in the commands must be uppercase.

Project Dependencies

Dependency data determines which files must be updated during a build. The
following are examples of dependency information.

./debug/diriirc.doj : ./diriirc.dsp

./debug/setupiir.doj : ./setupiir.dsp

./debug/shell.doj : ./shell.c ./newsigc.dat ./bcoeff.dat

./acoeff.dat

./debug/mixedcandasm.dxe : $(VDSP)/BF535/ldf/adsp-BF535.ldf

./debug/diriirc.doj ./debug/setupiir.doj ./debug/shell.doj

$(VDSP)/BF535/lib/BF535_hdr.doj

$(VDSP)/BF535/lib/BF535_int_tab.doj $(VDSP)/BF535/lib/libc.dlb

$(VDSP)/BF535/lib/libdsp.dlb $(VDSP)/BF535/lib/libio.dlb

Table 1-8. Operating System and Required Command Syntax

Operating System Command

Windows 98 command /C copy a.txt b.txt

Windows Me command /C copy a.txt b.txt

Windows NT cmd /C copy a.txt b.txt

Windows 2000 cmd /C copy a.txt b.txt

Windows XP cmd /C copy a.txt b.txt
VisualDSP++ 3.1 User’s Guide 1-55
for Blackfin Processors

DSP Projects
Project Rules

The Project window displays a project’s files, as shown in Figure 1-10.

The following rules dictate how files and subfolders behave in the Project
window’s file tree.

• You can include any file in a project.

• Only one .LDF file is permitted.

• You cannot add the same file into the same project more than once.

• Only one project (project node) is permitted.

• A file with an unrecognized file extension is ignored at build time.

• When you add a file to a project, the file is placed in the first folder
configured with the same extension. If no such folders are present,
an added file goes to the project level.

Figure 1-10. Example of Project Files
1-56 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Introduction to VisualDSP++
VisualDSP++ Help System

The VisualDSP++ Help system is designed to help you obtain information
quickly. You can use the Help system’s table of contents, index, full-text
search function, bookmark function, and extensive hyperlinks to jump to
topics.

VisualDSP++ Help is a merge of several Help systems (.CHM files). Each is
identified with a book icon in your product installation’s Help folder.

Most of the Help system comprises VisualDSP++ tools manuals, such as
the Assembler and Preprocessor manuals. These manuals are also provided
in PDF format (on installation disk) for printing and are available from
Analog Devices as printed books.

Some .CHM files support pop-up messages for dialog box controls (buttons,
fields, and so on). These messages, which appear in little yellow boxes,
compose part of the context-sensitive Help in VisualDSP++.

The Help system describes the VisualDSP++ user interface. Help files
include concepts, procedures, and reference information. Each toolbar
button, menu-bar command, and debugging window in VisualDSP++ is
linked to a topic in one of these files.

Using the Help Window

The Help window comprises three parts:

• The Navigation pane provides tabbed pages (Contents, Index,
Search, and Favorites) that show different navigational views.

• The Viewing pane displays the selected object (topic, Web page,
video, .PDF file, application).

• Toolbar buttons enable you to navigate or specify options.
VisualDSP++ 3.1 User’s Guide 1-57
for Blackfin Processors

VisualDSP++ Help System
Figure 1-11 shows the parts of the VisualDSP++ Help window.

Invoking Online Help

You can invoke online Help from VisualDSP++ or from the Windows
Start button. You can also access Help manually via Windows Explorer.

To access online Help from VisualDSP++, choose Contents, Search, or
Index from the Help menu.

Figure 1-11. Parts of the VisualDSP++ Help Window
1-58 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Introduction to VisualDSP++
To access online Help from the Windows Start button, click the Start
button and choose Programs, VisualDSP, and VisualDSP
Documentation.

The Help function is programmed to look for the Help system in the
VisualDSP++ Help folder.

By default, the VisualDSP++ software installation procedure places the
complete set of Help files (except the Getting Started Guide) in the folder
VisualDSP\Help.

If you receive an error message after invoking Help, the Help system:

• May not have been loaded onto your PC

• May have been deleted

• May reside in a directory other than the default directory

To locate the help (.CHM) files manually, use the Windows Search function
as follows.

1. Record the Help file (.CHM) named in the error message.

2. From the Windows Start button, choose Search and For Files or
Folders. Enter the name of the .CHM file from step 1.

3. After locating the file, launch it manually by clicking the file name
from the Search Results window or from Windows Explorer.

Viewing Context-Sensitive Help

You can view context-sensitive Help (help pertinent to your current activ-
ity) for various items in VisualDSP++.

VisualDSP++’s context-sensitive Help is linked to toolbar buttons, menu
commands, windows, and dialog box items.
VisualDSP++ 3.1 User’s Guide 1-59
for Blackfin Processors

VisualDSP++ Help System
Viewing Menu, Toolbar, or Window Help

1. Click the toolbar’s Help button or press Shift+F1.

The mouse pointer becomes a Help pointer .

2. Move the Help pointer over a menu command, toolbar button, or
window.

3. Click the mouse to open the Help window. A description of the
object appears in the right panel.

Viewing Dialog Box Button or Field Help

Perform one of these actions:

• Select a field or button in a dialog box and press F1 or Shift+F1.

• Click the Question-Mark button in the top-right corner of the
dialog box.

The mouse pointer becomes a Help pointer .

Move the Help pointer over a dialog box control (button or field)
and click the mouse. A description of the object appears in a yellow
pop-up window.

• Position the mouse pointer over a label or control (button or filed)
in a dialog box and right-click.

A What’s This button appears. Move the mouse
pointer over the What’s This button and click.

 “What’s This” Help is not configured for all items.
1-60 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Introduction to VisualDSP++
Viewing Window Help

1. Click the window to make it active.

2. Press the F1 key to open the Help window.

A description of the window appears in the right panel.

Using Help Window Navigation Buttons

You can move through the Help system and view Help topics by using the
Help window’s navigational aids, as shown in Figure 1-12.

Figure 1-12. Help Window’s Navigational Aids
VisualDSP++ 3.1 User’s Guide 1-61
for Blackfin Processors

VisualDSP++ Help System
 Other standard Microsoft HTML Help buttons are described in Table 1-9.

Copying Example Code from Help

You can copy code from the Help system and then paste it into your appli-
cation. Be aware that the copied text may carry unwanted control codes.
For example, if you copy a hyphen with a parameter, the actual code of
the copied hyphen may be an ASCII 0x96 instead of an ASCII 0x2D. The
hyphen may look OK, but it will cause an error when the command runs.

Table 1-9. Standard Microsoft HTML Help Buttons

Button Purpose

Hides the Help window’s left pane. This button narrows the
Help window.

Displays the Help window’s left pane. This button restores a
full view after you click Hide.

Highlights the name of the current topic on the Contents
page (left pane). After you jump around the Help system,
this button shows the current topic’s relation to other topics.
1-62 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Introduction to VisualDSP++
Printing Help

You can print a specific Help topic, or you can print multiple Help topics
(an entire section of online Help).

Tip: From the Help window’s Contents page, click , located at the
top of the window.

Bookmarking Frequently Used Help Topics

You can bookmark a topic in online Help just like you might bookmark a
page in a book. This feature is also called setting up favorite places.

Note: Each time you bookmark a Microsoft HTML Help topic, a record is
recorded in the file, HH.DAT. This file not only records VisualDSP++ Help
bookmarks, but also the bookmarks you place in other application Help sys-
tems that use .CHM files.

Once you have placed a bookmark onto a topic, you can view a list of
bookmarked topics and quickly open one.

Table 1-10. How to Print Help Topics

To print Do this

Current topic Right-click within the help topic and choose Print.

Selected topic On the Contents page:

Right-click the topic and choose Print.

Entire section of
Help

On the Contents page:

Right-click a book icon or and choose
Print. Then choose Print the selected heading and all
subtopics.
VisualDSP++ 3.1 User’s Guide 1-63
for Blackfin Processors

VisualDSP++ Help System
Placing a Bookmark at a Topic

1. Display the topic.

2. On the left side of the Help window, click the Favorites tab.

3. Click Add.

You can remove a bookmark by selecting the name and clicking
Remove.

The Help system adds the topic and displays it in the alphabetized
list.

Opening a Bookmarked Topic

1. On the left side of the Help window, click the Favorites tab.

2. Perform one of these actions:

• Double-click the topic.

• Select the topic and click Display.

Navigating in Online Help

To move around in the Help system, you can click the following.

• A hyperlink within text. The text is underlined and displayed in a
color that is different from the regular black text.

• A topic listed under a See Also heading. The text is underlined
and displayed in a color that is different from the regular black
text.

• A mini button or its associated text. The button is a small gray
square and the underlined text is in a different color.
1-64 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Introduction to VisualDSP++
• A topic name on the Contents page (Figure 1-13)

• An index entry on the Index page (Figure 1-14)

• A topic name on the Search page. The bottom portion of the
Search page displays the located topics (hits) that include your
search string.

Figure 1-13. Contents Page – Online Manuals Topic

Figure 1-14. Index Entries on the Index Page

Click a page icon
to view the topic

Click on an index
entry to view the

 associated topic
VisualDSP++ 3.1 User’s Guide 1-65
for Blackfin Processors

VisualDSP++ Help System
Using the Search Features

VisualDSP++ Help provides both full-text and advanced search capabili-
ties to help you find information.

Help System Search Rules

Different rules apply for each type of search.

Rules for Full-Text Searches

Observe these rules when formulating queries:

• Searches are not case-sensitive. You can type your search in upper-
case or lowercase characters.

You can search for any combination of letters (a–z) and numbers
(0–9).

• Searches ignore punctuation marks such as the period, colon, semi-
colon, comma, and hyphen.

• Group the elements of your search by using double quotes or
parentheses to set apart each element.

• You cannot search for quotation marks.

Note that if you are searching for a file name with an extension, group the
entire string in double quotes, (“filename.ext”). Otherwise, the period
breaks the file name into two separate terms. The default operation
between terms is AND, which creates the logical equivalent to
filename AND ext.
1-66 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Introduction to VisualDSP++
Rules for Advanced Searches

These rules apply to advanced searches:

• Expressions in parentheses are evaluated before the rest of the
query.

• If a query does not contain a nested expression, it is evaluated from
left to right. For example, “folder NOT file OR project” finds
topics containing the word “folder” without the word “file,” or
topics containing the word “project.” The expression
“folder NOT (file OR project)”, however, finds topics contain-
ing the word “folder” without either of the words “file” or
“project.”

• You cannot nest expressions deeper than five levels.

Full-Text Searches

The full-text search capability enables you to locate every occurrence of a
text string within the Help system. You specify a particular word or
phrase, and the search function finds only the topics that contain that
word or phrase.

You can search previous results, match similar words, and search through
the topic titles only.

A basic search consists of the word or phrase that you want to locate. You
can use similar word matches, a previous results list, or topic titles to fur-
ther define your search.

You can run an advanced search, which uses Boolean operators and wild-
card expressions to further narrow the search criteria. Figure 1-15 on
page 1-68 shows an example of a Boolean search for “new AND plot”.
VisualDSP++ 3.1 User’s Guide 1-67
for Blackfin Processors

VisualDSP++ Help System
To find information with full-text search:

1. Click the Help viewer’s Search tab.

2. In Type in the word(s) to search for, type the word or phrase you
want to find.

3. Select Search previous results to narrow your search.

4. Select Match similar words to find words that are similar to the
search string.

5. Select Search titles only to search only the topic titles.

6. Click the Options button at the top of the Help Viewer win-
dow to highlight all instances of search terms found in topic files.
Then choose Search Highlight On.

7. Click List Topics, select the topic you want, and then click
Display.

Note that you can sort the topic list by clicking the Title, Loca-
tion, or Rank column heading.

Figure 1-15. Boolean Search for “new AND plot”
1-68 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Introduction to VisualDSP++
Advanced Search Techniques

You can use the following search techniques to narrow your searches for
more precise results.

• Wildcard expressions

• Boolean operators

• Nested expressions

Using Wildcard Expressions

Wildcard expressions enable you to search for one or more characters by
using a question mark or asterisk. Table 1-11 describes the results of these
different kinds of searches.

Table 1-11. How to Use Wildcard Expressions to Define a Search

To find Example Results

A single word project Locates topics that contain the word “project.”
Other grammatical variations, such as “projects”
are located.

A phrase “project window”
(note the quotation
characters)

project window

Locates topics that contain the literal phrase
“project window” and all its grammatical varia-
tions.

Without the quotation characters, the query is
equivalent to specifying “project AND window,”
which finds topics containing both of the individ-
ual words, instead of the phrase.

Wildcard
expressions

link*

-or-

.C??

Locates topics that contain the terms “linker,”
“linking,” “links,” and so on. The asterisk cannot
be the only character in the term.

Locates topics that contain the terms “.CPP” or
“.CXX.” The question mark cannot be the only
character in the term.
VisualDSP++ 3.1 User’s Guide 1-69
for Blackfin Processors

VisualDSP++ Help System
Using Boolean Operators

Use the Boolean AND, OR, NOT, and NEAR operators to precisely
define your search by creating a relationship between search terms.

Insert a Boolean operator by typing the operator (AND, OR, NEAR, or
NOT) or by clicking the arrow button.

Note that if you do not specify an operator, AND is used. For example,
the query call stack is equivalent to call AND stack.

Table 1-12 describes the results of using Boolean operators to define a
search.

You cannot use the |, &, or ! characters as Boolean operators. You must
use OR, AND, or NOT.

Table 1-12. How to Use Boolean Operators to Define a Search

To find Example Results

Both terms in the same
topic

new AND plot Locates topics that contain both the
words “new” and “plot”

Either term in a topic new OR plot Locates topics that contain either the
word “new” or the word “plot” or both

The first term without the
second term

new NOT plot Locates topics that contain the word
“new”, but not the word “plot”

Both terms in the same
topic, close together

new NEAR plot Locates topics that contain the word
“new” within eight words of the word
“plot”
1-70 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Introduction to VisualDSP++
Using Nested Expressions

Use nested expressions to create complex searches for information. For
example, new AND ((plot OR waterfall) NEAR window) finds topics con-
taining the word “new” along with the words “plot” and “window” close
together, or topics containing “new” along with the words “waterfall” and
“window” close together.

Viewing Online Manuals

VisualDSP++ includes three types of user documentation.

Table 1-13. Types of User Documentation

Files Purpose

.CHM VisualDSP++ online Help system files and VisualDSP++
manuals are provided in Microsoft HTML Help format.
Installing VisualDSP++ automatically copies these files to
the VisualDSP\Help folder. Online Help is ideal for
searching the entire tools manual set. Invoke Help from the
VisualDSP++ Help menu or via the Windows Start button.
The .CHM files require Internet Explorer 4.0 (or higher) or
the installation of a component that provides a .CHM file
viewer.

.PDF Manuals and data sheets in Portable Documentation Format
are located in the installation CD’s Docs folder. Viewing
and printing a .PDF file requires a PDF reader, such as
Adobe Acrobat Reader (4.0 or higher). Running
setup.exe on the installation CD provides easy access to
these documents. You can also copy PDF files from the
installation CD onto another disk.

.HTM or .HTML Dinkum Abridged C++ library and FlexLM network license
manager software documentation is located on the installa-
tion CD in the Docs\Reference folder. Viewing or print-
ing these files requires a browser, such as Internet Explorer
4.0 (or higher). You can copy these files from the installation
CD onto another disk.
VisualDSP++ 3.1 User’s Guide 1-71
for Blackfin Processors

VisualDSP++ Help System
The VisualDSP++ software installation procedure does not copy
PDF versions of books and data sheets or supplemental reference
documentation to the VisualDSP directory.

Printing Online Documents

You can print documents from the VisualDSP++ Tools Installation
CD-ROM.

To print online documents:

1. Insert the VisualDSP++ Tools Installation CD-ROM in your
CD-ROM drive.

2. Open the Docs folder by using one of these options:

• From the VisualDSP++ Tools Installation main menu,
click View Documentation. (If the main menu does not
appear, run setup.exe.)

• In Windows Explorer, select your CD-ROM drive (for exam-
ple, d:) and open the Docs folder.

3. Open the folder where the document is located.

The Data Sheets folder contains copies of DSP data sheets.

The Hardware Manuals folder contains copies of hardware manuals.

The Reference folder includes the HTML files that comprise the
Dinkum Abridged C++ library and the FlexLM network license
documentation.

The Tools Manuals folder contains copies of VisualDSP++ tools
manuals.
1-72 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Introduction to VisualDSP++
4. Double-click the document that you want to print. Selecting a PDF
file opens Adobe Acrobat Reader and displays the document. Selecting
an HTML file opens a browser and displays the document.

5. From the File menu, choose Print and specify the pages that you
want to print (and other print options).
VisualDSP++ 3.1 User’s Guide 1-73
for Blackfin Processors

VisualDSP++ Help System
1-74 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

2 ENVIRONMENT

This chapter describes the features of the VisualDSP++ environment,

including the main window, debugging windows, window operations, and
customization.

The topics are organized as follows.

• “Parts of the User Interface” on page 2-1

• “VisualDSP++ Windows” on page 2-15

• “Window Operations” on page 2-43

• “Debugging Windows” on page 2-49

Parts of the User Interface

VisualDSP++ is an intuitive, easy-to-use user interface for programming
Analog Devices DSPs. When you open VisualDSP++, the application’s
main window appears. Figure 2-1 on page 2-2 shows an example of the
VisualDSP++ main window.

This work area contains everything you need to build, manage, and debug
your DSP project. You can set up preferences that specify the appearance
of application objects (fonts, visibility, and so on).
VisualDSP++ 3.1 User’s Guide 2-1
for Blackfin Processors

Parts of the User Interface
The VisualDSP++ main window includes these parts:

• Title bar

• Menu bar

• Project window

• Control menu

• Toolbars

Figure 2-1. Example of VisualDSP++ Main Window
2-2 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
• Output window

• Status bar

VisualDSP++ also provides many debugging windows to show you what is
going on.

You need to learn only one interface to debug all your DSP applications.

VisualDSP++ supports ELF/DWARF-2 (Executable Linkable Format,
Debugging Information Format) executable files. VisualDSP++ supports
all executable file formats produced by the linker.

Title Bar

Figure 2-2 shows the different parts of the title bar.

The title bar includes these components:

• Control menu button

• Application name – Analog Devices VisualDSP++

• Name of the active target

• Project name

• Filename (when an editor window is maximized in the main
window)

• Standard Windows buttons

Figure 2-2. Example Title Bar (Split into Three Parts to Fit the Page)
VisualDSP++ 3.1 User’s Guide 2-3
for Blackfin Processors

Parts of the User Interface
Clicking the control menu button opens the control menu, which con-
tains commands for positioning, resizing, minimizing, maximizing, and
closing the window. Double-clicking the control button closes Visu-
alDSP++. The control menu and title bar right-click menu (see below) are
identical.

Additional Information in Title Bars

A register window title bar displays its numeric format (such as hexadeci-
mal). An editor window title bar displays the name of the source file.

Title Bar Right-Click Menus

A menu like the one below appears when you right-click within the Visu-
alDSP++ title bar or within the title bar of a child (sub) window.

From the VisualDSP++ title bar’s right-click menu, you can:

• Resize or move the application window

• Close VisualDSP++

Figure 2-3. Right-Clicking in the Window’s Title Bar
2-4 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
Control Menu

Commands on a control menu (system menu, shown below) move, size, or
close a window.

Program Icons

Click a program icon to open a control menu.

 Program icon for the application and debugging windows

 Program icon for editor windows

When you place the mouse pointer over a control menu command, a brief
description of the command appears in the status bar at the bottom of the
application window.

Editor Windows

A floating editor window’s control menu includes Next, which moves the
focus to another window.

When an editor window floats in the main application window, its pro-
gram icon resides at the left side of its title bar. When an editor window is
maximized, the program icon resides at the left end of the menu bar.

Figure 2-4. VisualDSP++ Control Menu
VisualDSP++ 3.1 User’s Guide 2-5
for Blackfin Processors

Parts of the User Interface
Debugging Windows

Each debugging window has a control menu. You can open a debugging
window’s control menu only when the window is floating in the main
window. For more information, see “Debugging Windows” on page 2-49.

Menu Bar

The menu bar, shown in Figure 2-5, appears directly below the applica-
tion title bar and displays menu headings, such as File and Edit.

To display menu commands and submenus, click a menu heading. You
can also access many menu bar commands as follows.

• Click toolbar buttons

• Type keyboard shortcuts

• Right-click the mouse and choose a command from a context
menu

Figure 2-5. VisualDSP++ Menu Bar
2-6 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
Command Information

When the mouse pointer is over a menu bar command (or a toolbar but-
ton), a short description (tool tip) of the command appears in the status
bar at the bottom of the main window.

Context-sensitive Help is available for each command.

To learn more about an individual menu command:

• Press Shift+F1 or click the toolbar’s Help button .

The pointer becomes a Help pointer .

• Move the Help pointer over a menu command.

If necessary, navigate through submenus.

• Click the mouse.

View the description of the command in the ensuing Help
window.

Toolbars and User Tools

A toolbar is a set of buttons. You can run a command quickly by clicking
a toolbar button.

Use toolbars to organize the tasks you use most often. Position the tool-
bars on the screen for fast access to the tools that you plan to use.

The application includes standard (built-in) toolbars. You can create cus-
tom toolbars.
VisualDSP++ 3.1 User’s Guide 2-7
for Blackfin Processors

Parts of the User Interface
Built-In Toolbars

Table 2-1 shows the standard (default) toolbars.

Table 2-1. Built-In Toolbars

Name Toolbar

File

Edit

Help

Project

Window

Debug

User Tools

Workspaces
2-8 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
To obtain information about a tool, move the mouse pointer over the tool
and press the F1 key.

Toolbar Customization

By default, nine standard toolbars appear near the top of the application
window, below the menu bar.

You can change the appearance of toolbars by:

• Moving, docking, or floating the toolbars

• Adding or removing buttons to or from toolbars

• Displaying cool look buttons, large buttons, or both

You can also:

• Hide toolbars from view

• Add and delete custom-built toolbars

Toolbars: Docked vs. Floating

By default, toolbars are located under the application’s menu bar. You can
move them to the following locations.

• Over a docked window

• On the main window

• Anywhere on the desktop

When a toolbar is attached to a window, it is called a docked toolbar. You
can tell when a toolbar is going to dock by the size and shape of its moving
outline as you drag it. Its outline becomes slightly smaller than its floating
outline. To prevent a toolbar from docking, press and hold the Ctrl key
while dragging the toolbar to a new location.
VisualDSP++ 3.1 User’s Guide 2-9
for Blackfin Processors

Parts of the User Interface
You can detach a toolbar from a window and move it to another location
anywhere on the desktop. A floating toolbar is a stand-alone window, as it
is not docked. A docked toolbar does not show its name, but a floating
toolbar displays its title.

Figure 2-6 shows a floating Help toolbar.

Toolbar Button Appearance

You can choose the appearance of the toolbar buttons. Two options, cool
look and large buttons, provide slightly different button appearances.

The cool look option includes a pair of vertical bars on the toolbar’s left
side, but removes the square box from each button. The vertical bars visu-
ally separate toolbar buttons into groups (toolbars).

The large buttons option makes the area of each button larger.

Table 2-2 on page 2-11 shows how small and large buttons appear with
the cool look option turned off (disabled) and on (enabled).

Figure 2-6. Example of a Floating Toolbar
2-10 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
Table 2-2. Toolbars in Different Viewing Options

Option Settings Docked Floating

Cool look – Off
Large buttons - Off

Cool look – On
Large buttons – Off

Cool look – Off
Large buttons – On

Cool look – On
Large buttons – On
VisualDSP++ 3.1 User’s Guide 2-11
for Blackfin Processors

Parts of the User Interface
Toolbar Shape

You can change the shape of a floating toolbar. Table 2-3 shows two tool-
bar shapes.

Depending on the number of tools in the toolbar, you can create other
length and width arrangements.

Toolbar Rules

When working with toolbars, be aware of these rules:

• You can customize a built-in toolbar (for example, you can remove
a button from the File toolbar), but you cannot delete a built-in
toolbar. You can reset the buttons in a built-in toolbar to their
original default settings.

• You can change the name of a user-defined toolbar, but not the
name of a built-in toolbar. For example, you cannot change the
name of the File toolbar.

Table 2-3. Toolbars in Two Orientations

Horizontal Vertical
2-12 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
User Tools

Save time running commands by configuring user tools. You can config-
ure up to ten user tools.

A user tool runs a command, which can:

• Contain parameters to launch an application

• Be a Tcl command

You access configured user tools from the Tools menu or from the User
Tools toolbar, as shown in Figure 2-7.

When a user tool is configured, its menu name (label) appears in the
Tools menu. The label also appears when you move the mouse pointer
over a user tool button.

Status Bar

The status bar, located at the bottom of the main application window,
provides various informational messages. Figure 2-8 shows different infor-
mation displayed on the status bar.

Figure 2-7. Default User Tools

Figure 2-8. The Status Bar’s Appearance Depends on Context
VisualDSP++ 3.1 User’s Guide 2-13
for Blackfin Processors

Parts of the User Interface
The type of information that appears in the status bar depends on your
context (what you are doing).

• When you move the mouse pointer over a toolbar button or a
menu bar command, a brief description of the button or command
appears.

• When you halt program operation with a Halt command, the
address where the program halted appears.

• When you use some Tcl commands, the status bar provides infor-
mation, such as when the menu item has focus.

While you are editing a file, the right side of the status bar provides editor
window information, described in Table 2-4.

Table 2-4. Status Bar Information While Editing

Item Indicates

Line ### Cursor current line number

Col ### Cursor current column number

CAP The keyboard’s Caps Lock key is latched down

NUM The keyboard’s Num Lock key is latched down

SCRL The keyboard’s Scroll Lock key is latched down
2-14 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
VisualDSP++ Windows

From the application’s main window, you can open a Project window,
editor windows, an Output window, and various debugging windows.

Project Window

The Project window has a Project tab .

When a project is VDK-enabled, the Kernel tab also appears,
as shown in Figure 2-9.

Figure 2-9. Kernel Tab in the Project Window
VisualDSP++ 3.1 User’s Guide 2-15
for Blackfin Processors

VisualDSP++ Windows
Project Page

The Project page displays a tree of your project’s folders and files. Nodes
are arranged in a hierarchy similar to the file structure in Windows
Explorer.

Figure 2-10 shows the node hierarchy on the Project page.

Figure 2-10. Node Hierarchy on the Project Page
2-16 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
Project Nodes

The Project window comprises three types of nodes, described in
Table 2-5.

Table 2-5. Types of Nodes in the Project Window

Node Icon Description

Project Only one project is permitted

Folder A closed folder

An opened folder, revealing its contents

File A file that uses project settings

A file with options that differ from the
project options

A file excluded from the current configu-
ration
VisualDSP++ 3.1 User’s Guide 2-17
for Blackfin Processors

VisualDSP++ Windows
Project Page Right-Click Menus

The right-click menus (also called popup menus or context menus)
described in Table 2-6 are available.

Project Folders

Project window folders organize files within a project. You
can specify properties for folders.

Folders can be nested to any depth. Folders carry no attributes to the build
process, as they do not reflect the file system. Folders do not appear in
directory listings, as in Windows Explorer.

When you add files to the project tree with automatic file placement, each
file is placed in the first folder that has been configured with the same file
extension. After automatic placement, you can move a file anywhere
manually.

To move a file out of one folder and into another folder, select the file and
drag it onto the other folder.

Table 2-6. Project Page Right-Click Menus

From Description

Node The menu’s content depends on the context (selected
node).

Title bar From this menu, you can dock, hide, or float the win-
dow. You can also view project properties.
2-18 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
Project Files

In the Project window, files are represented by the following icons.

The files appear in an expandable and collapsible node tree.

Source files are the C/C++ language or assembly language files in your
project. Source files provide the project with code and data. You can add,
delete, and modify source files.

Each project must include an .LDF file, which contains command input
for the linker. If you do not include an .LDF file in the project, the project
is built with a default .LDF file.

A DSP project can also include data files and header files.

Table 2-7. Icons in the Project Window

Icon Description

Files that use project options

Files that use options that differ from project options

Files excluded from the current configuration
VisualDSP++ 3.1 User’s Guide 2-19
for Blackfin Processors

VisualDSP++ Windows
File Associations

VisualDSP++ associates these file extensions as the input to particular
DSP code development tools:

Note the following.

• VisualDSP++ is case insensitive to file extensions.

• VisualDSP++ supports C++, but VisualDSP does not sup-
port C++.

Table 2-8. File Associations

Tool File Extensions

Compiler .C, .CPP, and .CXX

Assembler .ASM, .S, and .DSP

Linker .LDF, .DLB, and .DOJ
2-20 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
Automatic File Placement

Automatic file placement enables you to drag and drop files into designated
folders on the Project page in the Project window. This feature saves time
when you add files to a project.

Folder properties that you specify and file placement rules determine where
files are placed. By default, project folders are associated with the file exten-
sions listed in Table 2-9.

File Placement Rules

The following rules dictate file placement when you add files to a project.

• Dragging and dropping files

When you drag and drop a file onto the Project page, the file is added
to the first folder associated with the file’s extension.

• Using menu commands to add files

Files are added to the folders that you select on the Project page. If
you add a file to a project that has no folders, the file is added at the
project level (root level).

If you select the project node or a file node, the file is added to the
first folder associated with the file’s extension.

Table 2-9. Files Associated with Project Folders

Folder Default Associations

Source Files .C, .CPP, .CXX, .ASM, .DSP, .S

Header Files .H, .HPP, .HXX

Linker Files .LDF, .DLB, .DOJ

Kernel Files .VDK
VisualDSP++ 3.1 User’s Guide 2-21
for Blackfin Processors

VisualDSP++ Windows
Example

You create a folder labeled “C Source Files” and specify it with .C, .CPP,
and .CXX file extensions. You create a second folder labeled “Asm Files”
and associate it with .ASM files.

If you drag three files (file1.cpp, file1.asm, and file2.c) into the
Project window, file1.cpp and file2.c go into the C Source Files
folder, and file1.asm goes into the Asm Files folder.

Note: After automatic file placement, you can manually move a file any-
where by selecting and dragging the file.

Kernel Page

The Kernel tab of the Project window is available only to VDK-enabled
projects.

From the Kernel page, you can add, modify, and delete kernel elements
such as thread types, priorities, semaphore, and events. VisualDSP++
automatically updates vdk_config.cpp and vdk_config.h to reflect the
changes you make from the Kernel page.

The example in Figure 2-11 on page 2-23 shows an expanded view of the
elements on the Kernel page for a VDK-enabled project.

Refer to the VisualDSP++ Kernel (VDK) User’s Guide for complete details
about VDK.
2-22 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
Figure 2-11. Expanded View of Elements on the Kernel Page
VisualDSP++ 3.1 User’s Guide 2-23
for Blackfin Processors

VisualDSP++ Windows
Project Window Right-Click Menus

From the Project window, you can access four different right-click menus
that enable you to operate on Project window objects (the project, folders,
or files). These menus are:

• Project window menu

• Project icon menu

• Folder icon menu

• File icon menu

Depending on the context (selected object), right-click menus provide an
alternative means of performing an action. You can perform many of the
actions from the menu bar commands or toolbar buttons.

Project Window Menu

The Project window’s right-click menu enables you to:

• Hide the Project window from view

• Dock the Project window to the frame

• Float the Project window

• View project properties
2-24 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
Project Icon Menu

The Project icon right-click menu is shown in Figure 2-12.

This menu provides a project context, which enables you to:

• Build the project

• Clean (delete intermediate and target files)

• Add folders and files

• View and specify project options

• View project properties

Figure 2-12. Project Icon Right-Click Menu
VisualDSP++ 3.1 User’s Guide 2-25
for Blackfin Processors

VisualDSP++ Windows
Folder Icon Menu

 The Folder icon right-click menu is shown in Figure 2-13.

The folder menu provides a container context from which to perform these
local operations:

• Add or delete a folder

• Add files to the folder

• View folder properties

Figure 2-13. Project Folder Right-Click Menu
2-26 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
File Icon Menu

The File icon right-click menu is shown in Figure 2-14.

This menu provides a file context from which to perform these operations:

• Open the selected file for editing

• Build the file

• Remove the file from a project

• Specify options for the file

• View the file’s properties

Figure 2-14. File Icon Right-Click Menu
VisualDSP++ 3.1 User’s Guide 2-27
for Blackfin Processors

VisualDSP++ Windows
Editor Windows

Use editor windows to develop source code and edit project files.
Figure 2-15 shows items that you can customize in editor windows.

You can open as many editor windows as you like, and you can perform
the following functions.

• Define color-coded comments, strings, keywords, and tabs

• Preview and print window data

• Define headers and footers

• Set bookmarks

• Find and replace, wrap-around search, regular expression matching

Figure 2-15. Items that can be Customized
2-28 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
• Go to a specified line number

• Jump to the next or previous syntax error

• Copy, cut, paste, undo and redo more than 500 levels of edits for
each open file

• Enable Editor Tab mode to switch quickly between source files (see
“Editor Tab Mode” on page 2-29).

• Locate matching brace characters and auto-position brace characters
(to line up with the preceding opening brace)

• Open header files from the right-click menu. When you right-click on
a #include statement, choose Open Document “filename.h” to open
that file.

• Drag-and-drop highlighted sections of text (usually a valid source
statement) to an open Expressions window. When dropped, the text
is automatically added to the window and is evaluated.

Right-Click Menu

Use the editor window’s right-click menu to perform these functions:

• Undo or redo the last edit

• Cut, copy, or paste text

• Toggle a bookmark

Editor Tab Mode

Editor Tab mode provides an alternative, tab-based user interface for
managing multiple source files in editor windows. When you enable this
mode from the View menu, a tab for each open source file appears at the
bottom of the editor window. You can then click the tabs to switch
between files quickly.
VisualDSP++ 3.1 User’s Guide 2-29
for Blackfin Processors

VisualDSP++ Windows
Figure 2-16 shows an editor window with the Editor Tab option enabled.

Figure 2-16. Editor Tab Mode Enabled
2-30 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
Output Window

The Output window does the following.

• Displays standard I/O text messages such as file load status and
error messages

• Displays build status information for the current project build

• Provides access to errors in source files

• Acts as an interface to the Tool Command Language (Tcl) used for
scripting

The Output window shown in Figure 2-17 contains build status
information.

Display the Output window by choosing Output Window from the View
menu.

Output Window Tabs

Clicking the Output window’s two tabs, Console and Build, displays
pages that provide different information and capabilities.

Figure 2-17. Build Status Information in the Output Window
VisualDSP++ 3.1 User’s Guide 2-31
for Blackfin Processors

VisualDSP++ Windows
Build Page

The Build page (Figure 2-18) displays error messages generated during a
build. Double-click on an error message to jump to the offending code in
an editor window.

Scroll through error messages by choosing Next Error or Prev Error from
the Edit menu.

By default, VisualDSP++ output is blue, and tool output is black, but you
can change these colors in the Preferences dialog box.

Console Page

From the Output window’s Console page (Figure 2-20 on page 2-41),
you can:

• View VisualDSP++ or target status error messages

• View STDIO output from C/C++ programs

• View I/O (streams) messages

• Scroll through previous commands by pressing the keyboard’s up
arrow (↑) and down arrow (↓) keys

• Perform multi-line selection, copy, paste, and clear

• Issue Tcl commands

Figure 2-18. Error Messages in the Output Window
2-32 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
• Auto-complete Tcl commands

• Execute a previously issued Tcl command by double-clicking on
the command

• Enter multi-line Tcl commands by adding a backslash character (\)
to the end of a statement

• Use bookmarks

• Toggle a bookmark by pressing Ctrl+F2

• Move to the next bookmark by pressing the keyboard’s F2 key

All text displayed on the Console page is also written to the VisualDSP++
log file.

Output Window Error Messages

The DSP code development tools that perform batch processing can produce
error and warning messages when returning a result. These informational mes-
sages appear in the Output window’s Build page.

Every error is identified with a unique six-character code, such as pp0019, that
is consistent from release to release. Error descriptions include an explanation
of the condition that caused the error and a suggested remedy to fix the prob-
lem. Where applicable, error messages include the source file’s name and the
line number of the offending code.
VisualDSP++ 3.1 User’s Guide 2-33
for Blackfin Processors

VisualDSP++ Windows
Error Message Severity Hierarchy

Each error message has one or more severity levels.

You can change the severity of a message marked “-D” (discretionary). You
cannot change the severity of messages that are non-discretionary.

Syntax of Help for Error Messages

In Help, each error message can include several parts. The information that is
displayed depends on the tool and the message.

Note: To view all the details, you must view the error message in the Help sys-
tem window. If you run a tool from a command line interface (such as a
Command Prompt window or MS-DOS Prompt window), the error mes-
sage shows only the ID code, error text, and error location.

Table 2-10. Error Message Severity Levels

Severity Level Description

Fatal error Identify errors so severe that further processing of the input
is suspended. Fatal errors are sometimes called catastrophic
errors.

Error Identify problems that cause the tool to report a failure. An
error might allow further processing of the input to permit
additional problems to be reported.

Warning Identify situations that do not prevent the tool from pro-
cessing the input, but may indicate potential problems

Remark Provide information of possible interest
2-34 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
Table 2-11 describes the syntax for error message help.

Table 2-11. Syntax for Error Message Help

Part Description

Identification
code

Six-character code, unique to the error. The first two characters
identify the tool:

• pp (preprocessor)

• cc (compiler)

• li (linker)

• ea (assembler)
• ar (archiver)

• ld (loader)

• el (expert linker)
• vc (VIDL compiler)
• vu (VCSE)

Error text Text that appears after the identification code in the Output
window

Description Detailed description of the error

Severity The degree of hardship imposed by the error. Some messages can
take more than one severity level. You can change the severity
level of an error marked “discretionary.” You cannot change
errors marked “non-discretionary.”

Recovery Extra information, provided only if applicable

Example Example code

How to fix The remedy for correcting the error

Related Information Link(s) to more information
VisualDSP++ 3.1 User’s Guide 2-35
for Blackfin Processors

VisualDSP++ Windows
How to Promote, Demote, and Suppress Error Messages

A message ID code with a “-D” (discretionary) suffix indicates that its severity
can be overwritten. Refer to the tool documentation for command line
switches that override message severity. The VisualDSP++ environment’
Project Options dialog box includes options that override severity.

You can promote, demote, or suppress a discretionary message. For example,
you might promote a remark or warning to an error. You might decide to
demote an error to a warning or remark.

If, for example, a condition in the input crashes the tool, you can restrict the
problem to report as an error (instead of a fatal error).

Another way to suppress the reporting of an individual error message is by
using pragmas in the input source via the tool’s command line. For more
information about pragmas, refer to your VisualDSP++ 3.1 C/C++ Compiler
and Library Manual for Blackfin Processors.

The examples below demonstrate how you can promote, demote, and sup-
press messages. The following source file (test.c) is being compiled.

#include <stdio.h>
int foo(void)
{
printf("In foo\n"); // doesn't return a value
}

int main(void)
{
int x; // no initial value
printf("x = %d\n", x);
return foo();
}

2-36 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
• Example 1: Compiling from the Command Line (Interface)

Compiling the test.c file yields these two warning messages:

• Example 2: Promoting Warnings to Errors

The following command line promotes the two warnings to errors.

$ ccblkfn -c test.c
"test.c", line 5: warning #1069-D: missing return statement
at end of non-void
function "foo"
}
^
"test.c", line 10: warning #549-D: variable "x" is used
before its value is set
printf("x = %d\n", x);
^
Note: The compiler appended “-D” (discretionary) to each of
the two warning messages (#1069-D and #549-D).

Xxx replace numbering when new numbers are issued xxxx

$ ccblkfn -c test.c -Werror 549,1069
“test.c”, line 5: error #1069-D: missing return statement at
end of non-void
function "foo"
}
^
“test.c”, line 10: error #549-D: variable “x” is used before
its value is set
printf(“x = %d\n”, x);
^

2 errors detected in the compilation of “test.c”.
ccblkfn: Fatal Error: Compilation failed
VisualDSP++ 3.1 User’s Guide 2-37
for Blackfin Processors

VisualDSP++ Windows
• Example 3: Demoting Messages to Remarks

You can demote messages to remarks. By default, however, the
compiler does not display anything less significant than a warning.

The -Wremarks flag in the following command outputs the two
warnings plus five other remarks.

$ ccblkfn -c test.c -Wremarks

The -Wremark 549,1069 flag in the following command specifies
that two specific messages be demoted to remarks. The command
produces no output, because all the messages are changed to
remarks, which are not displayed.

$ ccblkfn -c test.c -Wremark 549,1069

The following command changes the two warnings to remarks and
then displays all seven remarks.

$ ccblkfn -c test.c -Wremark 549,1069 -Wremarks

• Example 4: Suppressing Messages

The following command suppresses two specific warning messages.
The command outputs five remarks, but the two warnings are not
displayed even though the -Wremarks flag requests all the remarks.

$ ccblkfn -c test.c -Wsuppress 549,1069 -Wremarks

• Example 5: Suppressing the Reporting of Warnings and Remarks

You can suppress remarks. You can also suppress both warnings
and remarks.

You cannot suppress warnings without also suppressing remarks.
2-38 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
You control the output of warnings and remarks from the Project
Options dialog box in VisualDSP++ or from the command line.
Refer to your processor’s compiler, assembler, and linker manuals
for available flags (options).

From the Compile page (Warnings category) of the Project
Options dialog box, you can specify the options listed in
Table 2-12.

How to View Error Message Details

Each DSP tool error message has associated explanatory text. You can view the
information in the Help window by selecting the six-character error identifier
(for example, cc0251) on the Build page and by pressing the F1 key. A com-
plete explanation of the error message appears in the Help window.

Table 2-12. Options Available from the Compile Page

Option Purpose

Implicit function declarations Warns on all implicit functions. This option corresponds
to the compiler's -flags-compiler command line switch.

Functions not inlined Issue a warning when the compiler is unable to generate
inline code for a function that has the inline keyword

Enable remarks Issues remarks, which are diagnostic messages of a milder
nature than warnings. This option corresponds to the
compiler's –Wremarks command line switch.

Disable all warnings and remarks Withholds warning messages. This option corresponds to
the compiler's –w command line switch.

Additional options Enables you to enter more compiler options
VisualDSP++ 3.1 User’s Guide 2-39
for Blackfin Processors

VisualDSP++ Windows
Log File

The VisualDSP++ log file contains all status and error messages written to
the Output window’s Console page.

Figure 2-19 shows a sample log file.

Note that:

• The file path specified in the log file assumes that you installed
VisualDSP++ by accepting default settings.

• All sessions append to the log file. Occasionally, open the file and
delete parts of it (or all of it) to conserve disk space.

Figure 2-19. Example – Portion of a Log File
2-40 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
Output Window Customization

You can specify preferences that:

• Configure Output window fonts and colors

• Enable command auto-completion

By default, the Output window resides at the bottom of the main applica-
tion window. You can resize or move the Output window, which is a
Windows docking bar, to a different portion of the screen by dragging it
to the selected location.

The Output window’s Console page can interact with the VisualDSP++
Tcl engine. All Tcl input and output is sent to the Console page, shown in
Figure 2-20.

These messages are saved to the log file VisualDSP_Log.txt, which is
located in the C:\Program Files\Analog Devices\VisualDSP\Data
directory.

Figure 2-20. Messages in the Project Window’s Console Page
VisualDSP++ 3.1 User’s Guide 2-41
for Blackfin Processors

VisualDSP++ Windows
Right-Click Menu

The Output window’s right-click menu is shown in Figure 2-21.

This menu enables you to:

• Dock the window

• Float the window

• Hide the window (display the hidden window by choosing Output
Window from the View menu)

• Copy selected text

• Clear the text in the windows

• Toggle bookmarks

Figure 2-21. Output Window’s Right-Click Menu
2-42 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
Window Operations

Similar to many Windows applications, VisualDSP++ provides ways to
adjust your view of the user interface.

Window Manipulation

The Window menu commands, shown in Figure 2-22, enable you to
manipulate your windows display and update windows during program
execution. Refer to your Windows documentation for more information.

Right-Click Menu Options

Each window presents a menu when you right-click in the window or on
its title bar. The menu options in Table 2-13 affect window behavior.

Figure 2-22. Window Menu Commands

Table 2-13. Window Right-Click Menu Commands

Option Description

Allow Docking Enables/disables docking

Close Closes the window

Float in Main Window Causes the window to become a normal MDI child
window (like an editor window) and disables its
docking ability
VisualDSP++ 3.1 User’s Guide 2-43
for Blackfin Processors

Window Operations
Scroll Bars and Resize Pull-Tab

Scroll bars appear along the right and bottom edges of the application or
document window, as shown in Figure 2-23.

The scroll boxes inside the scroll bars indicate your vertical and horizontal
location in the document. Use the mouse to scroll to other parts of the
document.

When the application window is not maximized, the resize pull-tab
appears in the lower-right corner of the window. Click and drag the
pull-tab to resize the application window.

Windows: Docked vs. Floating

A window attached to the application’s frame is referred to as a docked
window.

You can detach a window from the main window and move it to another
location anywhere on the desktop. A floating window stands alone, because
it is not docked.

Figure 2-23. Scrolling to Move the Viewing Area
2-44 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
Depending on your needs, you can:

• Dock a window to the application’s main window (frame)

• Float a window

A window’s right-click menu provides commands to dock or float the win-
dow. The Allow Docking option and the Float In Main Window option
are mutually exclusive.

Example of a Docked Window

The Project window shown in Figure 2-24 is docked (Allow Docking is
selected).

To prevent a window from docking, hold down the keyboard’s Ctrl key
while dragging the window to another position.

Figure 2-24. Example of a Docked Project Window
VisualDSP++ 3.1 User’s Guide 2-45
for Blackfin Processors

Window Operations
Examples of Floating Windows

The Project window in Figure 2-25 is floating in the main window (Float
In Main Window is selected).

The Project window in Figure 2-26 is also floating in the main window
(Float In Main Window is selected).

Figure 2-25. Project Window Floating in Main Window (1 of 2)

Figure 2-26. Project Window Floating in Main Window (2 of 2)
2-46 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
The Project window in Figure 2-27 is floating, but not in the main win-
dow (Float In Main Window is not selected).

Window Position Rules

The following rules apply to window positions.

• Unless Allow Docking is disabled, a window must reside within
the main window.

• An editor window cannot be docked to the main window.

• A window specified as an MDI child cannot be positioned over a
docked window.

• Unless the Output window is floating in the main window, you
cannot position a window specified as an MDI child over the Out-
put window.

Figure 2-27. Project Window Floating but Not in Main Window
VisualDSP++ 3.1 User’s Guide 2-47
for Blackfin Processors

Window Operations
Standard Windows Buttons

The standard Windows buttons are located on the right side of the title
bar, as shown in Figure 2-28.

These buttons resize and close the window as described in Table 2-14.

Figure 2-28. Title Bar Showing Standard Window Buttons

Table 2-14. Standard Windows Buttons

Button Name — Purpose

Minimize—reduces the window to its Windows icon

Maximize—enlarges the window to fill the screen

Restore—returns the window to its last non-minimized,
non-maximized position after you maximize the window

Close—closes the application window and exits the pro-
gram
2-48 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
Debugging Windows

VisualDSP++ provides debugging windows to display DSP program oper-
ation and results. Table 2-15 describes these windows.

Table 2-15. Debugging Windows

Window Provides

Output A Console page that displays standard I/O text messages
such as file load status, and error messages and streams,
and a Build page that displays build messages. You can
interactively enter Tcl commands and view Tcl output.

Editor Syntax coloring, context-sensitive expression evaluation,
and status icons that indicate breakpoints, bookmarks,
and the current PC position

Disassembly Code in disassembled format. This window provides fill
and dump capability.

Expressions The means to enter an expression and see its value as you
step through program execution

Locals All local variables within a function. Use this window
with step or halt commands to display variables as you
move through your program.

Linear Profiling
Results

(Simulation only) Samples of the target’s PC register
taken at every instruction cycle, which provides an accu-
rate picture of where instructions were executed. Linear
profiling is much slower than statistical profiling.

Statistical Profiling
Results

(JTAG emulation only) Random samples of the target
processor’s program counter (PC) and a graphical display
of the resulting samples, showing where the application
spends time

Call Stack A means of moving the call stack back to the previous
debug context

Register Current values of registers. You can change register con-
tents and change the number format.
VisualDSP++ 3.1 User’s Guide 2-49
for Blackfin Processors

Debugging Windows
Memory A view of DSP memory. Similar number format and edit
features as register windows, plus fill and dump capabil-
ity.

Memory Map The memory map of the selected processor

Plot A graphical display of values from memory addresses.
The window supports linear and FFT (real and complex)
visualization modes and allows you to export an image to
a file, the clipboard, or to a printer.

Pipeline Instruction pipeline

State History (VDK-enabled projects only) History buffer of threads and
events

Target Load (VDK-enabled projects only) Percent of time the target
spent in the idle thread

VDK Status (VDK-enabled projects only) At a program halt, thread
state and status data

Table 2-15. Debugging Windows (Cont’d)

Window Provides
2-50 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
Disassembly Windows

By default, a Disassembly window appears when you open a new session.

Figure 2-29 and Figure 2-30 show examples of Disassembly windows.

Figure 2-29. Disassembly Window (Example 1)

Figure 2-30. Disassembly Window (Example 2)
VisualDSP++ 3.1 User’s Guide 2-51
for Blackfin Processors

Debugging Windows
Disassembly windows display code in disassembled form, which is useful
for temporarily modifying the code to test a change or to view code when
no source is available. The Disassembly window allows you to examine
the assembly code generated by the C/C++ compiler.

To make changes permanent, modify the code, and rebuild the project.

Disassembly windows provide:

• Number format and edit features, similar to register windows

• Dump and fill capability

• Symbols at the far left of the window, denoting program execution
stages and pipeline stages

You can enable and disable the display of pipeline symbols while in
mixed mode (C/C++ and assembly).

By default, the current source line to be executed is highlighted by a
light-blue horizontal bar, as shown in the following example.

You can configure the color of the current source line and other window
items.

Figure 2-31. Current Source Line in the Disassembly Window
2-52 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
Other Disassembly Window Features

From the Disassembly window, you can perform the operations described
in Table 2-16.

Right-Click Menu

The Disassembly window’s right-click menu provides access to the com-
mands shown in Figure 2-32.

Table 2-16. Disassembly Window Operations

To... Place the mouse pointer over...

Move to a different address An address field and double-click. Then select
the address from the ensuing Go To dialog box.

Insert or remove a break-
point

An instruction and double-click

Toggle (enable or disable) a
breakpoint

An instruction and right-click. Then choose the
appropriate command from the ensuing menu.

Figure 2-32. Disassembly Window Right-Click Menus
VisualDSP++ 3.1 User’s Guide 2-53
for Blackfin Processors

Debugging Windows
Disassembly Window Symbols

The Disassembly window denotes program execution stages with symbols
at the far left of the Disassembly window. The display of pipeline stages is
available only when your system is connected to a simulator target.

The symbols displayed at the left of the Disassembly window are shown in
Table 2-17.

Table 2-17. Disassembly Window Symbols

Symbol Description

Current source line

The current instruction is being aborted due to a
branch or jump instruction

A breakpoint is enabled

A breakpoint is disabled
2-54 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
Expressions Window

The Expressions window, shown in Figure 2-33, enables you enter an
expression to evaluate in your program. Expression evaluations are based
on the current debug context.

Because of the way registers are saved and restored on the stack, the regis-
ter value on which the expression relies may be incorrect if you change
VisualDSP++’s context with the Call Stack window.

The Expressions window’s right-click menu (Figure 2-34) includes com-
mands that let you change the display’s number format.

Figure 2-33. Expressions Window

Figure 2-34. Expressions Window Right-Click Menu
VisualDSP++ 3.1 User’s Guide 2-55
for Blackfin Processors

Debugging Windows
Locals Window

The Locals window displays the value of local variables within a function,
as shown in Figure 2-35.

Use this window with a Step or Halt command to display the current
value of variables as you move through your program.

Complex variables, C structures, and C++ classes appear with a plus
sign. Click on the plus sign to display all variable information.

The window’s right-click menu provides the commands shown in
Figure 2-36.

Figure 2-35. Locals Window

Figure 2-36. Locals Window Right-Click Menu
2-56 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
Statistical/Linear Profiling Results Window

Depending on the target, the window’s title is Statistical Profiling Results
or Linear Profiling Results. The window comprises two panes, as shown
in Figure 2-37.

Window Components

The window, which comprises two panes and a status bar, provides a
right-click menu from which you can perform various window functions.

Left Pane

The window’s eft pane displays a list of the executed functions, assembly
source lines, and PCs (with no debug information). The time that each
item spent on execution appears as a histogram and as a percent. The
order of the items in the display is determined by the percentage of global
execution time that each item took to execute.

The left pane includes the information described in Table 2-18 on
page 2-58.

Figure 2-37. Example of a Linear Profiling Results Window
VisualDSP++ 3.1 User’s Guide 2-57
for Blackfin Processors

Debugging Windows
If you double-click on a line with a function or assembly source line in the
left pane, the right pane displays the corresponding source file and jumps
to the top of that function or assembly source line, respectively. If you
double-click on a PC address with no debug information, the Disassem-
bly window opens to that address.

Table 2-18. Left Pane Information

Column Displays Purpose

Histogram Horizontal bars Graphically represents the exe-
cution percentage

%
-or-
Count

A percent with two decimal
places, for example:

15.01%
-or-
a number

Displays execution in percent or
as a count. Right-click and
choose View Execution Percent
to view execution as a percent, or
choose View Sample Count to
view the PC sample count.

Execution Unit Functions, assembly source
lines, and PCs for which no
debug information exists

These items are sorted by the
percentage of global execution
time that each item took to exe-
cute. The highest percentage
items appear at the top of the
list
2-58 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
Right Pane

The right pane includes the information described in Table 2-19.

Status Bar

The status bar at the bottom of the window indicates the total number of
collected PC samples, the total elapsed time, and whether statistical profil-
ing is enabled.

Right-Click Menu

The Statistical Profiling Results and Linear Profiling Results windows
provide a right-click menu. The menu commands depend on the context
(whether you right-click in the left pane or right pane) and the current
settings.

Table 2-20 on page 2-60 describes the menu commands.

Table 2-19. Information in the Right Pane

Column Displays

% Execution percent in text format with two decimal
places (for example, 1.03%)
-or-
the PC sample count for each source line

Line Line numbers of the source file

File Entire source file. Each source line occupies one
line in the grid control.
VisualDSP++ 3.1 User’s Guide 2-59
for Blackfin Processors

Debugging Windows
Table 2-20. Profiling Results Window Right-Click Menu Commands

Command Description

Enable Enables or disables profiling

Load Profile Opens the Select a Statistical /Linear Profile
to Load dialog box from which you can load
profile data saved from a previous run

Save Profile Saves the current run’s data to a file

Concatenate Profile Merges profiling data stored from a previous run
with current data

Clear Profile Clears statistics saved from a previous run

View Execution Percent Displays the execution percent in each execu-
tion unit or source line. This value is the sam-
ple count for that execution unit divided by
the total number of samples.

View Sample Count Displays the sample count for that execution
unit

Mixed
 -or-
Source

Sets the display mode for C/C++ source lines
from the right pane only. Choose Mixed to
display both C/C++ source lines and assembly
lines. C/C++ source lines appear in black type,
and assembly lines appear in gray. Profiling
data appears for each assembly line. Choose
Source to display only the C/C++ source lines.

Properties Opens the Profile Window Properties dialog
box, from which you can view or change win-
dow settings. When you perform linear profil-
ing with the ADSP-BF532 simulator only, you
can select display options such as cache hits,
cache misses, execution count, reads, and
writes.
2-60 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
Window Operations

You can select various options for the Statistical/Linear Profiling Results
window and perform various window operations.

Changing the Window View

After you specify properties for the Statistical/Linear Profiling Results win-
dow and enable profiling, the profiler collects data when you run a program.
Depending on the filtering options that you select, the window’s Execution
Unit column displays:

• Function names (such as main)

• Single addresses, for example, PC(0x2000)

• Address ranges, for example, [2000–2050]

Single addresses and address ranges are in hexadecimal format. The
“0x” notation, however, appears beside single addresses only.

Displaying a Source File

Double-clicking on a function name in the Execution Unit column not only
displays the source of the function in the right pane but also the profiling data
for each line of the function. Figure 2-38 shows an example of code dis-
played for a function.

Figure 2-38. Code Displayed for a Function
VisualDSP++ 3.1 User’s Guide 2-61
for Blackfin Processors

Debugging Windows
Working with Ranges

Clicking on the icon in an address range expands or contracts the list of func-
tions within that address range.

When expanded, the list of functions appears and profiling data appear imme-
diately after the address range.

Switching Display Modes

The right-click menu’s Mixed and Source commands simplify switching
between two views. Figure 2-39 shows the source mode view and
Figure 2-40 on page 2-63 shows the mixed mode view.

Figure 2-39. Source Mode View
2-62 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
When you view the window in mixed mode, profiling data for each assembly
line is displayed, as shown in Figure 2-41. Mixed mode displays profiling sta-
tistics for individual assembly instructions.

Figure 2-40. Mixed Mode View

Figure 2-41. Profiling Data for Each Assembly Line (Mixed Mode)
VisualDSP++ 3.1 User’s Guide 2-63
for Blackfin Processors

Debugging Windows
Filtering PC Samples with No Debug Information

Since you spend most of you time building a “debug version” of your code,
eliminate non-debug code, such as C run-time library initialization code.
Figure 2-42 shows where a lot of time is spent before filtering.

The profiling results after filtering (Figure 2-43) reflect the difference.

Figure 2-42. Profiling Results Before Filtering

Figure 2-43. Profiling Results After Filtering
2-64 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
Call Stack Window

The Call Stack window (Figure 2-44) enables you to double-click on a
stack location to move the call stack back to a previous debug context.

 This window functions with C/C++ code only.

Use this window to analyze the state of parent functions when erroneous
data is being passed to the currently executing function and to see the con-
text from which the current function is being called. You can walk up the
call stack and view local variables in different scopes.

Memory Windows

From a memory window, you can:

• View and edit memory contents

• Display the address of a value. Move the mouse pointer over the
value, and hold down the keyboard’s Ctrl key.

• Lock the number of columns currently displayed. This action
resizes the window horizontally without altering the display

• Track one expression

Figure 2-44. Example of the Call Stack Window
VisualDSP++ 3.1 User’s Guide 2-65
for Blackfin Processors

Debugging Windows
Memory windows, similar to register windows, provide:

• Number format and edit features

• Fill and dump capability

Memory Number Formats

The memory windows that follow show examples of different memory
number formats.

Figure 2-45. Example of Blackfin Memory in Binary Format
2-66 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
Figure 2-46. Example of Blackfin Memory in Octal Format

Figure 2-47. Example of Blackfin Memory in Hexadecimal Format
VisualDSP++ 3.1 User’s Guide 2-67
for Blackfin Processors

Debugging Windows
Right-Click Menu

Memory windows provide the right-click menu shown in Figure 2-48.

These commands enable you to change the number format of the display.

Figure 2-48. Memory Window Right-Click Menu
2-68 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
Expression Tracking in a Memory Window

While you step through your code, a memory window configured for expres-
sion tracking shows the memory at the address specified by the expression.

Figure 2-49. Expression Tracking in a Memory Window
VisualDSP++ 3.1 User’s Guide 2-69
for Blackfin Processors

Debugging Windows
Every time the target halts, the tracking expression is evaluated and the mem-
ory window jumps to that address. For example, if “$PC” is used as the
tracking expression, the memory window behaves like the Disassembly
window.

Note:

• In a memory window, you can configure several expressions for
tracking.

• You can track only one expression at a time in a memory window.

• The active expression appears in the memory window’s title bar.

• The memory window’s right-click menu displays a list of configured
expressions, and you can select one of them for tracking.

• To track multiple expressions, open multiple memory windows and
track one expression per window.
2-70 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
Memory Map Windows

The Memory Map window (Figure 2-50) displays the memory map for
the selected processor.

If no DSP program is loaded into the processor, the memory map displays
all available memory in the processor.

If a program is loaded, the memory map is the map defined in the memory
section of the program’s .LDF file.

For each portion of memory, the window displays the start address, end
address, and width.

Figure 2-50. Memory Map Window
VisualDSP++ 3.1 User’s Guide 2-71
for Blackfin Processors

Debugging Windows
Register Windows

Depending on your processor, you have access to various register
windows.

The Core submenu shown in Figure 2-51 lists the register windows avail-
able for the ADSP-BF535.

Figure 2-51. Register Windows Available from the Core Submenu
2-72 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
The Peripherals submenu shown in Figure 2-52 is available for the
ADSP-BF535 only.

Figure 2-52. Register Windows Available from the Peripherals Submenu
VisualDSP++ 3.1 User’s Guide 2-73
for Blackfin Processors

Debugging Windows
Figure 2-53 shows an example of a data register file in a register window.

A register window enables you to:

• View and change register contents

• Change the presentation (number format)

Register window number formats include standard formats, such as hexa-
decimal, octal, and binary. Depending on the DSP, other formats are
available.

You can change a register’s data directly from a register window. The
modified register content is used during program execution. Edits to data
do not affect your source files. To make changes permanent, edit the
source file and rebuild your project.

Figure 2-53. Example of a Register Window
2-74 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
Stack Windows

Depending on your processor, you have access to various stack windows,
such as the Loop Address stack. For more information about your proces-
sor’s stack windows, consult online Help.

Custom Register Windows

While debugging, you can configure and display custom register windows.
Each custom register window has a user-specified title and displays only
the registers you choose to monitor.

For example, the following custom register window displays the contents
of five registers.

A custom register window appears immediately after you create it.

Figure 2-54. Example of a Custom Register Window
VisualDSP++ 3.1 User’s Guide 2-75
for Blackfin Processors

Debugging Windows
Pipeline Viewer Window

From the Pipeline Viewer window (Figure 2-55) you can view instruc-
tions in the pipeline and event details.

 Pipelining is available only for simulation targets.

Column headings refer to pipeline stages for the processor’s core registers.
Refer to the Blackfin Hardware Reference for details.

Figure 2-55. Example of a Pipeline Viewer Window
2-76 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
Right-Click Menu

The right-click menu provides the commands described in Table 2-21.

Table 2-21. Pipeline Viewer Right-Click Menu

Item Purpose

Enabled Enables and disables collection of pipeline data
while running or stepping

Clear Clears the current sample buffer

Display For-
mat

Controls the display format of data
Address shows the hexadecimal-formatted address of
the pipeline stage (for example, 0x1234). Use this to
follow a particular address’s route through the pipe-
line.
Disassembly disassembles the instruction at that
address and shows the opcode mnemonic, similar to
a Disassembly window. Use this format to determine
why a particular event is occurring.
Opcode format is the hexadecimal representation of
the disassembly mnemonic.

Save Opens the Save As dialog box, from which you
export the collected data to a text file

Properties Opens the Pipeline Viewer Properties dialog box,
from which you view and specify properties (buffer
and display depth, display format, column widths,
grid lines, and the appearance of stages) for the Pipe-
line Viewer window. You can also modify window
colors.
VisualDSP++ 3.1 User’s Guide 2-77
for Blackfin Processors

Debugging Windows
Pipeline Instruction Event Details

From the Pipeline Viewer window, you can view pipeline event details,
which appear in a tool tip (message) box, shown in Figure 2-56.

A pipeline event can include the details described in Table 2-22.

Figure 2-56. Tool Tip Box Showing Pipeline Event Details

Table 2-22. Pipeline Event Details

Item Displays

Address Address of the pipeline stage at that cycle (if
valid)

Instruction Assembly instruction of that address (if valid)

Type Type of event

Cause Cause of the event condition

Details Further explanation of the cause of the event
(if applicable)
2-78 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
Cache Viewer

The Cache Viewer enables you to analyze a DSP application’s use of cache,
which is helpful in optimizing DSP application performance. The Cache
Viewer consists of five tabbed pages, described in Table 2-23.

Configuration Page

The Configuration page (Figure 2-57) displays configuration information
for configured cache.

Table 2-23. Cache Viewer Pages

Page Displays

Configuration Cache configuration information

Detailed View Location (set and way) of cache events

History List of cache events

Performance Cache performance metrics

Histogram A plot of cache activity

Figure 2-57. Configuration Page
VisualDSP++ 3.1 User’s Guide 2-79
for Blackfin Processors

Debugging Windows
The Cache Selection pull-down (top of dialog box) lists cache displays. If
more than one cache is configured, you can use this list to change cache
displays.

The Cache Configuration list box (majority of the dialog box) displays a list
of items and their values. The first three items (Cache Name, Number of
Sets, and Number of Ways) are required. The target may display additional
items, such as Cache Size and Line Size. The list of items depends on the
selection in the Cache Selection pull-down.

Detailed View Page

The Detailed View page (Figure 2-58) displays a grid depicting cache sets
(rows) and cache ways (columns).

Figure 2-58. Detailed View Page
2-80 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
Data received from a cache event is placed in the cell corresponding to the
cache set and way. The most recent events are highlighted.

Each cell has an icon and text entry. The icon indicates the type of cache event
that occurred (hit, miss, and so on). Depending on the objects you choose to
display, you can display details, such as reference address, PC address, cycle
count, event type, event description, and so on.

You can display tooltips showing details for the most recent cache event. The
appearance of a lock icon in the column header indicates that the cache way is
locked.

A reference map icon in the Set # column indicates the results of the reference
mapper function. Double-clicking on a cell switches the display to the history
view (History page) for the selected cell.

History Page

The History page (Figure 2-59) displays detailed information for each cache
event that occurred in the selected set and way. You select the set and way
from the pull-down control or by double-clicking a cell in the Detailed View
page.

Figure 2-59. History Page
VisualDSP++ 3.1 User’s Guide 2-81
for Blackfin Processors

Debugging Windows
You can specify the number of cache events stored. You can sort the rows by
clicking on any particular column heading. An up arrow in a column heading
indicates an ascending sort order, and a down arrow indicates a decending sort
order.

Table 2-24 describes the history information for cache events.

Table 2-24. History Information for Cache Events

Item Description

Index # Shows the order in which the cache events were received.
The index starts at zero and increments each time an event
is received.

Set # Displays the set number where the cache event occurred

Way # Displays the way number where the cache event occurred

Cycle Displays the cycle count when the cache event occurred

PC Address Displays the PC address of the cache event

Ref Address Displays the reference address of the cache event

Symbol Lookup Displays the symbol name when the reference address
resolves to a symbol in memory

Valid Displays the cache line valid flag (Yes or No)

Event Type Displays the cache event type, such as Hit or Miss

Description Displays the cache event’s description
2-82 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
Performance Page

The Performance page (Figure 2-60) shows a list of performance metrics
(items and values), which are determined by the target.

The target updates this list. The update rate, however, is not predetermined.

Figure 2-60. Performance Page
VisualDSP++ 3.1 User’s Guide 2-83
for Blackfin Processors

Debugging Windows
Histogram Page

The Cache Viewer window’s Histogram page (Figure 2-61) shows a plot of
the total number cache events that occurred in each cache set.

A vertical line is displayed for each cache set. The line starts at zero and ends at
the total number of events. Use this plot to identify the most active cache sets.

Figure 2-61. Histogram Page
2-84 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
VDK Status Window

The VDK Status window (Figure 2-62) is available if you enable VDK
support for a project.

When you halt execution of a VDK program, VisualDSP++ reads data for
threads, semaphores, events, event bits, device flags, memory pools and mes-
sages and displays the state and status data in this window.

When one of the above VDK entities is created, it is added to the display. An
entity is removed from the display when it is destroyed.

Figure 2-62. VDK Status Window
VisualDSP++ 3.1 User’s Guide 2-85
for Blackfin Processors

Debugging Windows
Initially, information is displayed in a collapsed state, which shows only the
name of the entity and, in some cases, its current state. When a thread is in the
Ready state, its priority is displayed.

Clicking the plus sign next to the name of an entity expands the view.

The possible thread states are as follows.

• Running

• Ready

• SemaphoreBlocked

• EventBlocked

• DeviceFlagBlocked

• MessageBlocked

• SemaphoreBlockedWithTimeout

• EventBlockedWithTimeout

• DeviceFlagBlockedWithTimeout

• MessageBlockedWithTimeout

• Sleeping

• Unknown

Refer to the VisualDSP++ Kernel (VDK) User’s Guide for details.
2-86 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
VDK State History Window

VDK state history is available only for DSP executables with VDK sup-
port. During execution of a VDK-enabled program, if Full Instrumentation
has been specified for the project, thread and event data are collected in a his-
tory buffer. When you halt a running program, the history buffer data is
plotted in the VDK State History window, described in Figure 2-63. Some
features become available only when the data cursor is enabled.

Figure 2-63. Example of a VDK State History Window
VisualDSP++ 3.1 User’s Guide 2-87
for Blackfin Processors

Debugging Windows
Each thread appears as a horizontal bar (thread status bar). The thread’s name
appears to the left of the bar. When a thread is destroyed, its name no longer
appears. Each thread event appears as an arrow above a thread.

Thread Status and Event Colors

Threads and events are coded by color, based on thread status and event type.
The colors appear in the horizontal bars (threads) and colored arrows (events)
used throughout the plot. Events of the same type are drawn in the same
color.

Right-click on the plot and choose Legend to display legends that define
each color in the VDK State History window. To customize colors,
right-click on the plot and choose Properties.

Trace thread switch history by following the thin green line, which winds
through the display, passing under threads to indicate the running thread at
any particular time. When a context switch occurs and changes the running
thread, a vertical green line is drawn from the previously running thread to the
next running thread.

When you use the data cursor, a yellow triangle to the left of a thread name
identifies the currently running thread.
2-88 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
Window Operations

The state history status bar (bottom of plot) shows the event’s details and
thread status. Event details include the event type, the tick when the event
occurred, and an event value. The value for a thread-switched event indi-
cates the thread being switched in or out.

Right-click on the plot and choose Data Cursor to activate the data cur-
sor, which is used to display event and thread status details. Based on the
event that occurred, the thread status changes. Press the keyboard’s right
arrow key or left arrow key to move to the next or previous event. When
the data cursor hits a thread switch event, it moves to the thread being
switch in. The yellow triangle to the right of the thread name indicates the
currently active thread

You can zoom in on a region to examine that area in more detail. Hold the
left mouse button down while dragging the mouse to create a selection
box. Then release the mouse button to expand the plot. To restore the
plot to its original scale, right-click on the plot and choose Reset Zoom.

Right-Click Menu

The VDK State History window’s right-click menu provides easy access
to operations you can perform from the state history plot.
VisualDSP++ 3.1 User’s Guide 2-89
for Blackfin Processors

Debugging Windows
Target Load Window

Clicking the Target Load tab from the VDK State History window dis-
plays the Target Load window. A target load plot (Figure 2-64) shows the
percentage of time that the target spent in the idle thread.

A load of 0% indicates that VDK spent all of its time in the idle thread. A
load of 100% indicates that the target did not spend any time in the idle
thread.

Load data is processed by means of a moving window average.

Figure 2-64. Example Target Load Window
2-90 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
About Debugging Windows

This section describes useful information about debugging windows.

Editor Window Features

An editor window provides:

• Status icons

• Expression evaluation

• Two view formats (source mode or mixed mode)

Syntax Coloring

Specify colors to help you locate information in the types of files listed in
Table 2-25.

Table 2-25. File Types That Support Syntax Coloring

File Type File Extension

Assembly .ASM

C .C

Linker Description Files .LDF

C++ .CPP

Header .H

Tool Command Language .Tcl
VisualDSP++ 3.1 User’s Guide 2-91
for Blackfin Processors

Debugging Windows
Right-Click Menu

The editor window’s right-click menu provides the commands shown in
Figure 2-65.

Note the following.

• The available number formats under Select Format are
DSP-dependent.

• An additional command, Source Tcl Script, is available when you
are editing a Tcl script.

Figure 2-65. Editor Window’s Right-Click Menu
2-92 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
Editor Window Symbols

The editor window’s gutter (left margin) displays icons that indicate
breakpoints, bookmarks, and the current position of the program counter
(PC). Table 2-26 describes these icons.

Bookmarks

Bookmarks are pointers in editor windows. You bookmark a location to
return to it quickly later.

Context-Sensitive Expression Evaluation

You can evaluate an expression in an editor window only if your .DXE pro-
gram is loaded for debugging.

As you move the mouse pointer over a variable, with the pointer still on
top of the variable, VisualDSP++ evaluates the variable. If the variable is
in scope, the value appears in a tool tip window.

Table 2-26. Editor Window Symbols

Symbol Indicates

The current source line to be executed (PC
location)

An enabled breakpoint

A disabled breakpoint

A bookmark
VisualDSP++ 3.1 User’s Guide 2-93
for Blackfin Processors

Debugging Windows
Viewing an Expression

You can view an expression in different ways.

When the editor window is in mixed mode, you can view an expression by
moving the pointer over a register in an assembly instruction. The register
contents are displayed in a tool tip.

Highlighting an Expression

You can highlight an expression in the editor window and then move the
pointer on top of the highlighted expression to display its value in a tool
tip.

Source Mode vs. Mixed Mode

You can specify an editor window’s display format. Your two options are
source mode and mixed mode.

Source Mode

Source mode, shown in Figure 2-66, displays C code only.

Figure 2-66. Editor Window in Source Mode Format
2-94 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
Mixed Mode

Mixed mode displays the assembled code after the line of the correspond-
ing C code. The assembly code takes a specified color.

Note:

• You must compile the source file with debugging information to
view the source file in mixed mode.

• You can enable and disable the display of pipeline symbols while in
mixed mode.

Figure 2-67 shows an example of the mixed mode format.

Figure 2-67. Editor Window in Mixed Mode
VisualDSP++ 3.1 User’s Guide 2-95
for Blackfin Processors

Debugging Windows
Expressions in an Expressions Window

Table 2-27 describes the types of expressions that you can enter in an
Expressions window.

About Expressions

The Expressions window displays the current value of each expression as
you step through your program. Expressions are evaluated based on the
current debug context.

For example, if you enter expression “a” and a global variable “a” exists,
you see its value. If you then step into a function that has local variable
“a”, you see the local value until the debug context leaves the function.
When a variable goes out of context, a string displays next to the variable
to inform you that the variable is out of context.

The expressions described above are C expressions. The current syntax
also allows you to use registers in expressions. For example, the following
is a valid expression.

$R0 + $I0

Register expressions and C expressions can be mixed in an expression.

Table 2-27. Types of Expressions Allowed in an Expressions Window

Expression Description

Memory address Precede memory identifiers with a $ sign, for
example: $dm(0xF0000000)

Register expression Precede register names with a $ sign, for example: $r0,
$r1, $ipend, $po, or $imask

C/C++ statements Use standard C/C++ arithmetic and logical operators.
2-96 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
Register expressions follow these rules:

• Precede register names with a $ character.

• Register names can be uppercase or lowercase characters.

• Registers have no context. A register expression always evaluates to
the current value of the register.

Number Formats

You can select the number format used to display a particular register win-
dow or memory window. The available number formats, which depend on
your DSP family, can include the following.

Figure 2-68. Available Number Formats
VisualDSP++ 3.1 User’s Guide 2-97
for Blackfin Processors

Debugging Windows
The following windows are examples of different number formats.

The window in Figure 2-69 appears in hexadecimal format.

The window in Figure 2-70 appears in octal format.

Figure 2-69. Memory Window in Hex Format

Figure 2-70. Memory Window in Octal Format
2-98 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
The window in Figure 2-71 appears in binary format.

The window in Figure 2-72 appears in signed integer format.

Figure 2-71. Data Register Window in Binary Format

Figure 2-72. Data Register Window in Signed Integer Format
VisualDSP++ 3.1 User’s Guide 2-99
for Blackfin Processors

Debugging Windows
Plot Windows

Use a plot window to display a plot, which is a visualization of values
obtained from DSP memory. You can display one or multiple plot
windows.

Figure 2-73 shows an example of a plot in a plot window.

You specify the contents and presentation of the plot. You can modify a
plot’s configuration and immediately view the revised plot.

From a plot window, you can zoom in on a potion of a plot or view the
values of a data point.

You can print a plot, save the plot image to a file, or save the plot’s data to
a file. For details, refer to the online Help in VisualDSP++.

Figure 2-73. Example of a Plot Window
2-100 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
Plot Window Features

Plot windows include a status bar and a right-click menu.

Status Bar

The status bar, located at the bottom of the plot window, displays the plot
type and other information, depending on the plot type and other
settings.

The following examples show different plot information displayed on the
status bar.

In a waterfall plot, the status bar indicates the azimuth and elevation view-
ing angles. If you zoom in on a region, the status bar indicates that zoom
is enabled. When you use the data cursor, the status bar shows the selected
point’s data value.

Figure 2-74. Examples of Status Bar Information for Plots
VisualDSP++ 3.1 User’s Guide 2-101
for Blackfin Processors

Debugging Windows
Right-Click Menu

The plot window’s right-click menu is shown in Figure 2-75.

This menu provides access to the standard window options (docking, clos-
ing, and floating in the main window) and to the plot window features
described in Table 2-28 on page 2-103.

Figure 2-75. Plot Window’s Right-Click Menu
2-102 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
Table 2-28. Plot Window Operations

Feature Description

Data cursor position You can move the plot window’s data cursor over a
data point and view the point’s memory data value in
the left side of the plot window’s status bar. Use the
keyboard’s arrow keys to move around on the graph.

Zooming You can zoom in to view a specified region of the
plot. You can also reset the plot window to its initial
full-scale display.

Plot configuration From the plot window, you can access the Plot Con-
figuration dialog box, from which to add, remove, or
modify data sets. You can also change the plot type
and rename the plot.

Settings modification You can customize the plot’s appearance. You can
specify settings for the plot (grids, colors, margins,
fonts, axes, and so on), and you can specify settings
for each data set (data processing).

Settings storage and
retrieval

You can save plot configuration settings for future
use. Plot settings are stored, but the data is not
stored. You can retrieve settings (.VPS file) and load
new plot data.

Export You can export the plot image to various destinations,
including the Windows clipboard. Save the plot
image as a file (JPG, GIF, TIF, EPS, TXT, or DAT
format) or print a hard copy.
VisualDSP++ 3.1 User’s Guide 2-103
for Blackfin Processors

Debugging Windows
Plot Window Statistics

You can view various statistics (mean, standard deviation, signal-to-noise ratio
(SNR), minimum data value, and maximum data value) while displaying a
plot. Note that statistics apply only to the portion of data that is visible. When
the plot is zoomed, the statistics are re-calculated only for the visible area.

Figure 2-76 shows statistics displayed for a portion of audio data.

For details about viewing statistics, refer to the VisualDSP++ online Help.

Figure 2-76. Statistics Displayed for a Portion of Audio Data
2-104 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
Plot Configuration

A plot configuration comprises two parts:

• Data values

• Presentation (configuration) settings

You create data sets and configure the data for each data set. A data set is a
series of data values in DSP memory. You specify the memory location,
the number of values, and other options that identify the data. 3-D plots
require additional specifications for row and column counts.

VisualDSP++ offers many plot presentation options. You choose the type
of plot (for example, waterfall) and the axis associated with each data set.
You configure options for titles, grids, fonts, colors, and axis presentation.

You can recall a plot from saved settings. You must identify the settings
(.VPS file) to be used. VisualDSP++ uses these settings and reads DSP
memory to generate and display a plot in a plot window.
VisualDSP++ 3.1 User’s Guide 2-105
for Blackfin Processors

Debugging Windows
Plot Window Presentation

You can customize the presentation of a plot window to fit your needs.
You configure presentation settings from the Plot Setting dialog box,
which you invoke as follows.

• Right-click from within a plot window

• Click the Settings button from in Plot Configuration dialog box

The Plot Settings dialog box provides the tabs shown in Figure 2-77.

Options on the tab pages enable you to configure the plot window’s pre-
sentation. On the Style page, for example, you can easily specify symbols
for a data set as well as line type and width, as shown in Figure 2-78.

Figure 2-77. Tabs in the Plot Setting Dialog Box

Figure 2-78. Line Styles
2-106 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
In addition to the many presentation options, you can select a rectangular
area, as shown in Figure 2-79, and zoom in on it.

Figure 2-79. Zooming In on a Selected Area
VisualDSP++ 3.1 User’s Guide 2-107
for Blackfin Processors

Debugging Windows
Plot Presentation Options

You can configure a plot’s presentation. Depending on the type of plot,
many options are available.

In the Plot Settings dialog box, these options are grouped by function on
tabbed pages, described in Table 2-29.

You can specify a plot’s presentation options before you generate the plot
(while configuring the plot), or you can specify plot options after generat-
ing the plot.

Table 2-29. Plot Settings Options by Page

Page Options That You Can Specify

General Title and subtitle, grid lines, margins, background
colors, and legend

2-D Axis For X-axis and Y-axis: axis titles, start and incre-
ment values, scales

3-D Axis For X-axis, Y-axis, and Z-axis: axis titles, Z-axis
settings, step sizes, scale multipliers, color and
mesh

Font Font name, color, and size

Style For a data set: line type, width, color; symbol and
type

Data Processing For a data set: data processing algorithm, sample
rate, number of stored traces, and triggering
2-108 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
Image Viewer

The VisualDSP++ Image Viewer window enables you to perform these
operations:

• View an image. You can display BMP, JPEG, PPM, or MPEG data
from DSP memory or from a file on your PC.

• Correct the gamma attributes of an image. For a color image, you can
adjust the red, green, and blue pixel values. On a grayscale image, you
can adjust darkness only.

• Copy an image to the Windows clipboard

• Print an image or save it to a file

• Export an Image

You select the image source (from DSP memory or a file on your PC) and
specify image attributes. If the image is located in DSP memory, you must
specify the image’s address, size, and format.
VisualDSP++ 3.1 User’s Guide 2-109
for Blackfin Processors

Debugging Windows
The Image Viewer window, shown in Figure 2-80, renders the image and
provides scroll bars and buttons for zooming in and out.

As you move the mouse over the image, the status bar indicates:

• DSP address where the selected pixel is located

• Red, green, and blue (RGB) pixel values

• Pixel coordinates (column and row)

Pixel color depth is 24 bits for color images and 8 bits for grayscale
images.

Figure 2-80. Image Viewer Window
2-110 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
Right-Click Menu

Figure 2-81 shows the Image Viewer window’s right-click menu.

Table 2-30 describes the menu commands.

Figure 2-81. Image Viewer Window’s Right-Click Menu

Table 2-30. Right-Click Menu Commands

Command Purpose

Configure Opens the Image Configuration dialog box, from which
you can specify image attributes

Update Now Reads the image data from DSP memory

Reset Zoom Displays the image in its original size

Export Opens the Export Image dialog box, from which you can
copy or print the image

Gamma
Adjust

Opens the Gamma Correction dialog box, from which
you can adjust image color
VisualDSP++ 3.1 User’s Guide 2-111
for Blackfin Processors

Debugging Windows
Image Configuration Dialog Box

When using the Image Viewer, you must configure specifications for the
image. Table 2-31 describes the buttons and fields in the Image Configura-
tion dialog box.

Play Video Plays an MPEG video clip

Stop Video Ends the playing of a video clip

Table 2-31. Buttons and Fields in the Image Configuration Dialog Box

Item Purpose

DSP Memory Specifies Image or Video

File Specifies a file on your PC. You then specify the file name
and path. Clicking Browse opens the Select Image Import
File dialog box, from which you navigate to the file.

Memory selection Specifies the memory

Image start address (hex) Specifies the first location of the image data

Horizontal pixels Specifies the number of horizontal pixels

Vertical pixels Specifies the number of vertical pixels

Bits per pixel Specifies the number of bits per pixel. For color images,
only 24 bits per pixel are currently allowed. For grayscale
images, only 8 bits per pixel are currently allowed.

Stride Specifies the skip count. The default is one.

Image format Specifies the format (RGB or Gray Scale)

Video bytes Specifies the number of bytes (video images only)

Table 2-30. Right-Click Menu Commands (Cont’d)

Command Purpose
2-112 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Environment
Gamma Correction Dialog Box

When using the Image Viewer, you can adjust the image gamma. For color
images, you can adjust red, green, and blue independently or in tandem. For
grayscale images, you can only adjust the black-white balance.

Table 2-32 describes the buttons and fields in the Gamma Correction dialog
box.

Table 2-32. Buttons and Fields in the Gamma Correction Dialog Box

Item Purpose

Red Specifies the red value

Green Specifies the green value

Blue Specifies the blue value

Link Adjusts the red, green, and blue values at the same time
(not for video images)

Gray Specifies the black value (grayscale images only)
VisualDSP++ 3.1 User’s Guide 2-113
for Blackfin Processors

Debugging Windows
Export Image Dialog Box

When using the Image Viewer, you can export an image to the Windows clip-
board, a file, or to the printer.

The Export Image dialog box contains the buttons and fields described in
Table 2-33.

Table 2-33. Buttons and Fields in the Export Image Dialog Box

Item Purpose

Clipboard Copies the image to the Windows clipboard

File Specifies a file name and path. The file name and path
appear in the text box.

Click Browse to navigate your system.

Printer Sends the image to the default printer
2-114 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

3 DEBUGGING

This chapter describes VisualDSP++ debugging tools that you use during

single-processor and multiprocessor debug sessions. The topics are orga-
nized as follows.

• “Debug Sessions” on page 3-2

• “Code Analysis Tools” on page 3-4

• “Program Execution Operations” on page 3-7

• “Simulation Tools” on page 3-12

• “Image Viewer” on page 3-13

• “Plots” on page 3-14

• “Flash Programmer” on page 3-22
VisualDSP++ 3.1 User’s Guide 3-1
for Blackfin Processors

Debug Sessions
Debug Sessions

You run the DSP projects that you develop as sessions (debug sessions).

A session is defined by the elements described in Table 3-1.

When you set up a session, you set the focus on a series of more specific
elements.

The target platform and processor settings specify the debug session. A
default session name is automatically generated. You can further identify
the session by modifying the default name, choosing a more meaningful
name.

 A well-chosen name can prevent confusion later.

Table 3-1. Specifying a Debug Session

Element Description

Debug target The debug target is the software module that controls a
type of debug target (a simulator or emulator).
The simulator is software that mimics the behavior of a
DSP chip. Simulators are used to test and debug proces-
sor code before a DSP chip is manufactured.
An emulator is software that “talks” to a hardware board
that contains one or more actual DSP chips.

Platform For a given debug target, several platforms may exist. For
a simulator, the platform defaults to the identically
named DSP simulator. When the debug target is an
EZ-ICE® board, the platform is the board in the system
on which you want to focus. When the debug target is a
JTAG emulator, the platforms are the individual JTAG
chains.

Processor Multiple processors can exist for a given debug target and
platform. When you create an executable file, the proces-
sor is specified by the Linker Description File (.LDF) and
other source files.
3-2 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Debugging
Debug Session Management

You can run several debug sessions at once and can dynamically switch
between sessions.

You typically run multiple debug sessions to write different versions of
your program to compare their operating efficiencies. Another reason for
running multiple sessions is to debug completely different programs with-
out having to run multiple instances of VisualDSP++.

Simulation vs. Emulation

When connected to a simulator session, you may open as many sessions as
your system’s memory can handle.

When connected to actual hardware through an emulator, you can have
only one debug session connected to one emulator at any time. If multiple
emulators are installed and are connected to multiple target boards, one
debug session may be connected to each individual emulator.

When connected to a JTAG emulator, one debug session only may
be connected to each physical target/emulator combination. Other-
wise, contention issues may arise. Upon switching to a different
session, VisualDSP++ detaches from the old session before attach-
ing to the new session.

Breakpoints

You can set breakpoints in your executable program. A breakpoint may be
set at any address in program memory. Program execution halts at the
address at which the breakpoint is located.

 In addition to software breakpoints, you may also use hardware
breakpoints in an emulator debug session.
VisualDSP++ 3.1 User’s Guide 3-3
for Blackfin Processors

Code Analysis Tools
Watchpoints

Watchpoints are like breakpoints. Watchpoints, however, trap on a speci-
fied condition.

You can set watchpoints on registers, stacks, and memory ranges. When
the condition is reached, program execution halts and all windows update.

 Watchpoints are available during simulation only.

Code Analysis Tools

You use code analysis tools to examine your code’s behavior and locate
areas that may be optimized for better performance.

VisualDSP++ provides these code analysis tools:

• Statistical profiles and linear profiles

• DSP memory plots

Statistical Profiling and Linear Profiling

VisualDSP++ provides two profiling methods that measure program per-
formance by sampling the target’s Program Counter (PC) register to
collect data. During program development you use linear profiling with
simulator targets, and you use statistical profiling with emulator targets.

The Linear Profiling Results window and Statistical Profiling Results
window display the data collected by these two profiling methods and
indicate where the application is spending its time.

The window’s title (Linear Profiling Results or Statistical Profiling
Results) depends on whether this tool is used during simulation or
emulation.
3-4 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Debugging
Simulation

Linear profiling with the simulator is not statistical because the simulator
samples every PC executed. This feature provides an accurate and com-
plete picture of what was executed in your program.

Linear profiling is much slower than statistical profiling. Simulator targets
support linear profiling but do not support statistical profiling.

Emulation

A statistical profile measures the performance of a DSP program by sam-
pling the target’s PC register at random intervals while the target is
running the DSP program. The areas of the program where most of the
PCs are concentrated are where most of the time is spent in executing the
program.

Statistical profiling provides a more generalized form of profiling that is
well suited to JTAG emulator debug targets. Emulator targets do not sup-
port linear profiling.

JTAG sampling is completely non-intrusive, so the process does not incur
additional runtime overhead.
VisualDSP++ 3.1 User’s Guide 3-5
for Blackfin Processors

Code Analysis Tools
DSP Memory Plots

You can display DSP memory as a plot in a plot window, as shown in
Figure 3-1.

You can visualize the DSP memory data and process it by using a data
processing algorithm. You can choose from multiple plot types and can
specify the plot’s data and presentation.

You can modify a plot’s configuration and immediately view the revised
plot. From a plot window, you can zoom in on a portion of a plot or view
the values of a data point. You can print a plot, save the plot image to a
file, or save the plot’s data to a file.

Figure 3-1. Example Plot Window Displaying DSP Memory
3-6 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Debugging
Program Execution Operations

When you start up VisualDSP++, by default, it attaches to the previous ses-
sion. You can override this behavior, and instead, force VisualDSP++ to start a
new session.

When you load and run your program, use VisualDSP++ features to step,
break, and halt the program.

Selecting a New Debug Session at Startup

If you had a problem, such as a corrupted workspace, in your last debug ses-
sion, use the following procedure to force a fresh session at startup.

Note: VisualDSP++ must be closed before performing the following
procedure.

1. Hold down the keyboard’s Ctrl key.

Do not release the Ctrl key until the Session List dialog box appears,
as described in the next step.

2. Invoke VisualDSP++ as you normally do.

Typical methods include the using the Windows Start button
sequences, clicking desktop icons, or using Windows Explorer.

The Session List dialog box appears.

3. Specify and activate a debug session.

If you launch VisualDSP++ in stand-alone mode, ensure that the
session is configured correctly before you load your program.
VisualDSP++ 3.1 User’s Guide 3-7
for Blackfin Processors

Program Execution Operations
Loading the DSP Executable Program

Once you specify the debug session, you can begin the session by loading
the DSP executable program.

After a successful build of the target executable, VisualDSP++, if config-
ured, loads the executable automatically to the current session when the
session processor type matches the project’s processor. When the current
session processor does not match the project’s processor type, you are
prompted to choose another session.

If automatic load is not configured, VisualDSP++ does not try to load the
executable automatically after a successful build.

 The target must be an executable (.DXE) file.

This debugging feature saves time, as you do not have to load the execut-
able target manually, and you can start to debug right after a successful
build of the project.

Using Program Execution Commands

You can run program execution commands from the Debug menu or by
clicking toolbar buttons.

Executable files run until an event such as a breakpoint, watchpoint, or
user-issued Halt command stops execution. When program execution
halts, all windows are updated to current addresses and values.

Use the commands described in Table 3-2 on page 3-9 to control program
execution.
3-8 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Debugging
Restarting the Program

You can set the Program Counter to the first address of the interrupt vec-
tor table.

Performing a Restart during Simulation

In the simulator, restart works like a reset; however, the target’s memory
does not change. All registers are reset to their initial values.

Memory is not reset. Thus, C and assembly global variables are not
reset to their original values. Your program may behave differently
after a restart. To re-initialize these values, reload your .DXE file.

Table 3-2. Commands Used to Control Program Execution

Command Description

Run Runs an executable. The program runs until an event stops it, such
as a breakpoint or user intervention. When program execution
halts, all windows update to current addresses and values.

Halt Stops program execution. All windows are updated after the pro-
cessor halts. Register values that have changed are highlighted, and
the status bar displays the address where the program halted.

Run to Cursor Runs the program to the line where you left your cursor. You can
place the cursor in editor windows and Disassembly windows.

Step Over (C/C++ code only in an editor window) Single steps forward
through program instructions. If the source line calls a function,
the function executes completely, without stepping through the
function instructions.

Step Into (editor window or Disassembly window) Single steps through the
program one C/C++ or assembly instruction at a time. Encoun-
tered functions are entered.

Step Out Of (C/C++ code only in an editor window) Performs multiple steps
until the current function returns to its caller, and stops at the
instruction immediately following the call to the function.
VisualDSP++ 3.1 User’s Guide 3-9
for Blackfin Processors

Program Execution Operations
Performing a Restart during Emulation

In the emulator, restart works exactly like a reset. Only registers with
default reset values are affected. All other registers remain unchanged.

Using Breakpoints

An enabled breakpoint halts program execution at a specific instruction or
address. You can enable and disable breakpoints as well as add and delete
breakpoints.

A disabled breakpoint is set up, but not turned on. A disabled breakpoint
does not stop program execution. It is dormant and may be used later.

A break occurs when the conditions that you specify are met.

 You can quickly place an unconditional breakpoint at an address in a Dis-
assembly window or editor window by using one of these options:

• Select the address and click the Toggle Breakpoint button .

• Double-click on the line in the Disassembly or editor window.

Symbols in the left margin of a Disassembly window or editor window
indicate breakpoint status, as shown in Table 3-3.

Table 3-3. Breakpoint Status Symbols

Symbol Indicates

An enabled (set) breakpoint

A disabled breakpoint (recognized, but cleared)
3-10 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Debugging
Using Unconditional and Conditional Breakpoints

You can configure a breakpoint to occur when the Program Counter
reaches a specific address. This type of breakpoint is an unconditional
breakpoint, because it occurs when it is reached.

You can configure a breakpoint to occur when various conditions (crite-
ria) are met. This type is called a conditional breakpoint. The conditions
may include:

• A user-defined expression that must evaluate to TRUE

• A skip (count) that specifies the number of times to skip over the
breakpoint before finally halting

If both an expression and skip are set, execution stops when the break-
point is reached “n” times when the expression is TRUE, where n
represents the skip count. When the expression is empty, execution stops
when the breakpoint is reached “n” times.

Using Watchpoints

Similar to breakpoints, watchpoints stop program execution when
user-specified conditions are satisfied. Watchpoints, however, allow you to
set a condition such as a memory read or stack pop, to halt events.

 You can use watchpoints only during simulation.

Watchpoints, unlike breakpoints, are not attached to a specific address. A
watchpoint halts anywhere in your program once the watchpoint condi-
tions are satisfied.
VisualDSP++ 3.1 User’s Guide 3-11
for Blackfin Processors

Simulation Tools
Simulation Tools

Before you even have the processor, you can use interrupts and data
streams within VisualDSP++ to simulate the processor’s behavior.

Interrupts

Use interrupts to simulate external interrupts in your program. When you
use interrupts with watchpoints and streams, your program simulates real
world operation of your DSP system.

Input/Output Simulation (Data Streams)

In many products, processors exist as part of a larger system where they
can act as a host or a slave. They can drive other devices or take part in
processing a subset of data. Because of their extensive I/O capabilities,
Analog Devices processors excel in these roles.

You can use data streams to transmit data between:

• A device and a file

• A device and a device

• A device in one processor and a device in another processor in a multi-
processor system
3-12 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Debugging
Image Viewer

The VisualDSP++ Image Viewer enables you to perform these operations:

• View an image. You can display BMP, JPEG, PPM, or MPEG data
from DSP memory or from a file on your PC.

• Correct the gamma attributes of an image. For a color image, you can
adjust the red, green, and blue pixel values. On a grayscale image, you
can adjust darkness only.

• Copy an image to the Windows clipboard

• Print an image or save it to a file

• Export an Image

You select the image source (from DSP memory or a file on your PC) and
specify image attributes. If the image is located in DSP memory, you must
specify the image’s address, size, and format.

For more information about Image Viewer, see “Image Viewer” in
Chapter 2, Environment.
VisualDSP++ 3.1 User’s Guide 3-13
for Blackfin Processors

Plots
Plots

VisualDSP++’s data plotting capability helps you to visualize data in the
processor’s memory.

Plot Types

You specify a plot as one of the plot types described in Table 3-4.

The X, Y, and Z values are read from processor memory.

Table 3-4. Available Plot Types

Plot Type Description Requires

Line plot Displays points connected
by a line

Y value for each data point

X-Y plot Similar to a line plot, but
also uses X-axis data

X value and Y value for
each data point

Constellation plot Displays a symbol at each
data point

X value and Y value for
each data point

Eye diagram Typically used to show the
stability of a time-based
signal

Y value for each data point

Waterfall 3-D plot typically used to
show the change in fre-
quency content of signal
over time

Z value for each data point

Spectrogram plot 2-D plot displays ampli-
tude data as a color inten-
sity

Z value for each data point
3-14 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Debugging
Line Plots

A line plot (shown in Figure 3-2) displays a range of processor memory
values connected by a line. The values read from processor memory are
assigned to the Y-axis. The corresponding X-axis values are automatically
generated.

You can plot multiple data sets on a single graph.

Figure 3-2. Line Plot Example
VisualDSP++ 3.1 User’s Guide 3-15
for Blackfin Processors

Plots
X-Y Plots

An X-Y plot (shown in Figure 3-3) requires an X value and a Y value for
each data point. Unlike a line plot, an X-Y plot requires the X-axis data.

The X data and Y data are specified separately in a user-defined memory
location. The number of X and Y points must be equal.

Figure 3-3. X-Y Plot Example
3-16 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Debugging
Constellation Plots

A constellation plot (shown in Figure 3-4) displays a symbol at each (X,Y)
data point.

The X and Y data are specified separately in a user-defined processor
memory location. The number of X and Y points must be equal.

Figure 3-4. Constellation Plot Example
VisualDSP++ 3.1 User’s Guide 3-17
for Blackfin Processors

Plots
Eye Diagrams

An eye diagram plot (shown in Figure 3-5) is typically used to show the
stability of a time-based signal. The more defined the eye shape, the more
stable the signal.

This plot works like a storage oscilloscope by displaying an overlapped his-
tory of a time signal. The eye diagram plot processes the input data and
optionally looks for a threshold crossing point (default is 0.0). A trace is
plotted when the threshold crossing is reached. Plotting continues for the
remainder of the trace data.

When a breakpoint occurs (or a step is performed), the plot data is
updated and a new trace is plotted. The eye diagram uses a data shifting
technique that stores the desired number of traces in a plot buffer (default
is ten traces). When the number of traces is exceeded, the first trace shifts
out of the buffer and the new trace shifts into the last buffer location. This
technique is referred to as first in, first out (FIFO).

You can modify options for threshold value, rising trigger, falling trigger,
and the number of overlapping traces.

Figure 3-5. Eye Diagram Plot Example
3-18 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Debugging
Waterfall Plots

A waterfall plot (shown in Figure 3-6) is typically used to show the change
in frequency content of signal over time.

The plot comprises multiple line plot traces in a 3-D view. Each line plot
trace represents a slice of the waterfall plot.

The easiest way to create a waterfall plot is to define a 2-D array in C code
(a grid). The first array dimension is the number of rows in the grid, and
the second dimension is the number of columns in the grid. The number
of columns is equal to the number of data points in each line trace.

Figure 3-6. Waterfall Plot Example
VisualDSP++ 3.1 User’s Guide 3-19
for Blackfin Processors

Plots
A time-based signal is sampled at a predefined sampling rate and stored as
a slice in the grid (row 0, columns 0 through N).

The next time signal is sampled and stored (in row 1, columns 0 through
N). This process continues until all the rows are filled.

By default, an FFT performed on each slice results in a frequency output
display. You can use a color map on the 3-D Axis page of Color Settings
dialog box to enhance the display. Each color corresponds to a range of
amplitude values.

The plot output displays a legend showing each color and associated range
of values.

You can rotate the waterfall plot to any desired azimuth and elevation by
using the keyboard’s arrow keys.

Figure 3-7. Grid of Sampled Data
3-20 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Debugging
Spectrogram Plots

A spectrogram plot (shown in Figure 3-8) displays the same data as a 3-D
waterfall plot, except in a 2-D format.

Each (X,Y) location displays as a color representing the amplitude of the
data. By default, an FFT performed on each slice results in a frequency
output display. A legend displays the colors and associated range of values.

Figure 3-8. Spectrogram Plot Example
VisualDSP++ 3.1 User’s Guide 3-21
for Blackfin Processors

Flash Programmer
Flash Programmer

The VisualDSP++ Flash Programmer provides a convenient, generic interface
to numerous processors and flash memory devices. This utility simplifies the
process of changing data values on a flash device and modifying its memory.
You no longer have to remove the flash memory from the board, use a separate
Flash Programmer, and then replace the flash.

Flash Devices

Flash memory parts are non-volatile memories that can be read, programmed,
and erased. In most applications, flash devices store:

• Boot code that the processor loads at startup

• Data that must persist over time and through the loss of power

Flash device programming is typically performed with a device programmer at
the factory or by the application developer. When a flash device is wired
appropriately to the processor, you can use the processor to program the flash
device.

Flash Programmer Functions

Use the Flash Programmer to:

• Load a flash algorithm (driver) program onto the processor at any time

• Obtain the flash manufacturer and device codes

• Reset the flash

• Program the flash from an Intel Hex data file

• Fill portions of flash memory with a value and quickly “punch-in” data

• Erase the entire flash
3-22 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Debugging
• Erase a single sector

• Send custom commands to the driver for batch processes or
user-defined behavior

The utility stores the most recently used information in the registry for
retrieval when the utility is next started up, and a status indicator shows the
utility’s current state.

Flash Driver

To use the Flash Programmer utility, you must first load a flash driver onto the
processor. The driver is a DSP application that interfaces with the Flash Pro-
grammer and performs all the interaction with the flash device. Analog
Devices supplies sample drivers for use on certain EZ-KIT Lite™ evaluation
systems.

Flash Programmer Window

Figure 3-9 on page 3-24 shows the Flash Programmer window.
VisualDSP++ 3.1 User’s Guide 3-23
for Blackfin Processors

Flash Programmer
Figure 3-9. Flash Programmer Window
3-24 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Debugging
Table 3-5 describes the fields and buttons in the Flash Programmer window.

Table 3-5. Flash Programmer Window Controls

Control Description

Driver File Specifies the path and name of the driver file. Type the path
and file name or browse to select the driver.

Load Driver Loads the specified driver onto the processor

Man. Code the flash memory’s manufacturer code. You must first load
the driver to view this data.

Device Code Displays the flash memory’s device code. You must first
load the driver to view this data.

Part Description Displays the flash memory’s part description. You must first
load the driver to view this data.

Status Displays the utility’s current status

Red – The utility is not ready. You must load a driver.

Green – The utility is ready to process a command.

Yellow – The utility is busy processing a command.

Data File Specifies the data file. Type the path and file name or
browse to select the file.

Note: Only valid Intel Hex files may be used. The Visu-
alDSP++ loader produces files in this format.

Load File Loads the specified data file onto the flash memory device

Advanced Enables advanced features.
When selected, the fields and buttons below it are enabled.
When cleared, the fields and button are disabled (grayed
out).

Start Address Specifies the offset into the flash memory device

Value Specifies the data value to be written

Count Specifies the number of locations to be written
VisualDSP++ 3.1 User’s Guide 3-25
for Blackfin Processors

Flash Programmer
Stride Specifies the number of locations to skip between each
write. Typically, this is 0x1. 0x2 specifies every other loca-
tion.

Fill Flash Loads the specified data value onto flash memory device

Sector Specifies a single sector (or block) to be erased

Erase Sector Erases the specified sector from the flash device

Erase All Erases the flash device’s entire memory

Reset Flash Resets the internal state of the flash device and places it into
read mode without modifying its contents

Command Specifies the custom command to be run

Send Sends the specified custom command to the driver. The
value entered in Command is interpreted as a hexadecimal
value; for example, 10 is interpreted as 10 hexadecimal or
16 decimal.

Table 3-5. Flash Programmer Window Controls (Cont’d)

Control Description
3-26 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

A REFERENCE INFORMATION

This appendix contains a collection of useful information to help you

understand VisualDSP++ and speed up DSP program development. The
information is organized as follows.

• “Glossary” on page A-2

• “File Types” on page A-21

• “Keyboard Shortcuts” on page A-23

• “IDDE Command Line Parameters” on page A-29

• “Extensive Scripting” on page A-30

• “Toolbar Buttons” on page A-33

• “Text Operations” on page A-37
VisualDSP++ 3.1 User’s Guide A-1
for Blackfin Processors

Glossary
Glossary

The following terms are important toward understanding VisualDSP++.

Application Programming Interface (API)

A library of C/C++ functions and assembly macros that define
VDK services. These services are essential for kernel-based applica-
tion programs. The services include interrupt handling, thread
management, and semaphore management, among other services.

Archiver

The VisualDSP++ archiver, elfar.exe, combines object files
(.DOJ) into library files (.DLB), which serve as a reusable resource
for project development. The linker searches library files for rou-
tines (library members) that are referred toby other objects, and
links them in your executable program.

Breakpoint

User-defined halt in an executable program. Toggle breakpoints
(turn them on or off) by double-clicking on a location in a Disas-
sembly window or editor window.

Break condition

Hardware condition under which the target breaks and returns
control of the target back to the user. For example, a break condi-
tion could be set up to occur when address 0x8000 is read from or
written to.
A-2 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Reference Information
Build

Performing a build (or project build) refers to the operations (pre-
processing, assembling, and linking) that VisualDSP++ performs
on projects and files. During a build, VisualDSP++ processes the
files in your project that have been modified (or depend on files
that have been modified) since the previous build. A build differs
from a rebuild all. During a rebuild all, VisualDSP++ processes all
the files in the project, regardless whether they have been modified.

Build type

Replaced by “configuration.”

Channel

A FIFO queue into which messages sent to a thread are placed.
Each thread has 15 channels with messages being received in prior-
ity order from the lowest numbered channel to the highest.

Configuration

(or project configuration) You develop a project in stages (configu-
rations). By default, a project includes two configurations: Debug
and Release. A configuration refers to the collection of options
(tool chain and individual options for files) specified for the config-
uration. You can add a configuration to your project at any time.
You can delete a customized configuration that you created, but
you cannot delete the Debug or Release configurations.

Context switch

A process of saving/restoring the processor’s state. The scheduler
performs the context switch in response to the system change.

A hardware interrupt can occur and change the state of the system
at any time. Once the processor’s state has changed, the currently
running thread may be swapped with a higher-priority thread.
VisualDSP++ 3.1 User’s Guide A-3
for Blackfin Processors

Glossary
When the kernel switches threads, the entire processor’s state is
saved and the processor’s state for the thread being switched in is
restored. This process is known as a context switch.

Critical region

A sequence of instructions whose execution cannot be interrupted
or swapped out. Suspending all interrupt service routines (ISRs)
before calling the critical region ensures that the execution of a crit-
ical region is not interrupted. Once the critical region routine has
been completed, ISRs are enabled.

Current directory

Directory in which the .DPJ file is saved. The build tools use the
current directory for all relative file path searches. See also “Default
directories.”

Data set

A series of data values in DSP memory used as input to a plot. You
can create data sets and configure the data for each data set. You
specify the memory location, the number of values, and other
options that identify the data. 3-D plots require additional specifi-
cations for row and column counts.

Debug configuration

For a debug configuration, you can accept the default options, or
you can specify the options you want and save them. The configu-
ration refers to the specified options for all the tools in the tool
chain. See also “Configuration.”
A-4 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Reference Information
Debug session

The combination of a target and a platform. For example, a session
can be a JTAG emulator target connected to a platform consisting
of five ADSP-BF535s. Another example of a debug session is an
ADSP-BF535 EZ-KIT Lite target connected to an ADSP-BF535
EZ-KIT Lite board.

The DSP projects you develop are run as debug sessions. The two
types of sessions are hardware and software. The processor, target,
and platform define the session. When you set up a session, you set
the focus on a series of more specific elements.

Debug target

The communication channel between VisualDSP++ and a DSP (or
group of DSPs). Targets include simulators, emulators, and
EZ-KIT Lite evaluation systems. Several targets may be installed on
your system. Simulator targets, such as the ADSP-TS101 Cycle
Accurate SHARC Simulator, differ from emulator targets in that
the processor exists only in software.

The Summit-ICE emulator communicates with one or more physi-
cal devices over the host PC’s PCI bus. The Apex-ICE™ emulator
communicates with a device through the PC’s USB port.

Default directories

These intermediate and output file directories (folders) are \Debug
(for the debug configuration) and \Release (for the release config-
uration). By default, VisualDSP++ creates these directories as
children of the directory in which the .DPJ file is saved, which is
called the project’s current directory. See also “Current directory.”
VisualDSP++ 3.1 User’s Guide A-5
for Blackfin Processors

Glossary
Dependencies

VisualDSP++ uses dependency information to determine which
files, if any, are updated during a build. If an included header file is
modified, VisualDSP++ builds the source files that include
(#include) the header file, regardless of whether the source files
have been modified since the previous build.

Dependency files

Usually user files or system header (*.H) files, these files are refer-
enced from a source file by a preprocessor #include command.

Device

A single processor. With regard to JTAG emulation and the JTAG
EZ-ICE Configurator, a device refers to any physical chip in the
JTAG chain.

Device driver

A user-written model that abstracts the hardware implementation
from the application code. User code accesses device drivers
through a set of device driver APIs.

DWARF-2

Format for debugging source-level assembly code via improved line
and symbol information

Editor window

A document window that displays a source file for editing. When
an editor window is active, you can move about within the window
and perform typical text editing activities such as searching, replac-
ing, copying, cutting, pasting, and so on.
A-6 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Reference Information
ELF

Executable and Linking Format

Emulator

Hardware used to connect a PC to a DSP target board to allow
application software to be downloaded and debugged from within
the VisualDSP++ environment. Emulator software performs the
communications that enable you to see how your DSP code affects
processor performance.

Event

A signal (similar to a semaphore or message) used to synchronize
multiple threads in a system. An event is a logical switch, having
two binary states (available/true and unavailable/false) that control
thread execution. When an event becomes available, all pending
(waiting) threads in the wait list are set to be ready-to-run. When
an event is available and a thread pends on it, the thread continues
running and the event remains available.

To facilitate error handling, threads can specify a timeout period
when pending on an event.

An event is a code object of global scope, so any thread can pend
on any event. Event properties include the EventBit mask, Event-
Bit value, and combination type. Events are statically allocated and
enumerated at runtime. An event cannot be destroyed, but its
properties can be changed (see Blueelem text).
VisualDSP++ 3.1 User’s Guide A-7
for Blackfin Processors

Glossary
Event bit

A flag set or cleared to post the event. The event is posted (avail-
able) when the current values of the system Event Bits match the
event bit’s mask and event bits’ values defined by the event's com-
bination type.

A system has one and only one Event Bits word, the size of a data
word minus one: fifteen bits for ADSP-219x DSPs; thirty-one bits
for ADSP-21xxx, ADSP-BF53x, and ADSP-TSxxx processors.

Executable file

A file or program that has been written and built in VisualDSP++

Focus

Refers to the active processor in an MP session that you are
debugging

Interrupts

An external or internal condition detected by the hardware inter-
rupt controller. In response to an interrupt, the kernel processes a
subroutine call to a predefined Interrupt Service Routine (ISR).

Interrupts have the following specifications.

Latency – interrupt disable time. The period between the interrupt
occurrence and the first ISR’s executed instruction.

Response – interrupt response time. The period between the inter-
rupt occurrence and a context switch.

Recovery – interrupt recovery time. The period needed to restore
the processor’s context and to start the return-from-interrupt
(RTI) routine.
A-8 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Reference Information
Interrupt Service Routine (ISR)

A routine executed as a response to a software interrupt or hard-
ware interrupt. VDK supports nested interrupts, which means that
the kernel recognizes other interrupts, services interrupts, or both
with higher priorities while executing the current ISR. VDK ISRs
are written in assembly language. VDK reserves the timer and the
lowest priority (reschedule) interrupt.

JTAG

Joint Test Action Group. This committee is responsible for imple-
menting the IEEE boundary scan specification, enabling in-circuit
emulation of ICs.

kernel

The main module of a real-time operating system. The kernel loads
first and permanently resides in the main memory and manages
other modules of the real-time operation system. Typical services
include context switching and communication management
between OS modules.

Keyboard shortcuts

The keyboard provides a quick means of running the commands
that are used most often, such as simultaneously typing the key-
board’s Ctrl and G keys (indicated with the symbols Ctrl+G) to go
to a line in a file.

Librarian

A utility that groups object files into library files. When you link
your program, you can specify a library file and the linker automat-
ically links any file in the library that contains a label used in your
program. Source code is provided so you can adapt the routines to
your needs.
VisualDSP++ 3.1 User’s Guide A-9
for Blackfin Processors

Glossary
Library files

The VisualDSP++ archiver, elfar.ex, combines object files (.DOJ)
into library files (.DLB), which serve as a reusable resource for
project development. The linker searches library files for routines
(library members) that are referred to from other objects, and links
them into your executable program.

Linear profiling

A debugging feature that samples the target’s PC register at every
instruction cycle. Linear profiling gives an accurate picture of
where instructions were executed, since every PC value is collected.
The trade-off, however, is that linear profiling is much slower than
statistical profiling. A display of the resulting samples appears in
the Linear Profiling Results window, which graphically indicates
where the application is spending its time. Simulator targets sup-
port linear profiling. See also “Statistical profiling.”

Linker

The linker creates executable files, shared memory files, and overlay
files from separately assembled object and library files. It assigns
memory locations to code and data in accordance with a
user-defined .LDF file, which describes the memory configuration
of the target system.

Loader

A utility that transforms an executable file into a boot file. The
loader creates a small kernel, which is booted into internal memory
at chip reset to enable a program of arbitrary size to be loaded into
the processor’s internal and external memory.
A-10 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Reference Information
Makefile

VisualDSP++ can export a makefile (make rule file), based on your
project options. Use a makefile (.MAK) to automate builds outside
of VisualDSP++. The output make rule is compatible with the gnu-
make utility (GNU Make V3.77 or higher) or other make utilities.

Memory pool

An area of memory containing a specified number of uniformly
sized blocks of memory available for allocation and subsequent use
in an application. The number and size of the blocks in a particular
memory pool are defined at pool creation.

Message

A signal (similar to an event or semaphore) used to synchronize
two threads in a system or to communicate information between
threads. A message is sent to a specified channel on the recipient
thread (and can optionally pass a reference to a payload to facilitate
the transfer of data between threads). Posting a message takes a
deterministic amount of time and may incur a context switch.

Mixed mode

One of the two editor window display formats (the other being
source mode). Mixed mode displays assembled code after the line
of the corresponding C code.

Multiprocessor system

A system built with multiple DSPs. Often, performance-based
products require two or more DSPs. A system built with a single
DSP is called a single-processor system. Debugging a multiprocessor
system requires that you synchronously run, step, halt, and observe
program execution operations in all the processors at once. The
SHARC simulator does not support this capability.
VisualDSP++ 3.1 User’s Guide A-11
for Blackfin Processors

Glossary
Outdated file

A file that has been edited since the last time it was built

Payload

An arbitrary amount of data associated with a message. A reference
to the payload can be passed between threads as part of a message
to enable the recipient thread to access the data buffer that contains
the payload.

Pinning a window

A technique that statically associates a window to a specific
processor

Platform

A configuration of DSPs with which a target communicates. For
simulation, a platform is typically one or more DSPs of the same
type. For emulation, you specify the platform using the JTAG
EZ-ICE Configurator, and the platform can be any combination of
devices.

The platform represents the hardware upon which one or more
devices reside. You typically define a platform for a particular tar-
get. For example, if three emulators are installed on your system, a
platform selection might be emulator two.

Several platforms may exist for a given debug target. For a simula-
tor, the platform defaults to the identical DSP simulator. When the
debug target is a JTAG emulator, the platforms are the individual
JTAG chains. When the debug target is an EZ-ICE board, the plat-
form is the board in the system on which you wish to focus.
A-12 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Reference Information
Preemptive kernel

A priority-based kernel in which the currently running thread of
the highest priority is preempted, or suspended, to give system
resources to the new highest-priority thread.

Processor

An individual chip contained on a specific platform within a target.
When you create the executable file, the processor is specified in
the Linker Description File (.LDF) and other source files.

Project

This term refers to the collection of source files and tool configura-
tions used to create a DSP program. Through a project, you can
add source files, define dependencies, and specify build options
related to producing your output executable program. A project file
(.DPJ) stores your program’s build information.

VisualDSP++ enables you to manage projects from start to finish in
an integrated user interface. Within the context of a DSP project,
you define project and tool configurations, specify project-wide
and individual file options for debug or release modes of project
builds, and create source files. VisualDSP++ facilitates easy move-
ment among editing, building, and debugging activities.

Project configuration

This configuration includes all of the settings (options) for the
tools used to build a project.

Project file tree

See “Project window.”
VisualDSP++ 3.1 User’s Guide A-13
for Blackfin Processors

Glossary
Project window

This window displays your project’s files in a tree view, which can
include folders to organize your project files. Right-clicking on an
icon (the project itself, a folder, or a file) opens a menu, providing
actions you can perform on the selected item. Double-clicking on
the project icon or a folder icon opens or closes the tree list. Dou-
ble-clicking a file icon opens the file in an editor window.

Real-time operating system (RTOS)

A software executive that handles DSP algorithms, peripherals, and
control logic. The RTOS comprises these components: kernel,
communication manager, support library, and device drivers. An
RTOS enables structured, scalable, and expandable DSP applica-
tion development while hiding OS complexity.

Rebuild all

See “Build.”

Registers

For information on available registers, see the corresponding pro-
cessor documentation or view the associated online Help.

Release configuration

You can accept the default set of options, or you can specify the
options you want and save them. The configuration refers to the
specified options for all the tools in the tool chain. See also
“Configuration.”

Reset

This command resets the processor to a known state and clears
processor memory.
A-14 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Reference Information
Restart

This command sets your program to the first address of the inter-
rupt vector table. Unlike a reset, you do not need to reload
memory.

Right-click

This action opens a right-click menu (sometimes called a context
menu, pop-up menu, or shortcut menu). The commands that
appear depend on the context (what you are doing). Right-click
menus provide access to many commonly used commands.

Round-robin scheduling

A scheduling scheme whereby all threads at a given priority are
given processor time automatically in fixed duration intervals.
Round-robinpriorities are specified at build time.

Scheduler

A kernel component responsible for scheduling system threads and
interrupt service routines. VDK is a priority-based kernel in which
the highest-priority thread is executed first.

Semaphore

A signal (similar to an event or message) used to synchronize multi-
ple threads in a system. A semaphore is a data object whose value is
zero or a positive integer (limited by the maximum set up at cre-
ation time). The two states (available/greater than zero and
unavailable/zero) control thread execution. Unlike an event, whose
state is automatically calculated, a semaphore is directly manipu-
lated. Posting a semaphore takes a deterministic amount of time
and may incur a context switch.
VisualDSP++ 3.1 User’s Guide A-15
for Blackfin Processors

Glossary
Serial port data

You can automatically transfer serial port (SPORT) data to and
from on-chip memory using DMA block transfers. Each serial port
offers a time division multiplexed (TDM) multichannel mode.

Session

See “Debug session.”

Session name

Although the choice of target, platform, and processor define the
session, you may want to further identify the session. You can
modify the default session name when you first create the debug
session to prevent confusion later. A session name can be any string
and can include space characters. There is no limit to the number
of characters in a session name, but the Session List dialog box can
display about 32 characters.

Shortcuts

See “Keyboard shortcuts.”

Signal

A method of communicating between multiple threads. VDK sup-
ports four types of signals: semaphores, events, messages, and
device flags.
A-16 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Reference Information
Simulator

The simulator is software that mimics the behavior of a DSP chip.
Simulators are often used to test and debug DSP code before the
DSP chip is manufactured.

The simulator runs an executable program in software similar to
the way a processor does in hardware. The simulator also simulates
the memory and I/O devices specified in the .LDF file. Visu-
alDSP++ lets you interactively observe and alter the data in the
processor and in memory. The simulator reads executable files. A
simulator’s response time is slower than that of an emulator.

Source files

The C/C++ language and assembly language files that make up
your project. Other source files that a project uses, such as the .LDF
file, contain command input for the linker, and dependency files
(data files and header files). View source files in editor windows.

Source mode

One of the two editor window display formats (the other being
mixed mode). Source mode displays C code only.

Statistical profiling

A debugging feature that provides a more generalized form of pro-
filing that is well suited to JTAG emulator debug targets. With
statistical profiling, VisualDSP++ randomly samples the target pro-
cessor’s program counter (PC) and presents a graphical display of
the resulting samples in the Statistical Profiling Results window.
This window graphically indicates where the application is spend-
ing time.

JTAG sampling is completely non-intrusive so the process does not
incur additional runtime overhead. See also “Linear Profiling.”
VisualDSP++ 3.1 User’s Guide A-17
for Blackfin Processors

Glossary
Stepping

A technique for moving through source or assembly code to
observe instruction execution

Symbols

Labels for sections, subroutines, variables, data buffers, constants,
or port names. For more information, refer to the related build tool
documentation.

System configurator

The system configuration control is accessible from the Kernel
page of the Project window. The Kernel page provides a graphical
representation of the data contained in the vdk.h and vdk.cpp
files.

Target

See “Debug target.”

Tcl Scripting

VisualDSP++ includes an interpreter for the Tcl (Tool Command
Language) scripting language. Analog Devices has extended
Tcl version 8.3 with several procedures to access key debugging
features. The power of the Tcl language, coupled with Analog
Devices extensions, allows you to extensively script your work. Tcl
command output displays in the Output window’s Console page.
The output is also logged to VisualDSP_log.txt.
A-18 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Reference Information
Threads

A kernel system component that performs a predetermined func-
tion and has its own share of system resources. VDK supports
multithreading, a run-time environment with concurrently exe-
cuted independent threads.

Threads are dynamic objects that can be created and destroyed at
runtime. Thread objects can be implemented in C, C++, or assem-
bly language. A thread’s properties include an ID, priority, and
current state (wait, ready, run, or interrupted). Each thread main-
tains its own C/C++ stack.

Ticks

The system level timing mechanism. Every system tick is a timer
interrupt.

Tool chain

The collection of tools (utilities) used to build a project
configuration

Trace

Provides a history of program execution. A trace is sometimes
called an execution trace or a program trace. Trace results show
how the program arrived at a certain point and show program
reads, writes, and memory fetches. SHARC processors do not sup-
port traces.

Unscheduled regions

A sequence of instructions whose execution canbe interrupted, but
cannot be swapped out. The kernel acknowledges and services
interrupts when an unscheduled region routine is running.
VisualDSP++ 3.1 User’s Guide A-19
for Blackfin Processors

Glossary
VisualDSP++

An Integrated Development and Debugging Environment (IDDE)
for Analog Devices DSP development tools.

VisualDSP++ Kernel (VDK)

RTOS kernel from Analog Devices. VDK is part of VisualDSP++.
The kernel is integrated with the Integrated Development and
Debugging Environment (IDDE), assembler, compiler, and linker
programs into the DSP development tool chain.

The VDK is supported on the ADSP-219x, ADSP-21xxx,
ADSP-TSxxx, and Blackfin processors. Refer to the VisualDSP++
Kernel (VDK) User’s Guide for details.

Watchpoints

For simulation only. Similar to breakpoints, watchpoints stop pro-
gram execution. Watchpoints, however, allow you to set up
conditions, such as a memory read or stack pop. Unlike break-
points, watchpoints are not attached to a specific address. The
program halts when a watchpoint’s conditions are met. SHARC
DSPs do not support watchpoints.

Workspace

You can open multiple windows and place them anywhere you
want. After you open and arrange your windows, you can save the
layout (configuration) as a workspace setting, which you can recall
(load) at a later time. Each debug session’s default workspace is
automatically saved when you close the debug session and is auto-
matically restored when you load that session.
A-20 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Reference Information
File Types

Table A-1 describes the files used to build a project.

Table A-1. Files Used with VisualDSP++

Extension Name Purpose

.ASM Assembly source file Source file comprising assembly lan-
guage instructions

.C C source file Source file comprising ANSI standard
C code and Analog Devices extensions

.CPP

.CXX

.HPP

.HXX

C++ source file Preprocessed compiler files that are
inputs to the C/C++ compiler. These
files comprise ANSI standard C++ code.

.DPJ Project file Contains a description of how your
source files combine to build an execut-
able program

.LDF Linker Description File Linker command source file is a text file
that contains commands for the linker
in the linker’s scripting language

.S

.PP

.IS

Intermediate files Preprocessed assembly files generated by
the preprocessor

.DOJ Assembler Object file Binary output of the assembler

.DLB Archiver file Archiver’s binary output in ELF format

.H Header file Dependency file used by the preproces-
sor, and a source file for the assembler
and compiler

.DAT Data file Dependency file used by the assembler
for data initialization

.DXE

.SM

.OVL

.DLO

Debugging files Binary output files from the linker in
ELF/DWARF format
VisualDSP++ 3.1 User’s Guide A-21
for Blackfin Processors

File Types
.MAP Linker Memory Map file Optional output for the linker. This
text file contains memory and symbol
information for executable files.

.TCL Tool Command Language
file

Tcl scripting language file used to script
work

.OBJ Assembled Object file (Previous releases only, replaced by
.DOJ) Output of the assembler

.LST Listing file Optional file output by the assembler

.LDR

.BNM

.H

Loader output file The loader’s output in ASCII format.
Different varieties exist. Used to create
boot PROMS.

.S_#

.H_#

.STK

PROM format files The loader’s output in ASCII format.
Different varieties exist. Used to create
boot PROMS.

.ACH Architecture file (Previous releases only, replaced by
.LDF)

.TXT Linker Command-
Line file

(Previous releases only, replaced by
.LDF) ASCII text file that contains
command line input for the linker

.EXE Debugging file (Used in previous releases, replaced by
.DXE)

.EXE Compiled simulation file Enables faster execution speed com-
pared to a standard .DXE program

.VDK VisualDSP++ Kernel Sup-
port file

Enables VDK support

.TCL Tcl script Tool Command Language (Tcl) file
used for test applications

.DSP Assembly source file Source file comprising assembly lan-
guage instructions

.MAK

.MK
Makefiles The output make rule file is used for

project builds

Table A-1. Files Used with VisualDSP++ (Cont’d)

Extension Name Purpose
A-22 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Reference Information
Keyboard Shortcuts

VisualDSP++ includes keyboard shortcuts (also called shortcut keys) for
the operations that you use most often. These keyboard shortcuts appear
in the tables below. You can also run commands by:

• Choosing a command from a drop-down menu on the menu bar

• Clicking a toolbar button

• Right-clicking from a particular context, such as from the Project
window

• Clicking a configured user tool

• Clicking a button within a dialog box

• Running a Tcl script (from the File menu or Output window)

• Choosing a command from the application’s control menu

Working with Files

When working with files, use the keyboard shortcuts listed in Table A-2.

Table A-2. Keyboard Shortcuts for Working with Files

Action Key(s)

Open a new file Ctrl+N

Open an existing file Ctrl+O

Save a file Ctrl+S

Print a file Ctrl+P

Go to the next window F6

Go to the previous window Shift+F6
VisualDSP++ 3.1 User’s Guide A-23
for Blackfin Processors

Keyboard Shortcuts
Moving within a File

To move within a file, use the keyboard shortcuts listed in Table A-3.

Table A-3. Keyboard Shortcuts for Moving Within a File

Action Key(s)

Move the cursor to the left one character Left Arrow (←)

Move the cursor to the right one character Right Arrow (→)

Move the cursor to the beginning of the file Ctrl+Home

Move the cursor to the end of the file Ctrl+End

Move the cursor to the beginning of the line Home

Move the cursor to the end of the line End

Move the cursor down one line Down Arrow (↓)

Move the cursor up one line Up Arrow (↑)

Move the cursor one page down Page Down

Move the cursor one page up Page Up

Move the cursor right one tab Shift

Move the cursor left one tab Shift+Tab

Move the cursor left one word Ctrl+Left Arrow (←)

Move the cursor right one word Ctrl+Right Arrow (→)

Move to the matching brace character within a file Ctrl+B

Go to the next bookmark F2

Go to a line Ctrl+G

Find text Ctrl+F

Find the next occurrence of text F3
A-24 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Reference Information
Cutting, Copying, Pasting, Moving Text

To edit text, use the keyboard shortcuts listed in Table A-4.

Selecting Text within a File

To select text within a file, use the keyboard shortcuts listed in Table A-5.

Table A-4. Keyboard Shortcuts for Editing Text

Action Key(s)

Copy text Ctrl+C or Ctrl+Insert

Copy text Select with cursor and Ctrl+drag

Cut text Ctrl+X or Shift+Delete

Delete text Delete (selection or forward)

Delete text Backspace (selection or backward)

Move text Select with cursor and drag

Move selected text right one tab Tab

Move selected text left one tab Shift+Tab

Paste text Ctrl+V or Shift+Insert

Undo the last edit Ctrl+Z or Alt+Backspace

Redo an edit command Shift+Ctrl+Z

Replace text Ctrl+H or Ctrl+R

Table A-5. Keyboard Shortcuts for Selecting Text Within a File

Action Key(s)

Select all text in a file Ctrl+A

Select the character on the left Shift+Left Arrow (←)

Select the character on the right Shift+Right Arrow (→)
VisualDSP++ 3.1 User’s Guide A-25
for Blackfin Processors

Keyboard Shortcuts
Working with Bookmarks in an Editor Window

When working with bookmarks in an editor window, use the keyboard
shortcuts listed in Table A-6.

Select all text to the beginning of the file Shift+Ctrl+Home

Select all text to the end of the file Shift+Ctrl+End

Select all text to the beginning of the line Shift+Home

Select all text to the end of the line Shift+End

Select all text to the line below Shift+Down Arrow (↓)

Select all text to the line above Shift+Up Arrow (↑)

Select all text to the next page Shift+PgDn

Select all text to the above page Shift+PgUp

Select the word on the left Shift+Ctrl+Left Arrow (←)

Select the word on the right Shift+Ctrl+Right Arrow (→)

Select by column Place cursor, press and hold down Alt and drag the
cursor (selects by column-character instead of by
line-character)

Table A-6. Keyboard Shortcuts for Bookmarks

Action Key(s)

Toggle a bookmark Ctrl+F2

Go to next bookmark F2

Table A-5. Keyboard Shortcuts for Selecting Text Within a File (Cont’d)

Action Key(s)
A-26 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Reference Information
Building Projects

To build projects, use the keyboard shortcuts listed in Table A-7.

Using Keyboard Shortcuts for Program Execution

For program execution, use the keyboard shortcuts listed in Table A-8.

Table A-7. Keyboard Shortcuts for Building Projects

Action Key(s)

Build the current project F7

Build only the current source file Ctrl+F7

Table A-8. Keyboard Shortcuts for Program Execution

Action Key(s)

Load a program Ctrl+L

Reload a program Ctrl+R

Dump to file Ctrl+D

Run F5

Multiprocessor run Ctrl+F5

Run to cursor Ctrl+F10

Halt Shift+F5

Step over F10

Step into F11

Multiprocessor step Ctrl+F11

Step out of Alt+F11

Halt a Tcl script Ctrl+H
VisualDSP++ 3.1 User’s Guide A-27
for Blackfin Processors

Keyboard Shortcuts
Working with Breakpoints

When working with breakpoints, use the keyboard shortcuts listed in
Table A-9.

Obtaining Online Help

To obtain online Help, use the keyboard shortcuts listed in Table A-10.

Miscellaneous

For windows and workspaces, use the keyboard shortcuts listed in
Table A-11.

Table A-9. Keyboard Shortcuts for Breakpoints

Action Key(s)

Open the Breakpoints dialog box Alt+F9

Enable/disable a breakpoint Ctrl+F9

Toggle (add or remove) a breakpoint F9

Table A-10. Keyboard Shortcuts for Obtaining Online Help

Action Key(s)

View online Help for the selected object F1

Obtain context-sensitive Help for controls
(buttons, fields, menu items)

Shift+F1

Table A-11. Miscellaneous Keyboard Shortcuts

Action Key(s)

Refresh all windows F12

Select workspace 1 through 10 Alt+1 … Alt+0
A-28 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Reference Information
IDDE Command Line Parameters

You can invoke VisualDSP++ from a DOS command line.

Syntax:

idde.exe [-f script_name]

 [-s session_name]

 [-p project_name]

Note: Specify the full path to idde.exe.

Table A-12 describes the idde.exe command line parameters.

Examples:

idde.exe -f "c:\\scripts\\myscript.tcl"

idde.exe -s "My 21160 JTAG Emulator Session"

idde.exe -p "c:\\projects\\myproject.dpj"

Table A-12. idde.exe Command Line Parameters

Item Description

-f script_name Loads and executes the Tcl script specified by script_name. Use
this parameter to automate regression tests. You can also manipu-
late VisualDSP++ by running a Tcl script from a library of com-
mon Tcl commands that you create. If an error is encountered
while executing this script, VisualDSP++ automatically exits.

-s session_name Specifies the session to which VisualDSP++ connects when it
starts. The session must already exist. This parameter is useful
when you are debugging more than one target board. Having mul-
tiple shortcuts to idde.exe allows you to run a different session.
This overrides VisualDSP++’s default behavior of always connect-
ing to the last session.

-p project_name Specifies the project to load at startup. The project must already
exist.
VisualDSP++ 3.1 User’s Guide A-29
for Blackfin Processors

Extensive Scripting
Extensive Scripting

For extensive scripting, use the following methods to issue Tcl commands.

• From a Command Line

To load a script from a DOS command window, type this
command:

idde -f filename

Optionally, add -s and the session name to specify a previously
created session. When no session name is specified, the last session
is used.

If the script encounters an error during execution, VisualDSP++
automatically exits.

• From the Output Window

To load a script from the Console page in the Output window,
type:

source filename

In Tcl, as in C/C++, a backslash (\) is used as the escape character.
When you specify paths in the Windows environment, you must
escape the escape character; for example:

source c:\\my_dir\\my_subdir\\my_file.tcl

Note that you can also use forward slashes to delimit directories in
a path, as in this example:

source c:/my_dir/my_subdir/my_file.tcl
A-30 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Reference Information
Command execution is deferred until a line is typed without a
trailing backslash. This feature permits the entry of an entire block
of code (or entire Tcl procedures) for the Tcl interpreter to evalu-
ate at once.

• From a Menu

You can quickly issue frequently used Tcl scripts.

From the File menu, choose Recent Tcl Scripts, and then select
the Tcl script.

• From an editor window

In an open editor window that contains a Tcl script, right-click and
choose Source Tcl Script, as shown in Figure A-1 on page A-32.

For more information, refer to “Issuing Commands from an Editor
Window” on page C-4.

• From a user-defined tool

From a toolbar, click a user-defined tool or choose a user-defined
tool from the Tools menu.
VisualDSP++ 3.1 User’s Guide A-31
for Blackfin Processors

Extensive Scripting
Figure A-1. Running a Tcl Script from an Editor Window
A-32 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Reference Information
Toolbar Buttons

The toolbar, which comprises separate toolbars, provides quick mouse
access to commands.

The toolbar is a Windows docking bar. You can move it to different areas
of the screen by dragging it to the selected location.

Table A-13. Toolbar Buttons

Button Purpose

Creates a new document

Opens an existing document

Saves the active document or template with the same name

Prints the active document

Loads a program into the target

Reloads the most recent program into the target

Cuts selected data from the document and store it on the clipboard

Copies the selection to the clipboard

Pastes the contents of the clipboard at the insertion point

Undoes previous edit command (multilevel undo)
VisualDSP++ 3.1 User’s Guide A-33
for Blackfin Processors

Toolbar Buttons
 Redoes the command undone by the previous Undo command (multilevel
redo)

Finds a text block in an editor window

Finds again or repeats the previous find command

Replaces the selected text with other text

Searches through files for text or regular expressions

Goes to or moves to the specified location

Displays the current source file

Toggles the bookmark at selected line in the active editor window

Goes to the next bookmarked line in the editor window

Goes to the previous bookmarked line in the editor window

Clears all bookmarks in the editor window

Opens the online Help to the Search page

 Provides context-sensitive Help for a button command or portion of Visu-
alDSP++

Table A-13. Toolbar Buttons (Cont’d)

Button Purpose
A-34 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Reference Information

Opens the About VisualDSP++ dialog box

Adds a source file to the project

Removes a selection from the project

Opens an existing project

Saves the open project

Opens the Project Options dialog box, where you specify project options

Builds the selected source file

Builds the project (update outdated files)

Builds all files in the project

Stops the current project build

Arranges windows as tall non-overlapping tiles

Arranges windows as wide non-overlapping tiles

Arranges windows so they overlap

Table A-13. Toolbar Buttons (Cont’d)

Button Purpose
VisualDSP++ 3.1 User’s Guide A-35
for Blackfin Processors

Toolbar Buttons

Closes all open windows

Refreshes all the debugging windows

Runs (starts or continues) the current program

Restarts the current program

Stops the current program

Resets the target

Toggles a breakpoint for the current line

Clears all current breakpoints

Enables or disables one breakpoint

Disables all breakpoints

Steps one line

Steps over the current statement

Steps out of the current function

Table A-13. Toolbar Buttons (Cont’d)

Button Purpose
A-36 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Reference Information
Text Operations

VisualDSP++ allows you to use regular expressions and tagged expressions
in find/replace operations and comments in your code.

Regular Expressions vs. Normal Searches

Normally, when you search for text, the search mechanism scans for an
exact, character-by-character match of the search string, which does not
have to be an entire word. Every character in the search string is examined.
If there are embedded spaces, for instance, the exact number is matched.

Runs the program to the line containing the cursor

Opens the Expressions window

Opens the Locals window

Opens the Call Stack window

Opens the Disassembly window

Runs the command associated with the user tool (one of ten)

Opens the associated workspace (one of ten)

Table A-13. Toolbar Buttons (Cont’d)

Button Purpose
VisualDSP++ 3.1 User’s Guide A-37
for Blackfin Processors

Text Operations
Regular expression matching provides much more flexibility and power
than a normal search. A regular expression can be a simple string, which
yields the same matches as normal searches. Some characters in a regular
expression string, however, have special interpretations, which provide
greater flexibility.

For example, with regular expression matching, you can find the
following.

• All occurrences of either hot or cold

• Occurrences of for followed by a left parenthesis, with any number
of intervening spaces

• A ; (semicolon) only when it is the last character on a line

• The string ADSP followed by a sequence of digits

You can use a regular expression as the search pattern for replacement. In
that case, there are ways to identify and recover the variable portions of
the matched strings.

Specific Special Characters

Regular expressions assign special meaning to the following characters.

If you need to match on one of these characters, you must escape it by pre-
ceding it with a backslash (\). Thus, \^ matches the ^ character, yet ^
matches the beginning of the line.

Table A-14. Special Search Characters

Character Description

^ A caret matches the beginning of the line

$ A dollar sign matches the end of the line

. A period (.) matches any character
A-38 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Reference Information
Special Rules for Sequences

The normal special character rules of regular expressions do not apply
within a bracketed sequence. Thus, [*&] matches an asterisk or
ampersand.

Certain characters have special meaning within a sequence. These include
^ (not), - (range), and] (end of sequence). By placing these characters
appropriately, you can specify these characters to be part of the sequence.

To search for a right bracket character, place] as the first character of the
search string. To search for a hyphen character, place - as the first charac-
ter of the search string after], if present. Place a caret anywhere in the
search string except at the front, where it means “not.”

[abc]
A bracketed sequence of characters matches one character, which may be
any of the characters inside the brackets. Thus, [abc] matches an a, b,
or c.

[0-9]

This shorthand form is valid within the sequence brackets. It specifies a
range of characters, from first through last, exactly as if they had been
written explicitly.
Ranges may be combined with explicit single characters and other ranges
within the sequence. Thus, [-+.0-9] matches any constituent character
of a signed decimal number; and [a-zA-Z0-9_] matches a valid identi-
fier character, either lowercase or uppercase.
Ranges follow the ordering of the ASCII character set.

[^abc]
[^0-9]

A caret (^) that is the first character of a sequence matches all characters
except for the characters specified after the caret.

(material)

The material inside the parentheses can be any regular expression. It is
treated as a unit, which can be used in combination with other expres-
sions.
Parenthesized material is also assigned a numerical tag, which may be
referenced by a replace operation.

Table A-14. Special Search Characters (Cont’d)

Character Description
VisualDSP++ 3.1 User’s Guide A-39
for Blackfin Processors

Text Operations
Repetition and Combination Characters

The characters described in Table A-15 extend the meaning of the imme-
diately preceding item. This item may be a single character, a sequence in
braces, or an entire regular expression in parentheses.

Match Rules

If multiple matches are possible, the *, +, and ? characters match the long-
est candidates. The | character matches the left-hand alternative first.

For more information, see the many reference texts available on this topic,
such as Mastering Regular Expressions, Powerful Techniques for Perl and
Other Tools by Jeffrey E. F. Friedl, (c) 1997 O'Reilly & Associates, Inc.

Table A-15. Match Characters

Character Description

*

An asterisk matches the preceding any number of times, including none at
all. Thus, ap*le matches apple, aple, appppple and ale.

For example, ^ *void matches only when void occurs at the beginning of a
line and is preceded by zero or more spaces.

+

A plus character matches the preceding any number of times, but at least
one time.

Thus, ap+le matches apple and aple, but does not match ale.

?

A question mark matches the preceding either zero or one time, but not
more.

Thus, ap?le matches ale and aple, but nothing else.

|

The pipe character (|) matches either the preceding or following item.

For example, (hot)|(cold) matches either hot or cold.

Note: Spaces are characters. Thus, (hot) | (cold) matches “hot “or”
 cold”.
A-40 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Reference Information
Tagged Expressions in Replace Operations

Use a tagged expression as part of the string in the Replace field for a
replace operation.

You must enclose a tagged expression between parentheses characters.

In the Replace field, the operators in Table A-16 represent tagged expres-
sions from the Find field.

The replace expression can specify an ampersand (&) character, meaning
that the & represents the substring that was found. For example, if the sub-
string that matched the regular expression is “abcd”, a replace expression
of “xyz&xyz” changes it to “xyzabcdxyz”. The replace expression can also
be expressed as “xyz\0xyz”, where the “\0” indicates a tagged expression
representing the entire substring that was matched. Similarly, you can
have another tagged expression represented by “\1”, “\2”.

 Although the tagged expression 0 is always defined, the tagged
expressions 1, 2, and so on, are defined only when the regular
expression used in the search has enough sets of parenthesis. Some
examples are shown in Table A-17 on page A-42.

Table A-16. Using Tagged Expressions in Replace Operations

Find field Replace field

Entire matched sub string \0

Tagged expressions within parentheses ()
from left to right

\1 \2 \3 \4 \5
\6 \7 \8 \9

Entire match expression &
VisualDSP++ 3.1 User’s Guide A-41
for Blackfin Processors

Text Operations
Comment Start and Stop Strings

You use start comment strings and stop comment strings for comment
highlighting colors. Table A-18 and Table A-19 describe the two types of
comment strings that you can set for each file type.

Table A-17. Examples of Replace Operations

String Search Replace Result

Mr. (Mr)(\.) \1s\2 Mrs.

abc (a)b(c) &-\1-\2 abc-a-c

bcd (a|b)c*d &-\1 bcd-b

abcde (.*)c(.*) &-\1-\2 abcde-ab-de

cde (ab|cd)e &-\1 cde-cd

Table A-18. Start Comment Strings

String Purpose

! Starts an assembly style, single-line comment

/* Starts a C/C++ style, multi-line comment

// Starts a C/C++ style, single-line comment

Table A-19. Stop Comment Strings

String Purpose

Carriage return Ends a single-line comment (C and Assembly)

*/ Ends a C/C++ style, multi-line comment

(blank) Ends a C/C++ style, single-line comment
A-42 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

B SIMULATION OF BLACKFIN
PROCESSORS

This appendix provides information to help you simulate Blackfin

processors.

The information is organized as follows.

• “General-Purpose I/O (GPIO) or Flag I/O (FIO)Peripheral” on
page B-2

• “Serial Peripheral Interface (SPI) Peripheral” on page B-2

• “Serial Port (SPORT) Peripheral” on page B-4

• “Universal Asynchronous Receiver/Transmitter (UART) Periph-
eral” on page B-5

• “Timer (TMR)Peripheral” on page B-5

• “Command Line Arguments” on page B-6

• “Exception Handling” on page B-7

• “Simulator Instruction Timing Analysis Overview” on page B-9

• “Compiled Simulation” on page B-26
VisualDSP++ 3.1 User’s Guide B-1
for Blackfin Processors

General-Purpose I/O (GPIO) or Flag I/O (FIO)Peripheral
General-Purpose I/O (GPIO) or Flag I/O
(FIO)Peripheral

The GPIO/FIO peripheral is simulated for ADSP-BF535 processors only.

Serial Peripheral Interface (SPI)
Peripheral

This section provides an overview of the SPI in the simulator and
describes global and status control, SPI signal usage, and SPI with streams.

Overview of SPI in the Simulator

The SPI peripheral is simulated for ADSP-BF535 processors only. This
peripheral module provides industry-standard synchronous serial link
functionality. Two SPI peripherals are on the ADSP-BF535 processor.

In the external four-wire interface, only the MOSI and MISO pins are simu-
lated while SPICLK and PIO_nSPISSIN are not. You can use the stream
interface with the MOSI and MISO pins only.

The simulator supports DMA and non-DMA modes as both master and
slave, which takes into account baud rates but not clock phase and
polarity.
B-2 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Simulation of Blackfin Processors
Global Status and Control

The configuration bits in Table B-1 do not affect the simulator.

SPI Signal Usage

The following signals are not recognized in the simulator.

• PIO_nSPISSIN

• SPICLK

SPI with Streams

The SPI can read and write from the MISO and MOSI pins by using the
streams functionality in VisualDSP++.

You can attach a file to the following device names.

SPI0.MISO

SPI0.MOSI

SPI1.MISO

SPI1.MOSI

Table B-1. Register Bits That Do Not Affect Simulation

Bit Config[15:0] SPI Configuration Register

4 PSSE PIO_nSPISSIN input for master

5 EMISO MISO pin as output

10 CPHA Clock phase

11 CPOL Clock polarity

13 WOM Open drain data output
VisualDSP++ 3.1 User’s Guide B-3
for Blackfin Processors

Serial Port (SPORT) Peripheral
The format of the input file is as follows.

Data0

Data1

…

DataN

Data can be 8 or 16 bits long, depending on the word length set in the
SPICTL register.

The MISO and MOSI pins are used as input or output pins, depending on
whether the SPI device is configured as master or slave.

Serial Port (SPORT) Peripheral

You can manipulate all the serial port configuration bits. Configuration
related to frame synchronization(s) does not always have a significant
impact on the simulation. For example, although the FSR bits are used, the
following DSP capabilities are not simulated.

• Internal or external frame synchronization

• Frame synchronization polarity

• Early or late frame synchronization

Serial clock and frame synchronization divisor registers are simulated.
Therefore, they impact the duration required to transfer words.
B-4 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Simulation of Blackfin Processors
Universal Asynchronous
Receiver/Transmitter (UART) Peripheral

You can manipulate all the UART configuration bits. Currently, you can-
not simulate the data error (Framing Error, Parity Error, Break Interrupt)
conditions or the Modem Status status bits (Data Carrier Detect, Ring
Indicator, Data Set Ready, Clear To Send). You can specify Set Break in
the Line Control register, but this setting has no effect. The current simu-
lator does not model the IRCR register.

Timer (TMR)Peripheral

This section descibes the timer with streams usage,

WDTH_CAP Mode

In Width Capture (WDTH_CAP) mode, the timer counts the number of
clocks in both the width and period. The waveform that the timer reads is
attached via the Streams dialog box in VisualDSP++.

You can attach a file to the following device names.

• TIMER0_WDTH_CAP

• TIMER1_WDTH_CAP

• TIMER2_WDTH_CAP

The format of the input file is as follows.

PERIOD_COUNT

WIDTH_COUNT

PERIOD_COUNT

WIDTH_COUNT
VisualDSP++ 3.1 User’s Guide B-5
for Blackfin Processors

Command Line Arguments
In WDTH_CAP mode, the timer reads two 32-bit values from the input file.
The first value is the number of pulses (clocks) in the period. The second
value is the number of pulses in the width.

When PULSE_HI is set, the timer delivers high widths and low periods.
When PULSE_HI is not set, the timer delivers low widths and high periods.

External Clock Mode

The external clock is limited to 66.5 MHz. Therefore, the simulator auto-
matically divides the peripheral clock when a timer is enabled in external
clock mode.

Command Line Arguments

For ADSP-BF535 processors only, you can send command line arguments
to the DSP program. These arguments are processed by library code,
which passes “argc” and “argv” to your main routine.

The library does not have a fixed address, but gets its start address
and buffer length from the argv section of the .LDF file. Refer to
the processor’s Linker and Utilities manual for details.

To send arguments to the DSP program:

1. From the Settings menu, choose Simulator, and then choose Com-
mand Line Arguments.

The Simulator Arguments dialog box appears.
B-6 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Simulation of Blackfin Processors
2. In Command Line Arguments Base Address, type the DSP mem-
ory address in which to store the arguments.

Before using command line arguments, make sure that the Com-
mand Line Arguments Base Address matches the start address of
the argv section in your .LDF file.

Each argument is an ASCII string.

Delimit arguments with a comma or a space character.

3. In Command Line Arguments, type the arguments.

4. Click OK.

Exception Handling

For ADSP-BF535 processors only, you can specify the exceptions that will
stop the DSP program.

An exception is a problem or change in conditions that causes the DSP to
stop what it is doing and handle the situation in a separate routine.

When an exception occurs, the Output window displays a brief message
that includes an exception code identifying the condition causing the
exception.

The most recent exception code appears in the Sequencer Status window’s
EXUCAUSE register. Refer to the Blackfin Processor Hardware Reference for
the list of codes. Table B-2 on page B-8 describes exceptions.
VisualDSP++ 3.1 User’s Guide B-7
for Blackfin Processors

Exception Handling
Table B-2. Exceptions

Item Description

Unrecoverable event Example is an exception generated while processing a previous exception

I-fetch multiple CPLB
hits

More than one CPLB entry matches instruction fetch address

I-fetch misaligned
access

Attempted misaligned instruction cache fetch. On a misaligned instruc-
tion fetch exception, the return address provided in RETX is the mis-
aligned destination address, rather than the address of the offending
instruction. For example, if you attempt an indirect branch to a mis-
aligned address held in P0, the return address in RETX is equal to P0,
rather than to the address of the branch instruction. (Note that this
exception can never be generated from PC-relative branches, only from
indirect branches.)

I-fetch protection vio-
lation

Illegal instruction fetch access (memory protection violation)

I-fetch CPLB miss CPLB miss on an instruction fetch

I-fetch access excep-
tion

Error from instruction fetch (for example, instruction bus parity error)

Watchpoint match The processor takes this exception with a watchpoint match in which
one of the EMUSW bits in the watchpoint control register is set

Data access protec-
tion violation

Attempted read or write to supervisor resource, or illegal data memory
access. Supervisor resources are registers and instructions reserved for
supervisor use (supervisor only registers, all MMRs, and supervisor only
instructions). Accessing two MMRs simultaneously by using DAG0 and
DAG1 generates this type of exception. In addition, this entry signals a
protection violation caused by disallowed memory access, and defined
by the MMU CPLB.

Illegal combination Illegal instruction combination such as a DSP32 instruction in parallel
with a microcontroller Data Register ADD instruction

Illegal use supervisor
resource

Attempted to use a supervisor register or instruction from User mode

Data access multiple
CPLB hits

More than one CPLB entry matches data fetch address
B-8 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Simulation of Blackfin Processors
To specify exceptions:

1. From the Settings menu, choose Exception Handling.

By default, the Stop on all Exceptions option is selected.

The Exception Handling dialog box appears.

2. Click DeSelect All, and then select the exception(s) of interest.

After you click DeSelect All, the button label changes to Select All.

Tip: Click Stop on all Exceptions to select all the options.

3. Click OK.

Simulator Instruction Timing Analysis
Overview

The ADSP-BF535 Family Simulator is a functional simulator with a
post-pass instruction timer. The simulator functionality models the
behavior of the ADSP-BF535 processor by updating registers, memory,
and peripherals. The processor state is updated after each instruction exe-
cution. The instruction timer, however, performs its analysis after the
execution of each instruction.

The simulator is not cycle accurate. It does not accurately model
the stalls on instructions.

Data access misaligned
access

Attempted misaligned data memory or data cache access

Data access CPLB
miss

Used by the MMU to signal a CPLB miss on a data access

Table B-2. Exceptions (Cont’d)

Item Description
VisualDSP++ 3.1 User’s Guide B-9
for Blackfin Processors

Simulator Instruction Timing Analysis Overview
The correct execution count trails the execution of the instruction by at
least the length of the sequencer pipeline and maybe more. When you
break execution of the simulator, the cycle count may not be accurate. At
the completion of the program, the cycle count is correct. The Pipeline
Viewer enables you to understand how the processor affects the execution
timing of your program.

Functional Simulator

The ADSP-BF535 Family Simulator is classified as a functional simulator
because it functionally models the behavior of the following.

• Instruction set

• Processor sequencer

• Memory hierarchy, including the L1 caches and L1 SRAM

• Registers, including the MMRs

• All the core peripherals

• All memory transactions

All processor state is accurate after each instruction execution. The func-
tional simulator, however, relies upon an instruction timer to provide
100% accurate cycle counts.

Post-Pass Instruction Timer

The instruction timer generates accurate cycle counts by modeling the
stages of the pipeline. An instruction executed in the functional simulator
is passed to the instruction timer for analysis. The instruction timer must
analyze each instruction at each stage of the pipe for stalls, kills, aborts,
and other pipeline events.
B-10 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Simulation of Blackfin Processors
The overall effect on the cycle count is defined, as the instruction may
incur additional cycle(s) (beyond one cycle) because of stalls or because
the instruction is a multicycle instruction. Additional cycles incurred
because of stalls or multicycles are added to the cycle count, based on the
pipeline analysis.

Because the analysis is performed after the instructions have actually been
executed, a delay (lag) occurs from the time an instruction is executed
until the time an instruction’s overall effect on the cycle count is calcu-
lated by the timer. Only when the instruction reaches the commit stage in
the post-pass timer is the overall effect reflected.

About Delay in the Pipeline Viewer Window

The code sequence in Figure B-1 illustrates the lag.

In the above code sequence, data register R0 has just been assigned from
system register LC0 at instruction address 0x00. The instruction at address
0x02 is the next instruction to be executed.

Figure B-1. Lag in the Pipeline
VisualDSP++ 3.1 User’s Guide B-11
for Blackfin Processors

Simulator Instruction Timing Analysis Overview
The Pipeline Viewer window shows the execution of the instruction at
address 0.

The Pipeline Viewer window displays:

• Pipeline stages

• Cycle-by-cycle analysis of the instructions passing through the
pipeline stages

Figure B-2 shows the functional simulation of the instruction at address 0,
yet the timing analysis of the instruction has just begun. The post-pass
instruction timer increments the cycle count by one, but the total effect
on the cycle count is not fully known until the instruction reaches the
pipeline’s commit stage.

Figure B-3 on page B-13 shows that the instruction at address 0x14 is
about to be executed. The instructions at addresses 0x00, 0x02, 0x04, 0x06,
0x08, 0x0A, 0x0C, 0x0E, 0x10, and 0x12 have already been executed in the
functional simulator.

Figure B-2. Instruction at Address 0
B-12 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Simulation of Blackfin Processors
The Pipeline Viewer window (Figure B-4) shows that the instruction at
address 0x02 has just reached the commit stage of the timing analysis.

Figure B-3. Pipeline Commit Stage

Figure B-4. Instruction at Address 0x02 Reaches the Commit Stage
VisualDSP++ 3.1 User’s Guide B-13
for Blackfin Processors

Simulator Instruction Timing Analysis Overview
The window highlights the instruction at address 0x02 as it progressed
through the pipeline. Table B-3 compares the cycles required at each
stage.

The Pipeline Viewer window detects a stall (symbolized by) at
cycle 8, stage EX3.

To learn why the stall occurred:

1. Press and hold down the keyboard’s Ctrl key.

2. Move the mouse over the icon.

A message window appears, indicating that the stall is due to a RAW (read
after write) hazard.

Table B-3. Cycles Required at Each Stage

Cycle Stage

2 IF1. The cycle count has increased by one.

3 IF2

4 DECODE

5 ADDRESS

6 EX1

7 EX2

8 Another EX2. The instruction has stalled.

9 EX3

10 WB

11 COMMIT
B-14 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Simulation of Blackfin Processors
In Figure B-5, a system register (LC0) was moved to a data register (R0).
The data register was subsequently read in the next instruction by an ALU
(arithmetic logic unit) operation.

The post-pass timer increases the cycle count by one cycle for this stall by
inserting a stall bubble into the pipeline at cycle 8, stage EX3.

Figure B-5. Example Message
VisualDSP++ 3.1 User’s Guide B-15
for Blackfin Processors

Simulator Instruction Timing Analysis Overview
Pipeline Stages

Table B-4 shows the Blackfin processor’s pipeline stages.

Pipeline Viewer Window Messages

The Pipeline Viewer window displays informational messages for instruc-
tions indicated with an event icon.

These types of messages may appear:

• Stalls detected

• Kills detected

• Multicycle instruction messages

Table B-4. Pipeline Stages

Stage Abbreviation in Pipeline Viewer

Instruction Fetch 1 IF1

Instruction Fetch 2 IF2

Decode DECODE

Address ADDRESS

Execution Stage 1 EX1

Execution Stage 2 EX2

Execution Stage 3 EX3

Write Back WB

Commit COMMIT
B-16 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Simulation of Blackfin Processors
Stalls Detected Messages

Table B-5 shows the messages that occur when a stall is detected.

Table B-5. Stalls Detected Messages

Message Explanation Example

ICache miss Instruction cache miss

IAU empty Instruction alignment unit empty

DCache miss Data cache miss

DCache store buffer
full

Data cache buffer overflow. MSA stalls
until the FIFO moves forward and a space
is free.

DCache load while
store pending

A load access collides with a pending store
access in the store buffer. (They are tying to
access the same address.)

DCache load while
store pending w/ size
mismatch

Load access size is different from that of the
store access. The buffer must be flushed
before the load can be carried out.

DCache bank collision The addresses in a dual- memory access
command are accessing the same minibank.
It does not matter whether both are loads,
or load and store.

SYNC with store
pending

SYNC instructions force all speculative,
transient in the core/system to be com-
pleted before proceeding.

SSYNC;

EU->MUL/MAC
RAW hazard

Execution unit, Multiply or Multiply accu-
mulate with a read after write hazard

R0 = R1 + R0;
P0 = R0;

RETx RAW hazard Writing to one of the RETx (RETS, RETI,
RETX, RETN, or RETE) registers imme-
diately followed by the corresponding
return instructions.

RETX = R0;
RTX;

Dagreg WAW hazard Writing to one of the DAG registers, and
immediately writing to it again.

I3 = R3;
I3 += M0;
VisualDSP++ 3.1 User’s Guide B-17
for Blackfin Processors

Simulator Instruction Timing Analysis Overview
Dagreg RAW hazard Writing to one of the DAG registers, and
immediately reading

I3 = R3;
[I3] = R7;

dsp32alu implied ireg
dependency RAW haz-
ard

ccMV preg->dreg
RAW hazard

A conditional move of a preg into a dreg,
followed by a read of the dreg

If CC R0 = P1;
R0 = R1;

ccMV dreg->dreg
RAW hazard

A conditional move of a dreg into a dreg,
followed by a read of the source dreg

If CC R0 = R1;
R2 = R0;

ccMV dpreg->preg
RAW hazard

A conditional move of a dreg into a preg,
followed by a read of the preg

If CC P0 = R1;
P1 = P0 ;

loopsetup WAW haz-
ard

A LSETUP instruction followed by another
LSETUP, both writing to the same Lcreg

LSETUP
(LS,LE)LC0=P0;
LSETUP
(LS,LE)LC0=P1;

loopsetup while lc is
nonzero

Using an LSETUP instruction and writing
a value other than zero to the Lcreg

LSETUP
(LS,LE)LC0=P0;
Nop;

loop top/bot RAW
hazard

Writing to a loop top/bottom register, fol-
lowed by a read of the same register

LT0 = R0;
R2 = LT0;

write to loop cnt stall A write to a LCreg, followed by any op LC0 = R0;
Nop; (any op)

multi-cycle ALU2op
instruction

A two-operand ALU instruction requiring
more than one cycle to complete

R0 *= R1;

multi-cycle DAG
instruction

[--SP] = (R7:0,P5:0);

CC2dreg RAW hazard Reading the CC register into a dreg, and
then reading that register

R0 = CC;
CC = R0;

Mac/video after regmv
sysreg to dreg raw haz-
ard

Register move of a system register to a dreg,
followed by a MAC or video instruction

R0 = LC0;
R2.H = R1.L * R0.H;

Table B-5. Stalls Detected Messages (Cont’d)

Message Explanation Example
B-18 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Simulation of Blackfin Processors
Regmv sysreg to dreg
followed by ALU op
dreg raw hazard

Writing a system register to a dreg, fol-
lowed by an ALU operation using that dreg
as an operand

R0 = LC0;
R2 = R1 + R0;

Video after extracted
3-input add dreg raw
hazard

Extracted 3-input add
followed by special
dsp32 instruction

Search followed by
exu operation dreg
raw hazard

A search instruction followed by any execu-
tion instruction with an operand of a dreg
used in the search instruction

(R3,R0) = search R1
(LE);
R2.H =R1.L * R0.H;

Regmv hazard: preg to
dreg -> dreg to
sys/preg RAW

A register move of a preg to a dreg, fol-
lowed by another register move of that
same dreg to a system register or preg

R0 = P0;
ASTAT = R0;

Regmv hazard: sysreg
to dreg -> dreg to dreg
RAW

A register move of a system register to a
dreg, followed by another register move of
that same dreg to a dreg

R0 = ASTAT;
R1 = R0;

Regmv hazard: sysreg
to dreg -> dreg to sys-
reg RAW

A register move of a system register to a
dreg, followed by another register move of
that same dreg to a system register

R0 = LC0;
ASTAT = R0;

Regmv hazard: sysreg
to areg -> dreg to areg
WAW

A register move of a system register to an
accumulator register, followed by another
register move of a dreg to the same accu-
mulator register

A0.w = LC0;
A0 =R0;

Regmv hazard: sysreg
to areg -> preg to areg
WAW

A register move of a system register to an
accumulator register, followed by another
register move of a preg to that same accu-
mulator register

A0.w = LC0;
A0 =P0;

Regmv hazard: sysreg
to areg -> areg to areg
WAW

A register move of a system register to an
accumulator register, followed by another
register move of an accumulator register to
that same accumulator register

A0.w = LC0;
A0 =A1;

Table B-5. Stalls Detected Messages (Cont’d)

Message Explanation Example
VisualDSP++ 3.1 User’s Guide B-19
for Blackfin Processors

Simulator Instruction Timing Analysis Overview
Regmv hazard: sysreg
to areg -> areg to dreg
RAW

A register move of a system register to an
accumulator register, followed by another
register move of that same accumulator reg-
ister to a dreg

A0.w = LC0;
R0 =A0;

Regmv hazard: sysreg
to areg -> areg to sys-
reg RAW

A register move of a system register to an
accumulator register, followed by another
register move of that same accumulator reg-
ister to a system register

A0.w = LC0;
ASTAT = A0.w;

Regmv hazard: sysreg
to areg -> load to areg
WAW

A register move of a system register to an
accumulator register, followed by a load to
the same accumulator register

A0.w = LC0;
A0.w = [I0];

Regmv hazard: sysreg
to areg -> exu op using
areg RAW

A register move of a system register to an
accumulator register, followed by any exe-
cution unit operation using that accumula-
tor register as an operand

A0.w = LC0;
A0 = A0(S);

AQreg hazard: move
to AQ -> exu op using
AQ RAW

CCreg hazard: move
to CC -> exu op using
CC RAW

Table B-5. Stalls Detected Messages (Cont’d)

Message Explanation Example
B-20 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Simulation of Blackfin Processors
Kills Detected Messages

Table B-6 shows the messages that occur when a kill is detected.

Multicycle Instruction Messages

The post-pass instruction timer detects and displays multicycle instruc-
tions. For example, the following instruction takes five cycles to execute.

R0 *= R1;

As shown in Figure B-6 on page B-22, the post-pass timer inserts the
instruction into the pipeline five times to accurately update the cycle
count for this instruction.

Table B-6. Stalls Detected Messages

Message Explanation Example

change-of-flow kill A branch CALL (P0);

rti change-of-flow kill Return from interrupt kills RTI;

mispredicted
change-of-flow kill

Kills due to mispredicted
branches

R0 = 0; CC = R0;
If CC JUMP next (bp);

hardware loop bottom kill

interrupt kill Instructions in the pipeline are
killed due to an interrupt

RAISE 1

sync kill SYNC instructions force all
speculative, transient in the
core/system to be completed
before proceeding, killing
instructions in the pipe

SSYNC;
VisualDSP++ 3.1 User’s Guide B-21
for Blackfin Processors

Simulator Instruction Timing Analysis Overview
The Pipeline Viewer window in Figure B-6 has been configured to
display:

• Disassembly view (instead of addresses)

• Stages EX1, EX2, EX3, WB, and COMMIT

Note the following in Figure B-6.

• At cycle 18, the instruction “R0*=R1;” has entered EX3. At this
stage, the instruction timer knows that the instruction will take five
cycles to execute. Therefore, the timer inserts the instruction into
the pipeline four additional times to ensure that the overall cycle
count is increased by five for this instruction.

• The inserted instruction is annotated with an (multicycle).

Figure B-6. Example - Five Inserted Instructions
B-22 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Simulation of Blackfin Processors
Pipeline Viewer Window Event Icons

Table B-7 shows the Pipeline Viewer window icons that indicate events.

Table B-7. Event Icons

Icon Event Description

Illegal An illegal instruction has been detected.

Kill A stage of the pipe contains an aborted instruction.

Multi A place holder for multicycle instructions

Stall A stall has occurred at a stage in the pipeline.

Unknown The pipeline stage contains an unknown instruction.
VisualDSP++ 3.1 User’s Guide B-23
for Blackfin Processors

Simulator Instruction Timing Analysis Overview
Pipeline Viewer Known Limitations

These are the known limitations of the Pipeline Viewer window:

• Aborted Instructions do not appear in Pipeline Viewer window.

If the functional simulator detects an exceptional event, the event
is reported, but the instruction causing the event does not enter
into the post-pass timer analysis.

For example:

P0=3;

R0=[P0]; // causes EXCEPTION:

 // Data Access Misaligned Access

The misaligned access is reported by the functional simulator, but
the instruction “R0=[P0];” is not sent to the post-pass timer.

• Post-pass timing cycle count is not propagated to other
cycle-dependent objects.

The functional simulator clocks the peripherals. Therefore, the
overall cycle count and the peripherals are not synchronized.
B-24 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Simulation of Blackfin Processors
Abbreviations in Pipeline Viewer Messages

Table B-8 shows abbreviations that may appear in the Pipeline Viewer
window.

Table B-8. Abbreviations in the Pipeline Viewer Window

Abbreviation Meaning

ALU Arithmetic Logic Unit operations (Logical ops, Bit ops, Shift/Rotate ops,
Arithmetic ops excluding Mult, Vector ops excluding Mult/MAC)

ALU2op A two-operand ALU instruction

AQreg

CC2dreg CC register move to a dreg

ccMV Conditional move

CCreg CC register. This multipurpose flag typically holds the result of an arithmetic
comparison.

DAG Data Address Generator unit

Dagreg A DAG register (for example, P5-0, I3-0, M3-0, B3-0, and L3-0)

dreg Data register (for example, R7-0 or A1-0)

Dsp32alu A 32-bit DSP ALU instruction

EXU Execution unit

IAU Instruction Alignment Unit

MAC Multiplier/Accumulator Unit

MUL Multiplier Unit operations (for example, Vector Multiply, 32-bit Multiply,
Vector MAC)

preg Pointer register (for example, P5-0, FP, USP, or SSP)

RAW Read after write

regmv A register move

sysreg System Register (for example, LC1/0, LB1/0, LT1/0, SYSCFG, SEQSTAT,
ASTAT, RETS, RETI, RETX, RETN, RETE, CYCLES, and CYCLE2)
VisualDSP++ 3.1 User’s Guide B-25
for Blackfin Processors

Compiled Simulation
Compiled Simulation

A traditional simulator decodes and interprets one instruction at a time.
Each executed instruction often requires repeated decoding. Compiled
simulation removes the overhead of having to repeatedly decode each
instruction.

Compiled simulation is a process whereby the .DXE file that may be loaded
into a traditional simulator is converted into an .EXE file that will execute
directly on the system hosting VisualDSP++. The execution speed of a
compiled simulation program is greater than that of a standard .DXE
program.

Compiled simulation employs a simulation compiler that preprocesses
instructions in the .DXE file and generates an intermediate C++ source pro-
gram. This program is compiled and linked with a standard set of libraries to
produce an .EXE file that effects the simulation of the original .DXE file.
Within VisualDSP++, you interact with the .DXE file as in traditional simula-
tion. You do not directly interact with the .EXE file.

In a compiled simulation session, loading and executing the .DXE file loads
and executes the corresponding .EXE file. You can view the .DXE file in disas-
sembled form, set breakpoints, run, step, display registers and memory, and so
on. The compiled simulation debug target maps user requests to the appropri-
ate operations in the .EXE file and returns the results to the IDDE. You can
also invoke an .EXE file in stand-alone mode from the command line.

WAW Write after write

Video Video operations (video pixel operations)

Table B-8. Abbreviations in the Pipeline Viewer Window (Cont’d)

Abbreviation Meaning
B-26 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Simulation of Blackfin Processors
To prepare a program for compiled simulation, you can begin with either
of the following.

• The source files from which the .DXE was built

• An existing .DXE file

Program Preparation Starting from Source Files

To prepare a program for compiled simulation by using source files, per-
form the following tasks from within the VisualDSP++ environment.

1. Specify a debug session for compiled simulation.

2. Create a compiled simulation project containing the source files.

3. Build the compiled simulation project to create the .DXE and .EXE
files.

4. Perform one of these actions:

• Execute the program within VisualDSP++ by loading the
.DXE program. This action causes the .EXE program to be
loaded. Run or step the program in the normal way.

• Execute the program outside of VisualDSP++ by opening a
command window and entering the name of the .EXE file. If
the program uses streams, append –streamfile=<filename>
to the command.
VisualDSP++ 3.1 User’s Guide B-27
for Blackfin Processors

Compiled Simulation
Specifying a Session for Compiled Simulation

To run the .EXE file under the control of VisualDSP++, you must config-
ure the debug session for compiled simulation as follows.

1. From the VisualDSP++ Session menu, choose New Session to
open the New Session dialog box.

2. In the Debug target box, select Blackfin Family Compiled Simula-
tor from the drop-down list.

3. In the Platform box, select Blackfin Family Compiled Simulator
from the drop-down list.

4. In the Processor box, select one of these processors: ADSP-BF531,
ADSP-BF532, ADSP-BF533, or ADSP-BF535.

At present, only the Blackfin family processors are supported.

5. In the Session name box, enter a name for this session.

6. Click OK.

Specifying Project Options for Compiled Simulation

When built, a compiled simulation project compiles the sources to the
.DXE file and then invokes the compiled simulation driver to construct the
corresponding .EXE file.

To create a project for compiled simulation:

1. From the Project menu, choose New to open the Save New
Project As dialog box.

2. Enter a file name and click Save.

The Project Options dialog box appears.

3. Click the Project tab.
B-28 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Simulation of Blackfin Processors
4. From the Processor drop-down list, select one of these processors:
ADSP-BF531, ADSP-BF532, ADSP-BF533, or ADSP-BF535.

At present, only the Blackfin family processors are supported.

5. In the Type box, select Compiled simulation file from the
drop-down list.

6. (Optional) Click the Compiled Simulation tab and from the Com-
piler Optimization drop-down list select the optimization level
that the driver will request of the compiler that builds the .EXE file.
Your options are:

• None (default) – no optimizations requested. This selection
typically results in the shortest build time.

• Medium – requests optimization configured to produce a
significant improvement in simulation execution speed.
This selection results in longer build time.

• Maximum – requests all optimizations available to achieve
the fastest possible execution speed. This selection can pro-
duce build times that are significantly longer than those
produced by the Medium setting.

Medium and Maximum differ in effect only if -cmvs is specified in
the Additional options box.

7. (Optional) On the Compiled Simulation page, enter –cmvs in the
Additional options box to select the Microsoft Visual C++ com-
piler (6.0 or 6.1) for compilation.

The –cmvs option does not apply unless the Microsoft Visual C++
compiler (6.0 or 6.1) is installed on your system.

8. Click OK.

9. Build the project to create the .DXE and .EXE files.
VisualDSP++ 3.1 User’s Guide B-29
for Blackfin Processors

Compiled Simulation
Program Preparation Starting from an Existing .DXE
File

Invoke the compiled simulator driver at the command line to generate the
.EXE file from the .DXE file. You can invoke the .EXE file in stand-alone
mode from the command line or from within a VisualDSP++ compiled
simulation session.

You can invoke the compiled simulation driver (simcc.exe) from the
command line to produce an executable .EXE file from a .DXE file. You can
then run the executable to simulate the .DXE.

The simcc command syntax is:

simcc -chip [switches and parameters] dxe-filename

Table B-9 describes the simcc command and command-line items
(switches and parameters).

Table B-9. simcc Command and Command-Line Items

Item Description

simcc Runs the compiled simulation driver

–chip Specifies the processor. Valid selections are –BF531, –BF532,
–BF533, or –BF535.

–o exe–filename Specifies the name of the output .EXE file. By default, the
output file has the same name as dxe-filename with an
.EXE extension.

–0 Optimizes code (at the medium level) in the generated .EXE
file

–0max Optimizes code (at the maximum level) in the generated
.EXE file

dxe–filename Specifies the input .DXE file
B-30 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Simulation of Blackfin Processors
Execution of an .Exe File from the Command Line

When the generated .EXE file is executed from the command line, you config-
ure stream support by supplying a stream configuration file as an argument to
the .EXE file. The stream configuration file is read at program startup, and the
specified streams are created and opened.

The command syntax is:

<exe-filename> [-streamfile=<streamfile>]

Note that <streamfile> is the stream configuration file. The file format is
described as follows.

• Each line in the file represents one stream.

• The input is case insensitive.

• The file is a text file with a .TXT extension.

The syntax of each line is:

filename device [address] direction [flags] [format]

The filename must be the first entry on each line, but the other entries
may appear in any order. Double brackets ([]) denote optional entries.

–help Displays available simcc options

–cmvs Selects the Microsoft Visual C++ 6.0 or 6.1 compiler for
compilation. This choice may result in improved compila-
tion speed.
Note that –cmvs applies only if Microsoft Visual C++ 6.0 or
6.1 is installed on your system.

Table B-9. simcc Command and Command-Line Items (Cont’d)

Item Description
VisualDSP++ 3.1 User’s Guide B-31
for Blackfin Processors

Compiled Simulation
Table B-10 describes the line parameters in the stream configuration file.

Table B-10. Line Parameters in the Stream Configuration File

Item Description

filename The name of the data file to be read or written. If the
name contains embedded spaces, it must appear
within quotes.

device One of the following peripherals.
• memory – denotes memory as the input or

output device
• spt0 – denotes serial port 0 as the input or

output device
• spt1 – denotes serial port 1 as the input or

output device

address The device’s memory address, which is required for a
memory stream. The address can be hexadecimal
(prefix 0x or 0X), octal (prefix 0), or decimal.

direction The stream direction, which is either of the following.
• input
• output

Flags Stream characteristics, as defined by either of the
following.

• circular – causes the program to continue
reading data from the start of the file when
the end of file is reached

• nocircular (default)
B-32 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Simulation of Blackfin Processors
Format The file’s data format, which is one of the following.
• hexadecimal (default)
• octal
• binary
• signed integer
• unsigned integer
• integer
• signed fractional
• unsigned fractional
• fractional

Note: Unless preceded by unsigned, integer and
fractional denote signed values.

Table B-10. Line Parameters in the Stream Configuration File (Cont’d)

Item Description
VisualDSP++ 3.1 User’s Guide B-33
for Blackfin Processors

Compiled Simulation
B-34 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

C TCL SCRIPTING

This appendix describes how you can use Tcl scripting to perform

repeated sequences of debugging operations. The information is organized
under the following topics.

• “Overview of Tcl Scripting” on page C-1

• “Tcl Command Issuance” on page C-3

• “Examples of Tcl Scripts” on page C-5

• “Types of Tcl Commands” on page C-14

• “Tcl Command Reference” on page C-18

Overview of Tcl Scripting

VisualDSP++ includes an interpreter for the Tool Command Language
(Tcl) scripting language. This well-documented C-like language, devel-
oped by UC Berkeley researchers, provides an excellent means of scripting
repeated sequences of debugging operations. Use this powerful language
to develop full-blown test applications of DSP systems.

Analog Devices Tcl Commands

Analog Devices has extended Tcl version 8.3 with several procedures to
access key debugging features. Use the power of the Tcl language, coupled
with Analog Devices extensions to extensively script your work in
VisualDSP++.
VisualDSP++ 3.1 User’s Guide C-1
for Blackfin Processors

Overview of Tcl Scripting
VisualDSP++ provides these groups of Tcl commands:

• Target query and manipulation commands

• GUI manipulation commands

• Project build and maintenance commands

Additional Tcl Resources

The following resources can aid you in using Tcl to enhance your debug
sessions.

• www.scriptics.com is a resource for Tcl programmers

• Practical Programming in Tcl & Tk, by Brent B. Welch (ISBN
0136168302)

Tcl Output

Tcl output is logged to VisualDSP_log.txt, which, by default, is located
in the directory:

You can view the output of Tcl commands in the Output window’s Con-
sole page. Tcl output is logged to VisualDSP_log.txt, which by default, is
located in the following directory.

C:\Program Files\Analog Devices\VisualDSP\Data\

View this file to analyze the Tcl output.
C-2 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Tcl Scripting
Tcl Command Issuance

You can issue Tcl commands in various ways: from the Output window,
from the File menu, from an editor window, or from a user tool.

Issuing Commands from the Output Window

In the Output window, you can type a Tcl command from the Console
page, as shown in Figure C-1.

Load a script from the Output window’s Console page by typing:

source filename

Similar to C/C++, Tcl uses a backslash (\) as its escape character. When
you specify paths in the Windows environment, you must escape the
escape character. For example:

source c:\\my_dir\\my_subdir\\my_file.tcl

You can also use forward slashes to delimit directories in a path, for
example:

source c:/my_dir/my_subdir/my_file.tcl

Figure C-1. Typing a Tcl Command from the Output Window
VisualDSP++ 3.1 User’s Guide C-3
for Blackfin Processors

Tcl Command Issuance
Command execution is deferred until a line is typed without a trailing
backslash. This feature permits the entry of an entire block of code (or
entire Tcl procedures) for the Tcl interpreter to evaluate at once.

Issuing Commands from the File Menu

You can quickly issue Tcl scripts of frequent use. From the File menu,
choose Recent Tcl Scripts, and then select the Tcl script.

Issuing Commands from an Editor Window

From an open editor window that contains a Tcl script, right-click and
choose Source Tcl Script. Refer to Figure C-2.

Figure C-2. Issuing a Tcl Script from an Editor Window
C-4 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Tcl Scripting
Issuing Commands from a User Tool

Click a user tool in the toolbar, or choose a user tool from the Tools
menu.

Examples of Tcl Scripts

This section provides examples that show how to create and run a Tcl
script.

Step and Print Example

This example shows how to create a Tcl script and run it from the Output
window’s Console page.

This Tcl procedure, named step_and_print, single steps through your
assembly code a specified number of times. When you run the script, you
supply the number of steps (the count), and the output is printed to a log
file.

Creating the Tcl Script

1. Use a text editor to type the following code.

proc step_and_print { count } {

 for { set i 0 } { $i < $count } { incr i } {

 dspstepasm -wait

 puts [format “PC is at address 0x%x\n” [dspval \$pc]]

 }

}

2. Save to C:\Temp\test.tcl.
VisualDSP++ 3.1 User’s Guide C-5
for Blackfin Processors

Examples of Tcl Scripts
Running the New Tcl Script

1. From the Output window’s Console page, type the Tcl source
command followed by the path and file name of the new Tcl script.

>source C:\\Temp\\test.tcl

Use double backslash characters.

2. Press Enter.

The Tcl script is loaded.

3. On the Console page, call the function and supply the step count,
for example:

step_and_print 10

4. Press Enter.

The function executes. The program counter single steps ten times
(the step count in the example shown in Figure C-3) and halts.

Output resulting from commands entered in the Output window’s
Console page is saved to VisualDSP_log.txt.

Figure C-3. Resulting Output
C-6 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Tcl Scripting
Regression Test Example

You can use Tcl with Analog Devices extensions to build sophisticated
behaviors and boost productivity. The regression test below is used by
Analog Devices software developers to test VisualDSP++’s debugging
capability. This particular test ensures that function parameters evaluate
correctly.

Note: At one time, developers performed this test manually with the GUI.
The process took several minutes. With a Tcl script, the test takes seconds.

Two procedures are defined to help implement this test. The goto_line
procedure runs the program to a certain line number. The assert proce-
dure trips an error if a given expression evaluates to zero (false).

The regression test example follows.

proc assert { e } {

 if { 0 == $e } {

 error "Assertion Failed!"

 }

}

proc goto_line { file line } {

 # Lookup the address corresponding to {file, line} pair.

 # The return value from dsplookupline is a list of start

 # and end address (we use lindex to extract the car of

 # the list).

 dspsetbreak [lindex [dsplookupline $file $line] 0] \

 -temporary

 dsprun

 dspwaitforhalt

}

dspload argtest.dxe
VisualDSP++ 3.1 User’s Guide C-7
for Blackfin Processors

Examples of Tcl Scripts
goto_line main.c 126

assert [expr 0x56 == [dspeval "cNum"]]

assert [expr 0x7890 == [dspeval "sNum"]]

assert [expr 0x1234 == [dspeval "iNum"]]

assert [expr 0xdeaddead == [dspeval "lNum"]]

assert [expr 1.234 == [dspeval "fNum" float]]

assert [expr 5.678 == [dspeval "dNum" float]]

goto_line main.c 58

assert [expr 0x56 == [dspeval "cNum"]]

assert [expr 0x7890 == [dspeval "sNum"]]

assert [expr 0x1234 == [dspeval "iNum"]]

assert [expr 0xdeaddead == [dspeval "lNum"]]

assert [expr 1.234 == [dspeval "fNum" float]]

assert [expr 5.678 == [dspeval "dNum" float]]

assert [expr 0x56 == [dspeval "g_cNum"]]

assert [expr 0x7890 == [dspeval "g_sNum"]]

assert [expr 0x1234 == [dspeval "g_iNum"]]

assert [expr 0xdeaddead == [dspeval "g_lNum"]]

assert [expr 1.234 == [dspeval "g_fNum" float]]

assert [expr 5.678 == [dspeval "g_dNum" float]]

assert [expr 0x56 == [dspeval "c"]]

assert [expr 0x7890 == [dspeval "s"]]

assert [expr 0x1234 == [dspeval "i"]]

assert [expr 0xdeaddead == [dspeval "l"]]

assert [expr 1.234 == [dspeval "f" float]]

assert [expr 5.678 == [dspeval "d" float]]

goto_line main.c 142

assert [expr 0xdeaf == [dspeval "iNum"]]
C-8 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Tcl Scripting
dsprun

dspwaitforhalt

exit

For reference, the source code for main.c is presented here.

Note: ScareCompiler() is an auxiliary stub function used to (intention-
ally) suppress compiler optimizations.

#include <stdio.h>

extern void ScareCompiler(void *pv);

char g_cNum;

short g_sNum;

int g_iNum;

long g_lNum;

float g_fNum;

double g_dNum;

int LotsOfArgs(char c, short s, int i, long l, float f, double d)

{

 char cNum;

 short sNum;

 int iNum;

 long lNum;

 float fNum;

 double dNum;

 cNum = c;

 sNum = s;

 iNum = i;
VisualDSP++ 3.1 User’s Guide C-9
for Blackfin Processors

Examples of Tcl Scripts
 lNum = l;

 fNum = f;

 dNum = d;

 ScareCompiler((void*)&cNum);

 ScareCompiler((void*)&sNum);

 ScareCompiler((void*)&iNum);

 ScareCompiler((void*)&lNum);

 ScareCompiler((void*)&fNum);

 ScareCompiler((void*)&dNum);

 g_cNum = cNum;

 g_sNum = sNum;

 g_iNum = iNum;

 g_lNum = lNum;

 g_fNum = fNum;

 g_dNum = dNum;

 ScareCompiler((void*)&g_cNum);

 ScareCompiler((void*)&g_sNum);

 ScareCompiler((void*)&g_iNum);

 ScareCompiler((void*)&g_lNum);

 ScareCompiler((void*)&g_fNum);

 ScareCompiler((void*)&g_dNum);

 /***

Set a break here verify that the locals, arguments and globals

look ok. They should have the same values as the locals in

main().

 Examples:

 g_cNum, cNum, & c should all equal 0x56

 g_sNum, sNum, & s should all equal 0x7890

 **/
C-10 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Tcl Scripting
 if(cNum != 0x56)

 printf("As If!\n");

 if(sNum != 0x7890)

 printf("As If!\n");

 if(iNum != 0x1234)

 printf("As If!\n");

 if(lNum != 0xdeaddead)

 printf("As If!\n");

 if(fNum != 1.234)

 printf("As If!\n");

 if(dNum != 5.678)

 printf("As If!\n");

 if(cNum && sNum && iNum && lNum && fNum && dNum)

 return (0xdeaf);

 else

 return (0xbad);

}

/**

 TestArg test program

 This tests the debugger and the debug information
 generated by the compiler for the basic types. It tests

 that the information is ok regardless of whether the

 variable is a local or an argument to a function.

 To use this file:

 1. Load the argtest executable

 2. Load the argtest layout file

 3. Deposit break points at the specified locations

 4. Enter the following into the expressions window

 g_cNum

 g_sNum

 g_iNum

 g_lNum

 g_fNum
VisualDSP++ 3.1 User’s Guide C-11
for Blackfin Processors

Examples of Tcl Scripts
 g_dNum

 5. Run evaluating correctness based on the comments in

 the code.

**/

void main(void)

{

 char cNum;

 short sNum;

 int iNum;

 long lNum;

 float fNum;

 double dNum;

 cNum = 0x56;

 sNum = 0x7890;

 iNum = 0x1234;

 lNum = 0xdeaddead;

 fNum = 1.234;

 dNum = 5.678;

 ScareCompiler((void*)&cNum);

 ScareCompiler((void*)&sNum);

 ScareCompiler((void*)&iNum);

 ScareCompiler((void*)&lNum);

 ScareCompiler((void*)&fNum);

 ScareCompiler((void*)&dNum);

 /*************************************

 Set a break here

 verify that the locals look exactly

 as they were initialized. The ScareCompiler

 function does nothing to the variables.

 **/
C-12 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Tcl Scripting
 if(cNum > 0x56)

 printf("No way!\n");

 if(sNum > 0x7890)

 printf("No way!\n");

 if(iNum > 0x1234)

 printf("No way!\n");

 if(lNum > 0xdeaddead)

 printf("No way!\n");

 if(fNum > 1.234)

 printf("No way!\n");

 if(dNum > 5.678)

 printf("No way!\n");

 /* This should return 0xdeaf */

 iNum = LotsOfArgs(cNum, sNum, iNum, lNum, fNum, dNum);

 // Set a break here check that iNum is 0xdeaf

 if(iNum == 0xbad)

 printf("That's just wrong\n");

 else

 printf("No problems\n");

}

VisualDSP++ 3.1 User’s Guide C-13
for Blackfin Processors

Types of Tcl Commands
Types of Tcl Commands

The three types of Tcl commands are:

• GUI manipulation commands

• Target query and manipulation commands

• Project build and maintenance commands

This section describes each group of Tcl commands.

GUI Manipulation Commands

Use the Graphic User Interface (GUI) manipulation commands in
Table C-1 to create windows and menu items without using the GUI.

Table C-1. GUI Manipulation Command Summary

Command Description

“dspaddmenuitem” on
page C-19

Adds a menu item (command) to the menu bar

“dspcheckmenuitem” on
page C-24

Queries or sets the “checked” attribute for a menu item

“dspclickmenuitem” on
page C-25

Simulates a mouse click of a menu item

“dspdeletemenuitem” on
page C-27

Deletes a menu item

“dspenablemenuitem” on
page C-29

Queries or sets the “enabled” attribute of a menu item

“dspmemorywin” on page C-45 Displays a memory window

“dspregisterwin” on page C-60 Creates a custom register window
C-14 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Tcl Scripting
Target Query and Manipulation Commands

Use the Tcl commands in Table C-2 to query the target and manipulate
values.

Table C-2. Target Query and Manipulation Command Summary

Command Description

“dspsetbreak” on page C-65 Sets (inserts) a breakpoint

“dspcancelbreak” on page C-23 Cancels (deletes) a breakpoint

“dspgetbreak” on page C-32 Returns information about the breakpoint

“dspeval” on page C-30 Evaluates an expression

“dspgetmemblock” on
page C-34

Fetches a block of memory

“dspgetmeminfo” on page C-36 Gets information about types of memory. This information
is used by other commands.

“dspgetprocessors” on
page C-37

Gets the names of the processors in a multiprocessor debug
session

“dspgetstate” on page C-38 Gets the current state of a processor

“dspgetswstack” on page C-39 Gets the C-language software stack for a processor

“dsphalt” on page C-40 Requests a halt of the processor

“dspload” on page C-42 Loads a file to the target

“dsplookupline” on page C-43 Looks up the start and end address corresponding to a line in
a file

“dsplookupsymbol” on
page C-44

Looks up the address of a symbol identified by a label
VisualDSP++ 3.1 User’s Guide C-15
for Blackfin Processors

Types of Tcl Commands
“dspplotrotate” on page C-47 Rotates a waterfall plot by azimuth and elevation

“dspplotwin” on page C-48 Configures and displays a plot in a plot window

“dspreset” on page C-61 Sends a reset message to the target

“dsprestart” on page C-62 Sends a restart message to the target

“dsprun” on page C-63 Sends a run message to the target

“dspset” on page C-64 Evaluates an expression and assigns the value to another
expression

“dspgetmemblock” on
page C-34

Sets a block of memory

“dspsetswstack” on page C-69 Changes the debug focus

“dspstepasm” on page C-70 Steps the target a single disassembly step

“dspstepin” on page C-71 Steps the target a single source language step

“dspstepout” on page C-72 Steps the target out of the current subroutine in a source lan-
guage

“dspstepover” on page C-73 Steps the target a single source language step, skipping over
any subroutine calls

“dspwaitforhalt” on page C-74 Delays further execution until the target halts

“dspaddstream” on page C-21 Adds a stream to the debug session

“dspdeletestream” on page C-28 Deletes the stream from the debug session

Table C-2. Target Query and Manipulation Command Summary (Cont’d)

Command Description
C-16 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Tcl Scripting
Project Build and Maintenance Commands

Use the Tcl commands in Table C-3 to operate at the project level.

“dspdeleteallstream” on
page C-26

Deletes all streams from the debug session

“dspliststream” on page C-41 Lists all the streams in the debug session

Table C-3. Project Build and Maintenance Command Summary

Command Description

“dspprojectload” on page C-57 Loads the project into VisualDSP++

“dspprojectbuild” on page C-54 Builds the currently loaded project configuration

“dspprojectinfo” on page C-56 Returns information about the currently loaded project

“dspprojectaddfile” on
page C-52

Adds a file to the current project

“dspprojectaddfolder” on
page C-53

Adds a folder to the current project

“dspprojectremovefile” on
page C-58

Removes a file from the current project

“dspprojectremovefolder” on
page C-59

Removes a folder from the current project

“dspsetbreak” on page C-65 Closes the currently loaded project

Table C-2. Target Query and Manipulation Command Summary (Cont’d)

Command Description
VisualDSP++ 3.1 User’s Guide C-17
for Blackfin Processors

Tcl Command Reference
Tcl Command Reference

This section provides descriptions of the syntax, purpose, and arguments
for each Tcl command. Examples are included for some commands.

In the syntax statements, optional Tcl command parameters are indicated
with question-mark characters (?). For example, in the following syntax
statement, -all and -wait are optional parameters.

dspprojectbuild projconfig ?-all? ?-wait?
C-18 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Tcl Scripting
dspaddmenuitem

Syntax

dspaddmenuitem menuItem callback

 ?-head? ?-info value? ?-help value?

Purpose

This command adds a menu item to the menu bar.

Returns: a cookie representing the identifier for the menu item. The
cookie is used in calls to dspcheckmenuitem, dspenablemenuitem, and dsp-
deletemenuitem. The cookie is passed to the callback function, allowing a
single callback function to service multiple menu items.

Arguments

menuItem

Specifies the path to the menu item. It is of the format
MENU:SUBMENU:SUBMEMU:ITEM. This specifies the menu tree that needs to
be traversed to access the menu item.

callback

Specifies the Tcl procedure called when the menu item is clicked.
This function must be of the form proc function_name { id } { body }.
The id parameter to this callback function is the cookie for the menu
item (see “Returns” above).

-head

Specifies that the menu item is to be prepended to the menu. Otherwise,
the menu item is appended to the menu.

-info value
VisualDSP++ 3.1 User’s Guide C-19
for Blackfin Processors

Tcl Command Reference
Specifies an information string to be displayed in the application’s status
bar when the menu item has focus.

-help value

Specifies a callback to a Help function. This callback has the same format
as the function callback described above.

Example

The following script creates a menu item that outputs a message when you
choose the menu item.

proc callback { id } {

 puts [format "Menu ID %d clicked.\n" $id]

}

set id [dspaddmenuitem "Custom:Menu #1" callback \

 -info "Demo menu item"]

puts [format "Menu ID %d installed.\n" $id]
C-20 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Tcl Scripting
dspaddstream

Syntax

dspaddstream -source value1

 ?-sourceproc value2?

 ?-sourceaddress value3?

 ?-dest value4?

 ?-destproc value5?

 ?-destaddress value6?

 ?-format value7?

 ?-circular?

 ?-norewind?

Purpose

This command adds a stream to the debug session.

Returns: stream id if successful or 0 otherwise

Arguments

-source value1

value1 specifies the source of the stream connection (a device or a file)

-sourceproc value2

Relevant only in a multiprocessor debug session and ignored during a single
processor debug session. value2 specifies the processor to which the source
device is attached. Omitting this argument steers the command toward the
currently focused processor.

-sourceaddress value3

Addresses for devices such as memory mapped I/O ports
VisualDSP++ 3.1 User’s Guide C-21
for Blackfin Processors

Tcl Command Reference
-destproc value5

Relevant only in a multiprocessor debug session and ignored during a single
processor debug session. Value5 specifies the processor to which the destina-
tion device is attached. Omitting this argument steers the command toward
the currently focused processor.

-destaddress value6

Addresses for devices such as memory mapped I/O ports

-format value7

value7 specifies the format of the file being used, for example: hexadecimal
(default), integer, unsigned integer, float, and octal.

-circular

Specifies whether the source file is circular. If it is, after the last data is read
from the file, the data from the beginning of the file is read. By default, circu-
lar is disabled.

-norewind

By default, on reset or restart, the file pointer is rewound to the start of the
file. When this option is specified, the file is not rewound. Use this option
during a regression test to continue testing.

Example

dspaddstream -source "TX1" -dest "d:/transmit.dat"

 -format "Unsigned Integer"

This command specifies the source as TX1 and the destination as a file
(d:/transmit.dat) in unsigned-integer format.
C-22 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Tcl Scripting
dspcancelbreak

Syntax

dspcancelbreak ?-processor value? id

Purpose

This command cancels (deletes) the breakpoint identified by id.

Returns: id

Arguments

-processor value

Relevant only in a multiprocessor debug session and ignored during a sin-
gle processor debug session. value specifies the processor to which the
command is directed. Omitting this argument steers the command toward
the currently focused processor.

id

An identifier from a previous call to “dspsetbreak” on page C-65. Using
“dspgetbreak” on page C-32 can also determine a breakpoint’s identifier.

Example

Cancel all breakpoints

foreach bp [dspgetbreak] { dspcancelbreak [lindex $bp 0] }
VisualDSP++ 3.1 User’s Guide C-23
for Blackfin Processors

Tcl Command Reference
dspcheckmenuitem

Syntax

dspcheckmenuitem id ?value?

Purpose

This command queries or sets the checked attribute of the menu item
identified by id.

Returns: the string “checked” or “unchecked”

Arguments

id

Obtained from a previous call to dspaddmenuitem

value

Specifies the new value for this attribute. Valid values are checked and
unchecked. If value is not specified, the value of the attribute is not
altered.
C-24 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Tcl Scripting
dspclickmenuitem

Syntax

dspclickmenuitem menuItem

Purpose

This Tcl command simulates a mouse click on a menu item.

Returns: 1 if successful or 0 otherwise (when the menu item does not
exist)

Arguments

menuItem

Specifies the menu item to click. The format, MENU:SUBMEU:SUBMENU:ITEM,
specifies the menu tree to be traversed to access the menu item.

Example

This command refreshes the window:

> dspclickmenuitem Window:Refresh
VisualDSP++ 3.1 User’s Guide C-25
for Blackfin Processors

Tcl Command Reference
dspdeleteallstream

Syntax

dspdeleteallstream

Purpose

This command deletes all the streams in the debug session.

Returns: nothing
C-26 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Tcl Scripting
dspdeletemenuitem

Syntax

dspdeletemenuitem id

Purpose

This command deletes the menu item specified by id.

Returns: nothing

Arguments

id

Obtained from a previous call to dspaddmenuitem (see “dspaddmenuitem”
on page C-19)
VisualDSP++ 3.1 User’s Guide C-27
for Blackfin Processors

Tcl Command Reference
dspdeletestream

Syntax

dspdeletestream id

Purpose

This command deletes the stream identified by id.

Returns: id of the stream if successful or 0 otherwise

Example

dspdeletestream 1
C-28 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Tcl Scripting
dspenablemenuitem

Syntax

dspenablemenuitem id ?value?

Purpose

This command queries or sets the enabled attribute of the menu item
identified by id.

Returns: the string enabled, disabled, or grayed

Arguments

id

Obtained from a previous call to dspaddmenuitem (see “dspaddmenuitem”
on page C-19)

value

Specifies the new value for this attribute. Valid values are enabled, dis-
abled, or grayed. If value is not specified, the value of the attribute is not
altered.
VisualDSP++ 3.1 User’s Guide C-29
for Blackfin Processors

Tcl Command Reference
dspeval

Syntax

dspeval ?-processor value? expr ?format?

Purpose

This command evaluates an expression specified by expr. Valid forms of
expressions are the expressions that can be accepted by the Expressions
window.

Arguments

-processor value

Relevant only in a multiprocessor debug session and ignored during a sin-
gle processor debug session. value specifies the processor to which the
command is directed. Omitting this argument steers the command toward
the currently focused processor.

expr

The expression to be evaluated

format

Specifies the format used to format the output. Valid values are hexadeci-
mal (default), integer, unsigned integer, float, and octal.

Escape Character

When using the dollar sign ($) character in an expression, escape this char-
acter with a backslash (\).

 The $ is the variable signifier in Tcl.
C-30 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Tcl Scripting
Examples

• The following example returns the value of the expression or an
error message if a problem was encountered.

> dspeval "\$PC"

• The following example evaluates a C expression.

> dspeval "&my_array[5]"

• The following example fetches the opcode at the PC.

> dspeval "\$PM (\$PC)"
VisualDSP++ 3.1 User’s Guide C-31
for Blackfin Processors

Tcl Command Reference
dspgetbreak

Syntax

dspgetbreak ?-processor value? ?id?

Purpose

This command returns a list containing information about the breakpoint
identified by id.

The list consists of these elements:

• The id of the breakpoint

• The software overlay or hardware page in which the breakpoint is
located (-1, if none)

• The address of the breakpoint

• The source file of the breakpoint ("", if unknown)

• The line number of the breakpoint (zero if unknown)

• “temporary” or “permanent”

• “enabled” or “disabled”

• “placed” or “unplaced”

• The skip count

• The test expression ("", if unknown)

 If id is omitted, a list of all breakpoint information is returned.
C-32 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Tcl Scripting
Arguments

-processor value

Relevant only in a multiprocessor debug session and ignored during a sin-
gle processor debug session. value specifies the processor to which the
command is directed. Omitting this argument steers the command toward
the currently focused processor.

id

A value previously returned by “dspsetbreak” on page C-65
VisualDSP++ 3.1 User’s Guide C-33
for Blackfin Processors

Tcl Command Reference
dspgetmemblock

Syntax

dspgetmemblock ?-processor value?

 memory

 start

 count

 ?-stride value?

 ?-format value?

Purpose

This command fetches a block of memory and returns a list comprised of
the memory fetched. Each element of the list represents the value of a sin-
gle address.

Arguments

-processor value

Relevant only in a multiprocessor debug session and ignored during a sin-
gle processor debug session. value specifies the processor to which the
command is directed. Omitting this argument steers the command toward
the currently focused processor.

memory

Specifies the memory from which to fetch the block. This value is one of
the strings outputted by “dspgetmeminfo” on page C-36.

start

Specifies the first address to fetch in the block

count

Specifies the total number of addresses to fetch
C-34 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Tcl Scripting
-stride value

Specifies the distance between memory locations. If value is omitted, 1 is
used.

-format value

Specifies the format used to format the output. Valid values are hexadeci-
mal (default), integer, unsigned integer, float, and octal. Values vary
from target to target. The default is hexadecimal.

Example

> set pm [lindex [lindex [dspgetmeminfo] 0] 0]

 Program(PM) Memory

> dspgetmemblock $pm 0x20004 3 –format "Assembly"

 {nop;} {jump __lib_start;} {nop;}
VisualDSP++ 3.1 User’s Guide C-35
for Blackfin Processors

Tcl Command Reference
dspgetmeminfo

Syntax

dspgetmeminfo ?-processor value?

Purpose

This command returns information about the types of memory within the
target and returns a list of memories. Each element of the list is itself a list
comprised of two elements:

• An ASCII string representing the canonical name of the memory

• The width of the memory in bits

Returns: information used by other commands to identify a particular
memory by its name

Arguments

-processor value

Relevant only in a multiprocessor debug session and ignored during a sin-
gle processor debug session. value specifies the processor to which the
command is directed. Omitting this argument steers the command toward
the currently focused processor.

Example

The ADSP-BF535 simulator's output:

> dspgetmeminfo

{ "PM" 24 } { "DM" 16 } { "IOM" 16 }
C-36 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Tcl Scripting
dspgetprocessors

Syntax

dspgetprocessors

Purpose

This command returns the names of the processors in a multiprocessor
debug session. For a single processor session, an empty list is returned.

These names are used in the -processor argument of other Tcl
commands.
VisualDSP++ 3.1 User’s Guide C-37
for Blackfin Processors

Tcl Command Reference
dspgetstate

Syntax

dspgetstate ?-processor value?

Purpose

This command returns the current state of a processor.

Returns: one of these strings: reset, running, stepping, halted,
loaded, or unknown

Arguments

-processor value

Relevant only in a multiprocessor debug session and ignored during a sin-
gle processor debug session. The value argument specifies the processor
to which the command is directed. Omitting this argument steers the
command toward the currently focused processor.
C-38 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Tcl Scripting
dspgetswstack

Syntax

dspgetswstack ?-processor value?

Purpose

This command returns the C-language software stack for a processor.

Do not confuse this stack with the internal hardware stack found
on some targets.

Returns: a list of frames. Each frame is a list comprised of a name
(C function) and a cookie value. The cookie value changes the debug
focus to a different frame (see “dspsetswstack” on page C-69). If a frame
currently has the debug focus, a third item in the list is the string focus.
One frame only may have focus at a given time.

If the stack cannot be found or identified because the program is in an
assembly language module (or no debug information is present), a null list
is returned.

Arguments

-processor value

Relevant only in a multiprocessor debug session and ignored during a sin-
gle processor debug session. The value argument specifies the processor
to which the command is directed. Omitting this argument steers the
command toward the currently focused processor.
VisualDSP++ 3.1 User’s Guide C-39
for Blackfin Processors

Tcl Command Reference
dsphalt

Syntax

dsphalt ?-processor value? ?-wait?

Purpose

This command sends a halt request message to the target.

This command ensures only that a message is sent. It does not guarantee
that the target will halt.

Returns: 1

Arguments

-processor value

Relevant only in a multiprocessor debug session and ignored during a sin-
gle processor debug session. The value argument specifies the processor
to which the command is directed. Omitting this argument steers the
command toward the currently focused processor.

-wait

Prevents further execution of a Tcl script until the target has halted
C-40 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Tcl Scripting
dspliststream

Syntax

dspliststream

Purpose

This command lists all the streams in the debug session.

Returns: the list of streams. The list consists of the id of the stream, source
device or a file, destination device or a file.
VisualDSP++ 3.1 User’s Guide C-41
for Blackfin Processors

Tcl Command Reference
dspload

Syntax

dspload ?-processor value? fileName ?-symbols? ?-wait?

Purpose

This command loads a file to the target. Use this command when you
debug a ROM target.

Returns: 1 if successful or an error message otherwise

Arguments

-processor value

Relevant only in a multiprocessor debug session and ignored during a sin-
gle processor debug session. The value argument specifies the processor
to which the command is directed. Omitting this argument steers the
command toward the currently focused processor.

fileName

Specifies the file to be loaded to the target

-symbols

Indicates that symbolic debugging information only be loaded from the
file. The target itself is not loaded with the binary’s image. Use this option
to debug a ROM target.

-wait

Prevents further execution of a Tcl script until the target has halted
C-42 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Tcl Scripting
dsplookupline

Syntax

dsplookupline ?-processor value? file line

Purpose

This command looks up the start and end address for the file line

Returns: a list comprising two elements, representing the start and end
addresses. If line number information cannot be determined, an error is
returned.

Arguments

-processor value

Relevant only in a multiprocessor debug session and ignored during a sin-
gle processor debug session. The value argument specifies the processor
to which the command is directed. Omitting this argument steers the
command toward the currently focused processor.

file

Specifies the name of the file

line

Specifies the line in the file

Example

This command sets a breakpoint at a line:

> dspsetbreak [lindex [dsplookupline foo.c 100] 0]

This example uses Tcl’s lindex command to access the first element in
the two-element list.
VisualDSP++ 3.1 User’s Guide C-43
for Blackfin Processors

Tcl Command Reference
dsplookupsymbol

Syntax

dsplookupsymbol ?-processor value? ?-memory value? label

Purpose

This command looks up the address of a symbol.

Returns: the label’s address

Arguments

-processor value

Relevant only in a multiprocessor debug session and ignored during a sin-
gle processor debug session. The value argument specifies the processor
to which the command is directed. Omitting this argument steers the
command toward the currently focused processor.

-memory value

Specifies the memory in which the look up is to be performed.
The form of this argument is one of the strings returned by the dspget-
meminfo command (see “dspgetmeminfo” on page C-36).

label

Specifies the symbol
C-44 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Tcl Scripting
dspmemorywin

Syntax

dspmemorywin memory addr

 ?-rect { left top right bottom }?

 ?-title name? ?-track expr?

Purpose

This command opens a memory window for the memory identified by
memory at the address specified by addr.

Returns: 1

Arguments

memory

One of the strings returned by dspgetmeminfo (see “dspgetmeminfo” on
page C-36
).

addr

Specifies the address

-rect { left top right bottom }

Specifies the coordinates of the rectangle enclosing the window. This list
has four integer values. If the rectangle size is not specified, the MS Win-
dows system library sets the size.

-title name

Assigns the specified name to the window
VisualDSP++ 3.1 User’s Guide C-45
for Blackfin Processors

Tcl Command Reference
-track expr

Focuses the window on a specific activity. The expression expr is evalu-
ated at every processor halt, and the window moves to the address based
on the evaluation of the expression. Use this option to follow pointer
movement.
C-46 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Tcl Scripting
dspplotrotate

Syntax

dspplotrotate title az el

Purpose

This command rotates a waterfall plot. You choose the degree of azimuth
rotation and elevation rotation.

Returns: an error message in the Output window if the command fails

Arguments

title

This title must match a title of a previously defined waterfall plot.

az

The azimuth rotation angle (from 0 to 360 degrees)

el

The elevation viewpoint (from -90 to +90 degrees)
VisualDSP++ 3.1 User’s Guide C-47
for Blackfin Processors

Tcl Command Reference
dspplotwin

Syntax

dspplotwin memtype addr count

 ?-stride value?

 ?-datatype value?

 ?-plottype value?

 ?-title value?

 ?-setname value?

 ?-xmemtype value?

 ?-xaddr value?

 ?-xstride value?

 ?-xdatatype value?

 ?-columncount value?

 ?-add?

Purpose

This Tcl command creates and displays a plot in a plot window.

Returns: on failure, an error message in the Output window

Arguments

memtype

The Y-axis or Z-axis memory type, such as $dm or $pm, depends on the
plot type.
C-48 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Tcl Scripting
addr

The Y-axis or Z-axis address depends on the plot type.

count

The Y-axis or Z-axis row count depends on the plot type.

-stride value

The Y-axis or Z-axis stride depends on the plot type.

-datatype value

The Y-axis or Z-axis data type, such as float, depends on the plot type.

-plottype value

Specifies the desired plot type. Choose: line, xy, constellation, eyediagram,
waterfall, or image.

-title value

The plot’s title. Surround the text with double-quote characters (").

-setname value

The name of this data set. Surround the text with double-quote characters
(").

-xmemtype value

The X-axis memory type, such as $dm, depends on the plot type.

-xaddr value

The X-axis address depends on the plot type.
VisualDSP++ 3.1 User’s Guide C-49
for Blackfin Processors

Tcl Command Reference
-xstride value

The X-axis stride depends on the plot type.

-xdatatype value

The X-axis data type, such as float, depends on the plot type.

-columncount value

The Z-axis column count

-add

Specifies that you are adding data to a previously defined plot

Examples

The following commands configure and display various plots.

Eye Diagram Plot

dspplotwin

 $dm eyedata 100

 -datatype float

 -plottype eyediagram

 -title "Eye Diagram"

 -setname "Input"
C-50 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Tcl Scripting
Constellation Plot

dspplotwin

 $dm ydata 100

 -datatype float

 -plottype constellation

 -xmemtype $dm

 -xaddr xdata

 -xdatatype float

 -title "Constellation Plot"

 -setname "Input"

Waterfall Plot

dspplotwin

 $dm zdata 64

 -datatype float

 -plottype waterfall

 -title "Waterfall Plot"

 -setname "Input"

 -columncount 20
VisualDSP++ 3.1 User’s Guide C-51
for Blackfin Processors

Tcl Command Reference
dspprojectaddfile

Syntax

dspprojectaddfile ?-folder name? filename

Purpose

This command adds the file’s filename to the currently loaded project.

Returns: an error condition when:

• No project is loaded

• filename does not exist

• filename is already in the project

Arguments

-folder name

Specifies the folder in which to place the file. If the folder does not exist, it
is created. If no folder is specified, the file is inserted at the root of the
project file hierarchy.

filename

Specifies the name of the file to be added
C-52 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Tcl Scripting
dspprojectaddfolder

Syntax

dspprojectaddfolder ?-ext extensions? foldername

Purpose

This command adds the folder’s foldername (for example, folder1 or
folder1/folder2) to the currently loaded project.

Returns: an error condition occurs when no project is loaded. An attempt
to add a folder currently in the project results in success.

Arguments

-ext extensions

Specifies extensions for the folder

Foldername

Specifies the name of the folder. A parent folder is created if it is specified
in the path name but does not currently exist.
VisualDSP++ 3.1 User’s Guide C-53
for Blackfin Processors

Tcl Command Reference
dspprojectbuild

Syntax

dspprojectbuild projconfig ?-all? ?-wait?

Purpose

This command builds the configuration projconfig of the currently
loaded project.

Returns:

• When the -wait parameter is used, 1 to indicate that the project
build was successful, and 0 to indicate that the build was
unsuccessful

• When the -wait parameter is not used, 1 to indicate that the call
was successful. Otherwise, the call was not successful.

• An error condition in response to any of the following: projconfig
does not exist, no project is loaded, or the build fails for any reason

Arguments

projconfig

Identifies the project configuration

-all

Performs a “rebuild all.” If you do not specify this argument, an increment
build is preformed.

-wait

Prevents completion of the call until after the project build is completed.
Without this switch, the call returns right away.
C-54 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Tcl Scripting
dspprojectclose

Syntax

dspprojectclose ?-save? ?filename?

Purpose

This command closes the currently loaded project.

Returns: an error condition when:

• No project is loaded

• The project cannot be saved (for example, when the project file is
read only)

• filename is specified and -save is not

Arguments

-save

Specifies that changes to the project be saved. If the flag is omitted, the
project is closed and changes are not saved.

filename

Specifies the file name to save to (that is, “Save As”). If the file name is not
specified, the project is saved to the location from which it was loaded.
VisualDSP++ 3.1 User’s Guide C-55
for Blackfin Processors

Tcl Command Reference
dspprojectinfo

Syntax

dspprojectinfo

Purpose

This command returns information about the currently loaded project.

The return value is a list comprising these two members:

• A list of the project’s configurations

• A list of the project’s input files. Each element of the list is a list
containing the file name and project folder. Project folders use a
file hierarchy-like syntax, with “/” to indicate the root of the
project’s file hierarchy.

Returns: an error condition when no project is loaded

Example

% dspprojectinfo

{debug release} {{“C:/ProjectA/ProjectA.c” “/”} \

{“C:/ProjectA/ProjectA.h” “/Include Files”}}

In this example, the returned information indicates that the project has
two configurations (debug and release) and comprises two input files.
C-56 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Tcl Scripting
dspprojectload

Syntax

dspprojectload projectname

Purpose

This command loads the project’s projectname into VisualDSP++.

Returns: an error condition when:

• projectname does not exist

• Another project is already loaded into VisualDSP++
VisualDSP++ 3.1 User’s Guide C-57
for Blackfin Processors

Tcl Command Reference
dspprojectremovefile

Syntax

dspprojectremovefile filename

Purpose

This command removes the file filename from the currently loaded
project.

Returns: an error condition when:

• No project is loaded

• filename is not included in the project
C-58 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Tcl Scripting
dspprojectremovefolder

Syntax

dspprojectremovefolder foldername

Purpose

This command removes the folder’s foldername from the currently loaded
project.

Returns: an error condition when:

• No project is loaded

• foldername is not included in the project
VisualDSP++ 3.1 User’s Guide C-59
for Blackfin Processors

Tcl Command Reference
dspregisterwin

Syntax

dspregisterwin { { name x y ?type? } }

 ?-title name?

 ?-format value?

 ?-rect { left top right bottom }?

Purpose

This command creates and displays a custom register window.

Returns: 1

Arguments

{ { name x y [type] } }

A list of registers. Each element of this list is itself a list, containing infor-
mation for a single register, including: the ASCII name of the register, the
X and Y coordinates that position the register in the window (measured in
characters), and (optionally), the type of the register. Valid values for type
are normal (default), nodata, nolabel, and private.

-title name

Assigns a title to the register window

-format value

Specifies the base format for which the X and Y position were calculated
(default value is hexadecimal)

-rect { left top right bottom }

A list comprising four integers. If you do not specify the rectangle size, the
MS Windows system library picks the size.
C-60 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Tcl Scripting
dspreset

Syntax

dspreset ?-processor value? ?-wait?

Purpose

This command sends a message to the target to reset.

Returns: 1

Arguments

-processor value

Relevant only in a multiprocessor debug session and ignored during a sin-
gle processor debug session. The value argument specifies the processor
to which the command is directed. Omitting this argument steers the
command toward the currently focused processor.

-wait

Prevents further execution of a Tcl script until the target has halted
VisualDSP++ 3.1 User’s Guide C-61
for Blackfin Processors

Tcl Command Reference
dsprestart

Syntax

dsprestart ?-processor value? ?-wait?

Purpose

This Tcl command sends a message to the target to restart.

Returns: 1

Arguments

-processor value

Relevant only in a multiprocessor debug session and ignored during a sin-
gle processor debug session. The value argument specifies the processor
to which the command is directed. Omitting this argument steers the
command toward the currently focused processor.

-wait

Prevents further execution of a Tcl script until the target has halted
C-62 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Tcl Scripting
dsprun

Syntax

dsprun ?-processor value? ?-wait?

Purpose

This Tcl command sends a message to the target to run.

Returns: 1

Arguments

-processor value

Relevant only in a multiprocessor debug session and ignored during a sin-
gle processor debug session. The value argument specifies the processor
to which the command is directed. Omitting this argument steers the
command toward the currently focused processor.

-wait

Prevents further execution of a Tcl script until the target has halted
VisualDSP++ 3.1 User’s Guide C-63
for Blackfin Processors

Tcl Command Reference
dspset

Syntax

dspset ?-processor value? left_expr right_expr

Purpose

This command evaluates right_expr and assigns its value to left_expr.

Only rudimentary checking is performed. Modifiers like const are
ignored.

Returns: right_expr

Arguments

-processor value

Relevant only in a multiprocessor debug session and ignored during a sin-
gle processor debug session. The value argument specifies the processor
to which the command is directed. Omitting this argument steers the
command toward the currently focused processor.

left_expr

Specifies the expression to be assigned a value. This expression must be an
lvalue.

right_expr

Specifies the expression to be evaluated

Example

Set the value of R0 to the address of a C variable.

> dspset \$R0 "&my_variable"
C-64 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Tcl Scripting
dspsetbreak

Syntax

dspsetbreak ?-processor value?

 address

 ?-expression value?

 ?-count value?

 ?-temporary?

 ?-disabled?

Purpose

This command sets (inserts) a breakpoint on the target at the address spec-
ified by address.

This functionality was provided by the dspbreakpoint command
in earlier software releases.

Returns: a non-zero value representing the identifier of the breakpoint if
successful or 0 otherwise. The returned value can be stored and used in
subsequent calls to “dspcancelbreak” on page C-23 and “dspgetbreak” on
page C-32.

Arguments

-processor value

Relevant only in a multiprocessor debug session and ignored during a sin-
gle processor debug session. The value argument specifies the processor
to which the command is directed. Omitting this argument steers the
command toward the currently focused processor.

address

The address to which a breakpoint is specified

-expression value
VisualDSP++ 3.1 User’s Guide C-65
for Blackfin Processors

Tcl Command Reference
Specifies a condition that must be evaluated to TRUE to halt execution of
the debug target at the breakpoint address. If expression and count are
omitted, execution of the debug target stops at the breakpoint. Valid
expressions are anything that the Expressions window accepts.

-count value

Delays the setting of the breakpoint. The value argument specifies the
number of halts that pass before setting the breakpoint

-temporary

Cancels the breakpoint at the next halt (implements features like
run-to-cursor)

-disabled

Disables the breakpoint

Example

The following command sets a temporary breakpoint at main().

dspsetbreak [dsplookupsymbol main] -temporary
C-66 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Tcl Scripting
dspsetmemblock

Syntax

dspsetmemblock ?-processor value? memory start count

?-stride value? ?-format value? { fill ... }

Purpose

This command sets a block of memory.

Returns: 1

Arguments

-processor value

Relevant only in a multiprocessor debug session and ignored during a sin-
gle processor debug session. The value argument specifies the processor
to which the command is directed. Omitting this argument steers the
command toward the currently focused processor.

memory

Specifies the memory to set the block in and is one of the strings output-
ted by dspgetmeminfo (see “dspgetmeminfo” on page C-36).

start

Specifies the first address to set in the block.

count

Specifies the total number of addresses to set. If the length of fill is less
than count, the fill values wrap to provide values for all count addresses.
VisualDSP++ 3.1 User’s Guide C-67
for Blackfin Processors

Tcl Command Reference
-stride value

Specifies the distance between memory locations. If value is not specified,
1 is used.

-format value

Specifies the format used to format the data. Valid values are hexadecimal
(default), integer, unsigned integer, float, and octal. Values vary from tar-
get to target.

fill

This list specifies the value(s) with which to fill memory. If the length of
fill is less than the count, the fill values wrap to provide values for all
count addresses.

Example

This example fills ten addresses in data memory with a dummy fill value
(as Microsoft Visual C++ does in malloc()).

> set dm [lindex [lindex [dspgetmeminfo] 1] 0]

Data(DM) Memory

> dspsetmemblock $dm 0x30000 10 0xcdcdcdcd

1

C-68 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Tcl Scripting
dspsetswstack

Syntax

dspsetswstack ?-processor value? cookie

Purpose

This command changes the debug focus to the frame identified by cookie.

Returns: 1

Arguments

-processor value

Relevant only in a multiprocessor debug session and ignored during a sin-
gle processor debug session. The value argument specifies the processor
to which the command is directed. Omitting this argument steers the
command toward the currently focused processor.

cookie

Specifies the frame. This value is determined by calling dspgetswstack
(see “dspreset” on page C-61).

Example

Notice the movement of focus.

>dspgetswstack

{“foo()” 0x2fff5 focus} {“main(int, char**)” 0x2ffff}

>dspsetswstack 0x2ffff

1

>dspgetswstack

{"foo()" 0x2fff5} {“main(int, char**)” 0x2ffff focus}
VisualDSP++ 3.1 User’s Guide C-69
for Blackfin Processors

Tcl Command Reference
dspstepasm

Syntax

dspstepasm ?-processor value? ?-wait?

Purpose

This command steps the target a single disassembly step.

Returns: 1

Arguments

-processor value

Relevant only in a multiprocessor debug session and ignored during a sin-
gle processor debug session. The value argument specifies the processor
to which the command is directed. Omitting this argument steers the
command toward the currently focused processor.

-wait

Prevents further execution of a Tcl script until the target has halted
C-70 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Tcl Scripting
dspstepin

Syntax

dspstepin ?-processor value? ?-wait?

Purpose

This command steps the target a single source language step.

Returns: 1 if successful or 0 when source stepping is not enabled at PC

Arguments

-processor value

Relevant only in a multiprocessor debug session and ignored during a sin-
gle processor debug session. The value argument specifies the processor
to which the command is directed. Omitting this argument steers the
command toward the currently focused processor.

-wait

Prevents further execution of a Tcl script until the target has halted
VisualDSP++ 3.1 User’s Guide C-71
for Blackfin Processors

Tcl Command Reference
dspstepout

Syntax

dspstepout ?-processor value? ?-wait?

Purpose

This command steps the target out of the current subroutine in a source
language.

Returns: 1 if successful or 0 otherwise (that is, source stepping not enabled
at PC)

Arguments

-processor value

Relevant only in a multiprocessor debug session and ignored during a sin-
gle processor debug session. The value argument specifies the processor
to which the command is directed. Omitting this argument steers the
command toward the currently focused processor.

-wait

Prevents further execution of a Tcl script until the target has halted
C-72 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Tcl Scripting
dspstepover

Syntax

dspstepover ?-processor value? ?-wait?

Purpose

This command steps the target a single source language step, but skips
over subroutine calls.

Returns: 1 if successful or 0 otherwise (source stepping not enabled at PC)

Arguments

-processor value

Relevant only in a multiprocessor debug session and ignored during a sin-
gle processor debug session. The value argument specifies the processor
to which the command is directed. Omitting this argument steers the
command toward the currently focused processor.

-wait

Indicates that the script should execute and halt the target, which places
the target in a known state
VisualDSP++ 3.1 User’s Guide C-73
for Blackfin Processors

Tcl Command Reference
dspwaitforhalt

Syntax

dspwaitforhalt

Purpose

This command delays further execution of Tcl commands until the target
has halted.

Returns: 1
C-74 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

VisualDSP++ 3.1 User’s Guide I-1
for Blackfin Processors

I INDEX

Symbols
.ACH files, A-21
.ASM files, 2-20, A-21
.BNM files, A-21
.C files, 2-20, A-21
.CPP files, 2-20, A-21
.CXX files, 2-20, A-21
.DAT files, A-21
.DLB files, 2-20, A-21
.DLO files, A-21
.DOJ files, 1-23, 1-25, 1-26, 2-20,

A-21
.DPJ files, 1-45, A-21
.DSP files, 2-20
.DXE files, 1-26, A-21
.EXE files, A-21
.H files, 1-32, A-21
.H# files, A-21
.HPP files, A-21
.HXX files, A-21
.IS files, A-21
.LDF files, 1-25, 1-26, 1-27, 2-20,

A-21
.LDR files, A-21
.LST files, A-21
.MAK files, 1-47, A-21
.MAP files, A-21

.MK files, A-21

.OBJ files, A-21

.OVL files, 1-26, A-21

.PP files, A-21

.S files, 1-32, 2-20, A-21

.S# files, A-21

.SM files, 1-26, A-21

.STK files, 1-32, A-21

.TCL files, A-21

.TXT files, A-21

.VDK files, A-21

Numerics
3-D waterfall plots (see waterfall

plots)

A
adding files to your project, 1-15
applying

file build options, 1-17
project build options, 1-17

archiver, 1-32
assembler, 1-25

about, 1-25
input files, 2-20
terms, 1-25

INDEX

I-2 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

assembling language files into object
files, 1-25

B
Background telemetry channel

(BTC)
changing BTC priority, 1-20
defining channels in your

program, 1-19
Blackfin peripherals

General Purpose I/O (GPIO) or
Flag I/O (FIO), B-2

Serial Peripheral Interface (SPI),
B-2

Serial Port (SPORT), B-4
Timer (TMR), B-5
Universal Asynchronous

Receiver/Transmitter (UART),
B-5

bookmarks, 2-93
boot

kernel, 1-34
loading or booting, 1-34

boot-loadable files, 1-32
breakpoints

conditional, 3-11
editor window, 2-93
symbols, 3-10
unconditional, 3-11

build settings, 1-53
custom, 1-53
individual file, 1-53
project wide, 1-53

build type (see configuration)

build, project, 1-52
buttons

appearance on toolbars, 2-10
for Windows functions, 2-48
on built-in toolbars, 2-8

C
C programs, compiling, 1-23
C++ programs, compiling, 1-23
C++ run-time libraries, 1-24
Cache Viewer, 2-79

Configuration page, 2-79
Detailed View page, 2-80
Histogram page, 2-84
History page, 2-81
Performance page, 2-83

Call Stack window, 2-65
channel definitions (BTC example),

1-19
code

development tools, 1-2, 2-20
file association with tools, 2-20

command-line
arguments, B-6
parameters, A-29

commands
on a control menu, 2-5
program execution operation, 3-8
single stepping, 3-8
stepping, 3-8
toolbar buttons, A-33
user tools, 2-13

comments
rules for, A-42

VisualDSP++ 3.1 User’s Guide I-3
for Blackfin Processors

INDEX

start and stop strings, A-42
compiled simulation, B-26

executing an .EXE file from the
command line, B-31

preparing a program from an
existing .DXE file, B-30

preparing a program from source
files, B-27

specifying a session, B-28
specifying project options, B-28

compiler, 1-23
input files, 2-20
options, 1-23

compiling, 1-23
C programs, 1-23
C++ programs, 1-23

conditional breakpoints, 3-11
configuration, 1-51

plot, 2-105
project, 1-51
release, 1-51

configuring
Plot window, 2-105
plots, 2-105

constellation plots, 3-17
control menu, 2-4, 2-5
conventions used in this manual,

xxx
creating

files to add to your project, 1-15
new plot window, 2-105

custom build
options, 1-17
settings, 1-53

custom register windows, 2-75
customer support, xxiii
customizing

plot window, 2-105
toolbar, 2-9

D
data

files, 1-25
input and output simulation, 3-12
sets, defined, 2-105
transfers, simulating, 1-12

debug configuration, 1-51
debug sessions

managing, 3-3
multiple, 3-3
running multiple, 3-3
selecting at startup, 3-7
setting up, 3-2
switching, 3-3
viewing list of, 3-3

debugging
features of VisualDSP++, 1-5
IDDE features, 1-5
overview of, 1-12
windows used while debugging,

2-49
declarations, 1-27
dependencies, project, 1-52
developing, setting custom build

project options, 1-17
development tools, 1-2
Disassembly windows, 2-51, 2-52,

2-53

INDEX

I-4 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

examples, 2-51
features, 2-53
right-click menu, 2-53
symbols, 2-54

docking, 2-43
toolbars, 2-9
windows, 2-43

dotprodc.dxe, automatically
loading, 1-18

DSP
development tools, 1-2
plotting memory, 3-6

E
editing

features, 1-3
files, 1-16

editor files, comments, A-42
Editor Tab mode, 2-30
editor windows

bookmarks, 2-93
Editor Tab mode, 2-30
expression evaluation, 2-93
features, 2-91
source mode vs. mixed mode,

2-94
symbols, 2-93

elfloader.exe, 1-33, 1-34
emulation, 1-13, 3-4, 3-5

debug session management, 3-3
restarting the program, 3-9
statistical profiling, 3-4

environment, simulating hardware,
1-12

error messages, 2-31, 2-40, 2-49
in the Output window, 2-31
log file, 2-40, 2-41, 2-49

evaluating expressions, 2-93
events

thread, 2-89
using the data cursor, 2-89
viewing details and thread status,

2-89
exceptions, handling, B-7
executable, loading, 3-8
Expert Linker, 1-28

overview, 1-28
stack and heap usage, 1-30
window, 1-29

expressions
about, 2-96
C expressions, 2-96
context-sensitive evaluation, 2-93
evaluating, 2-93
in an Expressions window, 2-96
register, 2-97
regular, A-37, A-38, A-39, A-40
tagged, A-41
types of, 2-96
use of, 2-96
viewing value of, 2-93
window, 2-55

Expressions window, 2-55
extensions, DSP project file, A-21
external interrupts, generating, 1-12
eye diagrams, 3-18

example of, 3-18
FIFO, 3-18

VisualDSP++ 3.1 User’s Guide I-5
for Blackfin Processors

INDEX

EZ-ICE target, 3-2

F
features

project build, 1-4
project management, 1-4

file and tool options, 1-17
file building options, 1-17
file tree, 2-15

icons, 2-15
Project window, 2-15

files, 2-22
.ASM, 2-20
.C, 2-20
.CPP, 2-20
.CXX, 2-20
.DLB, 2-20
.DOJ, 1-23, 1-25, 1-26, 2-20
.DPJ, 1-45
.DSP, 2-20
.DXE, 1-26
.H, 1-32
.LDF, 1-25, 1-26, 1-27, 1-34,

2-20
.MAK, 1-47
.S, 1-32, 2-20
.VPS, 2-101
assembler, 1-25
associations with tools, 2-20
automatic placement, 2-21
boot-loadable, 1-32
building, 1-54
compiler, 1-23
data, 1-25

DSP project, A-21
executable, 1-27
extensions, A-21
header, 1-25
in a project, 2-19
language, 1-25
linker, 1-26, 1-27, 1-34
log, 2-40, 2-41
nested folders in Project window,

2-18
object, 1-25, 1-26
overlay, 1-26
placement rules, 2-21
placing into folders automatically,

2-18
PROM, 1-32, 1-33
specifying build settings, 1-51
used by DSP projects, A-21
vdk_config.cpp, 2-22
vdk_config.h, 2-22
VisualDSP_Log.txt, 2-41

finding
and replacing tagged expressions,

A-41
regular expressions in find/replace

operations, A-37
FIO (see Flag I/O Peripheral)
Flag I/O (FIO) peripheral, B-2
Flash Programmer

flash devices, 3-22
flash driver, 3-23
functions, 3-22
interface window, 3-23
window controls, 3-25

INDEX

I-6 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

Flash Programmer window, 3-23
floating, 2-46

toolbars, 2-9
window commands, 2-43
windows, 2-44, 2-46, 2-47

folders
automatic file placement, 2-21
in the Project window, 2-15, 2-18
project, 2-18

format
examples of number formats, 2-98
number formats available, 2-97

functional simulator, B-10
functions, displaying local variables,

2-56

G
General page, 1-18
General-Purpose I/O (GPIO)

peripheral, B-2
generating external interrupts, 1-12
global build options, 1-17
global uninitialized data, 1-8
glossary, A-2
GPIO (see General Purpose I/O

Peripheral)

H
hardware simulation, 1-12
header files, 1-25
heaps, usage in Expert Linker, 1-30

I
I/O, hardware simulation data

transfer, 1-12
icons, Project window, 2-15, 2-24
idde.exe, command-line parameters,

A-29
IDL (see Interface Definition

Language)
Image Viewer, 2-109, 3-13

Export Image dialog box, 2-114
Gamma Correction dialog box,

2-113
Image Configuration dialog box,

2-112
right-click menu, 2-111

Interface Definition Language
(IDL), 1-42

interrupts, 3-12
generating, 1-12
hardware simulation, 1-12

issuing, Tcl commands, C-3

J
JTAG emulator, 3-2

breakpoints, 3-10
debug session management, 3-3
debug sessions, 3-3
platforms, 3-2
sampling, 3-5
statistical profiling, 2-57, 3-4

K
kernel (see VDK)
Kernel page, 2-22

VisualDSP++ 3.1 User’s Guide I-7
for Blackfin Processors

INDEX

keyboard shortcuts, A-23

L
libraries, C++ run-time, 1-24
lindex command, C-43
line plots, 3-15
linear profiling, 3-4
Linear Profiling Results window,

2-57
linker

input files, 2-20
overview, 1-26

Linker Description File, 1-27
linking, object files, 1-26
loader, 1-33
loading, programs, 3-8
local build options, 1-17
Locals window, 2-56
locating, text using regular

expressions, A-37
log file, 2-40

error messages, 2-49
Tcl output, C-2

logging error messages, 2-49

M
makefiles, 1-47

example makefile, 1-49
Output window, 1-48
rules, 1-48

managing
debug session, 3-3
debug sessions, 3-3
projects, 1-4

source files, 1-4
MDI child windows, 2-43
memory

plots from, 3-6
window, 2-65
windows, 2-66

Memory Map window, 2-71
memory windows, 2-66, 2-68

examples, 2-66, 2-98
number format, 2-97

menu bar, 2-6
menus

application menu bar, 2-6
control, 2-4
control menu, 2-5

messages written to
VisualDSP_Log.txt file, 2-40

messages, Pipeline Viewer
abbreviations, B-25
kills detected, B-21
multi-cycle instruction, B-21
stalls detected, B-16

mixed mode, 2-95
editor window, 2-94
examples, 2-95
vs. source mode, 2-94

modes, 2-94
mixed, 2-94, 2-95
source, 2-94

MyAnalog.com, xxiv

N
nested folders, 2-18
nodes, in Project window, 2-15

INDEX

I-8 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

number formats, register and
memory windows, 2-97

O
object files, 1-25
operations

program execution, 3-8
program execution commands,

3-8
options

compiler, 1-23
file and tool, 1-17
file building, 1-17
project building, 1-17

Output window, 2-31
Build page, 2-32
capture of all messages, 2-40
Console page, 2-32
customization, 2-41
right-click menu, 2-42

overlays, files, 1-27
overriding, project-wide options,

1-53

P
peripherals, simulating, B-1
pipeline stages, B-16
Pipeline Viewer

delay (lag) example, B-11
event icons, B-23
known limitations, B-24
message abbreviations, B-25
window messages, B-16

Pipeline Viewer window, 2-76

platforms, DSP configuration, 1-11
plot windows, 2-100, 2-101, 2-105

capabilities, 2-101
creating a new window, 2-105
features, 2-102
presentation of, 2-106
right-click menu, 2-101, 2-102
See also plots
status bar, 2-101, 2-103

plots
3-D waterfall, 2-105, 3-19
configuration of, 2-105
constellation, 3-17
data sets, 2-105
DSP memory, 3-6
eye diagram, 3-18
line, 3-15
presentation options, 2-108
See also plot windows
spectrogram, 3-21
types of, 3-14
waterfall, 3-19

plotting, DSP memory, 3-6
polling loop (BTC example), 1-21
position rules, in a window, 2-47
positioning, windows, 2-47
post-build options, 1-54
preferences

IDL font and color for editing,
1-38

load file and advance to main,
1-18

VisualDSP++ and tool output
color, 2-32

VisualDSP++ 3.1 User’s Guide I-9
for Blackfin Processors

INDEX

Preferences dialog box, 1-18, 2-32
presentation, of plot windows,

2-106
procedures for development, setting

custom build project options,
1-17

profiles
code analysis, 3-4
statistical, 3-4

profiling, 3-4, 3-5
linear, 3-5
statistical, 3-4, 3-5

program
execution commands, 3-8
execution operations, 3-8
restart, 3-9

Program Counter (PC) register, 3-4,
3-5, 3-9, 3-11

project
build, 1-4, 1-46
build settings, 1-53
building options, 1-17
configurations, 1-51
debugging, 1-5, 1-12
defined, 1-45
dependencies, 1-16
files, 2-19
folders, 2-15
management, 1-4
nodes, 2-15
options, 1-46
subfolders, 2-15
VisualDSP++, 1-45
window, 2-15, 2-18

Project window, 1-14, 2-15, 2-22
about, 2-15
files, 2-15
icon right-click menus, 2-24
Kernel page, 1-14, 2-22
nodes, 2-16, 2-17
rules, 1-56
use of folders, 2-18

project-wide file and tool options,
1-17

PROM files, 1-33
pull-tabs, 2-44

R
register windows

custom, 2-75
number format, 2-97

regular expressions, A-37, A-38,
A-39, A-40

release configuration, 1-51
restarting

program during emulation, 3-9
program during simulation, 3-9

right-click menus, 2-43
commands, 2-43
in plot windows, 2-101

S
scripting, Tcl, C-1
scroll bars, descriptions of, 2-44
searches

normal, A-38
regular expressions vs. normal,

A-37

INDEX

I-10 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

special character rules, A-39
searches, normal, A-38
Serial Peripheral Interface (SPI)

signal usage, B-3
with streams, B-3

Serial Port (SPORT) peripheral,
B-4

sessions
debug, 3-3
selecting at startup, 3-7

setting
build options, 1-53
custom build options, 1-17

shortcut keys (see keyboard
shortcuts)

simcc.exe compiled simulation
driver, B-30

simulating
data I/O streams, 3-12
data transfers, 1-12
hardware, 1-12
input/output data, 3-12
interrupts, 1-12

simulation, 3-4
debug session management, 3-3
linear profiling, 3-4, 3-5
platforms, 1-11
restarting the program, 3-9

simulation, compiled, B-26
simulator, instruction timing

analysis, B-9
single stepping, available

commands, 3-8
source files, 1-3

comments, A-42
editing features, 1-3
in a project, 2-19
management, 1-4

source mode, editor windows, 2-94
source windows (see editor

windows)
spectrogram plots, 3-21

example of, 3-21
FFT output, 3-21

SPI (see Serial Peripheral Interface)
splitter, 1-8, 1-32
SPORT (see Serial Port peripheral)
Stack windows, 2-75
stacks, usage in Expert Linker, 1-30
Statistical Profiling Results window,

2-57, 2-58, 2-59
statistical profiling, vs. linear

profiling, 3-4
status bar, 2-13, 2-14, 2-101

examples, 2-13
in plot windows, 2-101

status icons, editor window, 2-93
status messages, log file, 2-40
stepping, available commands, 3-8,

3-9
steps, development

add and edit project source files,
1-15

build a debug version of the
project, 1-18

build a release version of the
project, 1-19

create a project, 1-15

VisualDSP++ 3.1 User’s Guide I-11
for Blackfin Processors

INDEX

set project options, 1-15
stream configuration file, B-31
streams, 3-12
subfolders, in the project tree, 2-15
symbols

Disassembly window, 2-54
editor window, 2-93

T
Target Load window, 2-90
Tcl, A-30, A-31, C-1, C-2, C-3

about, C-1
command-line issuance, A-30
commands, C-1
escaping, C-3
extensive scripting, A-30
menu issuance, A-31
output, C-2
Output window issuance, A-30
overview of, C-1
scripting, C-1
See also Tcl commands
user tool issuance, A-31

Tcl commands, C-1, C-2
dspaddmenuitem, C-19
dspaddstream, C-21
dspcancelbreak, C-23
dspcheckmenuitem, C-24
dspclickmenuitem, C-25
dspdeleteallstream, C-26
dspdeletemenuitem, C-27
dspdeletestream, C-28
dspenablemenuitem, C-29
dspeval, C-30

dspgetbreak, C-32
dspgetmemblock, C-34
dspgetmeminfo, C-36
dspgetprocessors, C-37
dspgetstate, C-38
dspgetswstack, C-39, C-61
dsphalt, C-40
dspliststream, C-41
dspload, C-42
dsplookupline, C-43
dsplookupsymbol, C-44
dspmemorywin, C-45
dspplotrotate, C-47
dspplotwin, C-48
dspprojectaddfile, C-52
dspprojectaddfolder, C-53
dspprojectbuild, C-54
dspprojectclose, C-55, C-65
dspprojectinfo, C-56
dspprojectload, C-57
dspprojectremovefile, C-58
dspprojectremovefolder, C-59
dspregisterwin, C-60
dspreset, C-61
dsprestart, C-62
dsprun, C-63
dspset, C-64
dspsetbreak, C-65
dspsetmemblock, C-67
dspsetswstack, C-69
dspstepasm, C-70
dspstepin, C-71
dspstepout, C-72
dspstepover, C-73

INDEX

I-12 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

dspwaitforhalt, C-74
See also Tcl

Tcl scripting, C-3
technical support, xxiii
terms, VisualDSP++, A-2
threads, 2-85

idle, 2-90
status, 2-85, 2-89

Timer (TMR) Peripheral, B-5
title bar, 2-4

components, 2-3
right-click menu commands, 2-43

TMR (see Timer Peripheral)
Tool Command Language (Tcl). See

Tcl
toolbars, 2-7, A-33

built-in, 2-8
button appearance, 2-10
customization, 2-9
docked versus floating, 2-9
shape, 2-12

tools
access to, 1-3
code development, 1-2, 2-20
command line access, 1-46
input files, 2-20
project options, 1-46
third-party, 1-2
user configured, 2-13

Tools menu, user tools, 2-13
traces, 2-88, 2-108, 3-18, 3-19

U
UART (see Universal Asynchronous

Receiver/Transmitter
Peripheral)

unconditional breakpoints, 3-11
Universal Asynchronous

Receiver/Transmitter (UART)
Peripheral, B-5

user interface, parts of, 2-1

V
variables, global vs. local, 2-96
VCSE, 1-35

component manager, 1-39
component model, 1-36
components, 1-35, 1-37
overview, 1-35
structure of, 1-40
tool chain integration, 1-38
tools, 1-37
user interface, 1-38
wizards, 1-39

VDK, 1-14, 2-22, 2-85, 2-90
about, 1-14
features, 1-6
Kernel page in Project window,

2-22
overview of, 1-6
State History window, 2-87
VDK Status window, 2-85

VDK State History window, 2-87
VDK Status window, 2-85
vdk_config.cpp, 2-22
vdk_config.h, 2-22

VisualDSP++ 3.1 User’s Guide I-13
for Blackfin Processors

INDEX

VisualDSP++
control menu, 2-5, 2-6
debugging, 1-5, 1-13
editing features, 1-3
editor, 2-28
editor windows, 2-28
environment, 1-2
file association for tools, 2-20
files, A-21, A-22
glossary, A-2
kernel, 1-14
keyboard shortcuts, A-23
log file, 2-40
menu bar, 2-6, 2-7
overview, 1-1
parts of, 2-2
parts of the user interface, 2-1
project, 1-45
project build features, 1-3
Project window, 2-15, 2-17
purpose, 1-3
source file editing features, 1-3
toolbar, A-33
tools - file association, 2-20

W
watchpoints, 3-11
waterfall plots, 3-19

grid of sampled data, 3-20
rotating, 3-19

windows
Cache Viewer, 2-79
Call Stack, 2-65
debugging, 2-49

Disassembly, 2-51, 2-52, 2-53
docked, 2-44, 2-45
editor, 2-91
Expert Linker, 1-29
Expressions, 2-55
Flash Programmer, 3-23
Image Viewer, 2-110
Linear Profiling Results, 2-57
Locals, 2-56
manipulation of, 2-43
MDI, 2-43
memory, 2-66
Memory Map, 2-71
Output, 2-31, 2-32, 2-42
parts of the user interface, 2-1
Pipeline, 2-52, 2-95
plot, 2-100
Project, 2-15, 2-16, 2-18
pull-tabs, 2-44
Register, 2-72
right-click menu commands, 2-43
rules for positions, 2-47
scroll bars, 2-44
See also VisualDSP++
source, 2-28
stack, 2-75
Statistical Profiling Results, 2-57
Target Load, 2-90
VDK State History, 2-87, 2-89
VDK Status, 2-85

Windows buttons, 2-48

X
X-Y plots, 3-16

INDEX

I-14 VisualDSP++ 3.1 User’s Guide
for Blackfin Processors

	Contents
	Preface
	Purpose of This Manual
	Intended Audience
	Manual Contents
	What’s New in This Manual
	technical support
	Supported Processors
	Product Information
	MyAnalog.com
	DSP Product Information
	Related Documents
	Online Documentation
	From VisualDSP++
	From Windows
	From the Web

	Printed Manuals
	VisualDSP++ Documentation Set
	Hardware Manuals
	Data Sheets

	How to Contact DSP Publications

	Notation Conventions

	1 Introduction to VisualDSP++
	VisualDSP++ Features
	Integrated Development and Debugging Environment
	Code Development Tools
	Source File Editing Features
	Project Management Features
	Debugging Features
	VDK Features
	VisualDSP++ 3.1 Features

	Project Development
	DSP Project Development Stages
	Simulation
	Evaluation
	Emulation

	Simulation and Emulation
	Targets
	Simulation Targets
	EZ-KIT Lite Targets
	Emulation Targets

	Platforms
	Hardware Simulation
	Debugging Overview
	VisualDSP++ Kernel
	Program Development Steps
	Step 1: Create a Project
	Step 2: Configure Project Options
	Step 3: Add and Edit Project Source Files
	Adding Files to Your Project
	Creating Files to Add to Your Project
	Editing Files
	Managing Project Dependencies

	Step 4: Define Project Build Options
	Configuration
	Project-Wide File and Tool Options
	Individual File and Tool Options

	Step 5: Build a Debug Version of the Project
	Step 6: Create a Debug Session and Load the Executable
	Step 7: Run and Debug the Program
	Step 8: Build a Release Version of the Project

	Background Telemetry Channel (BTC)
	BTC Definitions in Your Program
	BTC Priority

	Code Development Tools
	Compiler
	C++ Runtime Libraries
	Assembler
	Linker
	Expert Linker
	Expert Linker Window
	Stack and Heap Usage

	Archiver
	Splitter
	Loader

	VCSE
	VCSE Components
	VCSE Component Model Specification
	VCSE Component Model
	VCSE Tools
	Use of VCSE Components with VisualDSP++

	VCSE User Interface
	Tool Chain Integration
	Wizards
	Component Manager

	Structure of VCSE
	Interface Definition Language (IDL) and Compiler

	DSP Projects
	What is a Project?
	Project Options
	Makefiles
	makefiles:rules
	makefiles:Output window
	Example Makefile

	Project Configurations
	Customized Project Configurations
	Project Build
	Build Options
	File Building
	Post-Build Options
	Command Syntax
	Project Dependencies
	Project Rules

	VisualDSP++ Help System
	Using the Help Window
	Invoking Online Help
	Viewing Context-Sensitive Help
	Viewing Menu, Toolbar, or Window Help
	Viewing Dialog Box Button or Field Help
	Viewing Window Help

	Using Help Window Navigation Buttons
	Copying Example Code from Help
	Printing Help
	Bookmarking Frequently Used Help Topics
	Placing a Bookmark at a Topic
	Opening a Bookmarked Topic

	Navigating in Online Help
	Using the Search Features
	Help System Search Rules
	Rules for Full-Text Searches
	Rules for Advanced Searches

	Full-Text Searches
	Advanced Search Techniques
	Using Wildcard Expressions
	Using Boolean Operators
	Using Nested Expressions

	Viewing Online Manuals
	Printing Online Documents

	2 Environment
	Parts of the User Interface
	Title Bar
	Additional Information in Title Bars
	Title Bar Right-Click Menus

	Control Menu
	Program Icons
	Editor Windows
	Debugging Windows

	Menu Bar
	Command Information
	Toolbars and User Tools
	Built-In Toolbars
	Toolbar Customization
	Toolbars: Docked vs. Floating
	Toolbar Button Appearance
	Toolbar Shape
	Toolbar Rules
	User Tools

	Status Bar

	VisualDSP++ Windows
	Project Window
	Project Page
	Project Nodes
	Project Page Right-Click Menus
	Project Folders
	Project Files
	File Associations
	Automatic File Placement
	File Placement Rules
	Example

	Kernel Page
	Project Window Right-Click Menus
	Project Window Menu
	Project Icon Menu
	Folder Icon Menu
	File Icon Menu

	Editor Windows
	Right-Click Menu
	Editor Tab Mode

	Output Window
	Output Window Tabs
	Build Page
	Console Page

	Output Window Error Messages
	Error Message Severity Hierarchy
	Syntax of Help for Error Messages
	How to Promote, Demote, and Suppress Error Messages

	Log File
	Output Window Customization
	Right-Click Menu

	Window Operations
	Window Manipulation
	Right-Click Menu Options
	Scroll Bars and Resize Pull-Tab
	Windows: Docked vs. Floating
	Example of a Docked Window
	Examples of Floating Windows

	Window Position Rules
	Standard Windows Buttons

	Debugging Windows
	Disassembly Windows
	Other Disassembly Window Features
	Right-Click Menu
	Disassembly Window Symbols

	Expressions Window
	Locals Window
	Statistical/Linear Profiling Results Window
	Window Components
	Left Pane
	Right Pane
	Status Bar
	Right-Click Menu

	Window Operations
	Changing the Window View
	Displaying a Source File
	Working with Ranges
	Switching Display Modes
	Filtering PC Samples with No Debug Information

	Call Stack Window
	Memory Windows
	Memory Number Formats
	Right-Click Menu
	Expression Tracking in a Memory Window

	Memory Map Windows
	Register Windows
	Stack Windows
	Custom Register Windows
	Pipeline Viewer Window
	Right-Click Menu
	Pipeline Instruction Event Details

	Cache Viewer
	Configuration Page
	Detailed View Page
	History Page
	Performance Page
	Histogram Page

	VDK Status Window
	VDK State History Window
	Thread Status and Event Colors
	Window Operations
	Right-Click Menu

	Target Load Window
	About Debugging Windows
	Editor Window Features
	Syntax Coloring
	Right-Click Menu

	Editor Window Symbols
	Bookmarks
	Context-Sensitive Expression Evaluation
	Viewing an Expression
	Highlighting an Expression

	Source Mode vs. Mixed Mode
	Source Mode
	Mixed Mode

	Expressions in an Expressions Window
	About Expressions
	Number Formats

	Plot Windows
	Plot Window Features
	Status Bar
	Right-Click Menu

	Plot Window Statistics
	Plot Configuration
	Plot Window Presentation
	Plot Presentation Options

	Image Viewer
	Right-Click Menu
	Image Configuration Dialog Box
	Gamma Correction Dialog Box
	Export Image Dialog Box

	3 Debugging
	Debug Sessions
	Debug Session Management
	Simulation vs. Emulation
	Breakpoints
	Watchpoints

	Code Analysis Tools
	Statistical Profiling and Linear Profiling
	Simulation
	Emulation

	DSP Memory Plots

	Program Execution Operations
	Selecting a New Debug Session at Startup
	Loading the DSP Executable Program
	Using Program Execution Commands
	Restarting the Program
	Performing a Restart during Simulation
	Performing a Restart during Emulation

	Using Breakpoints
	Using Unconditional and Conditional Breakpoints
	Using Watchpoints

	Simulation Tools
	Interrupts
	Input/Output Simulation (Data Streams)

	Image Viewer
	Plots
	Plot Types
	Line Plots
	X-Y Plots
	Constellation Plots
	Eye Diagrams
	Waterfall Plots
	Spectrogram Plots

	Flash Programmer
	Flash Devices
	Flash Programmer Functions
	Flash Driver
	Flash Programmer Window

	A Reference Information
	Glossary
	File Types
	Keyboard Shortcuts
	Working with Files
	Moving within a File
	Cutting, Copying, Pasting, Moving Text
	Selecting Text within a File
	Working with Bookmarks in an Editor Window
	Building Projects
	Using Keyboard Shortcuts for Program Execution
	Working with Breakpoints
	Obtaining Online Help
	Miscellaneous

	IDDE Command Line Parameters
	Extensive Scripting
	Toolbar Buttons
	Text Operations
	Regular Expressions vs. Normal Searches
	Specific Special Characters
	Special Rules for Sequences
	Repetition and Combination Characters
	Match Rules

	Tagged Expressions in Replace Operations
	Comment Start and Stop Strings

	B Simulation of Blackfin Processors
	General-Purpose I/O (GPIO) or Flag I/O (FIO)Peripheral
	Serial Peripheral Interface (SPI) Peripheral
	Overview of SPI in the Simulator
	Global Status and Control
	SPI Signal Usage
	SPI with Streams

	Serial Port (SPORT) Peripheral
	Universal Asynchronous Receiver/Transmitter (UART) Peripheral
	Timer (TMR)Peripheral
	WDTH_CAP Mode
	External Clock Mode

	Command Line Arguments
	Exception Handling
	Simulator Instruction Timing Analysis Overview�
	Functional Simulator
	Post-Pass Instruction Timer
	About Delay in the Pipeline Viewer Window
	Pipeline Stages
	Pipeline Viewer Window Messages
	Stalls Detected Messages
	Kills Detected Messages
	Multicycle Instruction Messages

	Pipeline Viewer Window Event Icons
	Pipeline Viewer Known Limitations
	Abbreviations in Pipeline Viewer Messages

	Compiled Simulation
	Program Preparation Starting from Source Files
	Specifying a Session for Compiled Simulation
	Specifying Project Options for Compiled Simulation

	Program Preparation Starting from an Existing .DXE File
	Execution of an .Exe File from the Command Line

	C Tcl Scripting
	Overview of Tcl Scripting
	Analog Devices Tcl Commands
	Additional Tcl Resources
	Tcl Output

	Tcl Command Issuance
	Issuing Commands from the Output Window
	Issuing Commands from the File Menu
	Issuing Commands from an Editor Window
	Issuing Commands from a User Tool

	Examples of Tcl Scripts
	Step and Print Example
	Creating the Tcl Script
	Running the New Tcl Script

	Regression Test Example

	Types of Tcl Commands
	GUI Manipulation Commands
	Target Query and Manipulation Commands
	Project Build and Maintenance Commands
	Tcl Command Reference
	dspaddmenuitem
	dspaddstream
	dspcancelbreak
	dspcheckmenuitem
	dspclickmenuitem
	dspdeleteallstream
	dspdeletemenuitem
	dspdeletestream
	dspenablemenuitem
	dspeval
	dspgetbreak
	dspgetmemblock
	dspgetmeminfo
	dspgetprocessors
	dspgetstate
	dspgetswstack
	dsphalt
	dspliststream
	dspload
	dsplookupline
	dsplookupsymbol
	dspmemorywin
	dspplotrotate
	dspplotwin
	dspprojectaddfile
	dspprojectaddfolder
	dspprojectbuild
	dspprojectclose
	dspprojectinfo
	dspprojectload
	dspprojectremovefile
	dspprojectremovefolder
	dspregisterwin
	dspreset
	dsprestart
	dsprun
	dspset
	dspsetbreak
	dspsetmemblock
	dspsetswstack
	dspstepasm
	dspstepin
	dspstepout
	dspstepover
	dspwaitforhalt

	I Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

