
W3.1
C/C++ Compiler and Library
Manual for Blackfin Processors

Revision 2.1, April 2003

Part Number
82-000410-03

Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106 a

Copyright Information
©2003 Analog Devices, Inc., ALL RIGHTS RESERVED. This document
may not be reproduced in any form without prior, express written consent
from Analog Devices, Inc.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice
The Analog Devices logo, VisualDSP, the VisualDSP logo, SHARC,
the SHARC logo, TigerSHARC, the TigerSHARC logo, Blackfin, the
Blackfin logo are registered trademarks of Analog Devices, Inc.

VisualDSP++, the VisualDSP++ logo, CROSSCORE, the CROSSCORE
logo, and EZ-KIT Lite are trademarks of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

CONTENTS
PREFACE

Purpose ... xxiii

Intended Audience .. xxiii

Manual Contents Description .. xxiv

What’s New in this Manual .. xxiv

Technical or Customer Support ... xxv

Supported Processors .. xxvi

Product Information .. xxvi

MyAnalog.com ... xxvi

DSP Product Information .. xxvii

Related Documents ... xxvii

Online Technical Documentation ... xxviii

From VisualDSP++ .. xxix

From Windows .. xxix

From the Web ... xxx

Printed Manuals .. xxx

VisualDSP++ Documentation Set .. xxx

Hardware Manuals .. xxx

Data Sheets .. xxxi
VisualDSP++ 3.1 C/C++ Compiler and Library Manual i
for Blackfin Processors

CONTENTS
Contacting DSP Publications ... xxxi

Notation Conventions ... xxxi

COMPILER

C/C++ Complier Overview ... 1-2

Compiler Command-Line Interface .. 1-4

Running the Compiler .. 1-5

Specifying Compiler Options in VisualDSP++ 1-9

C/C++ Compiler Switches ... 1-12

C/C++ Compiler Switch Summaries 1-12

C/C++ Mode Selection Switch Descriptions 1-22

-analog ... 1-22

-c++ ... 1-22

-traditional ... 1-22

C/C++ Compiler Common Switch Descriptions 1-23

sourcefile .. 1-23

-@ filename .. 1-23

-A name(tokens) ... 1-23

-alttok .. 1-24

-bss .. 1-25

-build-lib .. 1-25

-C .. 1-25

-c ... 1-25

-circbuf .. 1-25

-const-read-write .. 1-26
ii VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

CONTENTS
-csync ... 1-26

-Dmacro[=definition] .. 1-27

-debug-types <file.h> ... 1-27

-dry .. 1-27

-dryrun ... 1-28

-E ... 1-28

-EE ... 1-28

-expert-linker .. 1-28

-extra-keywords ... 1-28

-fast-fp .. 1-29

-flags{-asm | -compiler | -lib | -link | -mem} switch [,switch2 [,...]]
1-29

-fp-associative ... 1-29

-full-version .. 1-29

-g .. 1-30

-H .. 1-30

-HH ... 1-30

-h[elp] .. 1-31

-I directory ... 1-31

-ieee-fp ... 1-31

-include filename .. 1-32

-inline ... 1-32

-ipa ... 1-32

-jcs2l ... 1-32

-jcs2l+ ... 1-33
VisualDSP++ 3.1 C/C++ Compiler and Library Manual iii
for Blackfin Processors

CONTENTS
-L directory[{,|;} directory…] .. 1-33

-l library ... 1-33

-M ... 1-33

-MM .. 1-34

-Mt filename .. 1-34

-MQ .. 1-34

-map filename .. 1-34

-mem ... 1-35

-mem-bsz ... 1-35

-no-alttok ... 1-35

-no-bss ... 1-35

-no-builtin ... 1-36

-no-defs .. 1-36

-no-dir-warnings ... 1-36

-no-extra-keywords ... 1-36

-no-fp-associative .. 1-37

-no-inline ... 1-37

-no-int-to-fract ... 1-37

-no-jcs2l ... 1-37

-no-jcs2l+ ... 1-37

-no-mem .. 1-38

-no-restrict ... 1-38

-no-saturation ... 1-38

-no-std-def ... 1-38
iv VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

CONTENTS
-no-std-inc .. 1-38

-no-std-lib .. 1-39

-nothreads ... 1-39

-O[0|1] ... 1-39

-Ofp ... 1-39

-Os ... 1-40

-Ov num ... 1-40

-o filename .. 1-40

-P ... 1-40

-PP ... 1-40

-p[1|2] .. 1-40

-path [-asm | -compiler | -lib | -link | -mem] directory ... 1-41

-path-def filename ... 1-41

-path-install directory .. 1-41

-path-output directory ... 1-42

-path-temp directory ... 1-42

-pedantic .. 1-42

-pedantic-errors ... 1-42

-pplist filename ... 1-42

-proc processor ... 1-43

-R directory[{:|,}directory …] .. 1-44

-R- .. 1-44

-reserve register[, register …] ... 1-45

-restrict ... 1-45
VisualDSP++ 3.1 C/C++ Compiler and Library Manual v
for Blackfin Processors

CONTENTS
-S ... 1-45

-s .. 1-45

-sat32 ... 1-45

-sat40 ... 1-45

-save-temps ... 1-46

-show ... 1-46

-signed-char .. 1-46

-syntax-only .. 1-46

-T filename .. 1-46

-threads .. 1-47

-time .. 1-47

-U macro .. 1-47

-unsigned-char .. 1-47

-v ... 1-47

-verbose .. 1-48

-version .. 1-48

-warn-protos ... 1-48

-W[error|remark|suppress|warn] number[, number ...] ... 1-48

-Wdriver-limit number ... 1-48

-Werror-limit number ... 1-49

-Wremarks .. 1-49

-Wterse ... 1-49

-w .. 1-49

-write-files .. 1-49
vi VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

CONTENTS
-write-opts .. 1-50

-xml .. 1-50

-xref filename .. 1-50

C++ Mode Compiler Switch Descriptions 1-51

-explicit .. 1-51

-instant{all|local|used} ... 1-51

-namespace ... 1-52

-newforinit .. 1-52

-newvec .. 1-52

-no-demangle .. 1-52

-no-explicit ... 1-52

-no-namespace .. 1-52

-no-newvec ... 1-53

-notstrict ... 1-53

-no-wchar ... 1-53

-strict .. 1-53

-strictwarn .. 1-53

-tpautooff ... 1-54

-trdforinit ... 1-54

-typename ... 1-54

-wchar .. 1-54

Data Type Sizes ... 1-54

Optimization Control .. 1-56

Inlining Control ... 1-58
VisualDSP++ 3.1 C/C++ Compiler and Library Manual vii
for Blackfin Processors

CONTENTS
Interprocedural Analysis ... 1-59

Interaction with Libraries .. 1-59

C/C++ Compiler Language Extensions .. 1-61

Inline Function Support Keyword (inline) 1-63

Inline Assembly Language Support Keyword (asm) 1-64

Assembly Construct Template ... 1-65

asm() Constructs Syntax ... 1-66

asm() Construct Syntax Rules 1-67

asm() Construct Template Example 1-68

Assembly Construct Operand Description 1-69

Assembly Constructs with Multiple Instructions 1-75

Assembly Construct Reordering and Optimization 1-75

Assembly Constructs with Input and Output Operands 1-76

Assembly Constructs and Flow Control 1-77

Placement Support Keyword (section) 1-77

Boolean Type Support Keywords (bool, true, false) 1-78

Pointer Class Support Keyword (restrict) 1-78

Non-Constant Aggregate Initializer Support 1-79

Indexed Initializer Support .. 1-80

Preprocessor Generated Warnings .. 1-81

Variable-Length Arrays .. 1-82

C++ Style Comments .. 1-82

Built-In Functions .. 1-83

Fractional Value Builtins in C ... 1-84
viii VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

CONTENTS
Single Fractional Values ... 1-84

Fractional Value Builtins in C++ .. 1-86

Fractional Literal Values in C .. 1-88

Complex Fractional Builtins in C 1-88

Complex Operations in C++ ... 1-89

Viterbi History and Decoding Functions 1-91

Circular Buffer Built-In Functions 1-93

Automatic Circular Buffer Generation 1-93

Circular Buffer Increment of an Index 1-93

Circular Buffer Increment of a Pointer 1-94

System Built-In Functions ... 1-95

Pragmas .. 1-97

Data Alignment Pragmas ... 1-98

#pragma align num ... 1-99

#pragma pack (alignopt) .. 1-100

#pragma pad (alignopt) ... 1-101

Interrupt Handler Pragmas .. 1-102

Loop Optimization Pragmas .. 1-103

#pragma vector_for ... 1-103

#pragma no_alias .. 1-104

General Optimization Pragmas .. 1-105

Linking Control Pragmas .. 1-106

#pragma linkage_name identifier 1-106

 #pragma retain_name ... 1-106
VisualDSP++ 3.1 C/C++ Compiler and Library Manual ix
for Blackfin Processors

CONTENTS
 #pragma weak_entry .. 1-107

Blackfin Processor-Specific Functionality 1-108

Default Startup Code .. 1-108

Support for argv/argc .. 1-109

File I/O Support ... 1-110

Extending I/O Support To New Devices 1-110

Profiling with Instrumented Code 1-112

Generating Instrumented Code 1-113

Running the Executable .. 1-113

Post-Processing mon.out File .. 1-115

Computing Cycle Counts ... 1-115

Controlling Available Memory Size 1-116

Interrupt Handler Support .. 1-116

Defining an ISR ... 1-117

Registering an ISR .. 1-118

ISRs and ANSI C Signals .. 1-119

Saved Processor Context ... 1-120

Fetching Event Details .. 1-120

Fetching Saved Registers ... 1-121

User-Mode Configuration ... 1-122

Allocated Events in User-Mode Configuration 1-122

Caching and Memory Protection ... 1-124

Cache Configuration .. 1-126

Default Cache Configuration .. 1-126
x VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

CONTENTS
Changing Cache Configuration 1-127

LDF Implications ... 1-127

C/C++ Preprocessor Features ... 1-129

Predefined Macros ... 1-129

Preprocessing of .IDL Files .. 1-131

Header Files .. 1-132

Writing Preprocessor Macros .. 1-132

C/C++ Run-Time Model and Environment 1-135

Using Memory Sections ... 1-136

Using Multiple Heaps .. 1-138

Defining a Heap ... 1-139

Defining Heaps at Link Time .. 1-139

Defining Heaps at Run-Time .. 1-140

Tips for Working with Heaps .. 1-140

Standard Heap Interface .. 1-141

Using the Alternate Heap Interface 1-141

Freeing Space .. 1-142

Dedicated Registers ... 1-143

Call Preserved Registers ... 1-144

Scratch Registers ... 1-144

Stack Registers ... 1-145

Managing the Stack ... 1-145

Transferring Function Arguments and Return Value 1-148

Passing Arguments .. 1-149
VisualDSP++ 3.1 C/C++ Compiler and Library Manual xi
for Blackfin Processors

CONTENTS
Return Values ... 1-149

Using Data Storage Formats .. 1-151

Basic Startup Code Sequence ... 1-153

C/C++ and Assembly Interface .. 1-155

Calling Assembly Subroutines from C/C++ Programs 1-155

Calling C/C++ Functions from Assembly Programs 1-157

Using Mixed C/C++ and Assembly Naming Conventions 1-159

C/C++ RUN-TIME LIBRARY

C and C++ Run-Time Library Guide .. 2-3

Calling Library Functions .. 2-3

Using the Compiler’s Built-In Functions 2-4

Linking Library Functions ... 2-4

Working with Library Header Files .. 2-7

assert.h ... 2-8

ctype.h ... 2-8

errno.h ... 2-8

float.h .. 2-9

limits.h .. 2-9

locale.h .. 2-9

math.h ... 2-9

setjmp.h ... 2-10

signal.h .. 2-10

stdarg.h .. 2-10

stddef.h .. 2-10
xii VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

CONTENTS
stdio.h .. 2-11

stdlib.h ... 2-12

string.h ... 2-12

Abridged C++ Library Support .. 2-12

Embedded C++ Library Header Files 2-13

complex .. 2-13

exception .. 2-13

fract .. 2-13

fstream .. 2-13

iomanip .. 2-13

ios .. 2-13

iosfwd ... 2-14

iostream .. 2-14

istream .. 2-14

new .. 2-14

ostream ... 2-14

shortfract .. 2-14

sstream ... 2-14

stdexcept ... 2-15

streambuf .. 2-15

string .. 2-15

strstream ... 2-15

C++ Header Files for C Library Facilities 2-15

Embedded Standard Template Library Header Files 2-16
VisualDSP++ 3.1 C/C++ Compiler and Library Manual xiii
for Blackfin Processors

CONTENTS
algorithm ... 2-17

deque ... 2-17

functional ... 2-17

hash_map ... 2-17

hash_set ... 2-17

iterator ... 2-17

list .. 2-17

map .. 2-17

memory .. 2-17

numeric .. 2-18

queue ... 2-18

set .. 2-18

stack ... 2-18

utility ... 2-18

vector ... 2-18

fstream.h .. 2-18

iomanip.h ... 2-18

iostream.h .. 2-19

new.h ... 2-19

Documented Library Functions .. 2-20

C Run-Time Library Reference ... 2-23

Notation Conventions. .. 2-23

abort .. 2-24

abs ... 2-25
xiv VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

CONTENTS
acos .. 2-26

asin ... 2-27

atan .. 2-28

atan2 .. 2-29

atexit .. 2-30

atof ... 2-31

atoi ... 2-32

atol ... 2-33

bsearch ... 2-34

calloc .. 2-36

ceil ... 2-37

cos .. 2-38

cosh .. 2-39

div .. 2-40

exit ... 2-41

exp ... 2-42

fabs .. 2-43

floor ... 2-44

fmod .. 2-45

free ... 2-46

frexp ... 2-47

interrupt ... 2-48

isalnum ... 2-49

isalpha .. 2-50
VisualDSP++ 3.1 C/C++ Compiler and Library Manual xv
for Blackfin Processors

CONTENTS
iscntrl ... 2-51

isdigit ... 2-52

isgraph ... 2-53

islower .. 2-54

isprint .. 2-55

ispunct ... 2-56

isspace .. 2-57

isupper ... 2-58

isxdigit ... 2-59

labs .. 2-60

ldexp .. 2-61

ldiv .. 2-62

log ... 2-63

log10 .. 2-64

longjmp ... 2-65

malloc .. 2-67

memchr .. 2-68

memcmp .. 2-69

memcpy ... 2-70

memmove .. 2-71

memset .. 2-72

modf .. 2-73

pow .. 2-74

qsort .. 2-75
xvi VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

CONTENTS
raise .. 2-77

rand .. 2-79

realloc ... 2-80

setjmp .. 2-81

signal .. 2-82

sin .. 2-83

sinh .. 2-84

sqrt ... 2-85

srand .. 2-86

strcat .. 2-87

strchr .. 2-88

strcmp .. 2-89

strcoll ... 2-90

strcpy ... 2-91

strcspn .. 2-92

strerror ... 2-93

strlen .. 2-94

strncat .. 2-95

strncmp .. 2-96

strncpy ... 2-97

strpbrk .. 2-98

strrchr ... 2-99

strspn ... 2-100

strstr ... 2-101
VisualDSP++ 3.1 C/C++ Compiler and Library Manual xvii
for Blackfin Processors

CONTENTS
strtod ... 2-102

strtok ... 2-104

strtol .. 2-106

strtoul .. 2-108

strxfrm ... 2-110

tan ... 2-111

tanh ... 2-112

tolower ... 2-113

toupper .. 2-114

va_arg .. 2-115

va_end ... 2-118

va_start .. 2-119

DSP RUN-TIME LIBRARY

DSP Run-Time Library Guide .. 3-2

Linking DSP Library Functions ... 3-2

Working With Library Source Code .. 3-3

DSP Header Files .. 3-4

complex.h — Basic Complex Arithmetic Functions 3-4

filter.h — Filters and Transformations 3-7

math.h — Math Functions ... 3-10

matrix.h — Matrix Functions ... 3-13

stats.h — Statistical Functions .. 3-13

vector.h — Vector Functions ... 3-19

window.h — Window Generators 3-24
xviii VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

CONTENTS
DSP Run-Time Library Reference ... 3-26

Notation Conventions ... 3-26

a_compress ... 3-27

a_expand .. 3-28

arg .. 3-29

autocoh .. 3-30

autocorr .. 3-31

cabs .. 3-32

cadd ... 3-33

cdiv .. 3-34

cexp .. 3-35

cfft ... 3-36

cfftrad4 ... 3-38

cfft2d ... 3-40

cfir ... 3-42

clip ... 3-44

cmlt .. 3-45

conj .. 3-46

convolve ... 3-47

conv2d ... 3-49

conv2d3x3 .. 3-51

copysign ... 3-52

cot .. 3-53

countones ... 3-54
VisualDSP++ 3.1 C/C++ Compiler and Library Manual xix
for Blackfin Processors

CONTENTS
crosscoh ... 3-55

crosscorr ... 3-56

csub ... 3-57

fir .. 3-58

fir_decima .. 3-60

fir_interp .. 3-62

gen_bartlett .. 3-64

gen_blackman .. 3-65

gen_gaussian .. 3-66

gen_hamming .. 3-67

gen_hanning .. 3-68

gen_harris .. 3-69

gen_kaiser .. 3-70

gen_rectangular .. 3-71

gen_triangle ... 3-72

gen_vonhann .. 3-73

histogram ... 3-74

ifft ... 3-75

ifftrad4 ... 3-77

ifft2d .. 3-79

iir ... 3-81

max .. 3-83

mean .. 3-84

min .. 3-85
xx VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

mu_compress .. 3-86

mu_expand ... 3-87

norm .. 3-88

polar ... 3-89

rfft .. 3-90

rfftrad4 ... 3-92

rfft2d .. 3-94

rms ... 3-96

rsqrt ... 3-97

twidfftrad2 ... 3-98

twidfftrad4 ... 3-100

twidfft2d .. 3-102

var .. 3-104

zero_cross ... 3-105

INDEX
VisualDSP++ 3.1 C/C++ Compiler and Library Manual xxi
for Blackfin Processors

xxii VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

 PREFACE

Thank you for purchasing Analog Devices development software for

Blackfin® embedded media processors.

Purpose
The VisualDSP++ 3.1 C/C++ Compiler and Library Manual for Blackfin
Processors contains information about the C/C++ compiler and run-time
libraries for Blackfin embedded processors that support a Media Instruc-
tion Set Computing (MISC) architecture. This architecture is the natural
merging of RISC, media functions, and signal processing characteristics
that delivers signal processing performance in a microprocessor-like
environment.

Intended Audience
The primary audience for this manual is programmers who are familiar
with Analog Devices Blackfin processors. This manual assumes that the
audience has a working knowledge of the Blackfin processors architecture
and instruction set and the C/C++ instruction set.

Programmers who are unfamiliar with Blackfin processors can use this
manual, but they should supplement it with other texts (such as the
appropriate hardware reference and instruction set reference) that provide
information about your Blackfin processor architecture and instructions).
VisualDSP++ 3.1 C/C++ Compiler and Library Manual xxiii
for Blackfin Processors

Manual Contents Description
Manual Contents Description
This manual contains:

• Chapter 1, “Compiler”
Provides information on compiler options, language extensions and
C/C++/assembly interfacing

• Chapter 2, “C/C++ Run-Time Library”
Shows how to use library functions and provides a complete C/C++
library function reference

• Chapter 3, “DSP Run-Time Library”
Shows how to use DSP library functions and provides a complete
DSP library function reference

What�s New in this Manual
This edition of the VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors documents support for all Blackfin processors. In
addition to documenting all existing compiler features, this manual
describes new features, such as

• New command-line switches: -bss/-no-bss, -csync, -expert-linker,
-fast-fp, -fp-associative/-no-fp-associative, -ieee-fp,
-inline/-no-inline, -jcs21+/-no-jcs21+, -MQ, -mem/-no-mem,
-mem-bsz, -no-saturation, -Ov <num>, -path-def, -write-opts, and
-xml.

• Support for automatic circular buffer generation

• Support for two C++ fractional classes: fract and shortfract.

• Updated descriptions of pragmas including new #pragma weak_entry.

• Extended I/O support (to new devices)
xxiv VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Preface
• Support for multiple heaps

• Support for caching of external memory and/or L2 SRAM into L1
SRAM, for both Instruction and Data memory.

• Updated description of C/C++ run-time library files

• Updated description of DSP run-time library files

Technical or Customer Support
You can reach DSP Tools Support in the following ways:

• Visit the DSP Development Tools website at
http://www.analog.com/technology/dsp/developmentTools/index.html

• Email questions to
dsptools.support@analog.com

• Phone questions to 1-800-ANALOGD

• Contact your ADI local sales office or authorized distributor

• Send questions by mail to:

Analog Devices, Inc.
One Technology Way
P.O. Box 9106
Norwood, MA 02062-9106
USA
VisualDSP++ 3.1 C/C++ Compiler and Library Manual xxv
for Blackfin Processors

Supported Processors
Supported Processors
The name “Blackfin” refers to a family of Analog Devices 16-bit, embed-
ded processors. VisualDSP++ currently supports the following Blackfin
processors:

Product Information
You can obtain product information from the Analog Devices website,
from the product CD-ROM, or from the printed publications (manuals).
Analog Devices is online at www.analog.com. Our website provides infor-
mation about a broad range of products—analog integrated circuits,
amplifiers, converters, and digital signal processors.

MyAnalog.com
MyAnalog.com is a free feature of the Analog Devices website that allows
customization of a webpage to display only the latest information on
products you are interested in. You can also choose to receive weekly email
notification containing updates to the webpages that meet your interests.
MyAnalog.com provides access to books, application notes, data sheets,
code examples, and more.

Registration:
Visit www.myanalog.com to sign up. Click Register to use MyAnalog.com.
Registration takes about five minutes and serves as means for you to select
the information you want to receive. If you are already a registered user,
just log on. Your user name is your email address.

ADSP-BF531 ADSP-BF532 (formerly ADSP-21532)

ADSP-BF533 ADSP-BF535 (formerly ADSP-21535)

ADSP-DM102 AD6532
xxvi VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Preface
DSP Product Information
For information on digital signal processors, visit our website at
www.analog.com/dsp, which provides access to technical publications,
datasheets, application notes, product overviews, and product
announcements.

You may also obtain additional information about Analog Devices and its
products in any of the following ways.

• Email questions or requests for information to
dsp.support@analog.com

• Fax questions or requests for information to
1-781-461-3010 (North America)
089/76 903-557 (Europe)

• Access the Digital Signal Processing Division’s FTP website at
ftp ftp.analog.com or ftp 137.71.23.21
ftp://ftp.analog.com

Related Documents
For information on product related development software, see the follow-
ing publications:

VisualDSP++ 3.1 Getting Started Guide for Blackfin Processors

VisualDSP++ 3.1 User’s Guide for Blackfin Processors

VisualDSP++ 3.1 C/C++ Compiler and Library Manual for Blackfin Processors

VisualDSP++ 3.1 C/C++ Assembler and Preprocessor Manual for Blackfin Processors

VisualDSP++ 3.1 Linker and Utilities Manual for Blackfin Processors

VisualDSP++ 3.1 Product Bulletin

VisualDSP++ Kernel (VDK) User’s Guide
VisualDSP++ 3.1 C/C++ Compiler and Library Manual xxvii
for Blackfin Processors

Product Information
Online Technical Documentation
Online documentation comprises VisualDSP++ Help system and tools
manuals, Dinkum Abridged C++ library and FlexLM network license
manager software documentation. You can easily search across the entire
VisualDSP++ documentation set for any topic of interest. For easy print-
ing, supplementary .PDF files for the tools manuals are also provided.

A description of each documentation file type is as follows.

If documentation is not installed on your system as part of the software
installation, you can add it from the VisualDSP++ CD-ROM at any time.

Access the online documentation from the VisualDSP++ environment,
Windows Explorer, or Analog Devices website.

VisualDSP++ Component Software Engineering User’s Guide

Quick Installation Reference Card

File Description

.CHM Help system files and VisualDSP++ tools manuals.

.HTML Dinkum Abridged C++ library and FlexLM network license manager software doc-
umentation. Viewing and printing the .HTML files require a browser, such as Inter-
net Explorer 4.0 (or higher).

.PDF VisualDSP++ tools manuals in Portable Documentation Format, one .PDF file for
each manual. Viewing and printing the .PDF files require a PDF reader, such as
Adobe Acrobat Reader (4.0 or higher).
xxviii VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Preface
From VisualDSP++

• Access VisualDSP++ online Help from the Help menu’s Contents,
Search, and Index commands.

• Open online Help from context-sensitive user interface items (tool-
bar buttons, menu commands, and windows).

From Windows

In addition to any shortcuts you may have constructed, there are many
ways to open VisualDSP++ online Help or the supplementary documenta-
tion from Windows.

Help system files (.CHM files) are located in the Help folder, and .PDF files
are located in the Docs folder of your VisualDSP++ installation. The Docs
folder also contains the Dinkum Abridged C++ library and FlexLM net-
work license manager software documentation.

Using Windows Explorer

• Double-click any file that is part of the VisualDSP++ documenta-
tion set.

• Double-click the vdsp-help.chm file, which is the master Help sys-
tem, to access all the other .CHM files.

Using the Windows Start Button

• Access VisualDSP++ online Help by clicking the Start button and
choosing Programs, VisualDSP, and VisualDSP++
Documentation.

• Access the .PDF files by clicking the Start button and choosing
Programs, VisualDSP, Documentation for Printing, and the
name of the book.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual xxix
for Blackfin Processors

Product Information
From the Web

To download the tools manuals, point your browser at
http://www.analog.com/technology/dsp/developmentTools/

gen_purpose.html.

Select a processor family and book title. Download archive (.ZIP) files, one
for each manual. Use any archive management software, such as WinZip,
to decompress downloaded files.

Printed Manuals
For general questions regarding literature ordering, call the Literature
Center at 1-800-ANALOGD (1-800-262-5643) and follow the prompts.

VisualDSP++ Documentation Set

VisualDSP++ manuals may be purchased through Analog Devices Cus-
tomer Service at 1-781-329-4700; ask for a Customer Service
representative. The manuals can be purchased only as a kit. For additional
information, call 1-603-883-2430.

If you do not have an account with Analog Devices, you will be referred to
Analog Devices distributors. To get information on our distributors, log
onto http://www.analog.com/salesdir/continent.asp.

Hardware Manuals

Hardware reference and instruction set reference manuals can be ordered
through the Literature Center or downloaded from the Analog Devices
website. The phone number is 1-800-ANALOGD (1-800-262-5643).
The manuals can be ordered by a title or by product number located on
the back cover of each manual.
xxx VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Preface
Data Sheets

All data sheets can be downloaded from the Analog Devices website. As a
general rule, any data sheet with a letter suffix (L, M, N) can be obtained
from the Literature Center at 1-800-ANALOGD (1-800-262-5643) or
downloaded from the website. Data sheets without the suffix can be
downloaded from the website only—no hard copies are available. You can
ask for the data sheet by a part name or by product number.

If you want to have a data sheet faxed to you, the fax number for that
service is 1-800-446-6212. Follow the prompts and a list of data sheet
code numbers will be faxed to you. Call the Literature Center first to find
out if requested data sheets are available.

Contacting DSP Publications
Please send your comments and recommendation on how to improve our
manuals and online Help. You can contact us by:

• Emailing dsp.techpubs@analog.com

• Filling in and returning the attached Reader’s Comments Card
found in our manuals

Notation Conventions
The following table identifies and describes text conventions used in this
manual.

� Additional conventions, which apply only to specific chapters, may
appear throughout this document.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual xxxi
for Blackfin Processors

Notation Conventions
Example Description

Close command
(File menu)

Text in bold style indicates the location of an item within the
VisualDSP++ environment’s menu system. For example, the Close
command appears on the File menu.

{this | that} Alternative required items in syntax descriptions appear within curly
brackets and separated by vertical bars; read the example as this or
that.

[this | that] Optional items in syntax descriptions appear within brackets and sepa-
rated by vertical bars; read the example as an optional this or that.

[this,…] Optional item lists in syntax descriptions appear within brackets
delimited by commas and terminated with an ellipsis; read the example
as an optional comma-separated list of this.

.SECTION Commands, directives, keywords, and feature names are in text with
letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

A note, providing information of special interest or identifying a
related topic. In the online version of this book, the word Note appears
instead of this symbol.

A caution, providing information about critical design or program-
ming issues that influence operation of a product. In the online version
of this book, the word Caution appears instead of this symbol.
xxxii VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

1 COMPILER

The C/C++ compiler (ccblkfn.exe) is part of Analog Devices develop-

ment software for Blackfin processors.

This chapter contains:

• “C/C++ Complier Overview” on page 1-2
Provides an overview of C/C++ compiler for Blackfin processors.

• “Compiler Command-Line Interface” on page 1-4
Describes the operation of the compiler as it processes programs,
including input and output files and command-line switches.

• “C/C++ Compiler Language Extensions” on page 1-61
Describes the ccblkfn compiler’s extensions to the ANSI/ISO stan-
dard for the C and C++ languages.

• “Blackfin Processor-Specific Functionality” on page 1-108
Contains information that is specific to Blackfin processors only.

• “C/C++ Preprocessor Features” on page 1-129
Contains information on the preprocessor and ways to modify
source compilation.

• “C/C++ Run-Time Model and Environment” on page 1-135
Contains reference information about implementation of C/C++
programs, data, and function calls in Blackfin processors.

• “C/C++ and Assembly Interface” on page 1-155
which describes how to call an assembly language subroutine from
within a C or C++ program, and how to call a C or C++ function
from within an assembly language program.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-1
for Blackfin Processors

C/C++ Complier Overview
C/C++ Complier Overview
The C/C++ compiler is designed to aid your DSP project development
efforts by:

• Processing C and C++ source files, producing machine level ver-
sions of the source code and object files

• Providing relocatable code and debugging information within the
object files

• Providing relocatable data and program memory segments for
placement by the linker in the processors’ memory

Using C/C++, developers can significantly decrease time-to-market since
it gives them the ability to efficiently work with complex signal processing
data types. It also allows them to take advantage of specialized signal pro-
cessing operations without having to understand the underlying processor
architecture.

The C/C++ compiler compiles ANSI/ISO standard C and C++ code to
support siganl data processing. Additionally, Analog Devices includes
within the compiler a number of C language extensions designed to assist
in DSP development. The ccblkfn compiler runs from the
VisualDSP++ environment or from an operating system command line.

The C/C++ compiler processes your C and C++ language source files and
produces Blackfin assembler source files. The assembler source files are
assembled by the Blackfin processor assembler (easmblkfn). The assembler
creates Executable and Linkable Format (ELF) object files that can be
linked (using the linker) to create a Blackfin processor executable file or
included in an archive library (elfar). The way in which the compiler
controls the assemble, link, and archive phases of the process depends on
the source input files and the compiler options used.
1-2 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
Your source files contain the C/C++ program to be processed by the com-
piler. The ccblkfn compiler supports the ANSI/ISO standard definitions
of the C and C++ languages. For information on the C language standard,
see any of the many reference texts on the C language. Analog Devices rec-
ommends the Bjarne Stroustrup text “The C++ Programming Language”
from Addison Wesley Longman Publishing Co (ISBN: 0201889544)
(1997) as a reference text for the C++ programming language.

The ccblkfn compiler supports a set of C/C++ language extensions. These
extensions support hardware features of the Blackfin processors. For infor-
mation on these extensions, see “C/C++ Compiler Language Extensions”
on page 1-61.

You can set the compiler options from the Compile page of the Project
Options dialog box of the VisualDSP++ Integrated Development and
Debug Environment (IDDE).(see “Specifying Compiler Options in Visu-
alDSP++” on page 1-9). These selections control how the compiler
processes your source files, letting you select features that include the lan-
guage dialect, error reporting, and debugger output.

For more information on the VisualDSP++ environment, see the
VisualDSP++ 3.1 User’s Guide for Blackfin Processors and online Help.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-3
for Blackfin Processors

Compiler Command-Line Interface
Compiler Command-Line Interface
This section describes how the ccblkfn compiler is invoked from the com-
mand line, the various types of files used by and generated from the
compiler, and the switches used to tailor the compiler’s operation.

This section contains:

• “Running the Compiler” on page 1-5

• “Specifying Compiler Options in VisualDSP++” on page 1-9

• “C/C++ Compiler Switches” on page 1-12

• “Data Type Sizes” on page 1-54

• “Optimization Control” on page 1-56

By default, the compiler runs with Analog Extensions for C code enabled.
This means that the compiler processes source files written in ANSI/ISO
standard C language supplemented with Analog Devices extensions.
Table 1-1 on page 1-7 lists valid extensions of source files the compiler
will operate upon. By default, the compiler processes the input file
through the listed stages to produce a .DXE file (see file names in Table 1-2
on page 1-8). Table 1-3 on page 1-12 lists the switches that select the lan-
guage dialect.

Although many switches are generic between C and C++, some of them
are valid in C++ mode only. A summary of the generic C/C++ compiler
switches appears in Table 1-4 on page 1-13. A summary of the C++-spe-
cific compiler switches appears in Table 1-5 on page 1-20. The summaries
are followed by descriptions of each switch.

� When developing a DSP project, you may find it useful to modify
the compiler’s default options settings. The way you set the com-
piler’s options depends on the environment used to run the DSP
development software. See “Specifying Compiler Options in Visu-
alDSP++” on page 1-9 for more information.
1-4 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
Running the Compiler
Use the following syntax for the ccblkfn command line:

ccblkfn [-switch [-switch …] sourcefile [sourcefile …]]

where:

• ccblkfn — name of the compiler program for Blackfin processors.

• -switch — name of the switch(s) to be processed. The compiler
has many switches. These select the operations and modes for the
compiler and other tools. Command-line switches are case sensi-
tive, for example, -O is not the same as -o.

• sourceFile — name of the file to be preprocessed, compiled,
assembled, and/or linked.

The name of the source file to be processed:

can include the drive, directory, file name and file extension. The
compiler supports both Win32 and POSIX-style paths by using
forward or back slashes as the directory delimiter. It also supports
UNC path names (starting with two slashes and a network name).

if its length exceeds eight characters or contains spaces, enclose it in
straight quotes; for example, “long file name.c”. The ccblkfn
compiler uses the file extension to determine what the file contains
(Table 1-2 on page 1-8) and what operations to perform upon it
(Table 1-1 on page 1-7).

For example, the following command line

ccblkfn -proc ADSP-BF525 -O -Wremarks -o program.dxe source.c

runs ccblkfn with
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-5
for Blackfin Processors

Compiler Command-Line Interface
-proc ADSP-BF535 Specifies compiler instructions unique to the
ADSP-BF535 processor

-O Specifies optimization for the compiler

-Wremarks Selects extra diagnostic remarks in addition to
warning and error messages

-o program.dxe Selects a name for the compiled, linked output

source.c Specifies the C language source file to be compiled

The following example command line, which runs the compiler in the
C++ mode,

ccblkfn -proc ADSP-BF535 -c++ source.cpp

runs ccblkfn with

-c++ Specifies all of the source files be compiled in C++
mode

source.cpp Specifies the C++ language source file to be
compiled

The normal function of ccblkfn is to invoke the compiler, assembler, and
linker as required to produce an executable object file. The precise opera-
tion is determined by the extensions of the input file names and by various
switches.

In normal operation, the compiler uses the files listed in Table 1-1 to per-
form a specified action:
1-6 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
If multiple files are specified, each is processed to produce an object file
and then all the object files are presented to the linker.

You can stop this sequence at various points using appropriate compiler
switches, or selecting options with the VisualDSP++ IDDE. These
switches are -E,-P,-M,-H,-S,-c.

Many of the compiler’s switches take a file name as an optional parameter.
If you do not use the optional output name switch, ccblkfn names the
output for you. Table 1-2 on page 1-8 lists the type of files, names, and
extensions ccblkfn appends to output files.

File extensions vary by command-line switch and file type. These exten-
sions are influenced by the program that is processing the file, search
directories that you select, and path information that you include in the
file name. Table 1-2 indicates the extensions that the preprocessor, com-
piler, assembler, and linker support. The compiler supports relative and
absolute directory names to define file extension paths. For information
on additional search directories, see the command-line switch that con-
trols the specific type of extensions.

When you provide an input or output file name as an optional parameter,
use the following guidelines.

• Use a file name (include the file extension) with either an unambig-
uous relative path or an absolute path. A file name with an absolute
path includes the drive, directory, file name, and file extension.

Table 1-1. File Extensions Specifying Compiler Action

Extension Action

.C .c .cpp .cxx Source file is compiled, assembled, and linked

.asm, .dsp, or .s Assembly language source file is assembled and linked

.doj Object file (from previous assembly) is linked
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-7
for Blackfin Processors

Compiler Command-Line Interface
Enclose long file names within straight quotes; for example, “long
file name.c”. The compiler uses the file extension convention
listed in Table 1-2 to determine the input file type.

• Verify the compiler is using the correct file. If you do not provide
the complete file path as part of the parameter or add additional
search directories, ccblkfn looks for input in the current directory.

� Using the verbose output switches for the preprocessor, compiler,
assembler, and linker cause each of these tools to echo the name of
each file as it is processed.

Table 1-2. Input and Output File Extensions

File Extension File Extension Description

.c C source file

.C, .cpp, .cxx C++ source code

.h Header file (referenced by an #include statement)

.ii, .ti Template instantiation files — used internally by the compiler when
instantiating templates

.ipa, .opa Interprocedural analysis files — used internally by the compiler
when performing interprocedural analysis.

.i Preprocessed source file — created when preprocess only is specified

.s, .dsp, .asm Assembly language source files

.is Preprocessed assembly language source — retained when
-save-temps is specified

.ldf Linker Description File

.doj Object file to be linked

.dlb Library of object files to be linked as needed

.dxe Executable file produced by compiler

.map Processor memory map file output

.sym Processor symbol map file output
1-8 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
Specifying Compiler Options in VisualDSP++
When using the VisualDSP++ IDDE, use the Compile property page
from the Project Options dialog box to set compiler functional options.
The Compile page provides General, Preprocessor and Warning pane
selections. Callouts refer to the corresponding compiler command-line
switches described in “C/C++ Compiler Switches”.

Figure 1-1. Project Options � Compile (General) Property Page
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-9
for Blackfin Processors

Compiler Command-Line Interface
The Additional options field is used to enter the appropriate file names
and options that do not have corresponding controls on the Compile page
but are available as compiler switches.

Figure 1-2 shows the Preprocessor pane. Figure 1-3 shows the Warning
pane. Use the VisualDSP++ online Help to get more information on com-
piler options you can specify from the VisualDSP++ environment.

Figure 1-2. Project Options � Compile (Preprocessor) Pane
1-10 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
Figure 1-3. Project Options � Compile (Warning) Pane
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-11
for Blackfin Processors

Compiler Command-Line Interface
C/C++ Compiler Switches
This section describes command-line switches you can use when compil-
ing. It contains a set of tables that provides a brief description of each
switch. These tables are organized by type of switch. Following these
tables are sections that provide detailed switch descriptions.

C/C++ Compiler Switch Summaries

This section contains a set of tables that summarize generic and specific
switches (options).

• Table 1-3, “C or C++ Mode Selection Switches” on page 1-12

• Table 1-4, “C/C++ Compiler Common Switches” on page 1-13

• Table 1-5, “C++ Mode Compiler Switches” on page 1-20

A brief description of each switch appears in the sections beginning
on page 1-22.

Table 1-3. C or C++ Mode Selection Switches

Switch Name Description

-analog
on page 1-22

Supports ANSI/ISO standard C with Analog Devices extensions.
Default mode.

-c++
on page 1-22

Supports ANSI/ISO standard C++ with Analog Devices exten-
sions.

-traditional
on page 1-22

Supports pre-ANSI K&R C.
1-12 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
Table 1-4. C/C++ Compiler Common Switches

Switch Name Description

sourcefile
on page 1-23

Specifies the file to be compiled.

-@ filename
on page 1-23

Reads command-line input from the file.

-A symbol(tokens)
on page 1-23

Asserts the specified name as a predicate.

-alttok
on page 1-24

Allows alternative keywords and sequences in sources.

-bss
on page 1-25

Causes the compiler to put global zero-initialized data into a
separate BSS-style section.

-build-lib
on page 1-25

Directs the librarian to build a library file.

-C
on page 1-25

Retains preprocessor comments in the output file; active only
with the -E or -P switch.

-c
on page 1-25

Compiles and/or assembles only, but does not link.

-circbuf
on page 1-25

Causes the compiler to generate circular buffering references
even when the reference cannot be guaranteed to always be
within the buffer bounds.

-const-read-write
on page 1-26

Specifies that data accessed via a pointer to const data may be
modified elsewhere.

-csync
on page 1-26

Ensures that the compiler will avoid Anomaly #25 in
Blackfin processors.

-debug-types
on page 1-27

Supports building a *.h file directly and writing a complete
set of debugging information for the header file.

-Dmacro[=def]
on page 1-27

Defines macro.

-dry
on page 1-27

Displays, but does not perform, main driver actions (verbose
dry run).

-dryrun
on page 1-28

Displays, but does not perform, top-level driver actions (terse
dry run).
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-13
for Blackfin Processors

Compiler Command-Line Interface
-E
on page 1-28

Preprocesses, but does not compile, the source file.

-EE
on page 1-28

Preprocesses and compiles the source file.

-expert-linker
on page 1-28

Provides the initial Expert Linker link line.

-extra-keywords
on page 1-28

Recognizes Blackfin processor extensions to ANSI/ISO stan-
dards for C. Default mode.

-fast-fp
on page 1-29

Links with the high-speed floating-point emulation library

-flags tool
on page 1-29

Passes command-line switches through the compiler to other
build tools.

-fp-associative
on page 1-29

Treats floating-point multiply and addition as an associative.

-full-version
on page 1-29

Displays the version number of the driver and processes
invoked by the driver.

-g
on page 1-30

Generates DWARF-2 debug information.

-H
on page 1-30

Outputs a list of included header files, but does not compile.

-HH
on page 1-30

Outputs a list of included header files and compiles.

-h[elp]
on page 1-31

Outputs a list of command-line switches with brief syntax
descriptions.

-I directory
on page 1-31

Appends directory to the standard search path.

-ieee-fp
on page 1-31

Links with the fully-compliant floating-point emulation
library.

-include filename
on page 1-32

Includes named file prior to each source file.

Table 1-4. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description
1-14 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
-inline
on page 1-32

Allows high-level compiler optimizations for functions
declared as "inline" .

-ipa
on page 1-32

Specifies that interprocedural analysis should be performed
for optimization between translation units.

-jcs2l
on page 1-32

Enables the conversion of short jumps to long jumps when
necessary.

-jcs2l+
on page 1-33

Enables the conversion of short jumps to long jumps when
necessary but uses the P1 register for indirect jumps when
long jumps are insufficient. Enabled by default.

-L directory
on page 1-33

Appends directory to the standard library search path.

-l library
on page 1-33

Searches library for functions when linking.

-M
on page 1-33

Generates make rules only, but does not compile.

-MM
on page 1-34

Generates make rules and compiles.

-Mt filename
on page 1-34

Makes dependencies for the specified source file.

-MQ
on page 1-34

Generates make rules only; does not compile. No notification
when input files are missing.

-map filename
on page 1-34

Directs the linker to generate a memory map of all symbols.

-mem
on page 1-35

Causes the compiler to invoke the Memory Initializer after
linking the executable.

-mem-bsz
on page 1-35

Causes the compiler to invoke the Memory Initializer after
linking, to arrange for zero-initialized data to be initialized at
run-time rather than at link-time.

-no-alttok
on page 1-35

Does not allow alternative keywords and sequences in
sources.

Table 1-4. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-15
for Blackfin Processors

Compiler Command-Line Interface
-no-bss
on page 1-35

Causes the compiler to group global zero-initialized data into
the same section as global data with non-zero initializers.
Set by default.

-no-builtin
on page 1-36

Disable recognition of __builtin functions.

-no-defs
on page 1-36

Disables preprocessor definitions: macros, include directo-
ries, library directories, run-time headers, or keyword exten-
sions.

-no-dir-warnings
(on page 1-36)

Removes the directory non-existent warning from the rest of
the command line.

-no-extra-keywords
on page 1-36

Does not define language extension keywords which could be
valid C/C++ identifiers.

-no-fp-associative
(on page 1-37)

Does not treat floating point multiply and addition as an
associative.

-no-inline
on page 1-37

Ignores the inline keyword.

-no-int-to-fract
on page 1-37

Prevents the compiler from turning integer into fractional
arithmetic.

-no-jcs2l
on page 1-37

Disables the conversion of short jumps to long jumps.

-no-mem
on page 1-38

Causes the compiler to not invoke the Memory Initializer
after linking. Set by default.

-no-restrict
on page 1-38

Disables the restrict keyword.

-no-saturation
on page 1-38

Causes the compiler not to introduce saturation semantics
when optimizing expressions.

-no-std-def
on page 1-38

Disables normal macro definitions and also ADI keyword
extensions that do not have leading underscores (__).

-no-std-inc
on page 1-38

Searches only for preprocessor include header files in the cur-
rent directory and in directories specified with the -I switch.

Table 1-4. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description
1-16 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
-no-std-lib
on page 1-39

When linking, searches for only those library files specified
with the -l switch.

-nothreads
on page 1-39

Specifies that no support is required for multi-threaded appli-
cations.

-O [0|1]
on page 1-39

Enables code optimizations.

-Ofp
on page 1-39

Offsets the Frame Pointer to allow more short load and store
instructions. Not allowed with –g.

-Os
on page 1-40

Optimizes the file to decrease code size.

-Ov num
on page 1-40

Controls speed vs. size optimizations.

-o filename
on page 1-40

Specifies the output file name.

-P
on page 1-40

Preprocesses, but does not compile, the source file. Output
does not contain #line directives.

-PP
on page 1-40

Preprocesses and compiles the source file. Output does not
contain #line directives.

-p[1|2]
on page 1-40

Generates profiling instrumentation.

-path-def filename
on page 1-41

Specifies the location of the driver.def file.

-path- tool directory
on page 1-41

Uses the specified directory as the location of the specified
compilation tool (assembler, compiler, library builder, or
linker).

-path-install directory
on page 1-41

Uses the specified directory as the location of all compilation
tools.

-path-output directory
on page 1-42

Specifies the location of non-temporary files.

-path-temp directory
on page 1-42

Specifies the location of temporary files.

Table 1-4. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-17
for Blackfin Processors

Compiler Command-Line Interface
-pedantic
on page 1-42

Issues compiler warnings for constructs that are not strictly
ISO/ANSI standard C/C++ compliant.

-pedantic-errors
on page 1-22

Issues compiler errors for constructs that are not strictly
ISO/ANSI standard C/C++ compliant.

-pplist filename
on page 1-42

Outputs a raw preprocessed listing to the specified file.

-proc processor
on page 1-43

Specifies a processor for which the compiler should produce
suitable code.

-R directory
on page 1-44

Appends directory to the standard search path for source
files.

-reserve <reg1>[,reg2...]
on page 1-45

Reserves certain registers from compiler use.
Note: Reserving registers can have a detrimental effect on the
compiler’s optimization capabilities.

-restrict
on page 1-45

Enables the restrict keyword.

-S
on page 1-45

Stops compilation before running the assembler.

-s
on page 1-45

When linking, removes debugging information from the out-
put executable file.

-save-temps
on page 1-46

Saves intermediate files.

-sat32
on page 1-45

Saturates all accumulations at 32 bits, which is the default.

-sat40
on page 1-45

Saturates all accumulations at 40 bits rather than the default
32 bits.

-show
on page 1-46

Displays the driver command-line information.

-signed-char
on page 1-46

Makes the default type for char signed.

-syntax-only
on page 1-46

Checks the source code for compiler syntax errors, but does
not write any output.

Table 1-4. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description
1-18 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
-T filename
on page 1-46

Specifies the Linker Description File.

-threads
on page 1-47

Enables the support for multithreaded applications.

-time
on page 1-47

Displays the elapsed time as part of the output information
on each part of the compilation process.

-traditional
on page 1-22

Applies traditional C compiler rules (consistent with
pre-ANSI K&R C compilers).

-Umacro
on page 1-47

Undefines macro.

-unsigned-char
on page 1-47

Makes the default type for char unsigned.

-v
on page 1-47

Displays version and command-line information for all com-
pilation tools.

-verbose
on page 1-48

Displays command-line information for all compilation
tools.

-version
on page 1-48

Displays version information for all compilation tools.

-warn-protos
on page 1-48

Issues warnings about functions without prototypes.

-Werror number
on page 1-49

Overrides the default severity of the specified messages
(errors, remarks, or warnings).

-Wdriver-limit number
on page 1-48

Halts the driver after reaching the specified number of errors.

-Werror-limit number
on page 1-49

Stops compiling after reaching the specified number of
errors.

-Wremarks
on page 1-49

Issues compiler remarks.

-Wterse
on page 1-49

Issues the briefest form of compiler warning, errors, and
remarks.

Table 1-4. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-19
for Blackfin Processors

Compiler Command-Line Interface
-w
on page 1-49

Disables all warnings.

-write-files
on page 1-49

Enables compiler I/O redirection.

-write-opts
(on page 1-50)

Passes the user options (but not input filenames) via a tempo-
rary file.

-xml
(on page 1-50)

Instructs the linker to generate the map file in the XML for-
mat.

-xref filename
on page 1-50

Outputs cross-reference information to the specified file.

Table 1-5. C++ Mode Compiler Switches

Switch Name Description

-explicit
on page 1-51

Supports the explicit specifier on constructor declarations.
This is the default mode.

-instant[all|local|used]
on page 1-51

Instantiates all or used members of a class.

-namespace
on page 1-52

Supports namespaces. This is the default mode.

-newforinit
on page 1-52

Limits the scope of any symbol declared within a “for” state-
ment.

-newvec
on page 1-52

Allows the overloading of new[] and delete[].

-no-demangle
on page 1-52

Prevents filtering of any linker errors through the demangler.

-no-explicit
on page 1-52

Does not support the explicit specifier on constructor decla-
rations.

-no-namespace
on page 1-52

Does not support namespaces.

Table 1-4. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description
1-20 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
-no-newvec
on page 1-53

Does not allow the overloading of new[] and delete[].

-notstrict
on page 1-53

Omits warning and/or error messages for non-ANSI con-
structs.

-no-wchar
on page 1-53

Disables wchar_t keyword.

-strict
on page 1-53

Generates error messages for non-ANSI constructs.

-strictwarn
on page 1-53

Generates warning messages for non-ANSI constructs.

-tpautooff
on page 1-54

Disables automatic instantiation of templates.

-trdforinit
on page 1-54

Limits the scope of any symbol declared within a “for”
statement.

-typename
on page 1-54

Recognizes the typename keyword. This is the default mode.

-wchar
on page 1-54

Enables new wchar_t.

Table 1-5. C++ Mode Compiler Switches (Cont’d)

Switch Name Description
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-21
for Blackfin Processors

Compiler Command-Line Interface
C/C++ Mode Selection Switch Descriptions

The following command-line switches provide C/C++ mode selection.

-analog

The -analog (Analog Devices C compilation) switch directs the compiler
to support Analog Devices extensions to ANSI/ISO standard C. This is
the default mode. For more information about these extensions, see
“C/C++ Compiler Language Extensions” on page 1-61.

-c++

The –c++ (C++ mode) switch directs the compiler to assume that the
source file(s) are written in ANSI/ISO standard C++ with Analog Devices
language extensions.

-traditional

The -traditional (traditional compilation) switch directs the compiler to
apply the following rules (consistent with pre-ANSI K&R C compilers) to
compilation.

• All extern declarations (including implicit declarations of func-
tions) take effect globally.

• Analog Devices C/C++ language extensions are disabled except for
the forms of the extra keywords that begin with a double
underscore (__).

• Pointer/integer comparisons are always allowed.
1-22 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
C/C++ Compiler Common Switch Descriptions

The following command-line switches apply in both C and C++ modes.

sourcefile

The sourcefile parameter (or parameters) specifies the name of the file
(or files) to be preprocessed, compiled, assembled, and/or linked. A file
name can include the drive, directory, file name, and file extension. The
ccblkfn compiler uses the file extension to determine the operations to
perform. Table 1-2 on page 1-8 lists the permitted extensions and match-
ing compiler operations.

-@ filename

The @ filename (command file) switch directs the compiler to read
command-line input from the filename. The specified filename must
contain driver options but may also contain source filenames and envi-
ronment variables. It can be used to store frequently used options as well
as to read from a file list.

-A name(tokens)

The -A (assert) switch directs the compiler to assert name as a predicate
with the specified tokens. This has the same effect as the #assert prepro-
cessor directive. The following assertions are predefined.

The switch -A name(value) is equivalent to including

#assert name(value)

system embedded

machine adspblkfn

cpu adspblkfn

compiler ccblkfn
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-23
for Blackfin Processors

Compiler Command-Line Interface
in your source file, and both may be tested in a preprocessor condition in
the following manner:

#if #name(value) // do something
#else // do something else
#endif

For example, the default assertions may be tested as:

#if #machine(adspblkfn) // do something
#endif

� The parentheses in the assertion should be quoted when using the
-A switch, to prevent misinterpretation. No quotes are needed for a
#assert directive in a source file.

-alttok

The -alttok (alternative tokens) switch directs the compiler to allow
alternative operator keywords and digraph sequences in source files. This
is the default mode. The “-no-alttok” switch (on page 1-35) can be used
to disallow such support. The ANSI C trigraphs sequences are always
expanded (even with the -no-alttok option), and only digraph sequences
are expanded in C source files.

The following operator keywords are enabled by default.

Keyword Equivalent

and &&

and_eq &=

bitand &

bitor |

compl ~

not !

not_eq !=

or ||

or_eq |=
1-24 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
� To use them in C, you should use #include <iso646.h>.

-bss

The -bss switch causes the compiler to place global zero-initialized data
into a BSS-style section (called "bsz"), rather than into the normal global
data section.

-build-lib

The -build-lib (build library) switch directs the compiler to use the
librarian to produce a library file (.dlb) instead of using the linker to pro-
duce an executable file (.dxe). The -o option (see on page 1-40) must be
used to specify the name of the resulting library.

-C

The -C (comments) switch, which is only active in combination with the
-E or -P switches, directs the C preprocessor to retain comments in its
output file.

-c

The -c (compile only) switch directs the compiler to compile and/or
assemble the source files, but to stop before linking. The output is an
object file (.doj) for each source file.

-circbuf

The -circbuf (circular buffer) switch instructs the compiler to make use
of circular buffer facilities, even if the compiler cannot verify that the cir-
cular index or pointer is always within the range of the buffer. Without

xor ^

xor_eq ^=

Keyword Equivalent
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-25
for Blackfin Processors

Compiler Command-Line Interface
this switch, the compiler's default behaviour is to be conservative, and not
use circular buffers unless it can verify that the circular index or pointer is
always within the circular buffer range. See “Circular Buffer Built-In
Functions” on page 1-93.

-const-read-write

The -const-read-write switch directs the compiler to specify that con-
stants may be accessed as read-write (no-readonly) data (as in ANSI C).
The compiler’s default behavior assumes that data referenced through
const pointers will never change.

The -const-read-write switch changes the compiler’s behavior to match
the ANSI C assumption, which is that other non-const pointers may be
used to change the data at some point.

-csync

The -csync switch ensures that the compiler will avoid Anomaly #25 in
Blackfin processors, where the processor speculatively executes a memory
access to an address as part of an instruction that may not be committed.
If the address is invalid, exceptions may be raised.

This switch causes the compiler to automatically insert CSYNC instructions
after conditional branches when:

• the branch is not predicted taken

• the first instruction following the branch includes a load

• the load is not through the stack or frame pointer

If any of these conditions are not met, the compiler does not need to
insert a CSYNC. However, there are cases where the compiler will insert a
CSYNC that is not necessary. These cases are when the pointer will always
be pointing to a valid address, even if the branch is taken.
1-26 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
In addition to generating additional instructions, the -csync switch also
affects the linking stage. The run-time libraries have been provided in two
forms, with and without CSYNCs.

When the -csync switch is specified at link time, the compiler links the
application with the libraries that include CSYNCs. These libraries and
object files include a "y" suffix in their filenames, for example,
libc535y.dlb.

-Dmacro[=definition]

The -D (define macro) switch directs the compiler to define a macro. If
you do not include the optional definition string, the compiler defines the
macro as the string ‘1’. Note that the compiler processes -D switches on
the command line before any -U (undefine macro) switches.

� You can invoke it with the Preprocessor defintions check box
located in the VisualDSP++ Project Options dialog box, Compile
tab, Preprocessor category.

-debug-types <file.h>

The -debug-types option provides for building an *.h file directly and
writing a complete set of debugging information for the header file. The
-g option need not be specified with the -debug-types option because it is
implied. For example,

ccblkfn -debug-types anyHeader.h

The implicit -g option writes debugging information for only those type-
defs that are referenced in the program. The -debug-types option
provides complete debugging information for all typedefs and structs.

-dry

The -dry (a verbose dry run) switch directs the compiler to display main
driver actions, but not to perform them.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-27
for Blackfin Processors

Compiler Command-Line Interface
-dryrun

The -dryrun (a terse dry run) switch directs the compiler to display
top-level driver actions, but not to perform them.

-E

The -E (stop after preprocessing) switch directs the compiler to stop after
the C/C++ preprocessor runs (without compiling). The output (prepro-
cessed source code) prints to the standard output stream unless the output
file is specified with the -o switch. Note that the -C switch can be used in
combination with the -E switch.

-EE

The -EE (run after preprocessing) switch is similar to the -E switch, but it
does not halt compilation after preprocessing.

-expert-linker

The -expert-linker switch provides the link used initially by the Expert
Linker, VisualDSP++ graphic memory mapping and linking tool.

-extra-keywords

The -extra-keywords (enable short-form keywords) switch directs the
compiler to recognize the ADI keyword extensions to ANSI/ISO standard
C/C++ without leading underscores, which can affect conforming
ANSI/ISO C/C++ programs. This is the default mode. The supported
keywords are asm, inline, restrict, section, bool, false, and true.
1-28 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
-fast-fp

The -fast-fp (fast floating point) switch directs the compiler to link with
the high-speed floating-point emulation library. This library relaxes some
of the IEEE floating-point standard's rules for checking inputs against
Not-a-Number, in the interests of performance. This switch is a default.
See also the -ieee-fp switch (on page 1-31).

-flags{-asm | -compiler | -lib | -link | -mem} switch [,switch2 [,...]]

The -flags (command-line input) switch directs the compiler to pass
command-line switches to the other build tools. These tools are:

� You can invoke this switch for compiler by selecting the Implicit
function declarations check box in the VisualDSP++ Project
Options dialog box, Compile tab, Warning category.

-fp-associative

The -fp-associative switch directs the compiler to treat floating-point
multiplication and addition as associative.

-full-version

The -full-version (display version) switch directs the compiler to display
version information for all the compilation tools as they process each file.

Option Tool

-flags-asm Assembler

-flags-compiler Compiler

-flags-lib Library Builder

-flags-link Linker

-flags-mem Memory Initializer
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-29
for Blackfin Processors

Compiler Command-Line Interface
-g

The -g (generate debug information) switch directs the compiler to out-
put symbols and other information used by the debugger.

When -g is used without -O, the -no-inline option is implied. If the -g
switch is used in conjunction with the -O (enable optimization) switch,
the compiler performs standard optimizations. The compiler also outputs
symbols and other information to provide limited source level debugging
through VisualDSP++. This combination of options provides line debug-
ging and global variable debugging.

� When -g and -O are specified, no debug information is available for
local variables and the standard optimizations can sometimes
re-arrange program code in a way that inaccurate line number
information may be produced. For full debugging capabilities, use
the -g switch without the -O switch.

� You can invoke this switch by selecting the Generate debug infor-
mation check box in the VisualDSP++ Project Options dialog box,
Compile tab, General category.

-H

The -H (list headers) switch directs the compiler to output a list of the files
included by the preprocessor via the #include directive, without compil-
ing. The -o switch may be used to specify the redirection of the list to a
file.

-HH

The -HH (list headers and compile) switch directs the compiler to output
the standard output file stream to a list of the files included by the prepro-
cessor via the #include directive. After preprocessing, compilation
proceeds normally.
1-30 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
-h[elp]

The -help (command-line help) switch directs the compiler to output a
list of command-line switches with a brief syntax description.

-I directory

The -I directory [{,|;} directory...] (include search directory)
switch directs the C/C++ preprocessor to append the directory (directo-
ries) to the search path for include files. This option may be specified
more than once; all specified directories are added to the search path.

Include files, whose names are not absolute path names and that are
enclosed in "..." when included, will be searched for in the following
directories in this order:

1. The directory containing the current input file (the primary source
file or the file containing the #include)

2. Any directories specified with the -I switch in the order they are
listed on the command line

3. Any directories on the standard list:
 <VDSP++ install dir>/.../include

� If a file is included using the <...> form, this file will only be
searched for by using directories defined in items 2 and 3 above.

-ieee-fp

The -ieee-fp (slower floating point) switch directs the compiler to link
with the fully-compliant floating-point emulation library. This library
obeys all the IEEE floating-point standard's rules, and incurs a perfor-
mance penalty when compared with the default floating point emulation
library. See also the -fast-fp switch (on page 1-29).
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-31
for Blackfin Processors

Compiler Command-Line Interface
-include filename

The -include filename (include file) switch directs the preprocessor to
process the specified file before processing the regular input file. Any -D
and -U options on the command line are processed before an -include
file.

-inline

The -inline (high-level compiler optimization) switch provides high-level
compiler optimizations. Functions declared as "inline" are compiled with
highly optimized code. This is a default option and is used to counteract
the effect of the -g switch (see on page 1-30) which disables inlining by
default.

� Compiling with -g -inline will result in reduced source line
debug information.

-ipa

The -ipa (interprocedural analysis) switch turns on Interprocedural
Analysis (IPA) in the compiler. This option enables optimization across
the entire program, including between source files that were compiled sep-
arately. The -ipa option should be applied to all C and C++ files in the
program. For more information, see “Interprocedural Analysis” on
page 1-59. Specifying -ipa also implies setting the -O switch
(on page 1-39).

� You can invoke this switch by selecting the Interprocedural
Analysis check box in the VisualDSP++ Project Options dialog
box, Compile tab, General category.

-jcs2l

This switch requests the linker to convert compiler-generated short jumps
to long jumps when necessary.
1-32 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
-jcs2l+

The -jcs2l+ switch requests the linker to convert compiler-generated
short jumps to long jumps when necessary, but uses the P1 register for
indirect jumps/calls when long jumps/calls are insufficient. Enabled by
default.

-L directory[{,|;} directory…]

The -L directory (library search directory) switch directs the linker to
append the directory (or directories) to the search path for library files.

-l library

The -l (link library) switch directs the linker to search the library for
functions and global variables when linking. The library name is the por-
tion of the file name between the lib prefix and .dlb extension.

For example, the -lc compiler switch directs the linker to search in the
library named c. This library resides in a file named libc.dlb.

Normally, you should list all object files on the command line before
using the -l switch; this ensures that functions referred to by object files
are loaded from the library in the given order. This switch may be speci-
fied more than once; libraries are searched as encountered during the
left-to-right processing of the command line.

� You can invoke this switch by selecting the Additional include
directories check box in the VisualDSP++ Project Options dialog
box, Compile tab, General category.

-M

The -M (generate make rules only) switch directs the compiler not to com-
pile the source file, but to output a rule suitable for the make utility,
describing the dependencies of the main program file.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-33
for Blackfin Processors

Compiler Command-Line Interface
The format of the make rule output by the preprocessor is:

object-file: include-file ...

-MM

The -MM (generate make rules and compile) switch directs the preprocessor
to print to the standard output stream a rule describing the dependencies
of the main program file. After preprocessing, compilation proceeds
normally.

-Mt filename

The -Mt filename (output make rule for the named source) switch speci-
fies the name of the source file for which the compiler generates the make
rule when you use the -M or -MM switch. If the named file is not in the cur-
rent directory, you must provide the path name in double quotation
marks (“”). The new file name will override the default base.doj. The -Mt
option supports the .IMPORT extension.

-MQ

The -MQ switch directs the compiler not to compile the source file but to
output a rule. In addition, the -MQ switch does not produce any notifica-
tion when input files are missing.

-map filename

The -map filename (generate a memory map) switch directs the linker to
output a memory map of all symbols. The map file name corresponds to
the filename argument. For example, if the file name argument is test,
the map file name is test.map. The.map extension is added where
necessary.
1-34 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
-mem

The -mem (invoke memory initializer) switch causes the compiler to invoke
the Memory Initializer tool after linking the executable. The MemInit
tool can be controlled through the -flags-mem switch (on page 1-29). See
the online Help for the Compiler property page description. See also the
“-mem-bsz” switch.

-mem-bsz

The -mem-bsz switch causes the compiler to invoke the Memory Initializer
tool on the executable, after linking. The Memory Initializer is instructed
to remove all data from the "bsz" section, and instead create a table in the
"bsz_init" section which will be used by the start-up code to zero-fill the
"bsz" section's contents at run-time. The compiler defines MEMBSZ during
the linking stage and passes it to the linker, so that appropriate sections
can be activated in the .LDF file. See the online Help for the Compiler
property page description. See also the “-mem” switch.

-no-alttok

The -no-alttok (disable alternative tokens) switch directs the compiler
not to accept alternative operator keywords and digraph sequences in the
source files. For more information, see “-alttok” on page 1-24.

-no-bss

The -no-bss switch causes the compiler to keep zero-initialized and
non-zero-initialized data in the same data section, rather than separating
zero-initialized data into a different, BSS-style section.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-35
for Blackfin Processors

Compiler Command-Line Interface
-no-builtin

The -no-builtin (no built-in functions) switch directs the compiler to
ignore any built-in functions that do not begin with two underscores (__).
Note that this switch influences many functions. This switch also pre-
defines the __NO_BUILTIN preprocessor macro.

For more information, see “Built-In Functions” on page 1-83.

� You can invoke this switch by selecting the Disable builtin func-
tions check box in the VisualDSP++ Project Options dialog box,
Compile tab, General category.

-no-defs

The -no-defs (disable defaults) switch directs the compiler not to define
any default preprocessor macros, include directories, library directories,
libraries, or run-time headers. It also disables the Analog Devices C/C++
keyword extensions.

-no-dir-warnings

The -no-dir-warnings (disable directory warning) switch directs the com-
piler not to issue warnings when it encounters directories on the
command line that do not exist. Such directories might be used as part of
subsequent -I (include search directory) and -L (library search directory)
switches.

-no-extra-keywords

The -no-extra-keywords (disable short-form keywords) switch directs the
compiler not to recognize the Analog Devices keyword extensions that
might affect conformance to ANSI/ISO standards for the C and C++ lan-
guages. Keywords, such as asm, may be used as identifiers in conforming
programs. Alternate keywords, which are prefixed with two leading under-
scores, such as __asm, continue to work.
1-36 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
-no-fp-associative

The -no-fp-associative switch directs the compiler NOT to treat
floating-point multiplication and addition as associative.

-no-inline

The -no-inline (disable inline keyword) switch directs the compiler not
to perform any high-level optimizations associated with function inlining.

� You can invoke this switch by selecting the Functions not inlined
check box in the VisualDSP++ Project Options dialog box,
Compile tab, Warning category.

-no-int-to-fract

The -no-int-to-fract (disable conversion of integer to fractional arith-
metic) switch directs the compiler not to turn integer arithmetic into
fractional arithmetic. For example, a statement such as

short a = ((c*D)>>15);

may be changed, by default, into a fractional multiplication. The satura-
tion properties of integer and fractional arithmetic are different; therefore,
if the expression overflows, then the results will differ. Specifying the
-no-int-to-fract switch disables this optimization.

-no-jcs2l

The -no-jcs2l switch prevents the linker from converting compiler gener-
ated short jumps to long jumps.

-no-jcs2l+

The -no-jcs2l+ switch prevents the linker from converting compiler gen-
erated short jumps to long jumps using register P1.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-37
for Blackfin Processors

Compiler Command-Line Interface
-no-mem

The -no-mem switch causes the compiler to not invoke the Memory Initial-
izer tool after linking the executable. This is the default setting. See
also“-mem” on page 1-35.

-no-restrict

The -no-restrict (disable restrictions) switch directs the compiler to dis-
able recognition of the restrict keyword as a type qualifier for pointers
and array parameter to functions.

-no-saturation

The -no-saturation switch directs the compiler to not introduce faster
operations in cases where, if the expression overflowed, the faster opera-
tion would saturate, when the original operation would have wrapped the
result.

-no-std-def

The -no-std-def (disable standard macro definitions) switch prevents the
compiler from defining default preprocessor macro definitions. Note that
this switch also disables the ADI keyword extensions that have no leading
underscores, such as asm.

-no-std-inc

The -no-std-inc (disable standard include search) switch directs the
C/C++ preprocessor to search only for header files in the current directory
and directories specified with the -I switch.

� You can invoke this switch by selecting the Ignore standard
include paths check box in the VisualDSP++ Project Options dia-
log box, Compile tab, Preprocessor category.
1-38 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
-no-std-lib

The -no-std-lib (disable standard library search) switch directs the linker
to limit its search to those libraries specified with the -L switch.

-nothreads

The -nothreads (disable thread-safe build) switch specifies that all com-
piled code and libraries used in the build need not be thread safe. This is
the default setting when the -threads (enable thread-safe build) switch is
not used.

-O[0|1]

The -O (enable optimizations) switch directs the compiler to produce code
that is optimized for performance. Optimizations are not enabled by
default for the compiler. The switch setting -O or -O1 turns optimization
on, while setting -O0 turns off all optimizations except inlining.

� You can invoke this switch by selecting the Enable optimization
check box in the VisualDSP++ Project Options dialog box,
Compile tab, General category.

-Ofp

The -Ofp (frame pointer optimization) switch directs the compiler to off-
set the Frame Pointer within a function, if this allows the compiler to use
more short load and store instructions. This switch may not be used with
the -g debugging switch, since the debugger would not be able to find the
local procedural information. Specifying -Ofp also implies -O.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-39
for Blackfin Processors

Compiler Command-Line Interface
-Os

The -Os (enable code size optimization) switch directs the compiler to
produce code that is optimized for size. This is achieved by performing all
optimizations except those that increase code size. The optimizations not
performed include loop unrolling, some delay slot filling, and jump
avoidance.

-Ov num

The -Ov num (optimize for speed versus size) switch directs the compiler to
produce code that is optimized for speed versus size. The 'num' should be
an integer between 0 (purely size) and 100 (purely speed).

-o filename

The -o filename (output file) switch directs the compiler to use filename
for the name of the final output file.

-P

The -P (omit line numbers) switch directs the compiler to stop after the
C/C++ preprocessor runs (without compiling) and to omit the #line pre-
processor directives (with line number information) in the output from
the preprocessor. The -C switch can be used in conjunction with the -P
switch to retain comments.

-PP

The -PP (omit line numbers and compile) switch is similar to the -P
switch; however, it does not halt compilation after preprocessing.

-p[1|2]

The -p (generate profiling implementation) switch directs the compiler to
generate the additional instructions needed to profile the program by
recording the number of cycles spent in each function.
1-40 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
The -p1 switch causes the program being profiled to write the informa-
tion to a file called mon.out. The -p2 switch changes this behavior to write
the information to the standard output file stream. The -p switch writes
the data to both mon.out and the standard output stream. For more infor-
mation on profiling, see “Profiling with Instrumented Code” on
page 1-112.

-path [-asm | -compiler | -lib | -link | -mem] directory

The -path-tool directory (tool location) switch directs the compiler to
use the specified component in place of the default-installed version of the
compilation tool. The component should comprise a relative or absolute
path to its location. Respectively, the tools are the assembler, compiler,
driver definitions file, librarian, linker or memory initializer. Use this
switch when you wish to override the normal version of one or more of the
tools. The -path-tool switch also overrides the directory specified by the
-path-install switch.

-path-def filename

The -path-deffilename (non-temporary files location) switch directs the
compiler to specify where the driver.def file is located.

-path-install directory

The -path-install directory (installation location) switch directs the
compiler to use the specified directory as the location for all compilation
tools instead of the default path. This is useful when working with multi-
ple versions of the tool set.

� You can selectively override this switch with the -path-tool
switch.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-41
for Blackfin Processors

Compiler Command-Line Interface
-path-output directory

The -path-output directory (non-temporary files location) switch directs
the compiler to place final output files in the specified directory.

-path-temp directory

The -path-temp directory (temporary files location) switch directs the
compiler to place temporary files in the specified directory.

-pedantic

The -pedantic (ANSI standard warning) switch causes the compiler to
issue a warning for each construct found in your program that does not
strictly conform to ANSI/ISO standard C or C++ language.

� The compiler may not detect all such constructs. In particular, the
-pedantic switch does not cause the compiler to issue errors when
ADI keyword extensions are used.

-pedantic-errors

The -pedantic-errors (ANSI standard errors) switch causes the compiler
to issue an error instead of a warning for cases described in the -pedantic
switch.

-pplist filename

The -pplist filename (preprocessor listing) directs the preprocessor to
output a listing to the named file. When more than one source file has
been preprocessed, the listing file contains information about the last file
processed. The generated file contains raw source lines, information on
transitions into and out of include files, and diagnostics generated by the
compiler.
1-42 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
Each listing line begins with a key character that identifies its type, such
as:

-proc processor

The -proc (target processor) switch specifies that the compiler should pro-
duce code suitable for the specified processor. The processor identifiers
directly supported in VisualDSP++ 3.1 are:

ADSP-BF531, ADSP-BF532, ADSP-BF533,
ADSP-BF535, ADSP-DM102, and AD6532

For example,

ccblkfn -proc ADSP-BF535 -o bin\p1.doj p1.asm

� If no target is specified with the -proc switch, the system uses the
ADSP-BF532 setting as a default.

If the processor identifier is unknown to the compiler, it attempts to read
required switches for code generation from the file <processor>.ini.
The assembler searches for the .ini file in the VisualDSP ++ System
folder. For custom processors, the compiler searches the section “proc” in

Character Meaning

N Normal line of source

X Expanded line of source

S Line of source skipped by #if or #ifdef

L Change in source position

R Diagnostic message (remark)

W Diagnostic message (warning)

E Diagnostic message (error)

C Diagnostic message (catastrophic error)
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-43
for Blackfin Processors

Compiler Command-Line Interface
the <processor>.ini for key 'architecture'. The custom processor
must be based on an architecture key that is one of the known processors.
For example, -proc Custom201 searches the Custom201.ini file.

When compiling with the -proc switch, the appropriate processor macro
and __ADSPBLACKFIN__ preprocessor macro are defined as 1. For example,
__ADSPBF531__ and __ADSPBLACKFIN__ are 1.

-R directory[{:|,}directory …]

The -R directory (add source directory) switch directs the compiler to
add the specified directory to the list of directories searched for source
files.

On Windows® platforms, multiple source directories are given as a
colon-, comma-, or semicolon-separated list. The compiler searches for
the source files in the order specified on the command line. The compiler
searches the specified directories before reverting to the current directory.
This switch is dependent on its position on the command line; that is, it
effects only source files that follow it.

� Source files whose file names begin with /, ./, or ../ (or Windows
equivalent) and contain drive specifiers (on Windows platforms)
are not affected by this option.

-R-

The -R- (disable source path) switch removes all directories from the stan-
dard search path for source files, effectively disabling this feature.

� This option is position-dependent on the command line; it only
affects files following it.
1-44 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
-reserve register[, register …]

The -reserve (reserve register) switch directs the compiler not to use the
specified registers. Only the m3 register can be reserved, for use with the
emulator.

-restrict

The -restrict (restriction) switch directs the compiler to recognize the
restrict keyword as a type qualifier for pointers and function parameter
arrays that decay to pointers. This is the default setting.

-S

The -S (stop after compilation) switch directs the compiler to stop compi-
lation before running the assembler. The compiler outputs an assembly
file with an .s extension.

� You can invoke this switch by selecting the Stop after: Compiler
check box in the VisualDSP++ Project Options dialog box, Com-
pile tab, General category.

-s

The -s (strip debug information) switch directs the compiler to remove
debug information (symbol table and other items) from the output execut-
able file during linking.

-sat32

The -sat32 (32-bit saturation) switch directs the compiler to saturate at
32 bits. This is the default setting.

-sat40

The -sat40 (40-bit saturation) switch directs the compiler to saturate at
40 bits, rather than at the default which saturates at 32 bits.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-45
for Blackfin Processors

Compiler Command-Line Interface
-save-temps

The -save-temps (save intermediate files) switch directs the compiler not
to discard intermediate files. The compiler places the intermediate [tem-
porary] output (*.i, *.is, *.s, *.doj) files in the current directory. See
Table 1-2 on page 1-8 for a list of intermediate files.

The location of the saved file is affected by the -path-output switch, if
provided. That switch sets the path for all “permanent” outputs that do
not otherwise have a path set, the object file included.

-show

The -show (display command line) switch directs the compiler to display
the command-line arguments passed to the driver, including expanded
option files and environment variables. This allows you to ensure that
command-line options have been successfully invoked by the driver.

-signed-char

The -signed-char (make char signed) switch directs the compiler to make
the default type for char signed. This is the default mode.

-syntax-only

The -syntax-only (just check syntax) switch directs the compiler to check
the source code for syntax errors, but not write any output.

-T filename

The -T filename (Linker Description File) switch directs the linker to use
the specified Linker Description File (.LDF) as control input for linking. If
-T is not specified, a default .LDF is selected based on the processor
variant.
1-46 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
-threads

The -threads (enable thread-safe build) switch specifies that the build and
link are thread-safe. The macro __ADI__THREADS is defined to one (1). It is
used for conditional compilation by the preprocessor and by default .LDF
files to link with thread-safe libraries.

� This switch is likely to be used only by applications involving the
VisualDSP++ Kernel (VDK).

-time

The -time (tell time) switch directs the compiler to display elapsed time as
part of the output information on each part of the compilation process.

-U macro

The -U (undefine macro) switch lets you undefine macros. If you specify a
macro name, it will be undefined. Note the compiler processes all -D
(define macro) switches on the command line before any -U (undefine
macro) switches.

� You can invoke this switch by selecting the Preprocessor undefines
field in the VisualDSP++ Project Options dialog box, Compile
tab, Preprocessor category.

-unsigned-char

The -unsigned-char (make char unsigned) switch directs the compiler to
make the default type for char unsigned.

-v

The -v (version and verbose) switch directs the compiler to display the
version and command-line information for all the compilation tools as
they process each file.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-47
for Blackfin Processors

Compiler Command-Line Interface
-verbose

The -verbose (display command line) switch directs the compiler to dis-
play command-line information for all the compilation tools as they
process each file.

-version

The -version (display version) switch directs the compiler to display its
version information.

-warn-protos

The -warn-protos (warn if incomplete prototype) switch directs the com-
piler to issue a warning when it calls a function for which an incomplete
function prototype has been supplied. This option has no effect in C++
mode.

-W[error|remark|suppress|warn] number[, number ...]

The -W {...} number (override error message) switch directs the compiler
to override the severity of the specified diagnostic messages (errors,
remarks, or warnings). The number argument specifies the message to
override.

At compilation time, the compiler produces a number for each specific
compiler diagnostic message. The {D} (discretionary) suffix after the diag-
nostic message number indicates that the diagnostic may have its severity
overridden. Each diagnostic message is identified by a number that is used
across all compiler software releases.

-Wdriver-limit number

The -Wdriver-limit (maximum process errors) switch lets you set a maxi-
mum number of driver errors (command-line, etc.) at which the driver
aborts.
1-48 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
-Werror-limit number

The -Werror-limit (maximum compiler errors) switch lets you set a max-
imum number of errors for the compiler before it aborts.

-Wremarks

The -Wremarks (enable diagnostic warnings) switch directs the compiler to
issue remarks, which are diagnostic messages that are even milder than
warnings.

� You can invoke this switch by selecting the Enable remarks check
box in the VisualDSP++ Project Options dialog box, Compile tab,
Warning selection.

-Wterse

The -Wterse (enable terse warnings) switch directs the compiler to issue
the briefest form of warnings. This also applies to errors and remarks.

-w

The -w (disable all warnings) switch directs the compiler not to issue
warnings.

� You can invoke this switch by selecting the Disable all warnings
and remarks check box in the VisualDSP++ Project Options dia-
log box, Compile tab, Warning selection.

-write-files

The -write-files (enable driver I/O redirection) switch directs the com-
piler driver to redirect the file name portions of its command line through
a temporary file. This technique helps to handle long file names, which
can make the compiler driver’s command line too long for some operating
systems.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-49
for Blackfin Processors

Compiler Command-Line Interface
-write-opts

The -write-opts (user options) switch directs the compiler to pass the
user options (but not the input filenames) to the main driver via a tempo-
rary file which can help if the resulting main driver command line is too
long.

-xml

The -xml switch directs the linker to generate the map file in the XML
format. Used with the -map switch.

-xref filename

The -xref filename (cross-reference list) switch directs the compiler to
write cross-reference listing information to the specified file. When more
than one source file has been compiled, the listing contains information
about the last file processed. For each reference to a symbol in the source
program, a line of the form

symbol-id name ref-code filename line-number column-number

is written to the named file. The symbol-id represents a unique decimal
number for the symbol, and ref-code is one of the following characters:

Character Meaning

D Definition

d Declaration

M Modification

A Address taken

U Used

C Changed (used and modified)

R Any other type of reference

E Error (unknown type of reference)
1-50 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
C++ Mode Compiler Switch Descriptions

The following switches apply only to C++ compiler.

-explicit

The -explicit (explicit specifier) switch directs the compiler to enable
support for the explicit specifier on constructor declarations. The com-
piler defines the __EXPLICIT preprocessor macro. This option is enabled
by default.

-instant{all|local|used}

The default behavior that the compiler uses to perform template instantia-
tion is to suppress the instantiation of any templates on the first
compilation and let the prelinker compiler utility decide which files need
to be recompiled to instantiate the required templates. This default behav-
ior may be modified by the use of the -instantused, -instantlocal and
-instantall switches.

• The -instantused (instantiate all used templates) switch causes the
compiler to instantiate any template entities that are seen to be
used when as part of performing the first compilation.

• The -instantlocal (instantiate used with internal linkage) switch
is similar to -instantused except that all templates are given inter-
nal linkage.

• The-instantall (instantiate all templates) switch directs the com-
piler to instantiates all template entities as part of the first
compilation. The instantiation of template entities is performed
whether they are used or not when this switch is used.

These switches will not conflict with normal use of the prelinker.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-51
for Blackfin Processors

Compiler Command-Line Interface
-namespace

The -namespace (namespace) switch directs the compiler to enable sup-
port for namespaces. This is the default mode.

-newforinit

The -newforinit (new for initialization) switch directs the compiler to
limit a scope of any declaration within a for statement to the block con-
tained within that for statement.

-newvec

The -newvec (new vector) switch directs the compiler to allow the over-
loading of the new[] and delete[] operators. The compiler also defines
the __ARRAY_OPERATORS macro when using this option or any another
option that enables overloading of the dynamic memory allocation opera-
tors. This is the default mode.

-no-demangle

The -no-demangle (disable demangler) switch directs the compiler to pre-
vent the driver from filtering linker errors through the demangler. The
demangler’s primary role is to convert the encoded name of a function
into a more understandable version of the name.

-no-explicit

The -no-explicit (disable explicit specifier) switch directs the compiler
to disable support for the explicit specifier on constructor declarations.
For more information, see “-explicit” on page 1-51.

-no-namespace

The -no-namespace (disable namespace) switch directs the compiler to
disable support for namespaces.
1-52 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
-no-newvec

The -no-newvec (disallow a new vector) switch directs the compiler to dis-
allow the overloading of the new[] and delete[] operators. For more
information, see “-newvec” on page 1-52.

-notstrict

The -notstrict (non-strict compilation) switch directs the compiler to
omit diagnostic messages (warnings and errors) for any constructs in a
C++ source file that do not conform to the ANSI standard for the C++
programming language.

-no-wchar

The -no-wchar (disable wide char type) switch directs the compiler to dis-
able the -wchar_t keyword.

-strict

The -strict (strict standard) switch directs the compiler to generate diag-
nostic error messages for any constructs of a source file that do not
conform to the ANSI standard for the C++ programming language. The
-strict switch defines the __STRICT_ANSI__ macro.

-strictwarn

The -strictwarn (warn if non-strict) switch directs the compiler to gener-
ate diagnostic warning messages for any constructs of a source file that do
not conform to the ANSI standard for the C++ programming language.
The -strictwarn switch defines the __STRICT_ANSI__ macro.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-53
for Blackfin Processors

Compiler Command-Line Interface
-tpautooff

The -tpautooff (disable automatic template instantiation) switch directs
the compiler to disable automatic instantiation of templates. It also pre-
vents implicit inclusion of source files as a method of finding definitions
of template entities to be instantiated.

-trdforinit

The -trdforinit (traditional initialization) switch directs the compiler to
limit a scope of any declaration within a for statement to the block con-
taining that for statement.

-typename

The -typename (type name) switch directs the compiler to recognize the
typename keyword and to define the __TYPENAME macro. This is the
default mode.

-wchar

The -wchar (enable wide char type) switch directs the compiler to enable
the wchar_t keyword.

Data Type Sizes
The sizes of intrinsic C/C++ data types are selected by Analog Devices so
that normal C/C++ programs execute with hardware-native data types
and, therefore, at high speed. Table 1-6 shows the sizes used by each of the
intrinsic C/C++ data types.

In the Blackfin processor architecture, the long long int, unsigned long
long int, and long double data types are not implemented (they will not
be redefined to other types). In general, floating data types should be
expected to run more slowly, relying largely on software-emulated
arithmetic.
1-54 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
Type double can pose a problem. The C language tends to default to dou-
ble for constants and floating-point calculations. Without some special
handling, many programs inadvertently use slow-speed emulated 64-bit
floating-point arithmetic, even when variables are declared consistently as
float. To avoid this problem and provide the best performance, the size
of double on Blackfin processors is 32 bits. This should be acceptable for
most DSP programming. However, it does not conform fully to the ANSI
C standard.

Standard include files automatically redefine the math library interfaces,
allowing functions such as sin to be directly called with the proper size
operands. Therefore,

float sinf (float); /* 32-bit */

double sin (double); /* 32-bit */

Table 1-6. Data Type Sizes for Blackfin Processors

Type Bit Size sizeof returns

int 32 bits signed 4

unsigned int 32 bits unsigned 4

long 32 bits signed 4

unsigned long 32 bits unsigned 4

char 8 bits signed 1

unsigned char 8 bits unsigned 1

short 16 bits signed 2

unsigned short 16 bits unsigned 2

pointer 32 bits 4

function pointer 32 bits 4

float 32 bits float 4

double 32 bits float 4
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-55
for Blackfin Processors

Compiler Command-Line Interface
For descriptions of these functions and their implementation, see Chapter
2, “C Run-Time Library Reference” on page 2-23.

Blackfin processors provide two different versions of the floating-point
emulation library, selectable at link time:

• The default floating-point emulation library is a high-speed library
which assumes its input values are valid numbers. Checking for
Not-a-Number cases is expensive and not normally necessary. As
well as being the default, this library may be explicitly requested by
specifying the -fast-fp switch (see on page 1-29) at link time.

• The alternative floating-point emulation library is a fully-IEEE
compliant library. Because it is more strictly conforming than the
default library, there is a small performance penalty when using
this library. The fully-compliant library is requested by specifying
the -ieee-fp switch (see on page 1-31) at link time.

Optimization Control
The compiler can operate at several levels of optimization. The following
list identifies the levels with least optimization listed first and most opti-
mization listed last.

• Debugging — The compiler produces debug information to ensure
that the object code matches the appropriate source code line. See
“-g” on page 1-30 for more information.

• Default — The compiler performs basic high-level optimization,
such as inlining functions that are explicitly marked for inlining.

• Procedural optimization — The compiler performs advanced,
aggressive optimization on each procedure in the file being com-
piled. If debugging is also requested, the optimization is given
priority so the debugging functionality may be limited. See
“-O[0|1]” on page 1-39 for more information.
1-56 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
• Interprocedural optimization — The compiler performs advanced,
aggressive optimization over the whole program, in addition to the
per-file optimizations in procedural optimization. See “-ipa” on
page 1-32 for more information.

The ccblkfn compiler offers several switches (and VisualDSP++ options)
to control the level and type of optimizations that are applied to C and
C++ source.

Interprocedural analysis (see “Interprocedural Analysis” on page 1-59)
allows the compiler to see all of the source files that are used and to use
that information to enable the other optimizations to be exploited as fully
as possible.

When no optimization switches are specified, the compiler effects only
basic high-level optimizations, such as inlining functions, which have been
explicitly marked for inlining. When -g is specified, all inlining is sup-
pressed to provide comprehensive debugging information. When -inline
is specified with -g, the explicitly-specified inlining is provided, reducing
the amount of source line debug information that is available. Therefore,
using -g by itself effectively disables most optimizations.

Normally, a program is optimized to process the data as quickly as possi-
ble, but in some circumstances, the program speed is less important than
reducing the size of the generated code. When the reduced code size is
more important, use the -Os switch to direct the compiler to perform only
standard optimizations. (See “-O[0|1]” on page 1-39 for more
information.)

The -O switch requests the compiler to affect all generally safe optimiza-
tions. It also requests the compiler to generate the fastest possible
executing code while conforming to standard language interpretations and
a conservative view of any possible interactions between variables. The
interprocedural analysis enables the compiler to be more aggressive in
optimizing the program since it has more information of the overall struc-
ture of the program and the data being manipulated by the program.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-57
for Blackfin Processors

Compiler Command-Line Interface
Several options exist that notify the compiler about certain assumptions
how that data may be being processed for better code optimization. If the
assumptions are not true, then the program’s behavior is undefined. These
options are:

• -Ofp — Tells the compiler to offset the frame pointer if doing so
allows more 16-bit instructions to be used. Offsetting the frame
pointer means the function does not conform to the Application
Binary Interface (ABI), but allows the compiler to produce smaller
code, which, in turn, allows for more multi-issue instructions.
Since the ABI is affected, the debugger would not be able to inter-
pret the resulting frame structure; therefore, this option is not
allowed in conjunction with -g. See “-Ofp” on page 1-39 for more
information.

• -Ov num — Tells the compiler to produce code that is optimized
for speed versus size. The 'num' should be an integer between 0
(purely size) and 100 (purely speed)

• -Os — Tells the compiler to produce code that is optimized for
size. This is achieved by performing all optimizations except those
that increase code size.

The optimizer attempts to vectorize loops when it is safe to do so and uses
information from the Interprocedural Analyzer to identify more opportu-
nities to do so. In addition, there may be other loops that you know are
safe candidates for the vectorizer; you can use pragmas to inform the opti-
mizer of such loops (see “Loop Optimization Pragmas” on page 1-103).

Inlining Control

By default, the compiler inlines class members and functions explicitly
marked to be inlined. When the -no-inline switch is specified (see
on page 1-32), any explicit requests for inlining are ignored.
1-58 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
Interprocedural Analysis

The compiler has an optimization capability called Interprocedural Analysis
(IPA) that allows the compiler to optimize across translation units instead
of within individual translation units. This capability allows the compiler
to see all of the source files used in a final link at compilation time and to
use that information while optimizing.

Interprocedural analysis is enabled by selecting the Interprocedural analy-
sis option on the Compiler property page (accessed via the VisualDSP++
Project Options dialog box), or by specifying the -ipa command-line
switch (see on page 1-32).

The -ipa switch automatically enables the -O switch to turn on optimiza-
tion. However, all object files supplied in the final link must have been
compiled with the -ipa switch; otherwise, undefined behavior may result.

Use of the -ipa switch causes additional files to be generated along with
the object file produced by the compiler. These files have .ipa and .opa
filename extensions and should not be deleted manually unless the associ-
ated object file is also deleted.

All of the -ipa optimizations are invoked after the initial link; when a spe-
cial program has called, the prelinker reinvokes the compiler to perform
the new optimizations.

Because a file may be recompiled by the prelinker, you cannot use the -S
option to see the final optimized assembler file when -ipa is enabled.
Instead, you must use the -save-temps switch, so that the full com-
pile/link cycle can be performed first.

Interaction with Libraries

When IPA is enabled, the compiler examines all the source files to build
up usage information about all of the function and data items. The com-
piler uses the information to make additional optimizations across all of
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-59
for Blackfin Processors

Compiler Command-Line Interface
the source files. One of these optimizations removes functions that are
never called. This optimization can significantly reduce the overall size of
the final executable.

Because IPA operates only during the final link, the -ipa switch has no
benefit when initially compiling source files to object format for inclusion
in a library. Although IPA will generate usage information for potential
additional optimizations at the final link stage, neither the usage informa-
tion nor the module’s source file are available when the linker includes a
module from a library.

Each library module is compiled to the normal -O optimization level, but
the prelinker cannot access the previously generated additional usage
information for an object in a library. Therefore, IPA cannot exploit the
additional information associated with a library module.

If a library module has to make calls to a function in a user module in the
program, IPA must be informed that these calls may occur. IPA must be
informed of these calls because IPA examines all the visible calls to the
function and determines how best to optimize it based on that informa-
tion received. However, IPA cannot “see” the calls to the function from
the library because the library code has no associated usage information to
show that it uses the function.

A retain_name pragma tells IPA that there are references it cannot see, and
that it should not remove the function or variable definition that follows.
See “Pragmas” on page 1-97 for more details.

IPA assumes it can see all calls to a function and uses this knowledge (of
the parameters being passed to a function) to effectively tailor the code
generated for a function.

� If there are calls to a function from an object module in a library,
IPA does not have access to the information for that invocation of
the function and this may cause it to incorrectly optimize the gen-
erated code.
1-60 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
C/C++ Compiler Language Extensions
The compiler supports extensions to the ANSI/ISO standard for the C
and C++ languages. These extensions add support for DSP hardware and
permit some C++ programming features when compiling in C mode. The
extensions are also available when compiling in C++ mode.

This section provides an overview of the extensions, brief descriptions,
and pointers to more information on each extension.

This section contains:

• “Inline Function Support Keyword (inline)” on page 1-63

• “Inline Assembly Language Support Keyword (asm)” on page 1-64

• “Placement Support Keyword (section)” on page 1-77

• “Boolean Type Support Keywords (bool, true, false)” on page 1-78

• “Pointer Class Support Keyword (restrict)” on page 1-78

• “Non-Constant Aggregate Initializer Support” on page 1-79

• “Indexed Initializer Support” on page 1-80

• “Preprocessor Generated Warnings” on page 1-81

• “Variable-Length Arrays” on page 1-82

• “C++ Style Comments” on page 1-82

• “Built-In Functions” on page 1-83

• “Pragmas” on page 1-97

The additional keywords that are part of the C/C++ extensions do not
conflict with ANSI C/C++ keywords. The formal definitions of these
extension keywords are prefixed with a leading double underscore (__).
Unless the -no-extra-keywords command-line switch is used, the com-
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-61
for Blackfin Processors

C/C++ Compiler Language Extensions
piler defines the shorter form of the keyword extension that omits the
leading underscores. For more information, see brief descriptions of each
switch beginning on page 1-23.

This section describes the shorter forms of the keyword extensions. In
most cases, you can use either form in your code. For example, all refer-
ences to the inline keyword in this text appear without the leading
double underscores, but you can interchange inline and __inline in your
code.

You might exclusively use the longer form (such as __inline) if you are
porting a program that uses the extra ADI keywords as identifiers. For
example, if a program declares local variables, such as asm or inline, use
the -no-extra-keywords switch. If you need to declare a function as
inline, you can use __inline.

Table 1-7 and Table 1-8 provide descriptions of each extension and direct
you to sections that describe each extension in more detail.

Table 1-7. Keyword Extensions

Keyword Extensions Description

inline Directs the compiler to integrate the function code into the code
of its callers. For more information, see “Inline Function Support
Keyword (inline)” on page 1-63.

asm() Places Blackfin core assembly language commands directly in your
C/C++ program. For more information, see “Inline Assembly
Language Support Keyword (asm)” on page 1-64.

section("string") Specifies the section in which an object or function is placed. For
more information, see “Placement Support Keyword (section)” on
page 1-77.

bool, true, false Specifies a Boolean type. For more information, see “Boolean
Type Support Keywords (bool, true, false)” on page 1-78.

restrict Specifies restricted pointer features. For more information, see
“Pointer Class Support Keyword (restrict)” on page 1-78.
1-62 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
Inline Function Support Keyword (inline)
The inline keyword directs the compiler to integrate the code for the
function you declare as inline into the code of its callers. Inline is a stan-
dard feature of C++; the ccblkfn compiler provides it as a C extension.

This keyword eliminates the function call overhead and increases the
speed of your program’s execution. Argument values that are constant and
that have known values may permit simplifications at compile time so that
not all of the inline function’s code needs to be included. The following
example shows a function definition that uses the inline keyword.

inline int max3 (int a, int b int c) {

return max (a, max(b, c));

}

Table 1-8. Operational Extensions

Operational Extensions Description

Non-constant initializers Lets you use non-constants as elements of aggregate initializers for
automatic variables. For more information, see “Non-Constant
Aggregate Initializer Support” on page 1-79.

Indexed
initializers

Lets you specify elements of an aggregate initializer in an arbitrary
order. For more information, see “Indexed Initializer Support” on
page 1-80.

Variable length arrays Lets you create local arrays with a variable size. For more informa-
tion, see “Variable-Length Arrays” on page 1-82.

Preprocessor generated
warnings

Lets you generate warning messages from the preprocessor. For
more information, see “Preprocessor Generated Warnings” on
page 1-81.

C++ style comments Allows for “//” C++ style comments in C programs. For more
information, see “C++ Style Comments” on page 1-82.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-63
for Blackfin Processors

C/C++ Compiler Language Extensions
A function declared inline must be defined (its body must be included)
in every file in which the function is used. You normally do this by placing
the inline definition in a header file. Usually it will also be declared
static.

In some cases, the compiler does not output object code for the function;
for example, when the address is not needed for an inline function which
is called from within the defining program. However, recursive calls and
functions whose addresses are explicitly referred to by the program are
compiled to assembly code.

� The -no-inline and -traditional switches disable function inlin-
ing. For more information, see brief descriptions of each switch,
beginning on page 1-23.

Inline Assembly Language Support Keyword (asm)
The compiler’s asm() construct allows you to code Blackfin assembly lan-
guage instructions within a C/C++ function and to pass declarations and
directives through to the assembler. Use the asm() construct to express
assembly language statements that cannot be expressed easily or efficiently
with C or C++ constructs.

The asm() keyword allows you to code complete assembly language
instructions or specify the operands of the instruction using C expressions.
When specifying operands with a C/C++ expression, you do not need to
know which registers or memory locations contain C/C++ variables.

The compiler does not analyze code defined with the asm() construct�it
passes this code directly to the assembler. The compiler does perform sub-
stitutions for operands of the formats %0 through %9. However, it passes
everything else to the assembler without reading or analyzing it.

� The asm() constructs are executable statements, and as such, may
not appear before declarations within C/C++ functions.
1-64 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
� asm constructs may also be used at global scope, outside function
declarations. Such asm constructs are used to pass declarations and
directives directly to the assembler. They are not executable con-
structs, and may not have any inputs or outputs, or affect any
registers.

A simplified asm() construct without operands takes the form of

asm("R0=0;");

The complete assembly language instruction, enclosed in double quotes, is
the argument to asm(). Using asm() constructs with operands requires
some additional syntax. Strictly speaking, the above example needs elabo-
ration to notify the compiler that the register R0 is overwritten. For more
information, see “Assembly Construct Operand Description” on
page 1-69.

The construct syntax is described in:

• “Assembly Construct Template” on page 1-65

• “Assembly Construct Operand Description” on page 1-69

• “Assembly Constructs with Multiple Instructions” on page 1-75

• “Assembly Construct Reordering and Optimization” on page 1-75

• “Assembly Constructs with Input and Output Operands” on
page 1-76

Assembly Construct Template

Use asm() constructs to specify the operands of assembly instruction using
C or C++ expressions. You do not need to know which registers or mem-
ory locations contain C or C++ variables.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-65
for Blackfin Processors

C/C++ Compiler Language Extensions
asm() Constructs Syntax

Use the following general syntax for your asm() constructs.

asm(

template

[:[constraint(output operand)[,constraint(output operand)…]]

[:[constraint(input operand)[,constraint(input operand)…]]

[:clobber]]]

);

The syntax elements are defined as follows:

template

The template is a string containing the assembly instruction(s) with
%number indicating where the compiler should substitute the oper-
ands. Operands are numbered in order of occurence from left to
right, starting at 0. Separate multiple instructions with a semico-
lon; then enclose the entire string within double quotes.

For more information on templates containing multiple instruc-
tions, see “Assembly Constructs with Multiple Instructions” on
page 1-75.

constraint

The constraint is a string that directs the compiler to use certain
groups of registers for the input and output operands. Enclose the
constraint string within double quotes. For more information on
operand constraints, see “Assembly Construct Operand Descrip-
tion” on page 1-69.

output operand

The output operand is the name of a C or C++ variable that
receives output from a corresponding operand in the assembly
instruction.
1-66 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
input operand

The input operand is a C/C++ expression that provides an input to
a corresponding operand in the assembly instruction.

clobber

The clobber notifies the compiler that a list of registers are over-
written by the assembly instructions. Use lowercase characters to
name clobbered registers. Enclose each name within double quotes,
and separate each quoted register name with a comma. The input
operands are guaranteed not to use any of the clobbered registers,
so you can read and write the clobbered registers as often as you
like. See Table 1-10 on page 1-74.

asm() Construct Syntax Rules

These rules apply to assembly construct template syntax.

• The template is the only mandatory argument to asm(). All other
arguments are optional.

• An operand constraint string followed by a C/C++ expression in
parentheses describes each operand. For output operands, it must
be possible to assign to the expression; that is, the expression must
be legal on the left side of an assignment statement.

• A colon separates:

• The template from the first output operand
• The last output operand from the first input operand
• The last input operand from the clobbered registers

• Add a space between adjacent colon field delimiters in order to
avoid a clash with the “::” reserved global resolution operator.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-67
for Blackfin Processors

C/C++ Compiler Language Extensions
� If there are no output operands and there are input operands,
you must use two consecutive colons to separate the assembly
template from the input operands. These two colons must be
separated by a space; otherwise, the two colons will be treated
as a C++ namespace identifier.

• A comma separates operands and registers within arguments.

• The number of operands in arguments must match the number of
operands in your template.

• The maximum permissible number of operands is ten (%0, %1, %2,
%3, %4, %5, %6, %7, %8, and %9).

� The compiler cannot check whether the operands have data
types that are reasonable for the instruction being executed.
The compiler does not parse the assembler instruction tem-
plate, does not interpret the template, and does not verify
whether the template contains valid input for the assembler.

asm() Construct Template Example

The following example shows how to apply the asm() construct template
to the Blackfin assembly language assignment instruction.

{
int result, x;
…
asm (

"%0=%1;" :
"=d" (result) :
"d" (x)
);

}

1-68 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
In the previous example, note that:

• The template is "%0=%1;". The %0 is replaced with operand zero
(result); the first operand, %1, is replaced with operand one (x).

• The output operand is the C/C++ variable result. The letter d is
the operand constraint for the variable. This constrains the output
to a data register R[0�7]. The compiler generates code to copy the
output from the r register to the variable result, if necessary. The
= in =d indicates that the operand is an output.

• The input operand is the C/C++ variable x. The letter d in the
operand constraint position for this variable constrains x to a data
register R[0�7]. If x is stored in a different kind of register or in
memory, the compiler generates code to copy the value into an r
register before the asm() construct uses them.

Assembly Construct Operand Description

The second and third arguments to the asm() construct describe the oper-
ands in the assembly language template. Several pieces of information
must be conveyed for the compiler to know how to assign registers to
operands. This information is conveyed with an operand constraint. The
compiler needs to know what kind of registers the assembly instructions
can operate on, so it can allocate the correct register type.

You convey this information with a letter in the operand constraint string
that describes the class of allowable registers.

Table 1-9 on page 1-73 describes the correspondence between constraint
letters and register classes.

� The use of any letter not listed in Table 1-9 results in unspecified
behavior. The compiler does not check the validity of the code by
using the constraint letter.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-69
for Blackfin Processors

C/C++ Compiler Language Extensions
To assign registers to the operands, the compiler must also be informed of
which operands in an assembly language instruction are inputs, which are
outputs, and which outputs may not overlap inputs. The compiler is told
this in three ways.

• The output operand list appears as the first argument after the
assembly language template. The list is separated from the assembly
language template with a colon. The input operands are separated
from the output operands with a colon and they always follow the
output operands.

• The operand constraints describe which registers are modified by
an assembly language instruction. The “=” in =constraint indi-
cates that the operand is an output; all output operand constraints
must use =. Operands that are input-outputs must use '+' (see
below).

• The compiler may allocate an output operand in the same register
as an unrelated input operand, unless the output or input operand
has the &= constraint modifier. This situation can occur because the
compiler assumes the inputs are consumed before the outputs are
produced.

This assumption may be false if the assembler code actually consists
of more than one instruction. In such a case, use &= for each output
operand that must not overlap an input or supply an & for the
input operand.

Operand constraints indicate what kind of operand they describe by
means of preceding symbols. The possible preceding symbols are: no sym-
bol, =, +, &, ?, and #.

• (no symbol)

The operand is an input. It must appear as part of the third
argument to the asm() construct. The allocated register will
be loaded with the value of the C/C++ expression before the
1-70 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
asm() template is executed. Its C/C++ expression will not be
modified by the asm(), and its value may be a constant or
literal. Example: d

• = symbol

The operand is an output. It must appear as part of the sec-
ond argument to the asm() construct. Once the asm()
template has been executed, the value in the allocated regis-
ter is stored into the location indicated by its C/C++
expression; therefore, the expression must be one that would
be valid as the left-hand side of an assignment.
Example: =d

• + symbol

The operand is both an input and an output. It must appear
as part of the second argument to the asm() construct. The
allocated register is loaded with the C/C++ expression value,
the asm() template is executed, and then the allocated regis-
ter’s new value is stored back into the C/C++ expression.
Therefore, as with pure outputs, the C/C++ expression must
be one that is valid on the left-hand side of an assignment.
Example: +d

• ? symbol

The operand is temporary. It must appear as part of the
third argument to the asm() construct. A register is allo-
cated as working space for the duration of the asm()
template execution. The register’s initial value is undefined,
and the register’s final value is discarded. The corresponding
C/C++ expression is not loaded into the register, but must
be present. This expression is normally specified using a lit-
eral zero. Example: ?d
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-71
for Blackfin Processors

C/C++ Compiler Language Extensions
• & symbol

This operand constraint may be applied to inputs and out-
puts. It indicates that the register allocated to the input (or
output) may not be one of the registers that are allocated to
the outputs (or inputs). This operand constraint is used
when one or more output registers are set while one or more
inputs are still to be referenced. (This situation sometimes
occurs if the asm() template contains more than one
instruction.)
Example: &d

• # symbol

The operand is an input, but the register's value is clobbered
by the asm() template execution. The compiler may make
no assumptions about the register's final value. The operand
must appear as part of the second argument to the asm()
construct. Example: "#d"

Table 1-9 on page 1-73 lists the registers that may be allocated for each
register constraint letter. The use of any letter not listed in the “Con-
straint” column of this table results in unspecified behavior. The compiler
does not check the validity of the code by using the constraint letter.
Table 1-10 on page 1-74 lists the registers that may be named as part of
the clobber list.

It is also possible to claim registers directly, instead of requesting a register
from a certain class using the constraint letters. You can claim the registers
directly by simply naming the register in the location where the class letter
would be. The register names are the same as those used to specify the
clobber list; see Table 1-10.

For example,

asm("%0 += %1 * %2;"
:"+a0"(sum) /* output */
1-72 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
:"H"(x),"H"(y) /* input */
);

would load sum into A0, and load x and y into two DREG halves, execute the
operation, and then store the new total from A0 back into sum.

� Naming the registers in this way allows the asm() to specify several
registers that must be related, such as the DAG registers for a circular
buffer.

Table 1-9. asm() Operand Constraints

Constraint Register Type Registers

a General addressing registers P0 - P5

p General addressing registers P0 - P5

i DAG addressing registers I0 - I3

b DAG addressing registers I0 - I3

d General data registers R0 — R7

r General data registers R0 — R7

D General data registers R0 — R7

A Accumulator registers A0, A1

e Accumulator registers A0, A1

f Modifier register M0 - M3

E Even general data registers R0,R2,R4,R6

O Odd general data registers R1,R3,R5,R7

h High halves of the general data registers R0.H,R1.H...R7.H

l Low halves of the general data registers R0.L,R1.L...R7.L

H Low or high halves of the general data registers R0.L,R1.L...R7.L

L Loop counter registers LC0,LC1

constraint Indicates the constraint is an input operand
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-73
for Blackfin Processors

C/C++ Compiler Language Extensions
=constraint Indicates the constraint is applied to an output operand

&constraint Indicates the constraint is applied to an input operand that may not be
overlapped with an output operand

=&constraint Indicates the constraint is applied to an output operand that may not over-
lap an input operand

?constraint Indicates the constraint is temporary

+constraint Indicates the constraint is both an input and output operand

#constraint Indicates the constraint is an input operand whose value will be changed

Table 1-10. Register Names for asm() Constructs

Clobber String Meaning

"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", General data register

"p0", "p1", "p2", "p3", "p4", "p5", General addressing register

"i0", "i1", "i2", "i3", DAG addressing register

"m0", "m1", "m2", "m3", Modifier register

"b0", "b1", "b2", "b3", Base register

"l0", "l1", "l2", "l3", Length register

"astat", ALU status register

"seqstat", Sequencer status register

"rets", Subroutine address register

"cc", Condition code register

"a0", "a1", Accumulator result register

"lc0", "lc1", Loop counter register

"memory" Unspecified memory location(s)

Table 1-9. asm() Operand Constraints (Cont’d)

Constraint Register Type Registers
1-74 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
Assembly Constructs with Multiple Instructions

There can be many assembly instructions in one template. If the asm()
string is longer than one line, you may continue it on the next line by
placing a backslash (\) at the end of the line.

This is an example of multiple instructions in a template:

/* (pseudo code) r7 = x; r6 = y; result = x + y; */
asm ("r7=%1; \
r6=%2; \
%0=r6+r7;"
: "=d" (result) /* output */
: "d" (from), "d" (to) /* input */
: "r7", "r6"); /* clobbers */

Assembly Construct Reordering and Optimization

For the purpose of optimization, the compiler assumes that the side effects
of an asm() construct are limited to changes in the output operands or the
items specified using the clobber specifiers. This does not mean that you
cannot use instructions with side effects, but you must be careful to notify
the compiler that you are using them by using the clobber specifiers (see
Table 1-10 on page 1-74).

The compiler may eliminate supplied assembly instructions if the output
operands are not used, move them out of loops, or replace two with one if
they constitute a common subexpression. Also, if the instruction has a side
effect on a variable that otherwise appears not to change, the old value of
the variable may be reused later if it happens to be found in a register.

Use the keyword volatile to prevent an asm() instruction from being
moved, combined, or deleted. For example,

#define set_priority(x) \
asm volatile ("STI %0;": /* no outs */ : "d" (x))
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-75
for Blackfin Processors

C/C++ Compiler Language Extensions
A sequence of asm volatile() constructs is not guaranteed to be com-
pletely consecutive; it may be moved across jump instructions or in other
ways that are not significant to the compiler. To force the compiler to
keep the output consecutive, use one asm volatile() construct only, or
use the output of the asm() construct in a C statement.

Assembly Constructs with Input and Output Operands

The output operands must be write only; the compiler assumes that the
values in these operands do not need to be preserved. When the assembler
instruction has an operand that is read from and written to, you must log-
ically split its function into two separate operands: one input operand and
one write-only output operand. The connection between the two oper-
ands is expressed by constraints in the same location when the instruction
executes.

When a register’s value is to be both an input and an output, and the final
value is to be stored to the same location from which the original value
was loaded, the register can be marked as an input-output, using the “+”
constraint symbol, as described earlier.

If the final value is to be saved into a different location, then both an
input and an output must be specified, and the input must be tied to the
output by using its position number as the constraint. For example,

asm("%0 += 4;"

:"=p" (newptr) // an output, given a preg,

// stored into newptr.

:"0" (oldptr)); // an input, given same reg as %0,

// initialized from oldptr
1-76 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
Assembly Constructs and Flow Control

It is inadvisable to place flow control operations within an asm() construct
that “leaves” the asm() construct, such as calling a procedure or perform-
ing a jump, to another piece of code that is not within the asm() construct
itself. Such operations are invisible to the compiler and may violate
assumptions made by the compiler.

For example, the compiler is careful to adhere to the calling conventions
for preserved registers when making a procedure call. If an asm() construct
calls a procedure, the asm() construct must also ensure that all conven-
tions are obeyed, or the called procedure may corrupt the state used by the
function containing the asm() construct.

Placement Support Keyword (section)
The section keyword directs the compiler to place an object or function
in an assembly .SECTION of the compiler’s intermediate output file. You
name the assembly .SECTION with the section()’s string literal parameter.
If you do not specify a section() for an object or function declaration,
the compiler uses a default section. The .LDF file supplied to the linker
must also be updated to support the additional named section. For infor-
mation on the default sections, see “Using Memory Sections” on
page 1-136.

Applying section() is meaningful only when the data item is something
that the compiler can place in the named section. Apply section() only to
top-level, named objects that have static duration; for example, are explic-
itly static, or are given as external-object definitions. The example below
shows the declaration of a static variable that is placed in the section called
bingo.

static section("bingo") int x;
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-77
for Blackfin Processors

C/C++ Compiler Language Extensions
Boolean Type Support Keywords (bool, true, false)
The bool, true, and false keywords are extensions that support the C++
boolean type. The bool keyword is a unique signed integral type, just as
the wchar_t is a unique unsigned type. There are two built-in constants of
this type: true and false. When converting a numeric or pointer value to
bool, a zero value becomes false, and a non-zero value becomes true. A
bool value may be converted to int by promotion, taking true to one and
false to zero. A numeric or pointer value is automatically converted to
bool when needed.

These keyword extensions behave as if the declaration that follows had
appeared at the beginning of the file, except that assigning a non-zero
integer to a bool type always causes it to take on the value true.

typedef enum { false, true } bool;

Pointer Class Support Keyword (restrict)
The restrict keyword is an extension that supports restricted pointer fea-
tures. The use of restrict is limited to the declaration of a pointer and
specifies that the pointer provides exclusive initial access to the object to
which it points. More simply, restrict is a way to identify that a pointer
does not create an alias. Also, two different restricted pointers cannot des-
ignate the same object and therefore are not aliases.

The compiler is free to use the information about restricted pointers and
aliasing to better optimize C or C++ code that uses pointers. The restrict
keyword is most useful when applied to function parameters about which
the compiler would otherwise have little information.

void fir(short *in, short *c, short *restrict out, int n)
1-78 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
The behavior of a program is undefined if it contains an assignment
between two restricted pointers. Exceptions are:

• A function with a restricted pointer parameter may be called with
an argument that is a restricted pointer.

• A function may return the value of a restricted pointer that is local
to the function, and the return value may then be assigned to
another restricted pointer.

If your program uses a restricted pointer in a way that it does not uniquely
refer to storage, the behavior of the program is undefined.

Non-Constant Aggregate Initializer Support
The compiler includes extended support for aggregate initializers. The
compiler does not require the elements of an aggregate initializer for an
automatic variable to be constant expressions. The following example
shows an initializer with elements that vary at run time.

void initializer (float a, float b)
{
float the_array[2] = { a-b, a+b };
}

void foo (float f, float g)
{
float beat_freqs[2] = { f-g, f+g };
}

All automatic structures can be initialized by arbitrary expressions involv-
ing literals, previously declared variables and functions.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-79
for Blackfin Processors

C/C++ Compiler Language Extensions
Indexed Initializer Support
ANSI/ISO Standard C/C++ requires that the elements of an initializer
appear in a fixed order—the same order as the elements in the array or
structure being initialized. The ccblkfn compiler, by comparison, sup-
ports labeling elements for array initializers. This feature lets you specify
the array or structure elements in any order by specifying the array indices
or structure field names to which they apply.

For an array initializer, the syntax [INDEX] appearing before an initializer
element value specifies the index to be initialized by that value. Subse-
quent initializer elements are then applied to sequentially following
elements of the array, unless another use of the [INDEX] syntax appears.
The index values must be constant expressions, even if the array being ini-
tialized is automatic.

The following example shows equivalent array initializers�the first in
standard C and C++ and the next using the extension. Note that the
[index] precedes the value being assigned to that element.

/* Example 1 C Array Initializer */
/* Standard C array initializer */

int a[6] = { 0, 0, 15, 0, 29, 0 };

/* equivalent ccblkfn C array initializer */

int a[6] = { [4] 29, [2] 15 };

You can combine this technique of naming elements with standard C/C++
initialization of successive elements. The Standard C/C++ and compiler
instructions below are equivalent. Note that any unlabeled initial value is
assigned to the next consecutive element of the structure or array.

/* Example 2 Standard C & ccblkfn /C++ C Array Initializer */
/* Standard C array initializer */

int a[6] = { 0, v1, v2, 0, v4, 0 };
1-80 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
/* equivalent ccblkfn C array initializer that uses indexed
 elements */

 int a[6] = { [1] v1, v2, [4] v4 };

The following example shows how to label the array initializer elements
when the indices are characters or an enum type.

/* Example 3 C Array Initializer With enum Type Indices */
/* ccblkfn C array initializer */

int whitespace[256] =
{
[' '] 1, ['\t'] 1, ['\v'] 1, ['\f'] 1, ['\n'] 1, ['\r'] 1
};

In a structure initializer, specify the name of the field to initialize with
fieldname: before the element value. The Standard C/C++ and compiler’s
C struct initializers in the example below are equivalent.

/* Example 4 Standard C & ccblkfn C struct Initializer */
/* Standard C struct Initializer */

struct point {int x, y;};
struct point p = {xvalue, yvalue};

/* Equivalent ccblkfn C struct Initializer With Labeled

Elements */

struct point {int x, y;};
struct point p = {y: yvalue, x: xvalue};

Preprocessor Generated Warnings
The preprocessor directive #warning causes the preprocessor to generate a
warning and continue preprocessing. The text on the remainder of the line
that follows #warning is used as the warning message. For example,

#ifndef __ADSPBLACKFIN__
#warning This program is written for Blackfin processors
#endif
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-81
for Blackfin Processors

C/C++ Compiler Language Extensions
Variable-Length Arrays
The ccblkfn compiler allows variable-length arrays to be created on the
stack when a function is invoked. Standard C and C++ requires the size of
an array to be known at compile time. The following example shows a
function that has an array whose size is determined by the value of a
parameter passed into the function.

void var_array (int nelms, int *ival)
{
int temp[nelms];
int i;

for (i=0;i<nelms; i++)

temp[i] = ival[i]*2;
}

C++ Style Comments
The compiler accepts C++ style comments, beginning with // and ending
at the end of the line, in C programs. This is essentially compatible with
standard C, except for the following case.

a = b

//* highly unusual */ c

:

which a standard C compiler processes as:

a = b/c;

and a C++ compiler and ccblkfn process as:

a = b;
1-82 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
Built-In Functions
The compiler supports intrinsic functions that enable efficient use of
hardware resources.

The compiler supports:

• “Fractional Value Builtins in C”

• “Fractional Literal Values in C”

• “Complex Fractional Builtins in C”

• “Complex Operations in C++”

• “Viterbi History and Decoding Functions” on page 1-91

• “Circular Buffer Built-In Functions” on page 1-93

• “System Built-In Functions” on page 1-95

Knowledge of these functions is built into the ccblkfn compiler. Your
program uses them via normal function call syntax. The compiler notices
the invocation and generates one or more machine instructions, just as it
does for normal operators, such as + and *.

Built-in functions have names which begin with __builtin_. Note that
identifiers beginning with double underlines (__) are reserved by the C
standard, so these names will not conflict with user program identifiers.
The header files also define more readable names for the built-in functions
without the __builtin prefix. These additional names are disabled if the
-no-builtin option is used.

These functions are specific to individual architectures and this section
lists the built-in functions supported at this time on Blackfin processors.
Various system header files provide you with definitions and access to the
intrinsics as described below.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-83
for Blackfin Processors

C/C++ Compiler Language Extensions
Fractional Value Builtins in C

The built-in functions provide access to the fractional arithmetic and the
parallel 16-bit operations supported by the Blackfin processor instruc-
tions. Various C types are defined to represent these classes of data.

Fractional types have a representation similar to integer types, except that
the binary point is at the left end, immediately following the sign bit. See
“Single Fractional Values” for more information.

Single Fractional Values

The fract16 type represents a single 16-bit signed fractional value, while
the fract32 type represents a 32-bit signed fractional value. Both types
have the same range, [-1.0, +1.0). However, fract32 has twice the
precision.

The fract.h header file provides access to the definitions for each of the
built-in functions that support single fractional values. These functions
have names with suffixes _fr1x16 for single fract16 and _fr1x32 for
single fract32.

The following functions are available:

 fract16 add_fr1x16(fract16, fract16);
 fract16 sub_fr1x16(fract16, fract16);
 fract16 mult_fr1x16(fract16, fract16);
 fract16 multr_fr1x16(fract16, fract16);
 fract32 mult_fr1x32(fract16, fract16);
 fract16 abs_fr1x16(fract16);
 fract16 min_fr1x16(fract16, fract16);

Table 1-11. Fractional Value C Types

C type Usage

fract16 Single 16-bit signed fractional value

fract32 Single 32-bit signed fractional value
1-84 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
 fract16 max_fr1x16(fract16, fract16);
 fract16 negate_fr1x16(fract16);
 fract16 shl_fr1x16(fract16, int);
 fract16 shr_fr1x16(fract16, int);
 fract32 add_fr1x32(fract32, fract32);
 fract32 sub_fr1x32(fract32, fract32);
 fract32 mult_fr1x32x32(fract32, fract32)
 fract32 abs_fr1x32(fract32);
 fract32 min_fr1x32(fract32, fract32);
 fract32 max_fr1x32(fract32, fract32);
 fract32 negate_fr1x32(fract32);
 fract32 shl_fr1x32(fract32, int);
 fract32 shr_fr1x32(fract32, int);
 fract16 sat_fr1x32(fract32);
 fract16 round_fr1x16(fract32);
 int norm_fr1x32(fract32);
 int norm_fr1x16(fract16);

The fractional arithmetic is saturating. For convenience, if fract.h is
included with ETSI_SOURCE defined, the macros listed below will also be
defined, mapping from the European Telecommunications Standards
Institute's fract functions onto the compiler built-ins.

add()
sub()
abs_s()
shl()
shr()
mult()
mult_r()
negate()
round()
L_add()
L_sub()
L_abs()
L_negate()
L_shl()

L_shr()
L_mult()
L_mac()
L_msu()
saturate()
extract_h()
extract_l()
L_deposit_l()
L_deposit_h()
div_s()
norm_s()
norm_l()
L_Extract()
L_Comp()
Mpy_32()
Mpy_32_16()
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-85
for Blackfin Processors

C/C++ Compiler Language Extensions
When optimizing programs that use fract16 operations, the compiler
automatically detects cases where parallel operations can be performed and
issues the appropriate instructions. The L_mac() and L_msu() functions
are implemented as macros that invoke multiplication and addition
built-ins; the compiler converts these built-ins to MAC operations when
appropriate.

The following example demonstrates how to use the fractional built-in
functions in C mode.

#include <fract.h>

fract32 fdot(fract16 *x, fract16 *y, int n)
{

fract32 sum = 0;
int i;

for (i = 0; i < n; i++)
sum = add_fr1x32(sum,

mult_fr1x32(x[i], y[i]));
return sum;

}

Fractional Value Builtins in C++

The compiler provides support for two C++ fractional classes. The fract
class uses a fract32 C type for storage of the fractional value, whereas
shortfract uses a fract16 C type for storage of the fractional value.

Instances of the shortfract and fract class can be initialized using values
with the "r" suffix, provided they are within the range [-1,1). The fract
class is represented by the compiler as representing the internal type
fract. For example,

#include <fract>
int main ()
{

fract X = 0.5r;
}

1-86 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
Instances of shortfract can be initialised using "r" values in the same
way, but are not represented as an internal type by the compiler. Instead,
the compiler produces a temporary fract which is initialised using the "r"
value. The value of the fract is then copied to the shortfract using an
implicit copy and the fract is destroyed.

The fract and shortfract classes contain routines that allow basic arith-
metic operations and movement of data to and from other data types. The
example below shows the use of the shortfract class with * and +
operators.

The mathematical routines for addition, subtraction, division and multi-
plication for both fract and shortfract are performed using the ETSI
defined routines for the C fractional types (fract16 and fract32). Inclu-
sion of the fract and shortfract header files will implicitly define the macro
ETSI_SOURCE to be 1. This is required for use of the ETSI routines which
are defined in libetsi.h, and located in the libetsi53*.dlb libraries.

#include <shortfract>
#include <stdio.h>
#define N 20

shortfract x[N] = {
.5r,.5r,.5r,.5r,.5r,
.5r,.5r,.5r,.5r,.5r,
.5r,.5r,.5r,.5r,.5r,

.5r,.5r,.5r,.5r,.5r};

shortfract y[N] = {
0,.1r,.2r,.3r,.4r,
.5r,.6r,.7r,.8r,.9r,
.10r,.1r,.2r,.3r,.4r,
.5r,.6r,.7r,.8r,.9r};

shortfract fdot(int n, shortfract *x, shortfract *y)
{

int j;
shortfract s;
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-87
for Blackfin Processors

C/C++ Compiler Language Extensions
s = 0;
for (j=0; j<n; j++) {

s += x[j] * y[j];
}
return s;

}

int main(void)
{

fdot(N,x,y);
}

Fractional Literal Values in C

The "r" suffix is not available when compiling in C mode, since "r" liter-
als are instances of the fract class. However, if a C program is compiled
in C++ mode, fract16 and fract32 variables can be initialized using "r"
literal values; the compiler will automatically convert from the class values
to the C types. When adopting this approach, you must be aware of any
semantic differences between the C and C++ languages that might affect
your program.

Complex Fractional Builtins in C

The complex_fract16 type is used to hold complex fractional numbers. It
contains real and imaginary values, both as 16-bit fractional numbers.

typedef struct {
fract16 re, im;

} complex_fract16;

The complex_fract32 type is used to hold complex fractional numbers. It
contains real and imaginary values, both as 32-bit fractional numbers.

typedef struct {

fract32 re, im;

} complex_fract32;
1-88 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
The complex_fract16 and complex_fract32 types are defined by the
complex.h header file. Additionally, there are numerous library functions
for manipulating complex fracts. These functions are documented in
“DSP Run-Time Library Reference” on page 3-26.

The compiler also supports the following built-in operations for complex
fracts.

• Complex fractional multiply and accumulate and multiply and
subtract

cmac_fr16();

cmsu_fr16();

• Complex fractional square

csqu_fr16();

csqu_fr32();

• Complex fractional distance

cdst_fr16();

cdst_fr32();

Complex Operations in C++

The C++ complex class is defined in the <complex> header file, and defines
a template class for manipulating complex numbers. The standard arith-
metic operators are overloaded, and there are real() and imag() methods
for obtaining the relevant part of the complex number.

For example, the determinate and inverse of a 2x2 matrix of complex dou-
bles may be computed using the following C++ function:

#include <complex>

complex<double> inverse2d(const complex<double> mx[4],
complex<double>
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-89
for Blackfin Processors

C/C++ Compiler Language Extensions
mxinv[4])
{

complex<double> det = mx[0] * mx[3] - mx[2] * mx[1];

if((det.real() != 0.0) || (det.imag() != 0.0)) {
complex<double> invdet = complex<double>(1.0,0.0) / det;

mxinv[0] = invdet * mx[3];
mxinv[1] = -(invdet * mx[1]);
mxinv[2] = -(invdet * mx[2]);
mxinv[3] = invdet * mx[0];

}
return det;

}

As a comparison, the equivalent function in C is:

#include <complex.h>

complex_double inverse2d(const complex_double mx[4],
complex_double
mxinv[4])
{

complex_double det;
complex_double invdet;
complex_double tmp;

det = cmlt(mx[0],mx[3]);
tmp = cmlt(mx[2],mx[1]);
det = csub(det,tmp);

if((det.re != 0.0) || (det.im != 0.0)) {
invdet = cdiv((complex_double){1.0,0.0},det);

mxinv[0] = cmlt(invdet,mx[3]);
mxinv[1] = cmlt(invdet,mx[1]);
mxinv[1].re = -mxinv[1].re;
mxinv[1].im = -mxinv[1].im;
mxinv[2] = cmlt(invdet,mx[2]);
mxinv[2].re = -mxinv[2].re;
1-90 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
mxinv[2].im = -mxinv[2].im;
mxinv[3] = cmlt(invdet,mx[0]);

}
return det;

}

Viterbi History and Decoding Functions

There are four built-in functions available which provide the selection
function of a Viterbi decoder. Specifically, these four functions provide
the maximum value selection and history update parts. The functions all
make use of the A0 accumulator to maintain the history value. (The accu-
mulator register maintains the history values by shifting the previous value
along one place and setting a bit to indicate the result of the current itera-
tion’s selection.).

You must include the ccblkfn.h file before Viterbi functions can be used.
Failure to do so leads to unresolved symbols at link time.

The four Viterbi functions allow for left or right shifting (setting the least
or most significant bit, accordingly), and for 1x16 or 2x16 operands.

The four Viterbi functions are multi-valued; they update some of their
parameters inplace, since Viterbi operations return both the selection
result and the updated history. The first two Viterbi functions provide
left- and right-shifting operations for single 16-bit input operands.

The functions are:

void lvitmax1x16(int value, int oldhist,
short selected, int newhist)

void rvitmax1x16(int value, int oldhist,
short selected, int newhist)

The two functions, lvitmax1x16() and rvitmax1x16(), perform
 “selection-and-update” operations for two 16-bit operands, which are in
the high and low halves of “value”, respectively. The “oldhist” operand
contains the history value from the preceding iteration. The “selected”
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-91
for Blackfin Processors

C/C++ Compiler Language Extensions
and “newhist” operands are not inputs at all; instead, their expressions
must be lvalues (valid on the left-hand side of an assignment), whose val-
ues are updated by the operation.

The “selected” is set to contain the largest half of value. The “newhist” is
set to contain “oldhist” value, shifted one place (left for lvitmax, right
for rvitmax), and with one bit (LSB for lvitmax, MSB for rvitmax) set to
1 if the high half was selected, 0 otherwise.

The second two Viterbi functions provide left and right shifting opera-
tions for pairs of 16-bit input operands. The functions are:

lvitmax2x16(int value_x, int value_y, int oldhist,
short selected, int newhist)

void rvitmax2x16(int value_x, int value_y, int oldhist,
short selected, int newhist)

The two functions, lvitmax2x16() and rvitmax2x16(), perform two selec-
tion-and-update operations. Each of the value_x and value_y input
expressions contains two 16-bit operands. A selection operation is per-
formed on the two 16-bit operands in value_x, and another selection
operation is performed on the two 16-bit operands in value_y.
The oldhist is shifted and updated into newhist, as described above.

However, in this example, oldhist is shifted two places, and two bits are
set. The history value is shifted one place, and a bit is set to indicate the
result of value_x selection operation. Then, the history value is shifted a
second place, and another bit is set to indicate the result for value_y selec-
tion operation.

The selected value from value_x is stored into the low half of selected.
The selected value from value_y is stored into the high half of selected.
1-92 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
Circular Buffer Built-In Functions

The C/C++ compiler provides the following built-in functions for using
the Blackfin processor’s circular buffer mechanisms. Include the
ccblkfn.h file before using these functions. Failure to do so leads to unre-
solved symbols at link time.

Automatic Circular Buffer Generation

If optimization is enabled, the compiler will automatically attempt to use
circular buffer mechanisms where appropriate. For example,

void func(int *array, int n, int incr)
{

int i;
for (i = 0; i < n; i++)

array[i % 10] += incr;
}

The compiler will recognize that the "array[i % 10]" expression is a cir-
cular reference, and will use a circular buffer if possible.

There are cases where the compiler will not be able to verify that the mem-
ory access is always within the bounds of the buffer. The compiler is
conservative in such cases, and does not generate circulr buffer accesses.
The compiler can be instructed to still generate circular buffer accesses
even in such cases, by specifying the -circbuf switch (see on page 1-25).

The compiler also provides built-in functions which can explicitly gener-
ate circular buffer accesses, subject to available hardware resources. The
built-in functions provide circular indexing, and circular pointer refer-
ences. Both built-in functions are defined in the ccblkfn.h header file.

Circular Buffer Increment of an Index

The following operation performs a circular buffer increment of an index.

int circindex(int index, int incr, int nitems)
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-93
for Blackfin Processors

C/C++ Compiler Language Extensions
The operation is equivalent to:

index += incr;
if (index < 0)

index += nitems;
else if (index >= nitems)

index -= nitems;

An example of this built-in function is:

#include <ccblkfn.h>
void func(int *array, int n, int incr, int len)
{

int i, idx = 0;

for (i = 0; i < n; i++) {
array[idx] += incr;
idx = circindex(idx, incr, len);

}
}

Circular Buffer Increment of a Pointer

The following operation performs a circular buffer increment of a pointer.

void *circptr(void *ptr, size_t incr , void * base. size_t buflen)

Both incr and buflen are specified in bytes, since the operation deals in
void pointers.

The operation is equivalent to:

ptr += incr;
if (ptr < base)

ptr += buflen;
else if (ptr >= (base+buflen))

ptr -= buflen;
1-94 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
An example of this built-in function is:

#include <ccblkfn.h>
void func(int *array, int n, int incr, int len)
{

int i, idx = 0;
int *ptr = array;

// scale increment and length by size
// of item pointed to.
incr *= sizeof(*ptr);
len *= sizeof(*ptr);

for (i = 0; i < n; i++) {
*ptr += incr;
ptr = circptr(ptr, incr, array, len);

}
}

System Built-In Functions

The following built-in functions allow access to system facilities on the
Blackfin processors. The functions are all defined in <ccblkfn.h>. Include
the ccblkfn.h file before using these functions. Failure to do so leads to
unresolved symbols at link time.

Stack Space Allocation

void *alloca(unsigned)

This function allocates the requested number of bytes on the local stack,
and returns a pointer to the start of the buffer. The space is freed when the
current function exits. The compiler supports this function via
__builtin_alloca().

System Register Values

int sysreg_read(reg)
int sysreg_write(reg, int val)
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-95
for Blackfin Processors

C/C++ Compiler Language Extensions
These functions get (read) or set (write) the value of a system register. In
both cases, reg is a constant from the file <sysreg.h>.

IMASK Values

unsigned cli(void)
void sti(unsigned mask)

The cli() function retrieves the old value of IMASK, and disables inter-
rupts by setting IMASK to all zeros. The sti() function installs a new value
into IMASK, enabling the interrupt system according to the new mask
stored.

Interrupts and Exceptions

void raise_intr(int)
void excpt(int)

These two functions raise interrupts and exceptions, respectively. In both
cases, the parameter supplied must be an integer literal value.

Idle Mode

void idle(void)

places the processor into the idle mode.

Synchronization

void csync(void)
void ssync(void)

These two functions provide synchronization. csync() is a core-only syn-
chronization�it flushes the pipeline and store buffers. The ssync() is a
system synchronization, and also waits for an ACK from the system bus.
1-96 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
Pragmas
The Blackfin C/C++ compiler supports a number of pragmas. Pragmas are
implementation-specific directives that modify the compiler’s behavior.
There are two types of pragma usage: pragma directives and pragma
operators.

Pragma directives have the following syntax:

#pragma pragma-directive pragma-directive-operands new-line

Pragma operators have the following syntax:

_Pragma (string-literal)

When processing a pragma operator, the compiler effectively turns it into
a pragma directive using a non-string version of string-literal. This
means that the following pragma directive

#pragma linkage_name mylinkname

can also be equivalently be expressed using the following pragma operator

_Pragma ("linkage_name mylinkname")

The examples in this manual use the directive form.

The following sections describe the supported pragmas.

• “Data Alignment Pragmas”

• “Interrupt Handler Pragmas” on page 1-102

• “Loop Optimization Pragmas” on page 1-103

• “General Optimization Pragmas” on page 1-105

• “Linking Control Pragmas” on page 1-106
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-97
for Blackfin Processors

C/C++ Compiler Language Extensions
The C/C++ compiler will issue a warning when it encounters an unrecog-
nized pragma directive or pragma operator. The C/C++ compiler will not
expand any pre-processor macros used within any pragma directive or
pragma operator.

The C/C++ compiler supports pragmas for:

• Arranging special alignment for data

• Defining functions that act as interrupt or exception handlers

• Giving additional information about loop usage to improve
optimization

• Changing the optimization level, midway through a module

• Changing how an externally visible function is linked

Data Alignment Pragmas

The data alignment pragmas are used to modify how the compiler
arranges data within the processor’s memory. Since the Blackfin processor
architecture requires memory accesses to be naturally aligned, each data
item is normally aligned at least as strongly as itself�two-byte shorts
have alignment of 2, and four-byte longs have alignment of 4.

When structs are defined, the struct’s overall alignment is the same as the
field which has the largest alignment. The struct’s size may need padding
to ensure all fields are properly aligned, and that the struct’s overall size is
a multiple of its alignment.

Sometimes, it is useful to change these alignments. A struct may have its
alignment increased to improve the compiler's opportunities in vectoriz-
ing access to the data. A struct may have its alignment reduced, so that a
large array occupies less space.
1-98 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
� If a data item's alignment is reduced, the compiler cannot safely
access the data item without risk of causing misaligned memory
access exceptions. Programs that use reduced-alignment data must
ensure that accesses to the data are made using data types that
match the reduced alignment, rather than the default one. For
example, if an int has its alignment reduced from the default (4) to
2, it must be accessed as two shorts or four bytes, rather than as a
single int.

The data alignment pragmas include align, pack and pad pragmas. Align-
ments specified using these pragmas must be a power of two. The
compiler will reject uses of those pragmas that specify alignments that are
not powers of two.

#pragma align num

The #pragma align num may be used before variable declarations and
field declarations. It applies to the variable or field declaration that imme-
diately follows the pragma.

The pragma’s effect is that the next variable or field declaration should be
forced to be aligned on a boundary specified by num.

• If num is greater than the alignment normally required by the fol-
lowing variable or field declaration, then the variable or field
declaration’s alignment is changed to be num.

• If num is less than alignment normally required, then the variable or
field declaration's alignment is changed to be num, and a warning is
given that the alignment has been reduced.

If the pack or pad pragmas (see below) are currently active, then align will
override for the immediately following field declaration. The following are
the examples of how to use #pragma align.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-99
for Blackfin Processors

C/C++ Compiler Language Extensions
struct s{
#pragma align 8 /* field a aligned on 8-byte boundary */

int a;
int bar;

#pragma align 16 /* field b aligned on 16-byte boundary */
int b;

} t[2];

#pragma align 256
int arr[128]; /* declares an int array with 256 alignment */

The following example shows a use that is valid, but causes a compiler
warning.

#pragma align 1
int warns; /* declares an int with byte alignment, */

/* causes a compiler warning */

The following is an example of an invalid use of #pragma align; because
the alignment is not a power of two, the compiler will reject it and issue
an error.

#pragma align 3
int errs; /* INVALID: declares an int with non-power of */

/* two alignment, causes a compiler error */

#pragma pack (alignopt)

The #pragma pack (alignopt) may be applied to struct definitions. It
applies to all struct definitions that follow, until the default alignment is
restored by omitting alignopt, for example, by #pragma pack() with
empty parentheses.

The pragma is used to reduce the default alignment of the struct to be
aligned. If there are fields within the struct that have a default alignment
greater than align, their alignment is reduced to be alignopt. If there are
fields within the struct that have alignment less than align, their align-
ment is unchanged.
1-100 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
If alignopt is specified, it is illegal to invoke #pragma pad, until default
alignment is restored. The compiler will generate an error if the pad and
pack pragmas are used in a manner that conflicts.

The following shows how to use #pragma pack:

#pragma pack(1)
/* struct minimum alignment now 1 byte, uses of

"#pragma pad" would cause a compilation error now */

struct is_packed {
char a;
/* normally the compiler would add three padding bytes here,
but not now because of prior pragma pack use */
int b;

} t[2]; /* t definition requires 10 packed bytes */

#pragma pack()
/* struct minimum alignment now not one byte,

"#pragma pad"can now be used legally */

struct is_packed u[2]; /* u definition requires 10 packed
bytes */

/* struct not_packed is a new type, and will not be packed.*/

struct not_packed {
char a;
/* compiler will insert three padding bytes here */
int b;

} w[2]; /* w definition required 16 bytes */

#pragma pad (alignopt)

The #pragma pad (alignopt) may be applied to struct definitions. It
applies to struct definitions that follow, until the default alignment is
restored by omitting alignopt , i.e, by #pragma pad() with empty
parentheses.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-101
for Blackfin Processors

C/C++ Compiler Language Extensions
This pragma is effectively shorthand for placing #pragma align before
every field within the struct definition. Like pragma pack, it reduces the
alignment of fields which default to an alignment greater than alignopt.

However, unlike pragma pack, it also increases the alignment of fields
which default to an alignment less than alignopt.

� While pragma pack alignopt generates a warning if a field align-
ment is reduced, pragma padalignopt does not.

If alignopt is specified, it is illegal to invoke #pragma pack, until default
alignment is restored.

Interrupt Handler Pragmas

The interrupt, nmi, and exception pragmas all declare that the following
function declaration or definition is to be used as an entry in the Event
Vector Table (EVT). The compiler arranges for the function to save its
context above and beyond the usual caller-preserved set of registers, and to
restore the context upon exit. The function will return using an instruc-
tion appropriate to the type of event specified by the pragma.

These pragmas are not normally used directly; there are macros provided
by the <sys/exception.h> file. See “Interrupt Handler Support” on
page 1-116 for more information.

The pragmas may be specified on either the function’s declaration or its
definition. Only one of the three pragmas listed above may be specified for
a particular function.

The interrupt_reentrant pragma is used in conjunction with the
interrupt pragma to specify that the function’s context saving prologue
should also arrange for interrupts to be re-enabled for the duration of the
function’s execution.
1-102 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
Loop Optimization Pragmas

Loop optimization (vector_for and no_alias) pragmas give the compiler
additional loop usage information, which allows the compiler to perform
more aggressive optimization. The pragmas are placed before the loop
statement, and apply to the statement that immediately follows. In gen-
eral, it is most effective to apply loop pragmas to inner-most loops, since
the compiler can achieve the most savings there.

The optimizer always attempts to vectorize loops when it is safe to do so.
The optimizer exploits the information generated by the interprocedural
analysis (see “Interprocedural Analysis” on page 1-59) to increase the cases
where it knows it is safe to do so. Consider the code:

void copy(short *a, short *b) {
int i;
for (i=0; i<100; i++)

a[i] = b[i];
}

If you call copy with two calls, say copy(x,y) and later copy(y,z), the
interprocedural analysis will not be able to tell that “a”never aliases “b”.
Therefore, the optimizer cannot be sure that one iteration of the loop is
not dependent on the data calculated by the previous iteration of the loop.
If it is known that each iteration of the loop is not dependent on the pre-
vious iteration, then the vector_for pragma can be used to explicitly
notify the compiler that this is the case.

#pragma vector_for

The #pragma vector_for notifies the optimizer that it is safe to execute
two iterations of the loop in parallel. The vector_for pragma does not
force the compiler to vectorize the loop; the optimizer checks various
properties of the loop and does not vectorize it if it believes it is unsafe or
if it cannot deduce that the various properties necessary for the vectoriza-
tion transformation are valid.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-103
for Blackfin Processors

C/C++ Compiler Language Extensions
Strictly speaking, the pragma simply disables checking for loop-carried
dependencies.

void copy(short *a, short *b) {
int i;
#pragma vector_for

for (i=0; i<100; i++)
a[i] = b[i];
}

In cases where vectorization is impossible (for example, if array a were
aligned on a word boundary, but array b was not), the information given
in the assertion made by vector_for may still be put to good use in aiding
other optimizations.

#pragma no_alias

Use the #pragma no_alias to tell the compiler the following loop has no
loads or stores that conflict. When the compiler finds memory accesses
that potentially refer to the same location through different pointers,
known as “aliases”, the compiler is restricted in how it may reorder or
vectorize the loop, because all the accesses from earlier iterations must be
complete before the compiler can arrange for the next iteration to start.
For example,

int i;
#pragma no_alias

for (i=0; i < n; i++)
out[i] = a[i] + b[i];

The no_alias pragma appears just before the loop it describes. This
pragma asserts that in the next loop, no load or store operation conflict
with each other. In other words, no load or store in any iteration of the
loop has the same address as any other load or store in the current, or any
other, iteration of the loop. In the example above, if the pointers a and b
point to two memory areas that do not overlap, then no load from b will
be using the same address as any store to a. Therefore, a is never an alias
for b.
1-104 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
Using the no_alias pragma can lead to better code because it allows any
number of iterations to be performed concurrently (rather than just two at
a time), thus providing better software pipelining by the optimizer.

� Loop pragmas should only be used on single-block inner-most
loops which use the for loop construct.

General Optimization Pragmas

There are three pragmas which can change the optimization level while a
given module is being compiled. These pragmas must be used at global
scope, immediately prior to a function definition. The pragmas are:

• #pragma optimize_off

This pragma turns off the optimizer, if it was enabled. High-level
optimizations, such as inlining and constant-expression evalua-
tion, will still apply. This pragma has no effect if Interprocedural
Optimization Analysis is enabled.

• #pragma optimize_for_space

This pragma turns the optimizer back on, if it was disabled, or sets
focus to give reduced code size a higher priority than high perfor-
mance, where these conflict.

• #pragma optimize_for_speed

This pragma turns the optimizer back on, if it was disabled, or sets
focus to give high performance a higher priority than reduced code
size, where these conflict.

The following shows example uses of these pragmas.

#pragma optimize_off
void non_op() { /* non-optimized code */ }

#pragma optimize_for_space
void op_for_si() { /* code optimized for size */ }
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-105
for Blackfin Processors

C/C++ Compiler Language Extensions
#pragma optimize_for_speed
void op_for_sp() { /* code optimized for speed */ }
/* subsequent functions declerations optimized for speed */

Linking Control Pragmas

Linking pragmas change how a given global function or variable is viewed
during the linking stage. These pragmas apply to the following declara-
tions: linkage_name and retain_name.

#pragma linkage_name identifier

The #pragma linkage_name associates the identifier with the next exter-
nal function declaration. It ensures that identifier is used as the external
reference, instead of following the compiler’s usual conventions.

If identifier is not a valid function name, as could be used in normal func-
tion definitions, the compiler will generate an error.

The following shows an example use of this pragma.

#pragma linkage_name realfuncname
void funcname ();
void func() {

funcname(); /* compiler will generate a call to realfuncname */
}

 #pragma retain_name

The #pragma retain_name indicates that the external function or variable
declaration that follows the pragma is not removed even though Interpro-
cedural Analysis (IPA) sees that it is not used. Use this pragma for C
functions that are only called from assembler routines, such as the startup
code sequence invoked before main().
1-106 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
The following example shows how to use this pragma.

int delete_me(int x) {
return x-2;

}

#pragma retain_name
int keep_me(int y) {

return y+2;
}

int main(void) {
return 0;

}

Since the program has no uses of either delete_me() or keep_me(), the
compiler will remove delete_me(), but will keep keep_me() because of the
pragma. You do not need to specify retain_name for main().

For more information on IPA, see “Interprocedural Analysis” on
page 1-59.

 #pragma weak_entry

The #pragma weak_entry may be used before a static variable declaration
or definition. It applies to the function or variable declaration or defini-
tion that immediately follows the pragma. Use of this pragma causes the
compiler to generate the function or variable definition with weak linkage.

The following are example uses of the pragma weak_entry directive.

#pragma weak_entry
int w_var = 0;

#pragma weak_entry
void w_func(){}
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-107
for Blackfin Processors

Blackfin Processor-Specific Functionality
Blackfin Processor-Specific Functionality
This section provides information about functionality that is specific to
the Blackfin processors.

This section describes:

• “Default Startup Code”

• “Support for argv/argc” on page 1-109

• “File I/O Support” on page 1-110

• “Profiling with Instrumented Code” on page 1-112

• “Controlling Available Memory Size” on page 1-116

• “Interrupt Handler Support” on page 1-116

• “Caching and Memory Protection” on page 1-124

Default Startup Code
The Blackfin C compiler comes with default startup code, which is
invoked when the processor starts running. The code initializes a default
environment before calling main(). The source for this startup code is in
the file VisualDSP\Blackfin\lib\src\libc\crt\basiccrt.s. You may
want to modify this code to suit your specific target environment, or per-
haps even replace it completely.

The basiccrt.s file contains a number of configuration options that are
used to produce the various crt*.doj files in the VisualDSP\Blackfin\lib
directory. The default .LDF files link in one of these crt*.doj files accord-
ing to the options specified at link time. See the basiccrt.s file itself for
more details. Refer to “Basic Startup Code Sequence” on page 1-153 for
more information.
1-108 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
Support for argv/argc
You can specify arguments that get passed to your main() function when
running your program on the simulator. The simulator passes arguments
to the program by copying the argument strings into a memory section
reserved for this purpose in the Blackfin processor memory. The memory
section's name is MEM_ARGV, and its size and location are defined by the
.LDF file.

Once the simulator has placed the argument strings into the Blackfin pro-
cessor memory, the startup code used by the compiler can retrieve the
strings and make them available to main().

Use the following steps when passing arguments to your main() function
using the VisualDSP++ simulator.

• Enter the arguments to be passed into the Settings->
Simulator->CommandLine Arguments->Command Line Argu-
ments field. Separate each argument by a comma.

arg1,arg2,arg3

• Specify the starting location of the MEM_ARGV section in the Set-
tings->Simulator->Command Line Arguments->Command Line
Arguments Base Address field.

The VisualDSP++ simulator knows the default addresses for
MEM_ARGV for the standard .LDF files. Therefore, under normal cir-
cumstances, the default value for this field is acceptable. However,
if you modify your .LDF file, you must ensure that this field holds
the correct starting address for MEM_ARGV. If this field does not hold
the correct address, you may find that your program or data is cor-
rupted when the simulator copies argument strings into Blackfin
processor’s memory space.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-109
for Blackfin Processors

Blackfin Processor-Specific Functionality
File I/O Support
The VisualDSP++ environment provides access to files on a host system,
using stdio functions. Because of the hosted nature of the I/O system,
there are some limitations on the available functionality:

• Seeking is not supported on all devices, so fseek() and rewind()
will fail.

• Input from stdin is not supported unless stdin has been redirected
to another file using freopen().

File I/O support is provided through a set of low-level primitives that
implement the open, close, read and write operations required. The
stdio library makes use of these primitives to provide buffered, formatted
I/O.

The source files for the startup code, exception handler and I/O primitives
are all available under ...\VisualDSP\Blackfin\lib\src\libc.

Refer to “stdio.h” on page 2-11 for more information.

Extending I/O Support To New Devices

The I/O primitives are implemented using an extensible device-driver
mechanism. The default start-up code includes a device driver that can
perform I/O through the VisualDSP++ simulator and EZ-Kits. Other
device drivers may be registered and then used through the normal stdio
functions.

A device driver is a set of primitive functions, grouped together into a
DevEntry structure. This structure is defined in device.h:

struct DevEntry {
int DeviceID;
void *data;

int (*init)(struct DevEntry *entry);
1-110 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
int (*open)(const char *name, int mode);
int (*close)(int fd);
int (*write)(int fd, unsigned char *buf, int size);
int (*read)(int fd, unsigned char *buf, int size);
int (*seek)(int fd, int offset, int whence);

}

typedef struct DevEntry DevEntry;
typedef struct DevEntry *DevEntry_t;

The DeviceID field is a unique identifier for the device, known to the user.
Device IDs are used globally across an application. The data field is a
pointer for any private data the device may need; it is not used by the
run-time libraries. The function pointed to by the init field is invoked by
the run-time library when the device is first registered. It returns a nega-
tive value for failure, positive value for success.

The functions pointed to by the open, close, write and read fields are the
functions that provide the same fuctionality used in the default I/O
device. Seek is another function at the same level, for those devices which
support such functionality. If a device does not support an operation (such
as seeking, writing on read-only devices or reading write-only devices),
then a function pointer must still be provided; the function must arrange
to always return failure codes when the operation is attempted.

A new device can be registered with the following call:

int add_devtab_entry(DevEntry_t entry);

If the device is successfully registered, the init() routine of the device is
called, with entry as its parameter. add_devtab_entry() returns the Devi-
ceID of the device registered.

If the device is not successfully registered, a negative value is returned.
Reasons for failure include, but are not limited to:

• The DeviceID is the same as another device, already registered

• There are no more spaces left in the device registry table
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-111
for Blackfin Processors

Blackfin Processor-Specific Functionality
• The DeviceID is less than zero

• Some of the function pointers are NULL

• The device's init() routine returned a failure result

Once a device is registered, it can be made the default device, using the
following function:

void set_default_io_device(int);

The user passes the DeviceID. There is a corresponding function for
retrieving the current default device:

int get_default_io_device(void);

The default device is used by fopen() when a file is first opened. The
fopen() function passes the open request to the open() function of the
device indicated by get_default_io_device(). The device file identifier
(dfid) returned by the open() function is private to the device; other
devices may simultaneously have other files open which use the same iden-
tifier. An open file is uniquely identified by the combination of DeviceID
and dfid.

The fopen() function records the DeviceID and dfid in the global open
file table, and allocates its own internal fid to this combination. All future
operations on the file -- reads, writes, seeks and close -- use this fid to
retrieve the DeviceID, and thus direct the request to the appropriate
device's primitive functions, passing the dfid along with other parameters.
Once a file has been opened by fopen(), the current value of
get_default_io_device() is irrelevant to that file.

Profiling with Instrumented Code
The profiling facilities allow you to determine how many times each func-
tion is called and how many cycles are used while the function is active.
The information is gathered by an additional library linked into the exe-
1-112 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
cutable. The profiling routine is invoked by additional function calls at
the start and end of each function. The compiler inserts these extra calls
when profiling is enabled.

� The compiler profiling facilities should not be confused with simi-
lar functionality in the simulator, which works on a per-instruction
basis, rather than a per-function basis.

� The compiler profiling facilities are designed for single-threaded
systems, and do not work if function invocations from more than
one thread are in progress concurrently.

Generating Instrumented Code

The -p[1|2] switch (see on page 1-40) turns on the compiler’s profiling
facility when converting C/C++ source into assembly code. The compiler
cannot instrument assembly files or files that have already been compiled
to object files.

• The -p1 option will write accumulated profile data to the file
"mon.out" in the current directory.

• The -p2 option will write accumulated profile data to standard
output.

• The -p option will write accumulated profile data to both standard
output and the mon.out file in the current directory.

Running the Executable

The executable may produce two forms of output. The first is a dump of
data to standard output once the program completes (generated by -p and
-p2). This output lists the approximate address of each profiled function,
how many times the function was invoked, and the inclusive and exclusive
cycle counts.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-113
for Blackfin Processors

Blackfin Processor-Specific Functionality
• Exclusive cycle counts include only the cycles spent processing the
function.

• Inclusive cycle counts include the sum total of cycle counts in any
function invoked from this specified function.

For example, in the following program

int apples, bananas;
void apple(void) {

apples++; // 10 cycles
}

void banana(void) {
bananas++; // 10 cycles
apple(); // 10 cycles

} // 20 cycles total

int main(void) {
apple(); // 10 cycles
apple(); // 10 cycles
banana(); // 20 cycles
return 0; // 40 inclusive cycles total

} // + exclusive cycles for main itself

assume that apple() takes 10 cycles per call and assume that banana()
takes 20 cycles per call, of which 10 are accounted for by its call to
apple(). The program, when run, calls apple() three times: twice
directly, and once indirectly through banana(). The apple() clocks up 30
cycles of execution, and this is reported for both its inclusive and exclusive
times, since apple() does not call other functions.

The banana() is only called once. It reports 10 cycles for its inclusive time,
and 10 cycles for its exclusive time. The inclusive cycles are for the cycles
apple() used, when called from banana(). The exclusive cycles were for
the time when banana() was incrementing bananas, and was not "waiting"
for another function to return.
1-114 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
The main() is only called once, and calls three other functions (apple()
twice, banana() once). Between them, apple() and banana() use up 40
cycles, which appear in the main()'s inclusive cycles. The main()'s exclu-
sive cycles are for the time when main() was running, but was not in the
middle of a call to either apple() or banana().

The second form of output is a file in the current directory called mon.out
(-p and -p1). The mon.out is a binary file that contains a copy of the data
written to standard output. There is no way to change the file name used.

Post-Processing mon.out File

The profblkfn.exe program is a Windows® program that processes the
contents of the mon.out file. It reads both the mon.out file and the .DXE
file that produced it. It displays the cycle counts along with the names of
the functions recorded in the mon.out file associated with the counts. The
profblkfn program program is invoked as:

profblkfn prog.dxe

� Specify the .DXE file only. The mon.out file must be present in the
current directory and must have been produced by the named .DXE.

Computing Cycle Counts

When profiling is enabled, the compiler instruments the generated code
by inserting calls to a profiling library at the start and end of each com-
piled function. The profiling library samples the processor’s cycle counter
and records this figure against the function just started or just completed.

The profiling library itself consumes some cycles, and these overheads are
not included in the figures reported for each function, so the total cycles
reported for the application by the profiler will be less than the cycles con-
sumed during the life of the application. In addition to this overhead,
there is some approximation involved in sampling the cycle counter,
because the profiler cannot guarantee how many cycles will pass between a
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-115
for Blackfin Processors

Blackfin Processor-Specific Functionality
function's first instruction and the sample. This is affected by the optimi-
zation levels, the state preserved by the function, and the contents of the
processor's pipeline. The profiling library knows how long the call entry
and exit takes “on average”, and adjusts its counts accordingly.

Because of this adjustment, profiling using instrumented code provides an
approximate figure, with a small margin for error. This margin is more
significant for functions with a small number of instructions than for
functions with a large number of instructions.

Controlling Available Memory Size
The heap size is specified in the .LDF file in the VisualDSP\Blackfin\LDF
directory. The compiler uses the adsp-BF532.ldf file by default. The entry
controlling the heap has a similat format to

 MEM_HEAP { TYPE(RAM) START(0xFF804000) END(0xFF807DFF) WIDTH(8) }

The actual values specified in the .LDF file should reflect the memory map
available on the actual system.

Internally, malloc() uses the _Sbrk() library function to obtain additional
space from the HEAP system. The start and end addresses of the HEAP seg-
ment can be changed to give a larger or smaller heap, and the library will
adjust accordingly. If the segment size is increased, the surrounding seg-
ments must be decreased accordingly; otherwise, memory corruption may
occur. See “Using Multiple Heaps” on page 1-138 for more information.

Interrupt Handler Support
The Blackfin C/C++ compiler provides support for interrupts and other
events used by the Blackfin processor architecture (see Table 1-12).

The Blackfin system has several different classes of events, not all of which
are supported by the ccblkfn compiler. Handlers for these events are
called Interrupt Service Routines (ISRs).
1-116 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
Resets are supported by treating a reset like a general-purpose interrupt for
code generation purposes. This means that the C/C++ compiler supports
interrupt, exception and NMI events.

� ISRs generated by the C compiler are not currently allowed in the
VDK.

The compiler provides facilities for defining an ISR function, registering it
as an event handler, and for obtaining the saved processor context.

Defining an ISR

To define a function as an ISR, the <sys/exception.h> header must be
included and the function must be declared and defined using macros
defined within this header file. There is a macro for each of the three kinds
of events the compiler supports:

EX_INTERRUPT_HANDLER

EX_EXCEPTION_HANDLER

EX_NMI_HANDLER

By default, the ISRs generated by the compiler are not re-entrant; they
disable the interrupt system on entry, and re-enable it on exit. You may
also define ISRs for interrupts which are re-entrant, and which re-enable
the interrupt system soon after entering the ISR.

Table 1-12. System Events

Event Priority Supported

Emulation Highest No

Reset Yes

NMI Yes

Exception Yes

Interrupts Lowest Yes
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-117
for Blackfin Processors

Blackfin Processor-Specific Functionality
There is a different macro for specifying a re-entrant interrupt handler:

EX_REENTRANT_HANDLER

For example, the following code

#include <sys/exception.h>
static int number_of_interrupts;

EX_INTERRUPT_HANDLER(my_isr)
{

number_of_interrupts++;
}

declares and defines my_isr() to be a handler for interrupt-type events
(for example, the routine returns using an RETI instruction). The macro
used for defining the ISR is also suitable for declaring it, as a prototype:

EX_INTERRUPT_HANDLER(my_isr);

Registering an ISR

ISRs, once defined, can be registered in the Event Vector Table (EVT)
using the register_handler() function. This function operates in a simi-
lar manner to the UNIX signal() function.

It takes two parameters, defining the event and the ISR, and returns the
previously registered ISR, if any. The event is specified using the
interrupt_kind enumeration from exception.h. For example,

typedef enum {

ik_emulation, ik_reset, ik_nmi, ik_exception,
ik_global_int_enable, ik_hardware_err, ik_timer,ik_ivg7,
ik_ivg8, ik_ivg9, ik_ivg10, ik_ivg11, ik_ivg12, ik_ivg13,
ik_ivg14, ik_ivg15

} interrupt_kind;
ex_handler_fn register_handler(interrupt_kind, ex_handler_fn);
1-118 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
There are two special values that can be passed to register_handler() in
place of real ISRs:

• EX_INT_IGNORE installs a handler that “ignores” the event and
immediately returns from the event.

• EX_INT_DEFAULT installs the default handler. The default handler
invokes the currently-registered handler for the corresponding
ANSI C signal, as described in “ISRs and ANSI C Signals”.

ISRs and ANSI C Signals

ISRs provide similar functionality to ANSI C signal handlers, and their
behaviour is related. An ISR is a function that can be registered directly in
the processor’s Event Vector Table (EVT). It saves its own context, as
required. In contrast, an ANSI C signal handler is a normal C function
that has been registered as a handler. When an event occurs, some other
despatcher must save the processor context before invoking the signal
handler.

ISRs and signal handlers are not interchangable. A signal handler cannot
act as an ISR, because it will not save or restore the context, nor will it ter-
minate with the correct return instruction. An ISR cannot act as a signal
handler, because it will terminate the event directly rather than returning
to the despatcher.

When a signal handler is installed, a default ISR is also installed in the
EVT which will invoke the signal handler when the event occurs. When
the raise() function is used to invoke a signal handler explicitly, raise()
will actually generate the corresponding event, if possible. This will cause
the ISR to invoke the signal handler.

You may choose to install normal C functions as signal handlers, or to reg-
ister ISRs directly, but you should not do both for a given event.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-119
for Blackfin Processors

Blackfin Processor-Specific Functionality
Saved Processor Context

When generating code for an ISR, the compiler creates a prologue that
saves the processor context on the supervisor stack. This context is accessi-
ble to the ISR.The exception.h file defines a structure, interrupt_info,
that contains fields for all the information that defines the kind of event
that occurred and for the values of all the registers that were saved during
the prologue. For a list of saved registers, see “Fetching Saved Registers”
on page 1-121.

There are two facilities for gaining access to the event context:

• get_interrupt_info() function

• SAVE_REGS() macro (see “Fetching Saved Registers”)

Fetching Event Details

The following function fetches the information about the event that
occurred:

void get_interrupt_info(interrupt_kind, interrupt_info *)

The sort of data retrieved includes the value of EXCAUSE and addresses that
caused faults for exceptions. Note that at present, the function needs to be
told which kind of event it is investigating.

The structure contains:

interrupt_kind kind;
int value;
void *pc;
void *addr;
unsigned status;
interrupt_regs regs;
interrupt_regs *regsaddr;

These fields are set as:
1-120 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
• Exceptions
The pc is set to the value of RETX, and value is set to the value of
SEQSTAT.

For exceptions that involve address faults, address and status are set
to the values of the Memory Mapping Registers (MMRs) for
DATA_FAULT_ADDR and DATA_FAULT_STATUS or CODE_FAULT_ADDR
and CODE_FAULT_STATUS, as appropriate.

• Hardware Errors
The pc is set to the value of RETI, and value is set to the value of
SEQSTAT.

• NMI Events
The pc is set to the value of RETN.

• All Other Events
The pc is set to the value of RETI.

Fetching Saved Registers

The following macro obtains a copy of the registers saved during the ISR
prologue:

SAVE_REGS(interrupt_info *)

It also sets regsaddr in the interrupt to point to the start of the saved reg-
isters on the supervisor stack. Therefore, any changes made using
regsaddr within the ISR will be reflected in the processor state when it is
restored by the ISR epilogue.

The following registers are always saved during the ISR prologue. They are
accessible through the saved context.

• All DREGS (R0, R1, R2, R3, R4, R5, R6, R7)

• All PREGS (P0, P1, P2, P3, P4, P5)
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-121
for Blackfin Processors

Blackfin Processor-Specific Functionality
• Frame pointer (FP)

• Arithmetic status (ASTAT)

Additional registers are saved as required, depending on the resources used
by the ISR. These registers are not accessible through the saved context.

The registers that are optionally saved include:

• Hardware loop registers (LB0, LB1, LT0, LT1, LC0, LC1)

• Accumulators (A0w, A1w, A0x, A1x)

• Circular buffer registers (I0-3, L0-3, B0-3, M0-3).

User-Mode Configuration

The default startup code invokes main() in supervisor mode, allowing full
access to system resources. There is also an alternative configuration which
places the Blackfin processor into the user mode before invoking main().
This mode can be invoked using the linker flag -MDUSERMODE.

The user-mode configuration installs a default event handler to support
operations such as terminating, File I/O, and registering other event
handlers.

Allocated Events in User-Mode Configuration

The Blackfin processor architecture defines sixteen values of EXCAUSE for
user-level events. Several values are already allocated for various purposes,
as described in Table 1-13. The values are defined in the header file
<sys/excause.h>.

Table 1-14 lists values for system requests. Table 1-15 lists the values for
File I/O.
1-122 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
Table 1-13. Allocated Events

Value Mnemonic Description

0x0 EX_EXIT_PROG Halts the processor. R0 contains exit value.

0x1 EX_ABORT_PROG Aborts the processor. R0 contains exit value.

0x2 EX_SYS_REQ Requests system service. R0 contains a command, R1
and R2 are arguments. R0 contains result, on exit.

0x5 EX_FILE_IO Requests File I/O. R4 contains command. R0 to R2
contain arguments. R0 contains result, on exit.

Table 1-14. File I/O Values

Mnemonic Description

EX_FILEIO_OPEN R0 = device, R1 = path, R2 = mode. fid => R0.

EX_FILEIO_CLOSE R0 = fid.

EX_FILEIO_WRITE R0 = fid, R1 = data, R2 = length. Amount => R0.

EX_FILEIO_READ R0 = fid, R1 = data, R2 = length. Amount => R0.

EX_FILEIO_SEEK R0 = fid, R1 = offset, R2 = mode.

EX_FILEIO_DUP R0 = fid. R0 => new fid.

Table 1-15. System Requests

Mnemonic Description

EX_SYSREQ_NONE Does nothing

EX_SYSREQ_ISR Registers an ISR in the EVT. R0 is EVT entry (0 to 15).
R1 is address of ISR. Returns previous entry in R0.

EX_SYSREQ_RAISE_INT Causes an interrupt. R0 = interrupt number (0-15).
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-123
for Blackfin Processors

Blackfin Processor-Specific Functionality
Caching and Memory Protection
The Blackfin processors support caching of external memory or L2 SRAM
(where available) into L1 SRAM, for both Instruction and Data memory.
Caching can eliminate much of the performance penalty of using external
memory with minimal effort on the application developer's part.

The Blackfin processor caches are configurable. Instruction and Data
caches can be enabled together or separately, and the memory spaces they
cache are configured separately. The cache configuration is defined
through the memory protection hardware, using tables that define "Cache
Protection Lookaside Buffers" (CPLBs). These CPLBs define the start
addresses, sizes and attributes of areas of memory for which memory
accesses are permitted, including whether the area of memory is to be
cached.

� Refer to the Hardware Reference of the appropriate Blackfin pro-
cessor for specific details.

The Blackfin run-time library provides support for cache configuration,
by providing routines that can be used to initialize and maintain the
CPLBs from a configuration table.

The default start-up code makes use of these library routines, although the
default configuration is to not enable CPLBs. The support routines are
designed such that they can easily be incorporated into users' systems, and
so that the configuration can be turned on or off via a debugger, without
the need for relinking the application.

CPLB support is controlled through a global variable, ___cplb_ctrl . The
value of this variable determines whether the start-up code enables the
CPLB system. By default, the variable has the value zero, indicating that
CPLBs should not be enabled.

When ___cplb_ctrl indicates that CPLBs are to be enabled, the start-up
code calls the routine _cplb_init. This routine sets up instruction and
data CPLBs from a table, and enables the memory protection hardware.
1-124 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
There are sixteen CPLBs for each of instruction and data space. On a sim-
ple system, this is sufficient, and _cplb_init will install all available
CPLBs from its configuration table into the active table. On more com-
plex systems, there may need to be more CPLBs than can be active at
once. In such systems, there will eventually come a time when the applica-
tion attempts to access memory that is not covered by one of the active
CPLBs. This will raise a CPLB miss exception.

The library includes a CPLB management routine for these occasions,
called _cplb_mgr. This routine should be called from an exception handler
that has determined that a CPLB miss has occurred, whether a data miss
or an instruction miss. _cplb_mgr identifies which inactive CPLB needs to
be installed to resolve the access, and replaces one of the active CPLBs
with this one.

If CPLBs are to be enabled, the default startup code installs a default
exception handler, called _cplb_hdr; this does nothing except test for
CPLB miss exceptions, which it delegates to _cplb_mgr. It is expected that
users will have their own exception handlers that will deal with additional
events.

Since the CPLB configuration tables and management code need to be
present during all CPLB miss exceptions, these are placed into a separate
"cplb_code" section, and the CPLBs that refer to this section must be:

• flagged as being "locked", so that they are not replaced by inactive
CPLBs during misses

• among the first sixteen CPLBs, so that they are loaded into the
active table during initialization
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-125
for Blackfin Processors

Blackfin Processor-Specific Functionality
Cache Configuration

The ___cplb_ctrl variable also allows the user to enable cache. The
library defines the following configurations, although not all configura-
tions may be available on all Blackfin processors:

• No cache

• L1 SRAM Instruction as cache

• L1 SRAM Data A as cache

• L1 SRAM Data A and B as cache

• L1 SRAM Instruction and Data A as cache

• L1 SRAM Instruction, Data A and Data B as cache

• If any cache switch is enabled, CPLBs must also be enabled.

If any cache switch is enabled, the respective caches are set up during
_cplb_init, using the CPLB configuration tables. On the ADSP-BF535
processor, if cache is enabled, the current cache contents are invalidated
first.

Default Cache Configuration

Although the default value for ___cplb_ctrl is that no cache or CPLBs
are enabled, the default system contains CPLB configuration tables that
support caching. The default configuration tables supplied differ for the
processors available.

Refer to the file cplbtab.s in VisualDSP\Blackfin\lib\src\libc\crt for
details. If no cache is enabled, but CPLBs are enabled, _cplb_init masks
off the cacheable flags on the CPLBs before making them active.
1-126 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
Changing Cache Configuration

The value of ___cplb_ctrl may be changed in several ways:

• The variable may be declared as external then assigned a new value.
This updates the default declaration of the variable, from the
library.

• The variable may be defined as a new global with an initialization
value. This definition supercedes the definition in the library.

• The linked-in version of the variable may be altered in a debugger,
after loading the application but before running it, so that the
start-up code sees a different value.

LDF Implications

The use of CPLBs affects the .LDF file, since the CPLB management code
is in the "cplb_code" section, and this section must be mapped to an
appropriate area of memory. The default .LDF files map this section into
the "MEM_PROGRAM" section of memory. You should be aware that the
CPLBs that cover this area are not currently flagged as being "locked."
This is acceptable only because there are less than sixteen CPLBs in the
default configuration, so it will not be necessary to exclude any configura-
tion table entries from the active CPLB set. If the CPLB configuration
tables are extended to the point where CPLB misses may occur, the
"cplb_code" section must be mapped to a separate area of memory, one
covered by a "locked" CPLB entry within the first 16 entries of the config-
uration table.

Care must be taken when using cache in systems with asynchronous
change. There are two levels of asynchronous data change:

• Data that may change beyond the scope of the current thread, but
within the scope of the system. This includes variables which may
be updated by other threads in the system (if using a
multi-threaded architecture). This kind of data must be marked
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-127
for Blackfin Processors

Blackfin Processor-Specific Functionality
volatile, so that the compiler knows not to store local copies in reg-
isters, but may be located in cached memory, since all threads will
access the data through the cache.

• Data that may change beyond the scope of the cache as well as
beyond the scope of the current thread. This includes memory-
mapped registers (which cannot be cached), and data in memory
which will be updated by external means, such as DMA transfers,
or host/target file I/O. Such data must be marked as volatile, so
that the compiler knows not to keep copies in registers, and may
not be placed in cached memory, since the cache will not see the
change and will serve out of date copies to the application. Alterna-
tively, the cache copy must be invalidated before accessing
memory, in case it has been updated.

The default .LDF files contain a section "voldata" for data that should not
be in cached memory.
1-128 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
C/C++ Preprocessor Features
Several features of the C/C++ preprocessor are used by VisualDSP++ to
control the programming environment. They are:

• “Predefined Macros”

• “Preprocessing of .IDL Files” on page 1-131

• “Header Files” on page 1-132

• “Writing Preprocessor Macros” on page 1-132

The ccblkfn compiler provides standard preprocessor functionality, as
described in any C text. The following extensions to standard C are also
supported:

// end of line (C++ style) commands

#warning directive

For more information about these extensions, see “Preprocessor Generated
Warnings” on page 1-81 and “C++ Style Comments” on page 1-82. For
ways to write macros, refer to “Writing Preprocessor Macros” on
page 1-132.

Predefined Macros
The ccblkfn compiler defines a number of macros to provide information
about the compiler, source file, and options specified. These macros can
be tested, using the #ifdef and related directives, to support your pro-
gram’s needs. Similar tailoring is done in the system header files.

Macros such as __DATE__ can be useful to incorporate in text strings. The
operator with a macro body is useful in converting such symbols into
text constructs.

Table 1-16 describes the predefined compiler macros.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-129
for Blackfin Processors

C/C++ Preprocessor Features
Table 1-16. Predefined Compiler Macro Listing

Macro Function

__ADSPBLACKFIN__ Always defines __ADSPBLACKFIN__ as 1.

ADSPBLACKFIN Defines ADSPBLACKFIN as 1, unless you compile with
-pedantic, or -pedantic-errors.

__ANALOG_EXTENSIONS__ Defines __ANALOG_EXTENSIONS__ as 1, unless you compile
with -pedantic, -pedantic-errors, or _ansi.

__cplusplus Defines __cplusplus to be 199711L when you compile in C++
mode.

__DATE__ The preprocessor expands this macro into the preprocessing date
as a string constant. The date string constant takes the form
mm dd yyyy (ANSI standard).

__ECC__ Always defines __ECC__ as 1.

__EDG__ Always defines __EDG__ as 1. This definition signifies that an
Edison Design Group front end is being used.

__EDG_VERSION__ Always defines __EDG_VERSION__ as an integral value repre-
senting the version of the compiler’s front end.

__FILE__ The preprocessor expands this macro into the current input file
name as a string constant. The string matches the name of the
file specified on the command line or in a preprocessor
#include command (ANSI standard).

__LINE__ The preprocessor expands this macro into the current input line
number as a decimal integer constant (ANSI standard).

__NO_BUILTIN Defines __NO_BUILTIN as 1 when you compile with the
-no-builtin command-line switch.

__NO_LONGLONG Always defined _NO_LONGLONG as 1. This definition signifies no
support is present for the long long int type.

__STDC__ Always defines __STDC__ as 1, unless you compile with -tra-
ditional (ANSI standard).

__STDC_VERSION__ Always defines __STD_VERSION__ as 199409L.
Undefines this macro if you compile with -traditional
(ANSI standard).
1-130 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
Preprocessing of .IDL Files
Every VisualDSP++ Interface Definition Language (VIDL) specification is
analyzed by the C++ language preprocessor prior to syntax analysis.

The #include directive is used to control the inclusion of additional
VIDL source text from a secondary input file that is named in the direc-
tive. Two available forms of #include are shown in Figure 1-4.

The file identified by the file name is located by searching a list of directo-
ries. When the name is delimited by quote characters, the search begins in
the directory containing the primary input file, then proceeds with the list
of directories specified by the -I command-line switch. When the name is
delimited by angle-bracket characters, the search proceeds directly with

__TIME__ The preprocessor expands this macro into the preprocessing
time as a string constant. The date string constant takes the
form hh:mm:ss (ANSI standard).

__VERSION__ Defines __VERSION__ as a string constant giving the ver-
sion number of the compiler used to compile this mod-
ule.

Figure 1-4. #INCLUDE Syntax Diagram

Table 1-16. Predefined Compiler Macro Listing (Cont’d)

Macro Function

“ “

#include

VIDL file name

< >VIDL file name
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-131
for Blackfin Processors

C/C++ Preprocessor Features
the directories specified by -I. If the file is not located within any direc-
tory on the search list, the search may be continued in one or more
platform dependent system directories.

Header Files
A header file contains C or C++ declarations and macro definitions. Use
the #include preprocessor directive to access header files in your program.
Header file names have an .h or no extension. There are two main catego-
ries of header files:

• System header files declare the interfaces to the parts of the operat-
ing system. Include these header files in your program for the
definitions and declarations you need to access system calls and
libraries. Use angle brackets to indicate a system header file. For
example, #include <file>.

• User header files contain declarations for interfaces between the
source files of your program. Use double quotes to indicate a user
header file. For example, #include "file".

Writing Preprocessor Macros
A macro is a name of a block of text that the preprocessor substitutes. Use
the #define preprocessor command to create a macro definition. When a
macro definition has arguments, the block of text the preprocessor substi-
tutes can vary with each new set of arguments.

Compound Statements as Macros

When writing macros, define a macro that expands into a compound
statement. You can define such a macro to invoke it the same way you
would call a function, making your source code easier to read and
maintain.
1-132 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
The following two code segments define two versions of the macro
SKIP_SPACES.

/* SKIP_SPACES, regular macro */
#define SKIP_SPACES ((p), limit) \{

char *lim = (limit); \
while (p != lim) { \

if (*(p)++ != ' ') { \
(p)—; \
break; \

} \
} \

}
/* SKIP_SPACES, enclosed macro */
#define SKIP_SPACES (p, limit) \

do { \
char *lim = (limit); \
while ((p) != lim) { \

if (*(p)++ != ' ') { \
(p)—; \
break; \

} \
} \

} while (0)

Enclosing the first definition within the do {…} while (0) pair changes
the macro from expanding into a compound statement to expanding into
a single statement. With the macro expansion into a compound statement,
you must sometimes omit the semicolon after the macro call in order to
have a valid program. This leads to a need to remember whether a func-
tion or macro is being invoked for each call and whether the macro needs
a trailing semicolon.

With the do {…} while (0) construct, you can pretend that the macro is a
function and put the semicolon after it.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-133
for Blackfin Processors

C/C++ Preprocessor Features
For example,

 /* SKIP_SPACES, enclosed macro, ends without ‘;’ */
 if (*p != 0)
 SKIP_SPACES (p, lim);
 else …

This expands to

 if (*p != 0)
 do {
 …
 } while (0); /* semicolon from SKIP_SPACES (…); */
 else …

Without the do {…} while (0) construct, the expansion would be:

 if (*p != 0)
 {
 …
 }
 /* semicolon from SKIP_SPACES (…); */

else
1-134 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
C/C++ Run-Time Model and
Environment

This section provides a full description of the Blackfin processor run-time
model and run-time environment. The run-time model, which applies to
compiler-generated code, includes descriptions of the layout of the stack,
data access, and call/entry sequence. The C/C++ run-time environment
includes the conventions that C/C++ routines must follow to run on
Blackfin processors. Assembly routines linked to C/C++ routines must fol-
low these conventions.

� Analog Devices recommends that assembly programmers maintain
stack conventions.

Figure 1-5 provides an overview of the run-time environment issues that
you must consider as you write assembly routines that link with C/C++
routines including the “Basic Startup Code Sequence” on page 1-153. The
run-time environment issues include the following items.

• Memory usage conventions

“Using Memory Sections” on page 1-136

“Using Multiple Heaps” on page 1-138

“Using Data Storage Formats” on page 1-151

• Register usage conventions

“Dedicated Registers” on page 1-143

“Call Preserved Registers” on page 1-144

“Scratch Registers” on page 1-144

“Stack Registers” on page 1-145
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-135
for Blackfin Processors

C/C++ Run-Time Model and Environment
• Program control conventions

“Managing the Stack” on page 1-145

“Transferring Function Arguments and Return Value” on
page 1-148

Using Memory Sections
The C/C++ run-time environment requires that a specific set of memory
section names are used for placing code in memory. In assembly language
files, these names are used as labels for the.SECTION directive. In the .LDF

Figure 1-5. Assembly Language Interfacing Overview

Compiler
Registers

User
Registers

Stack
Registers

Scratch
Registers

Call
Preserved
Registers

Argument
Transfer

Function
Address

Data
Storage

C
Runtime
Header

Stack
Usage

C Program

Assembly
Routine

Required
Memory

Interface
Macros
1-136 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
file, these names are used as labels for the output section names within the
SECTIONS{} command. For information on the LDF syntax and other
information on the linker, see the VisualDSP++ 3.1 Linker and Utilities
Manual for Blackfin Processors.

Code Storage�The code section, program, is where the compiler puts all
the program instructions that it generates when compiling the program.
The "cplb_code" section exists so that memory protection management
routines can be placed into sections of memory that are always configured
as being available.

Data Storage�The data section, data1, is where the compiler puts global
and static data in memory. The data section, constdata, is where the com-
piler puts data that has been declared as “const”. If the compiler has been
invoked with the -bss switch, the compiler will have placed global,
zero-initialized data into a "BSS-style" section, called "bsz". The section
"voldata" exists to contain volatile data that must be separated from
cached memory, but the compiler does not automatically place volatile
data into the "voldata" section. The "cplb_data" section exists so that
configuration tables used to manage memory protection can be placed in
memory areas that are always flagged as accessible.

Run-Time Stack�The run-time stack sections, stack and sysstack, are
where the compiler puts the run-time stack in memory. The processor
starts off in supervisor mode, which uses sysstack for its run-time stack.
You may choose to link your application so the processor is switched to
user mode during startup (see “Default Startup Code” on page 1-108).
When in user mode, the run-time stack is in the stack section. When
linking, use your .LDF file to map this section. Because the run-time envi-
ronment cannot function without this section, you must define it.

The run-time stack is a 32-bit wide structure, growing from high memory
to low memory. The compiler uses the run-time stack as the storage area
for local variables and return addresses. See “Managing the Stack” on
page 1-145 for more information.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-137
for Blackfin Processors

C/C++ Run-Time Model and Environment
Run-Time Heap Storage�The run-time heap section, heap, is where the
compiler puts the run-time heap in memory. When linking, use your .LDF
file to map the heap section. To dynamically allocate and deallocate mem-
ory at run-time, the C run-time library includes four functions:

malloc() calloc() realloc() free()

These functions allocate from the heap section of memory by default. The
.LDF file must define ldf_heap_space, ldf_heap_end and
ldf_heap_length to allow the _Sbrk() function to determine the location
of the heap. Default values for these are defined in the default .LDF file.

Using Multiple Heaps
The Blackfin C/C++ run-time library supports the standard heap manage-
ment functions calloc, free, malloc, and realloc. By default, there is a
single heap, called the default heap, which serves all allocation requests
that do not explicitly specify an alternative heap. The default heap is
defined in the standard Linker Description File and the run-time header.

User written code can define any number of additional heaps and these
serve allocation requests that are explicitly directed to those heaps. These
additional heaps can be accessed via the extension routines heap_calloc,
heap_free, heap_malloc and heap_realloc.

Multiple heaps allow the programmer to serve allocations using
fast-but-scarce memory or slower-but-plentiful memory as appropriate.
This section describes how to define a heap (starting on page 1-139), work
with heaps (on page 1-140), use the heap interface (on page 1-141), and
free space in the heap (on page 1-142).
1-138 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
Defining a Heap

Heaps can be defined at link time or at run-time. In both cases, a heap has
three attributes:

• Start (base) address (the lowest usable address in the heap)

• Length (in bytes)

• User identifier (userid, a number >= 1)

The default system heap, defined at link time, always has userid 0.
In addition, heaps have an index. This is like the userid, except that the
index is assigned by the system. All the allocation and deallocation rou-
tines use heap indices, not heap userids; a userid can be converted to its
index using _heap_lookup() (see “Defining Heaps at Link Time” on
page 1-139). Be sure to pass the correct identifier to each function.

Defining Heaps at Link Time

Link-time heaps are defined in the file "heaptab.s" in the library and their
start address, length and userid are held in three 32-bit words. The heaps
are in a table called "_heap_table". This table must contain the default
heap (userid 0) first and must be terminated by an entry that has a base
address of zero.

The addresses placed into this table can be literal addresses, or they can be
symbols that are resolved by the linker. The default heap uses symbols
generated by the linker through the .LDF file.

The "_heap_table" table can live in constant memory. It is used to initial-
ize the run-time heap structure, "___heaps", when the first request to a
heap is made. When allocating from any heap, the library initializes
___heaps using the data in _heap_table, and sets ___nheaps to be the
number of available heaps.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-139
for Blackfin Processors

C/C++ Run-Time Model and Environment
Note: there is a compiled-in upper limit on the number of heaps allowed.
This is defined by MAXHEAPS in heapinfo.h and is currently set to 4. This is
used purely to determine the size of the ___heaps structure.

Because the allocation routines use heap indices instead of heap userids, a
heap installed in this fashion needs to have its userid mapped into an
index before it can be used explicitly:

int _heap_lookup(int userid); // returns index

Defining Heaps at Run-Time

Heaps may also be defined and installed at run-time, using the
_heap_install() function:

int _heap_install(void *base, size_t length, int userid);

This function can take any section of memory and start using it as a heap.
It returns the heap index allocated for the newly installed heap, or a nega-
tive value if there was some problem (see “Tips for Working with Heaps”).

Reasons why _heap_install() may return an error status include, but are
not limited to:

• Not enough space available in the ___heaps table

• A heap using the specified userid already exists

• New heap appears too small to be usable (length too small)

Tips for Working with Heaps

Heaps may not start at address zero (0x0000 0000). This address is
reserved and means "no memory could be allocated". It is the null pointer
on the Blackfin platform.

Not all memory in a heap is available for use by the user. Some of the
memory (a handful of words) is reserved for housekeeping. Thus, a heap
of 256 bytes will not be able to serve four blocks of 64 bytes.
1-140 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
Memory reserved for housekeeping precedes the allocated blocks. Thus, if
a heap begins at 0x0800 0000, this particular address will never be
returned to the user program as the result of an allocation request; the first
request will return an address some way into the heap.

The base address of a heap must be appropriately aligned for an 8-byte
memory access. This means that allocations can then be used for vector
operations.

The lengths of heaps should be multiples of powers of two for most effi-
cient space usage. The heap allocator works in block sizes such as 256, 512
or 1024 bytes.

Standard Heap Interface

The standard functions calloc and malloc always allocate a new object
from the default heap. If realloc is called with a null pointer, it too will
allocate a new object from the default heap.

Previously allocated objects can be deallocated with free or realloc.
When a previously allocated object is resized with realloc, the returned
object will always be in the same heap as the original object.

Using the Alternate Heap Interface

The C run-time library provides the alternate heap interface functions
heap_calloc, heap_free, heap_malloc, and heap_realloc. These routines
work in exactly the same way as the corresponding standard functions
without the "heap_" prefix, except that they take an additional argument
that specifies the heap index.

void *_heap_calloc(int idx, size_t nelem, size_t elsize)
void _heap_free(int idx, void *)
void *_heap_malloc(int idx, size_t length)
void *_heap_realloc(int idx, void *, size_t length)
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-141
for Blackfin Processors

C/C++ Run-Time Model and Environment
The actual entry point names for the alternate heap interface routines have
an initial underscore. The stdlib.h standard header file defines macro
equivalents without the leading underscores.

Note that for

heap_realloc(idx, NULL, length)

the operation is equivalent to

heap_malloc(idx, length)

However, for

heap_realloc(idx, ptr, length)

where ptr != NULL, the supplied idx parameter is ignored; the reallocation
is always done from the heap that ptr was allocated from, even if a mem-
cpy is required within the heap.

Similarly,

heap_free(idx, ptr)

ignores the supplied index parameter, which is specified only for consis-
tency: the space indicated by ptr is always returned to the heap from
which it was allocated.

Freeing Space

When space is "freed", it is not returned to the "system". Instead, freed
blocks are maintained on a free-list within the heap in question. The
blocks are coalesced where possible.

It is possible to reinitialize a heap, emptying the free-list and returning all
the space to the heap itself, such as

int _heap_init(int index)
1-142 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
This returns zero for success, and non-zero for failure. Note, however, that
this discards all records within the heap, so may not be used if there are
any live allocations on the heap still outstanding.

Dedicated Registers
The C/C++ run-time environment specifies a set of registers whose con-
tents should not be changed except in specific defined circumstances. If
these registers are changed, their values must be saved and restored. The
dedicated register values must always be valid for every function call (espe-
cially for library calls) and for any possible interrupt.

Dedicated registers are:

SP (P6) � FP (P7)
L0 – L3

• The SP (P6) and FP (P7) are the Stack Pointer and the Frame
Pointer registers, respectively. The compiler requires that both reg-
isters are 4-byte aligned and pointing to valid areas within the stack
section.

• The L0 – L3 registers define the lengths of the DAG’s circular buff-
ers. The compiler makes use of the DAG registers, both in linear
mode and in circular buffering mode. The compiler assumes that
the Length registers are zero, both on entry to functions and on
return from functions, and will ensure this is the case when it gen-
erates calls or returns. Your application may modify the Length
registers and make use of circular buffers, but you must ensure that
the Length registers are appropriately reset when calling compiled
functions, or returning to compiled functions. Interrupt handlers
must store and restore the Length registers, if making use of DAG
registers.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-143
for Blackfin Processors

C/C++ Run-Time Model and Environment
Call Preserved Registers
The C/C++ run-time environment specifies a set of registers whose con-
tents must be saved and restored. Your assembly function must save these
registers during the function’s prologue and restore the registers as part of
the function’s epilogue. The call preserved registers must be saved and
restored if they are modified within the assembly function; if a function
does not change a particular register, it does not need to save and restore
the register. The registers are:

P3 � P5
R4 � R7

Scratch Registers
The C/C++ run-time environment specifies a set of registers whose con-
tents do not need to be saved and restored. Note that the contents of these
registers are not preserved across function calls. Scratch registers are:

P0 Used as the Aggregate Return Pointer.
P1 � P2
R0 � R3 The first three words of the argument list are always

passed in R0, R1 and R2 if present (R3 is not used for
parameters)

LB0 � LB1
LC0 � LC1
LT0 � LT1
ASTAT including CC
A0 � A1
I0 � I3
B0 � B3
M0 � M3
1-144 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
Stack Registers
The C/C++ run-time environment reserves a set of registers for control-
ling the run-time stack. These registers may be modified for stack
management, but must be saved and restored. Stack registers are:

SP (P6) � Stack pointer
FP (P7) � Frame pointer

Managing the Stack
The C/C++ run-time environment uses the run-time stack to store auto-
matic variables and return addresses. The stack is managed by a frame
pointer (FP) and a stack pointer (SP) and grows downward in memory,
moving from higher to lower addresses.

A stack frame is a section of the stack used to hold information about the
current context of the C/C++ program. Information in the frame includes
local variables, compiler temporaries, and parameters for the next
function.

The frame pointer serves as a base for accessing memory in the stack
frame. Routines refer to locals, temporaries, and parameters by their offset
from the frame pointer.

Figure 1-6 on page 1-146 shows an example section of a run-time stack.
In the figure, the currently executing routine, Current(), was called by
Previous(), and Current() in turn calls Next(). The state of the stack is
as if Current() has pushed all the arguments for Next() onto the stack and
is just about to call Next().

� Stack usage for passing any or all of a function’s arguments
depends upon the number and types of parameters to the function.

As you write assembly routines, note that operations to restore stack and
frame pointers are the responsibility of the called function.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-145
for Blackfin Processors

C/C++ Run-Time Model and Environment
To enter and perform a function, follow the sequence of steps:

• Linking Stack Frames — The return address and the caller’s FP are
saved on the stack frame, FP is set pointing to the beginning of the
frame stack, space for local variables and compiler temporaries is
allocated on the frame stack, and the stack pointer is set pointing
to the top of the stack frame.

• Register Saving — Any registers that the function needs to pre-
serve are saved on the stack frame, and the stack pointer is set
pointing to the top of the stack frame.

Figure 1-6. Example Run-Time Stack

Incoming Arguments
arg n

...
arg 2
arg 1

Return Address RETS

Caller's (old) FP (OFP)

local var 1
local var 2

...
local var n

Register Save Area

Outgoing Arguments

FP+ 4

FP

SP

Previous
Frame

Current
Frame
1-146 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
At the end of the function, these steps must be performed:

• Restore Registers—Any registers that had been preserved are
restored from the stack frame, and the stack pointer is set pointing
to the top of the stack frame.

• Unlinking Stack Frame—The frame pointer is restored from the
stack frame to the caller’s frame pointer; RETS is restored from the
stack frame to the return address; and the stack pointer is set point-
ing to the top of the caller’s frame stack.

A typical function prologue would be

LINK 16;
[--SP]=(R7:4);
SP + = �16;
[FP+8]=R0; [FP+12]=R1; [FP+16]=R2;

where

LINK 16;

is a special linkage instruction that saves the return address and the
frame pointer, and updates the stack pointer to allocate 16 bytes
for local variables.

[--SP]=(R7:4);

allocates space on the stack and saves the registers in the save area.

SP + = �16;
allocates space on the stack for outgoing arguments. You must
always allocate at least twelve bytes on the stack for outgoing argu-
ments, even if the function being called requires less than this.

[FP+8]=R0; [FP+12]=R1; [FP+16]=R2;

saves the argument registers in the argument area.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-147
for Blackfin Processors

C/C++ Run-Time Model and Environment
A matching function epilogue would be

SP + = 16;
P0=[FP+4];
(R7:4)=[SP++];
UNLINK;
JUMP (P0);

where

SP + = 16;
reclaims the space on the stack that was used for outgoing
arguments.

P0=[FP+4]
loads the return address into register P0.

(R7:4)=[SP++];
restores the registers from the save area and reclaims the area.

UNLINK;
is a special instruction that restores the frame pointer and stack
pointer.

JUMP (P0);
returns to the caller.

� The section “Transferring Function Arguments and Return Value”
provides additional detail on function call requirements.

Transferring Function Arguments and Return Value
The C/C++ run-time environment uses a set of registers and the run-time
stack to transfer function parameters to assembly routines. Your assembly
language functions must follow these conventions when they call (or when
called by) C/C++ functions.
1-148 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
Passing Arguments

The details of argument passing are most easily understood in terms of a
conceptual argument list. This is a list of words on the stack. Double argu-
ments are placed starting on the next available word in the list, as are
structures. Each argument appears in the argument list exactly as it would
in storage, and each separate argument begins on a word boundary.

The actual argument list is like the conceptual argument list except that
the contents of the first three words are placed in registers R0, R1 and R2.
Normally this means that the first three arguments (if they are integers or
pointers) are passed in registers R0 to R2 with any additional arguments
being passed on the stack.

If any argument is greater than one word, it occupies multiple registers.
The caller is responsible for extending any char or short arguments to
32-bit values.

� When calling a C function, at least twelve bytes of stack space must
be allocated for the function’s arguments, corresponding to R0–R2.
This applies even for functions that have less that twelve bytes of
argument data, or that have fewer than three arguments.

Return Values

If a function returns a short or a char, the “callee” is responsible for
effecting any sign or zero extension that is needed. For functions returning
aggregate values occupying less than or equal to 32 bits, the result is
returned in R0. For aggregate values occupying greater than 32 bits, and
less than or equal to 64 bits, the result is returned in register pair R0, R1.
For functions returning aggregate values occupying more than 64 bits, the
caller allocates the return value object on the stack and the address of this
object is passed to the callee as a hidden argument in register P0.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-149
for Blackfin Processors

C/C++ Run-Time Model and Environment
The callee must copy the return value into the object at the address in P0.
Table 1-17 provides examples of passed parameters.

Table 1-17. Examples of Parameter Passing

Function Prototype Parameters Passed as Return Location

int test(int a, int b,
int c)

a in R0,
b in R1,
c in R2

in R0

char test(int a, char b,
char c)

a in R0,
b in R1,
c in R2

in R0

int test(int a) a in R0 in R0

int test(char a, char b,
char c, char d, char e)

a in R0,
b in R1,
c in R2,
d in [FP+20],
e in [FP+24]

in R0

int test(struct *a, int
b, int c)

a (addr) in R0,
b in R1,
c in R2

in R0

struct s2a {
char ta;
char ub;
int vc;}
int test(struct s2a x,
int b, int c)

x.ta and x.ub in R0,
x.vc in R1,
b in R2,
c in [FP+20]

in R0

struct foo *test(int a,
int b, int c)

a in R0,
b in R1,
c in R2

(address) in R0

void qsort(void *base,
int nel, int width, int
(*compare)(const void *,
const void *))

base(addr) in R0,
nel in R1,
width in R2,
compare(addr) in [FP+20]
1-150 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
Using Data Storage Formats
The C/C++ run-time environment uses the data formats that appear in the
Table 1-18 and Figure 1-7.

struct s2 {
char t;
char u;
int v;
}
struct s2 test(int a,
int b, int c)

a in R0,
b in R1,
c in R2

in R0 (s.t and s.u)
and in R1 (s.v)

struct s3 {
char t;
char u;
int v;
int w;
}
struct s3 test(int a,
int b, int c)

a in R0,
b in R1,
c in R2

in *P0 (based on value
of P0 at the call, not
necessarily at the
return)

Table 1-18. Data Storage Formats and Data Type Sizes

Applied Type Number Representation

char 8-bit two’s complement

unsigned char 8-bit unsigned magnitude

short int 16-bit two’s complement

unsigned short int 16-bit unsigned magnitude

int 32-bit two’s complement

unsigned int 32-bit unsigned magnitude

long int 32-bit two’s complement

unsigned long int 32-bit unsigned magnitude

Table 1-17. Examples of Parameter Passing (Cont’d)
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-151
for Blackfin Processors

C/C++ Run-Time Model and Environment
float 32-bit IEEE single-precision

double 32-bit IEEE single-precision

Figure 1-7. Data Storage Format for Float and Double Types

Table 1-18. Data Storage Formats and Data Type Sizes (Cont’d)

Applied Type Number Representation

Single word (32-bits)

Bits 30 Through 23
(8-Bit Exponent,
Biased By +127)

Bit 31
(Sign Bit)

Bits 22 Through 0
(Mantissa)

The single word (32-Bit) data storage format equates to:

-1Sign × 1.Mantissa × 2(Exponent - 127)

Where:

Sign Comes from the sign bit

Mantissa Represents the fractional part of
the Mantissa (23-Bits). The 1. is
assumed in this format

Exponent Represents the 8-Bit exponent
1-152 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
Basic Startup Code Sequence
The basic startup code is an assembly language procedure that initializes
the processor and sets up processor features to support the C run-time
environment. The source code for the default run-time header is in the
basiccrt.s file.

The run-time initialization code performs these operations:

1. Resets registers.

2. Initializes Event Vector Table.
For supervisor mode, the startup code installs a vector for IVG15, so
that the processor can be switched to lowest supervisor priority.

For user mode, the startup code installs an exception handler for
File I/O and similar requests. All other entries are cleared.

3. Sets up a stack pointer, including user-mode stack pointer if
needed, and enables the cycle counter.

4. Invokes the run-time data initialization routines, to initialize global
data.

5. Initializes File I/O support.

6. Invokes the CPLB and cache initialization routines, if requested.

7. Enables interrupts. For supervisor mode, only IVG15 is enabled; for
user mode, all interrupts are enabled.

8. Switches processor mode from the Reset priority to IVG15 (lowest
supervisor mode priority) or to user mode.

9. Initializes profiling, if necessary.

10.Initializes C/C++ library internal mutexs if multi-threaded support
is enabled.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-153
for Blackfin Processors

C/C++ Run-Time Model and Environment
11.Initializes any global C++ objects and records a destruction call for
cleanup at program exit.

12.Initializes argc and the argv array.

13.Calls main() to start the actual program.

14.Calls exit().

15.The atexit functions flush any accumulated profiling data, and
close down File I/O.
1-154 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
C/C++ and Assembly Interface
This section describes how to call assembly language subroutines from
within C/C++ programs, and how to call C/C++ functions from within
assembly language programs. Before attempting to perform either of these
operations, familiarize yourself with the information about the C/C++
run-time model (including details about the stack, data types, and how
arguments are handled) in “C/C++ Run-Time Model and Environment”
on page 1-135. At the end of this reference, a series of examples demon-
strate how to mix C/C++ and assembly code.

This section describes:

• “Calling Assembly Subroutines from C/C++ Programs”

• “Calling C/C++ Functions from Assembly Programs” on
page 1-157

Calling Assembly Subroutines from C/C++
Programs

Before calling an assembly language subroutine from a C/C++ program,
create a prototype to define the arguments for the assembly language sub-
routine and the interface from the C/C++ program to the assembly
language subroutine. Even though it is legal to use a function without a
prototype in C/C++, prototypes are a strongly recommended practice for
good software engineering. When the prototype is omitted, the compiler
cannot perform argument type checking and assumes that the return value
is of type integer and uses K&R promotion rules instead of ANSI promo-
tion rules.

The compiler prefaces the name of any external entry point with an
underscore. Therefore, declare your assembly language subroutine’s name
with a leading underscore.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-155
for Blackfin Processors

C/C++ and Assembly Interface
The run-time model defines some registers as scratch registers and others
as preserved or dedicated registers. Scratch registers can be used within the
assembly language program without worrying about their previous con-
tents. If more room is needed (or an existing code is used) and you wish to
use the preserved registers, you must save their contents and then restore
those contents before returning.

� Do not use the dedicated or stack registers for other than their
intended purpose; the compiler, libraries, debugger, and interrupt
routines depend on having a stack available as defined by those
registers.

The compiler also assumes the machine state does not change during exe-
cution of the assembly language subroutine.

� Do not change any machine modes (for example, certain registers
may be used to indicate circular buffering when those register val-
ues are nonzero).

If arguments are on the stack, they are addressed via an offset from the
stack pointer or frame pointer. A good way to explore how arguments are
passed between a C/C++ program and an assembly language subroutine is
to write a dummy function in C/C++ and compile it using the
save temporary files option (the -save-temps command-line switch).

The following example includes the global volatile variable assignments to
indicate where the arguments can be found upon entry to asmfunc.

// Sample file for exploring compiler interface …
// global variables … assign arguments there just so
// we can track which registers were used
// (type of each variable corresponds to one of arguments):

int global_a;
float global_b;
int * global_p;

// the function itself:

1-156 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
int asmfunc(int a, float b, int * p)
{

// do some assignments so .s file will show where args are:
global_a = a;
global_b = b;
global_p = p;

// value gets loaded into the return register:
return 12345;

}

When compiled with the -save-temps option set, this produces the
following:

_asmfunc:
link 4;
P1.L = .epcbss; P1.H = .epcbss;
[P1+ 0] = R0;
[P1+ 4] = R1;
[P1+ 8] = R2;
R0 = 12345 (X);
JUMP ._P1L2147483647;
JUMP ._P1L2147483647;

_P1L2147483647:
P0=[FP+ 4];
unlink;
JUMP (P0);

_asmfunc.end

Calling C/C++ Functions from Assembly Programs
You may want to call a C/C++ callable library and other functions from
within an assembly language program. As discussed in “Calling Assembly
Subroutines from C/C++ Programs” on page 1-155, you may want to cre-
ate a test function to do this in C/C++, and then use the code generated by
the compiler as a reference when creating your assembly language program
and the argument setup. Using volatile global variables may help clarify
the essential code in your test function.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-157
for Blackfin Processors

C/C++ and Assembly Interface
The run-time model defines some registers as scratch registers and others
as preserved or dedicated. The contents of the scratch registers may be
changed without warning by the called C/C++ function. If the assembly
language program needs the contents of any of those registers, you must
save their contents before the call to the C/C++ function and then restore
those contents after returning from the call.

� Do not use the dedicated registers for other than their intended
purpose; the compiler, libraries, debugger, and interrupt routines
all depend on having a stack available as defined by those registers.

Preserved registers can be used; their contents will not be changed by call-
ing a C/C++ function. The function will always save and restore the
contents of preserved registers if they are going to change.

If arguments are on the stack, they are addressed via an offset from the
stack pointer or frame pointer. Explore how arguments are passed between
an assembly language program and a function by writing a dummy func-
tion in C/C++ and compiling it with the save temporary files option
(the -save-temps command-line switch on on page 1-46). By examining
the contents of volatile global variables in *.s file, you can determine how
the C/C++ function passes arguments, and then duplicate that argument
setup process in the assembly language program.

The stack must be set up correctly before calling a C/C++ callable func-
tion. If you call other functions, maintaining the basic stack model also
facilitates the use of the debugger. The easiest way to do this is to define a
C/C++ main program to initialize the run-time system; maintain the stack
until it is needed by the C/C++ function being called from the assembly
language program; and then continue to maintain that stack until it is
needed to call back into C/C++. However, make sure the dedicated regis-
ters are correct. You do not need to set the FP prior to the call; the caller’s
FP is never used by the recipient.
1-158 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

Compiler
Using Mixed C/C++ and Assembly Naming Conventions

It is necessary to be able to use C/C++ symbols (function or variable
names) in assembly routines and use assembly symbols in C/C++ code.
This section describes how to name and use C/C++ and assembly symbols.

To name an assembly symbol that corresponds to a C/C++ symbol, add an
underscore prefix to the C/C++ symbol name when declaring the symbol
in assembly. For example, the C/C++ symbol main becomes the assembly
symbol _main.

To use a C/C++ function or variable in an assembly routine, declare it as
global in the C program. Import the symbol into the assembly routine by
declaring the symbol with the .GLOBAL assembler directive.

To use an assembly function or variable in your C/C++ program, declare
the symbol with the .GLOBAL assembler directive in the assembly routine
and import the symbol by declaring the symbol as extern in the C
program.

Table 1-19 shows several examples of the C/C++ and assembly interface
naming conventions.

Table 1-19. C/C++ Naming Conventions for Symbols

In the C/C++ Program In the Assembly Subroutine

int c_var; /*declared global*/ .global _c_var;
.type _c_var,STT_OBJECT;

void c_func(void); .global _c_func;
.type _c_func,STT_FUNC;

extern int asm_var; .global _asm_var;
.type _asm_var,STT_OBJECT;
.byte = 0x00,0x00,0x00,0x00

extern void asm_func(void); .global _asm_func;
.type _asm_func,STT_FUNC;
_asm_func:
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 1-159
for Blackfin Processors

C/C++ and Assembly Interface
1-160 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

2 C/C++ RUN-TIME LIBRARY

The C and C++ run-time libraries are collections of functions, macros,

and class templates that you can call from your source programs. The
libraries provide a broad range of services including those that are basic to
the languages such as memory allocation, character and string conversions,
and math calculations. Using the library simplifies your software develop-
ment by providing code for a variety of common needs.

This chapter contains:

• “C and C++ Run-Time Library Guide” on page 2-3
It provides introductory information about the ANSI/ISO stan-
dard C and C++ libraries. It also provides information about the
ANSI standard header files and built-in functions that are included
with this release of the ccblkfn compiler.

• “Documented Library Functions” on page 2-20
It tabulates the functions that are defined by ANSI standard header
files.

• “C Run-Time Library Reference” on page 2-23
It provides reference information about the C run-time library
functions included with this release of the ccblkfn compiler.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-1
for Blackfin Processors

The ccblkfn compiler provides a broad collection of library functions,
including those required by the ANSI standard and additional functions
supplied by Analog Devices that are of value in signal processing applica-
tions. In addition to the standard C library, this release of the compiler
software includes the abridged C++ library�a conforming subset of the
standard C++ library. The abridged C++ library includes the embedded
C++ and embedded standard template libraries

This chapter describes the standard C/C++ library functions in the current
release of the run-time libraries. Chapter 3, “DSP Run-Time Library”,
describes a number of signal processing, vector, matrix, and statistical
functions that assist DSP code development.

� For more information on the algorithms on which many of the C
library’s math functions are based, see Cody, W. J. and W. Waite,
Software Manual for the Elementary Functions, Englewood Cliffs,
New Jersey: Prentice Hall, 1980. For more information on the C++
library portion of the ANSI/ISO Standard for C++, see Plauger, P.
J. (Preface), The Draft Standard C++ Library, Englewood Cliffs,
New Jersey: Prentice Hall, 1994, (ISBN: 0131170031).

The C++ library reference information in HTML format is included on
the software distribution CD-ROM. To access the reference files from
VisualDSP++, use the Help Topics command (Help menu) and select the
Reference book icon. From the Online Manuals topic, you can open any
of the library files. You can also manually access the HTML files using a
web browser.
2-2 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
C and C++ Run-Time Library Guide
The C/C++ run-time libraries contain functions that you can call from
your source. This section describes how to use the library and provides
information on the following topics:

• “Calling Library Functions” on page 2-3

• “Using the Compiler’s Built-In Functions” on page 2-4

• “Linking Library Functions” on page 2-4

• “Working with Library Header Files” on page 2-7

• “Abridged C++ Library Support” on page 2-12

For information on the library’s contents, see “C Run-Time Library Ref-
erence” on page 2-23. For information on the Abridged C++ library’s
contents, see “Abridged C++ Library Support” on page 2-12 and on-line
Help

Calling Library Functions
Like other functions that you use, library functions should be declared.
Declarations are supplied in header files, as described in “Working with
Library Header Files” on page 2-7.

To use a C/C++ library function, call the function by name and give the
appropriate arguments. The names and arguments for each function
appear on the function’s reference page. These reference pages appear in
“C Run-Time Library Reference” on page 2-23.

� Function names are C/C++ function names. If you call a C or C++
run-time library function from an assembly program, you must use
the assembly version of the function name (prefix an underscore to
the name). For more information on the naming conventions, see
“C/C++ and Assembly Interface” on page 1-155.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-3
for Blackfin Processors

C and C++ Run-Time Library Guide
You can use the archiver (elfar), described in the VisualDSP++
3.1 Linker and Utilities Manual for Blackfin Processors, to build
library archive files of your own functions.

Using the Compiler�s Built-In Functions
The C/C++ compiler’s built-in functions are a set of functions that the
compiler immediately recognizes and replaces with inline assembly code
instead of a function call. Typically, inline assembly code is faster than a
library routine, and it does not incur the calling overhead. For example,
the absolute value function, abs(), is recognized by the compiler, which
subsequently replaces a call to the C/C++ run-time library version with an
in-line version.

To use built-in functions, include the appropriate headers in your source,
or your program build will fail at link time. If you want to use the C/C++
run-time library functions of the same name, compile using the
-no-builtin compiler switch (on page 1-36).

Linking Library Functions
The C/C++ run-time library is organized as a set of run-time libraries and
start-up files that are installed under the VisualDSP++ installation direc-
tory in the subdirectory Blackfin\lib. Table 2-1 contains a list of these
library files together with a brief description of their functions.

Table 2-1. C and C++ Library Files

Blackfin\lib Directory Description

bootup*.doj Jump to start symbol defined in the C/C++ run-time start-up
file.

crt*.doj C run-time start-up file which sets up system environment before
calling main()

crtn*.doj C++ cleanup file used for C++ constructors and destructors.
2-4 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
In general, several versions of each C/C++ run-time library component is
supplied in binary form; for example, variants are available for different
Blackfin architectures whilst other variants have been built for running in
a multi-threaded environment. Each version of a library or startup file is
distinguished by a different combination of filename suffices.

halt*.doj Debugging termination code for -flags-link -MDCMDLINE

idle*.doj Normal "termination" code that enters IDLE loop after "end" of
the application

libc*.dlb Primary ANSI C run-time library

libcpp*.dlb Primary ANSI C++ run-time library

libcpprt*.dlb C++ run-time support library

libdsp*.dlb DSP run-time library

libetsi*.dlb ETSI run-time support library

libio*.dlb Host-based I/O facilities, as described in“stdio.h” on page 2-11

libevent*.dlb Interrupt handler support library

lib*.dlb C/C++ run-time library routines that save context, such as
setjmp, longjmp, and exception handlers.

libprofile*.dlb Profile support routines

librt*.dlb C run-time support library; without File I/O

librt_fileio*.dlb C run-time support library, with File I/O

libsftflt*.dlb Floating-point emulation routines

libsmall*.dlb Supervisor mode support routines

prfflg0*.doj
prfflg1*.doj
prfflg2*.doj

Profiling initialization routines as selected by -p, -p1, and -p2
compiler options (see “-p[1|2]” on page 1-40)

Table 2-1. C and C++ Library Files (Cont’d)

Blackfin\lib Directory Description
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-5
for Blackfin Processors

C and C++ Run-Time Library Guide
Table 2-2 lists the filename suffices that may be used .

� For example, the C run-time library libc535mty.dlb has been
compiled with the “-csync” switch (see on page 1-26) for execution
on either an ADSP-BF535 or AD6532 processor, and has been
built for multi-threaded environments.

The C/C++ run-time library provides further variants of the start-up files
(crt*.doj) that have been built from a single source file (see “Default
Startup Code” on page 1-108). Table 2-3 shows the filename suffices that
are used to differentiate between different versions of this binary file.

Table 2-2. Filename Suffices

Filename Suffix Description

532 Compiled for execution on a ADSP-BF531, ADSP-BF532,
ADSP-BF533, or ADSP-DM102 processor

535 Compiled for execution on a ADSP-BF535 or AD6532 processor

mt Built for multi-thread environments

y Compiled with the -csync switch and avoid a possible hardware
anomaly associated with speculatively preloading data from memory

m3res Libraries that are compiled with the -reserve M3 switch and are usu-
ally used for running under an emulator (see Emulator documentation)

m3free Libraries that may use the M3 register and may not therefore be suitable
for running on an emulator.

Table 2-3. crt Filename Suffices

crt Filename Suffix Description

c Start-up file used for C++ applications

f Start-up file that enables file I/O support via stdio.h

p Start-up file used by applications that have been compiled with pro-
filing instrumentation

s Start-up file used by applications that run in supervisor mode.
2-6 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
� For example, the file crtcf535.doj is the startup file that enables
file I/O support and initializes a C++ application that has been
compiled to execute in user mode on either an ADSP-BF535 or
AD6532 processor.

When an application calls a C or C++ library function, the call creates a
reference that the linker resolves. One way to direct the linker to the loca-
tion of the appropriate run-time library is to use the default Linker
Description File (<your_target >.ldf). If a customized .LDF file is used to
link the application, then the appropriate library/libraries and start-up
files should be added to the .LDF file used by the project.

� Instead of modifying a customized .LDF file, the compiler's -l
switch can be used to specify which libraries should be searched by
the linker. For example, the switches -lc532 -lcpp532 -lcpprt532
will add the C library libc532.dlb as well as the C++ libraries
libcpp532.dlb and libcpprt532.dlb to the list of libraries that the
linker will examine. For more information on the .LDF file, see the
VisualDSP++ 3.1 Linker and Utilities Manual for Blackfin
Processors.

Working with Library Header Files
When using a library function in your program, also include the func-
tion’s header with the #include preprocessor command. The header file
for each function is identified in the Synopsis section of the function’s ref-
erence page. Header files contain function prototypes. The compiler uses
these prototypes to check that each function is called with the correct
arguments.

A list of the header files that are supplied with this release of the Blackfin
compiler appears in Table 2-4. You should use a C standard text to aug-
ment the information supplied in this chapter.

This section provides descriptions of the header files contained in the C
library. The header files are listed in alphabetical order.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-7
for Blackfin Processors

C and C++ Run-Time Library Guide
assert.h

The assert.h file contains the assert macro.

ctype.h

The ctype.h file contains functions for character handling, such as
isalpha, tolower, and so forth.

errno.h

The errno.h file provides access to errno. This facility is not, in general,
supported by the rest of the library.

Table 2-4. Standard C Run-Time Library Header Files

Header Purpose Standard

assert.h Diagnostics ANSI

ctype.h Character Handling ANSI

errno.h Error Handling ANSI

float.h Floating Point ANSI

limits.h Limits ANSI

locale.h Localization ANSI

math.h Mathematics ANSI

setjmp.h Non-Local Jumps ANSI

signal.h Signal Handling ANSI

stdarg.h Variable Arguments ANSI

stddef.h Standard Definitions ANSI

stdio.h Input/Output ANSI

stdlib.h Standard Library ANSI

string.h String Handling ANSI
2-8 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
float.h

The float.h file defines the format of floating-point data types. The
FLT_ROUNDS macro, defined in the header file, is set to the C run-time
environment definition of the rounding mode for float variables, which
is round-towards-nearest.

limits.h

The limits.h file contains definitions of maximum and minimum values
for each C data type other than a floating-point type.

locale.h

The locale.h file contains definitions for expressing numeric, monetary,
time, and other data.

math.h

The math.h file includes the floating-point mathematical functions of the
C run-time library. The mathematical functions are ANSI standard. The
math.h header file contains prototypes for functions used to calculate
mathematical properties of single-precision floating-type variables. On the
Blackfin processors, double and float are both single-precision float-
ing-point types. Additionally, some functions support a 16-bit fractional
data type.

The math.h file also defines the macro HUGE_VAL which evaluates to the
maximum positive value that the type double can support.

Some of the functions in this header file exist as both integer and floating
point. The floating-point functions typically have an f prefix. Make sure
you are using the correct one.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-9
for Blackfin Processors

C and C++ Run-Time Library Guide
� The C language provides for implicit type conversion, so the fol-
lowing sequence produces surprising results with no warnings:

float x,y;

y = abs(x);

The value in x is truncated to an integer prior to calculating the
absolute value, then reconverted to floating point for the assign-
ment to y.

setjmp.h

The setjmp.h file contains setjmp and longjmp for non-local jumps.

signal.h

The signal.h file provides function prototypes for the standard ANSI
signal.h routines. It also includes ANSI-standard signal handling func-
tions of the C library.

The signal handling functions process conditions (hardware signals) that
can occur during program execution. They determine the way C programs
respond to these signals. The functions are designed to process such sig-
nals as external interrupts and timer interrupts.

stdarg.h

The stdarg.h file contains definitions needed for functions that accept a
variable number of arguments. Callers of such functions must include a
prototype.

stddef.h

The stddef.h file contains a few common definitions useful for portable
programs, such as size_t.
2-10 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
stdio.h

The stdio.h file provides a simple interface with a host environment,
which may be a simulator or a debugger attached to a Blackfin processor
board. The stdio.h file supports the following functions:

• printf() to standard output

• fopen() of files on the host

• fprintf() to standard output, standard error, or host files opened
by fopen()

• fwrite() to standard output, standard error, or host files opened
by fopen()

• fread() from host files opened by fopen()

• fclose() of host files opened by fopen()

Standard output and standard error are interpreted as being the simula-
tor’s or debugger’s console window output.

All I/O operations are channeled through the C function _primIO(). The
assembly label has two underscores, __primIO. The _primIO() function
accepts no arguments. Instead, it examines the I/O control block at label
_primIOCB. Without external intervention by a host environment, the
_primIO routine simply returns, which indicates failure of the request.

When the host environment is providing I/O support, the host places a
break point at the start of _primIO(). Upon entry to _primIO(), the data
for the request will reside in a control block at the label _primIOCB. The
host arranges to intercept control when it enters the _primIO() routine,
and, after servicing the request, returns control to the calling routine.
See “File I/O Support” on page 1-110 for more information.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-11
for Blackfin Processors

C and C++ Run-Time Library Guide
stdlib.h

The stdlib.h file offers general utilities specified by the C standard.
These include some integer math functions, such as abs, div, and rand;
general string-to-numeric conversions; memory allocation functions, such
as malloc and free; and termination functions, such as exit. This library
also contains miscellaneous functions such as bsearch and qsort.

string.h

The string.h file contains string handling functions, including strcpy
and memcpy.

Abridged C++ Library Support
When in C++ mode, the compiler can call many functions from the
Abridged library, a conforming subset of the C++ library.

The Abridged Library has two major components: embedded C++ library
(EC++) and embedded standard template library (ESTL). The embedded
C++ library is a conforming implementation of the embedded C++ library
as specified by the Embedded C++ Technical Committee.

This section lists and briefly describes the following components of the
Abridged library:

• “Embedded C++ Library Header Files” on page 2-13

• “C++ Header Files for C Library Facilities” on page 2-15

• “Embedded Standard Template Library Header Files” on
page 2-16

For more information on the Abridged library, see online Help.
2-12 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
Embedded C++ Library Header Files

The following section provides a brief description of the header files in the
embedded C++ library.

complex

The complex header file defines a template that supports the complex class
and a set of arithmetic operators.

exception

The exception header file defines the exception and bad_exception
classes and several functions for exception handling.

fract

The fract header file defines the fract data type, which supports frac-
tional arithmetic, assignment, and type-conversion operations. The header
file is fully described under “Fractional Value Builtins in C++” on
page 1-86.

fstream

The fstream header file defines the filebuf, ifstream, and ofstream
classes for external file manipulations.

iomanip

The iomanip header file declares several iostream manipulators. Each
manipulator accepts a single argument.

ios

The ios header file defines several classes and functions for basic iostream
manipulations. Note that most of the iostream header files include ios.h.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-13
for Blackfin Processors

C and C++ Run-Time Library Guide
iosfwd

The iosfwd header file declares forward references to various iostream
template classes defined in other standard headers.

iostream

The iostream header file declares most of the iostream objects used for
the standard stream manipulations.

istream

The istream header file defines the istream class for iostream extractions.
Note that most of the iostream header files include istream.h.

new

The new header file declares several classes and functions for memory allo-
cations and decollations.

ostream

The ostream header file defines the ostream class for iostream insertions.

shortfract

The shortfract header file defines the shortfract data type, which sup-
ports fractional arithmetic, assignment, and type-conversion operations
using a 16-bit base type. The header file is fully described under “Frac-
tional Value Builtins in C++” on page 1-86.

sstream

The sstream header file defines the stringbuf, istringstream, and
ostringstream classes for various string object manipulations.
2-14 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
stdexcept

The stdexcept header file defines a variety of classes for exception
reporting.

streambuf

The streambuf header file defines the streambuf classes for basic opera-
tions of the iostream classes. Note that most of the iostream header files
include streambuf.h.

string

The string header file defines the string template and various supporting
classes and functions for string manipulations. Objects of the string
type should not be confused with the null-terminated C strings.

strstream

The strstream header file defines the strstreambuf, istrstream, and
ostream classes for iostream manipulations on allocated, extended, and
freed character sequences.

C++ Header Files for C Library Facilities

For each C standard library header there is a corresponding standard C++
header. If the name of a C standard library header file is foo.h, then the
name of the equivalent C++ header file will be cfoo. For example, the C++
header file cstdio provides the same facilities as the C header file stdio.h.

Table 2-5 lists the C++ header files that provide access to the C library
facilities.

Normally, the C standard headers files may be used to define names in the
C++ global namespace while the equivalent C++ header files define names
in the standard namespace. However, the standard namespace is not sup-
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-15
for Blackfin Processors

C and C++ Run-Time Library Guide
ported in this release of the compiler. Therefore, the effect of including
one of the C++ header files is the same as including the equivalent C stan-
dard library header file.

Embedded Standard Template Library Header Files

Templates and the associated header files are not part of the embedded
C++ standard library, but are supported by the compiler in C++ mode.
The embedded standard template library headers are:

Table 2-5. C++ Header Files for C Library Facilities

Header Description

cassert Enforces assertions during function executions.

cctype Classifies characters.

cerrno Tests error codes reported by library functions.

cfloat Tests floating-point type properties.

climits Tests integer type properties.

clocale Adapts to different cultural conventions.

cmath Provides common mathematical operations.

csetjmp Executes non-local goto statements.

csignal Controls various exceptional conditions.

cstdarg Accesses a various number of arguments.

cstddef Defines several useful data types and macros.

cstdio Performs input and output.

cstdlib Performs a variety of operations.

cstring Manipulates several kinds of strings.
2-16 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
algorithm

The algorithm header defines numerous common operations on
sequences.

deque

The deque header defines a deque template container.

functional

The functional header defines numerous function objects.

hash_map

The hash_map header defines two hashed map template containers.

hash_set

The hash_set header defines two hashed set template containers.

iterator

The iterator header defines common iterators and operations on
iterators.

list

The list header defines a list template container.

map

The map header defines two map template containers.

memory

The memory header defines facilities for managing memory.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-17
for Blackfin Processors

C and C++ Run-Time Library Guide
numeric

The numeric header defines several numeric operations on sequences.

queue

The queue header defines two queue template container adapters.

set

The set header defines two set template containers.

stack

The stack header defines a stack template container adapter.

utility

The utility header defines an assortment of utility templates.

vector

The vector header defines a vector template container.

The Embedded C++ library also includes several headers for compatibility
with traditional C++ libraries, such as:

fstream.h

Defines several iostreams template classes that manipulate external files.

iomanip.h

The iomanip.h header defines several iostreams manipulators that take a
single argument.
2-18 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
iostream.h

The iostream.h header declares the iostreams objects that manipulate the
standard streams.

new.h

The new.h header declares several functions that allocate and free storage.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-19
for Blackfin Processors

Documented Library Functions
Documented Library Functions
The C run-time library has several categories of functions and macros
defined by the ANSI C standard, plus extensions provided by Analog
Devices.

The following tables list the library functions documented in this chapter.
Note that the tables list the functions for each header file separately; how-
ever, the reference pages for these library functions present the functions
in alphabetical order.

Table 2-6. Library Functions in the ctype.h Header File

isalnum isalpha iscntrl

isdigit isgraph islower

isprint ispunct isspace

isupper isxdigit tolower

toupper

Table 2-7. Library Functions in the math.h Header File

acos asin atan

atan2 ceil cos

cosh exp fabs

floor fmod frexp

ldexp log log10

modf pow sin

sinh sqrt tan

tanh
2-20 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
Table 2-8. Library Functions in the setjmp.h Header File

longjmp setjmp

Table 2-9. Library Functions in the signal.h Header File

raise signal interrupt

Table 2-10. Library Functions in the stdarg.h Header File

va_arg va_end va_start

Table 2-11. Library Functions in the stdio.h Header File

fopen fclose fread

fwrite fprintf printf

Table 2-12. Library Functions in stdlib.h Header File

abort abs atexit

atof atoi atol

bsearch calloc div

exit free labs

ldiv malloc qsort

rand realloc srand

strtod strtol strtoul

Table 2-13. Library Functions in string.h Header File

memchr memcmp memcpy

memmove memset strcat

strchr strcmp strcoll

strcpy strcspn strerror
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-21
for Blackfin Processors

Documented Library Functions
strlen strncat strncmp

strncpy strpbrk strrchr

strspn strstr strtok

strxfrm

Table 2-13. Library Functions in string.h Header File (Cont’d)
2-22 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
C Run-Time Library Reference
The C run-time library is a collection of functions called from your C pro-
grams. Note the following items apply to all of the functions in the
library.

Notation Conventions.
An interval of numbers is indicated by the minimum and maximum, sepa-
rated by a comma, and enclosed in two square brackets, two parentheses,
or one of each. A square bracket indicates that the endpoint is included in
the set of numbers; a parenthesis indicates that the endpoint is not
included.

The reference pages for the library functions use the following format:

Name and purpose of the function

Synopsis—Required header file and functional prototype

Description—Function specification

Error Conditions—How the function indicates an error

Example—Typical function usage

See Also—Related functions
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-23
for Blackfin Processors

C Run-Time Library Reference
abort

abnormal program end

Synopsis

#include <stdlib.h>

void abort(void);

Description

The abort function causes an abnormal program termination by raising
the SIGABRT exception. If the SIGABRT handler returns, abort() calls
exit() to terminate the program with a failure condition.

Error Conditions

The abort function does not return.

Example

#include <stdlib.h>

extern int errors;

if(errors) /* terminate program if */

abort(); /* errors are present */

See Also

atexit, exit
2-24 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
abs

absolute value

Synopsis

#include <stdlib.h>

int abs(int j);

Description

The abs function returns the absolute value of its integer input.

Note: abs(INT_MIN) returns INT_MIN.

Error Conditions

The abs function does not return an error condition.

Example

#include <stdlib.h>

int i;

i = abs(-5); /* i == 5 */

See Also

fabs, labs
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-25
for Blackfin Processors

C Run-Time Library Reference
acos

arc cosine

Synopsis

#include <math.h>

double acos (double x);

float acosf (float x);

fract16 acos_fr16 (fract16 x);

Description

The acos function returns the arc cosine of x. The input must be in the
range [-1, 1]. The output, in radians, is in the range [0, π].

The acos_fr16 function is defined for fractional input values between 0
and 0.9. The input argument is in radians. The output from the function
is in radians and is in the range [acos(0)*2/π, acos(0.9)*2/π] .

Error Conditions

The acos function returns a zero if the input is not in the defined range.

Example

#include <math.h>

double y;

y = acos(0.0); /* y = π/2 */

See Also

cos
2-26 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
asin

arc sine

Synopsis

#include <math.h>

double asin (double x);

float asinf (float x);

fract16 asin_fr16(fract16 x);

Description

The asin function returns the arc sine of the argument. The input must
be in the range [-1, 1]. The output, in radians, is in the range [-π/2, π/2].

The asin_fr16 function is defined for fractional input values in the range
[-0.9, 0.9]. The input argument is in radians. The output from the func-
tion is in radians and is in the range [acos(-0.9)*2/π, acos(0.9)*2/π] .

Error Conditions

The asin function returns a zero if the input is not in the defined range.

Example

#include <math.h>

double y;

y = asin(1.0); /* y = π/2 */

See Also

sin
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-27
for Blackfin Processors

C Run-Time Library Reference
atan

arc tangent

Synopsis

#include <math.h>

double atan (double x);

float atanf (float x);

fract16 atan_fr16 (fract16 x);

Description

The atan function returns the arc tangent of the argument. The output, in
radians, is in the range [-π/2, π/2].

The atan_fr16 function is defined for fractional input values in the range
[-1.0, 1.0). The output from the function is in radians and is in the range
[-π/4, π/4].

Error Conditions

The atan function does not return an error condition.

Example

#include <math.h>

double y;

y = atan(0.0); /* y = 0.0 */

See Also

atan2, tan
2-28 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
atan2

arc tangent of quotient

Synopsis

#include <math.h>

double atan2 (double x, double y);

float atan2f (float x, float y);

fract16 atan2_fr16 (fract16 x, fract16 y);

Description

The atan2 function computes the arc tangent of the input value x divided
by input value y. The output, in radians, is in the range [-π, π].

The atan2_fr16 function is defined for fractional input values in the
range [-1.0, 1.0). The output, in radians, is scaled by π and is in the range
[-1.0, 1.0).

Error Conditions

The atan2 function returns a zero if x=0 and y <> 0.

Example

#include <math.h>

double a;

float b;

a = atan2 (0.0, 0.5); /* the error condition: a = 0.0 */

b = atan2f (1.0, 0.0); /* b = p/2 */

See Also

tan
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-29
for Blackfin Processors

C Run-Time Library Reference
atexit

register a function to call at program termination

Synopsis

#include <stdlib.h>

int atexit(void (*func)(void));

Description

The atexit function registers a function to be called at program termina-
tion. Functions are called once for each time they are registered, in the
reverse order of registration. Up to 32 functions can be registered using
atexit.

Error Conditions

The atexit function returns a non zero value if the function cannot be
registered.

Example

#include <stdlib.h>

extern void goodbye(void);

if (atexit(goodbye))

exit(1);

See Also

abort, exit
2-30 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
atof

convert string to a double

Synopsis

#include <stdlib.h>

double atof(const char *nptr);

Description

The atof function converts a character string to a double value. The char-
acter string to be converted is pointed to by the input pointer, nptr. The
function clears any leading characters for which isspace would return
true. Conversion begins at the first digit (with an optional preceding sign).
Conversion terminates at the first non-digit (exceptions are “.”, “e”, “E”,
and exponents, including the sign).

� There is no way to determine if a zero is a valid result or an indica-
tor of an invalid string.

Error Conditions

The atof function returns a zero if no conversion can be made.

Example

#include <stdlib.h>

double x;

x = atof("5.5"); /* x == 5.5 */

See Also

atoi, atol, strtol, strtoul
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-31
for Blackfin Processors

C Run-Time Library Reference
atoi

convert string to integer

Synopsis

#include <stdlib.h>

int atoi(const char *nptr);

Description

The atoi function converts a character string to an integer value. The
character string to be converted is pointed to by the input pointer, nptr.
The function clears any leading characters for which isspace would return
true. Conversion begins at the first digit (with an optional preceding sign)
and terminates at the first non-digit.

Error Conditions

The atoi function returns a zero if no conversion can be made.

Example

#include <stdlib.h>

int i;

i = atoi("5"); /* i == 5 */

See Also

atol, strtol, atof, strtoul
2-32 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
atol

convert string to long integer

Synopsis

#include <stdlib.h>

long atol(const char *nptr);

Description

The atol function converts a character string to a long integer value. The
character string to be converted is pointed to by the input pointer, nptr.
The function clears any leading characters for which isspace would return
true. Conversion begins at the first digit (with an optional preceding sign)
and terminates at the first non-digit.

� There is no way to determine if a zero is a valid result or an indica-
tor of an invalid string.

Error Conditions

The atol function returns a zero if no conversion can be made.

Example

#include <stdlib.h>

long int i;

i = atol("5"); /* i == 5 */

See Also

atoi, strtol, strtoul, atof
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-33
for Blackfin Processors

C Run-Time Library Reference
bsearch

perform binary search in a sorted array

Synopsis

#include <stdlib.h>

void *bsearch(const void *key, const void *base,

size_t nelem, size_t size,

int (*compare)(const void *, const void *));

Description

The bsearch function executes a binary search operation on a presorted
array, where:

• key points to the element to search for

• base points to the start of the array

• nelem is the number of elements in the array

• size is the size of each element of the array

• *compare points to the function used to compare two elements.
It takes two parameters�a pointer to the key, and a pointer to an
array element. It should return a value less than, equal to, or
greater than zero, according to whether the first parameter is less
than, equal to, or greater than the second.

The bsearch function returns a pointer to the first occurrence of key in
the array.

Error Conditions

The bsearch function returns a null pointer when the key is not found in
the array.
2-34 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
Example

#include <stdlib.h>

char *answer;

char base[50][3];

answer = bsearch("g", base, 50, 3, strcmp);

See Also

qsort
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-35
for Blackfin Processors

C Run-Time Library Reference
calloc

allocate and initialize memory

Synopsis

#include <stdlib.h>

void *calloc(size_t nmemb, size_t size);

Description

The calloc function dynamically allocates a range of memory and initial-
izes all locations to zero. The number of elements (the first argument)
multiplied by the size of each element (the second argument) is the total
memory allocated. The memory may be deallocated with the free
function.

Error Conditions

The calloc function returns a null pointer if unable to allocate the
requested memory.

Example

#include <stdlib.h>

int *ptr;

ptr = (int *) calloc(10, sizeof(int));

/* ptr points to a zeroed array of length 10 */

See Also

free, malloc, realloc
2-36 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
ceil

ceiling

Synopsis

#include <math.h>

double ceil(double f);

float ceilf(float f);

Description

The ceil function returns the smallest integral value that is not less than
its input.

Error Conditions

The ceil function does not return an error condition.

Example

#include <math.h>

double y;

y = ceil(1.05); /* y = 2.0 */

See Also

floor
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-37
for Blackfin Processors

C Run-Time Library Reference
cos

cosine

Synopsis

#include <math.h>

double cos(double x);

float cosf (float x);

fract16 cos_fr16 (fract16 x);

Description

The cos function returns the cosine of the argument. The input is inter-
preted as radians; the output is in the range [-1, 1].

The cos_fr16 function inputs a fractional value in the range [-1.0, 1.0)
corresponding to [-π/2, π/2]. The domain represents half a cycle which
can be used to derive a full cycle if required. The result, in radians, is in
the range [-1.0, 1.0).

Error Conditions

The cos function does not return an error condition.

Example

#include <math.h>

double y;

y = cos(3.14159); /* y = -1.0 */

See Also

acos, sin
2-38 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
cosh

hyperbolic cosine

Synopsis

#include <math.h>

double cosh(double x);

float coshf (float x);

Description

The cosh function returns the hyperbolic cosine of its argument.

Error Conditions

The cosh function returns the constant HUGE_VAL if the argument is out-
side the domain.

Example

#include <math.h>

double y;

y = cosh(x);

See Also

sinh
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-39
for Blackfin Processors

C Run-Time Library Reference
div

division

Synopsis

#include <stdlib.h>

div_t div(int numer, int denom);

Description

The div function divides numer by denom, both of type int, and returns a
structure of type div_t. The type div_t is defined as

typedef struct {

int quot;

int rem;

} div_t;

where quot is the quotient of the division and rem is the remainder, such
that if result is of type div_t,

result.quot * denom + result.rem == numer

Error Conditions

If denom is zero, the behavior of the div function is undefined.

Example

#include <stdlib.h>

div_t result;

result = div(5, 2); /* result.quot=2, result.rem=1 */

See Also

ldiv, fmod, modf
2-40 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
exit

normal program termination

Synopsis

#include <stdlib.h>

void exit(int status);

Description

The exit function causes normal program termination. The functions
registered by the atexit function are called in reverse order of their regis-
tration and the microprocessor is put into the IDLE state. The status
argument is stored in register R0, and control is passed to the label
___lib_prog_term, which is defined in the run-time header.

Error Conditions

The exit function does not return an error condition.

Example

#include <stdlib.h>

exit(EXIT_SUCCESS);

See Also

atexit, abort
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-41
for Blackfin Processors

C Run-Time Library Reference
exp

exponential

Synopsis

#include <math.h>

double exp(double f);

float expf (float f);

Description

The exp function computes the exponential value e to the power of its
argument.

Error Conditions

The exp function returns the value HUGE_VAL if the argument f is greater
than the function’s domain. The exp function returns a zero when the
argument is less than its domain.

Example

#include <math.h>

double y;

y = exp(1.0); /* y = 2.71828... */

See Also

pow, log
2-42 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
fabs

float absolute value

Synopsis

#include <math.h>

double fabs(double f);

float fabsf(float f);

Description

The fabs function returns the absolute value of the argument.

Error Conditions

The fabs function does not return an error condition.

Example

#include <math.h>

double y;

y = fabs(-2.3); /* y = 2.3 */

y = fabs(2.3); /* y = 2.3 */

See Also

abs, labs
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-43
for Blackfin Processors

C Run-Time Library Reference
floor

floor

Synopsis

#include <math.h>

double floor(double f);

float floorf (float f);

Description

The floor function returns the largest integral value that is not greater
than its input.

Error Conditions

The floor function does not return an error condition.

Example

#include <math.h>

double y;

y = floor(1.25); /* y = 1.0 */

y = floor(-1.25); /* y = -2.0 */

See Also

ceil
2-44 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
fmod

floating-point modulus

Synopsis

#include <math.h>

double fmod(double numer, double denom);

float fmodf (float numer, float denom);

Description

The fmod function computes the floating-point remainder that results
from dividing the second argument into the first argument. This value is
less than the second argument and has the same sign as the first argument.
If the second argument is equal to zero, fmod returns a zero.

Error Conditions

The fmod function does not return an error condition.

Example

#include <math.h>

double y;

y = fmod(5.0, 2.0); /* y = 1.0 */

See Also

div, ldiv, modf
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-45
for Blackfin Processors

C Run-Time Library Reference
free

deallocate memory

Synopsis

#include <stdlib.h>

void free(void *ptr);

Description

The free function deallocates a pointer previously allocated to a range of
memory (by calloc or malloc) to the free memory heap. If the pointer
was not previously allocated by calloc, malloc or realloc, the behavior is
undefined.

The free function returns the allocated memory to the heap from which it
was allocated.

Error Conditions

The free function does not return an error condition.

Example

#include <stdlib.h>

char *ptr;

ptr = malloc(10); /* Allocate 10 words from heap */

free(ptr); /* Return space to free heap */

See Also

calloc, malloc, realloc
2-46 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
frexp

separate fraction and exponent

Synopsis

#include <math.h>

double frexp(double f, int *expptr);

float frexpf (float f, int *expptr);

Description

The frexp function separates a floating-point input into a normalized
fraction and a (base 2) exponent. The function returns a fraction which is
in the interval [½, 1), and stores a power of 2 in the integer pointed to by
the second argument. If the input is zero, then zeros are stored in both
arguments.

Error Conditions

The frexp function does not return an error condition.

Example

#include <math.h>

double y;

int exponent;

y = frexp(2.0, &exponent); /* y=0.5, exponent=2 */

See Also

modf
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-47
for Blackfin Processors

C Run-Time Library Reference
interrupt

define interrupt handling

Synopsis

#include <signal.h>

void (*interrupt (int sig, void(*func)(int))) (int);

Description

The interrupt function determines how a signal received during program
execution is handled. The interrupt function executes the function
pointed to by func at every signal sig; the signal function executes the
function only once.

The func argument must be one of the values listed in Table 2-14. The
interrupt function causes the receipt of the signal number sig to be han-
dled in one of the following ways.

The function pointed to by func is executed each time the interrupt is
received. The interrupt function must be called with the SIG_IGN argu-
ment to disable interrupt handling. The sig argument may be any of the
signals shown in Table 2-15 which lists the supported signals in interrupt
priority order from highest to lowest.

See Also

raise, signal

Table 2-14. Interrupt Handling

Func Value Action

SIG_DFL The default action is taken.

SIG_IGN The signal is ignored.

Function address The function pointed to by func is executed.
2-48 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
isalnum

detect alphanumeric character

Synopsis

#include <ctype.h>

int isalnum(int c);

Description

The isalnum function determines whether the argument is an alphanu-
meric character (A-Z, a-z, or 0-9). If the argument is not alphanumeric,
isalnum returns a zero. If the argument is alphanumeric, isalnum returns a
nonzero value.

Error Conditions

The isalnum function does not return any error conditions.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

printf("%3s", isalnum(ch) ? "alphanumeric" : "");

putchar(‘\n’);

}

See Also

isalpha, isdigit
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-49
for Blackfin Processors

C Run-Time Library Reference
isalpha

detect alphabetic character

Synopsis

#include <ctype.h>

int isalpha(int c);

Description

The isalpha function determines whether the input is an alphabetic char-
acter (A-Z or a-z). If the input is not alphabetic, isalpha returns a zero. If
the input is alphabetic, isalpha returns a nonzero value.

Error Conditions

The isalpha function does not return any error conditions.

Example

#include <ctype.h>
int ch;
for (ch=0; ch<=0x7f; ch++) {

printf(“%#04x”, ch);
printf(“%2s”, isalpha(ch) ? “alphabetic” : “”);
putchar(‘\n’);

}

See Also

isalnum, isdigit
2-50 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
iscntrl

detect control character

Synopsis

#include <ctype.h>

int iscntrl(int c);

Description

The iscntrl function determines whether the argument is a control char-
acter (0x00-0x1F or 0x7F). If the argument is not a control character,
iscntrl returns a zero. If the argument is a control character, iscntrl
returns a nonzero value.

Error Conditions

The iscntrl function does not return any error conditions.

Example

#include <ctype.h>
int ch;

for (ch=0; ch<=0x7f; ch++) {
printf("%#04x", ch);
printf("%2s", iscntrl(ch) ? "control" : "");
putchar(‘\n’);

}

See Also

isalnum, isgraph
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-51
for Blackfin Processors

C Run-Time Library Reference
isdigit

detect decimal digit

Synopsis

#include <ctype.h>

int isdigit(int c);

Description

The isdigit function determines whether the input character is a decimal
digit (0-9). If the input is not a digit, isdigit returns a zero. If the input is
a digit, isdigit returns a nonzero value.

Error Conditions

The isdigit function does not return an error condition.

Example

#include <ctype.h>
int ch;
for (ch=0; ch<=0x7f; ch++) {

printf(“%#04x”, ch);
printf(“%2s”, isdigit(ch) ? “digit” : “”);
putchar(‘\n’);

}

See Also

isalpha, isxdigit
2-52 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
isgraph

detect printable character, not including white space

Synopsis

#include <ctype.h>

int isgraph(int c);

Description

The isgraph function determines whether the argument is a printable
character, not including white space (0x21-0x7e). If the argument is not a
printable character, isgraph returns a zero. If the argument is a printable
character, isgraph returns a nonzero value.

Error Conditions

The isgraph function does not return any error conditions.

Example

#include <ctype.h>
int ch;

for (ch=0; ch<=0x7f; ch++) {
printf("%#04x", ch);
printf("%2s", isgraph(ch) ? "graph" : "");
putchar(‘\n’);

}

See Also

isalnum, iscntrl, isprint
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-53
for Blackfin Processors

C Run-Time Library Reference
islower

detect lowercase character

Synopsis

#include <ctype.h>

int islower(int c);

Description

The islower function determines whether the argument is a lowercase
character (a-z). If the argument is not lowercase, islower returns a zero. If
the argument is lowercase, islower returns a nonzero value.

Error Conditions

The islower function does not return any error conditions.

Example

#include <ctype.h>
int ch;

for (ch=0; ch<=0x7f; ch++) {
printf("%#04x", ch);
printf("%2s", islower(ch) ? "lowercase" : "");
putchar(‘\n’);

}

See Also

isalpha, isupper
2-54 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
isprint

detect printable character

Synopsis

#include <ctype.h>

int isprint(int c);

Description

The isprint function determines whether the argument is a printable
character (0x20-0x7E). If the argument is not a printable character,
isprint returns a zero. If the argument is a printable character, isprint
returns a nonzero value.

Error Conditions

The isprint function does not return any error conditions.

Example

#include <ctype.h>
int ch;

for (ch=0; ch<=0x7f; ch++) {
printf("%#04x", ch);
printf("%3s", isprint(ch) ? "printable" : "");
putchar(‘\n’);

}

See Also

isgraph, isspace
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-55
for Blackfin Processors

C Run-Time Library Reference
ispunct

detect punctuation character

Synopsis

#include <ctype.h>

int ispunct(int c);

Description

The ispunct function determines whether the argument is a punctuation
character. If the argument is not a punctuation character, ispunct returns
a zero. If the argument is a punctuation character, ispunct returns a non-
zero value.

Error Conditions

The ispunct function does not return any error conditions.

Example

#include <ctype.h>
int ch;

for (ch=0; ch<=0x7f; ch++) {
printf("%#04x", ch);
printf("%3s", ispunct(ch) ? "punctuation" : "");
putchar(‘\n’);

}

See Also

isalnum
2-56 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
isspace

detect whitespace character

Synopsis

#include <ctype.h>

int isspace(int c);

Description

The isspace function determines whether the argument is a blank white
space character (0x09-0x0D or 0x20). This includes space (), form feed
(\f), new line (\n), carriage return (\r), horizontal tab (\t), and vertical
tab (\v). If the argument is not a blank space character, isspace returns a
zero. If the argument is a blank space character, isspace returns a nonzero
value.

Error Conditions

The isspace function does not return any error conditions.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

printf("%2s", isspace(ch) ? "space" : "");

putchar(‘\n’);

}

See Also

iscntrl, isgraph
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-57
for Blackfin Processors

C Run-Time Library Reference
isupper

detect uppercase character

Synopsis

#include <ctype.h>

int isupper(int c);

Description

The isupper function determines whether the argument is an uppercase
character (A-Z). If the argument is not an uppercase character, isupper
returns a zero. If the argument is an uppercase character, isupper returns a
nonzero value.

Error Conditions

The isupper function does not return any error conditions.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

printf("%2s", isupper(ch) ? "uppercase" : "");

putchar(‘\n’);

}

See Also

isalpha, islower
2-58 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
isxdigit

detect hexadecimal digit

Synopsis

#include <ctype.h>

int isxdigit(int c);

Description

The isxdigit function determines whether the argument character is a
hexadecimal digit character (A-F, a-f, or 0-9). If the argument is not a
hexadecimal digit, isxdigit returns a zero. If the argument is a hexadeci-
mal digit, isxdigit returns a non-zero value.

Error Conditions

The isxdigit function does not return any error conditions.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

printf("%2s", isxdigit(ch) ? "hexadecimal" : "");

putchar(‘\n’);

}

See Also

isalnum, isdigit
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-59
for Blackfin Processors

C Run-Time Library Reference
labs

long integer absolute value

Synopsis

#include <stdlib.h>

long int labs(long int j);

Description

The labs function returns the absolute value of its integer input.

Error Conditions

The labs function does not return an error condition.

Example

#include <stdlib.h>

long int j;

j = labs(-285128); /* j = 285128 */

See Also

abs, fabs
2-60 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
ldexp

multiply by power of 2

Synopsis

#include <math.h>

double ldexp(double x, int n);

float ldexpf(float x, int n);

Description

The ldexp function returns the value of the floating-point input multi-
plied by 2 raised to the power of n. It adds the value of n to the exponent
of x.

Error Conditions

If the result overflows, ldexp returns HUGE_VAL with the proper sign and
sets errno to ERANGE. If the result underflows, a zero is returned.

Example

#include <math.h>

double y;

y = ldexp(0.5, 2); /* y = 2.0 */

See Also

exp, pow
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-61
for Blackfin Processors

C Run-Time Library Reference
ldiv

division

Synopsis

#include <stdlib.h>

ldiv_t ldiv(long int numer, long int denom);

Description

The ldiv function divides numer by denom, and returns a structure of type
ldiv_t. The type ldiv_t is defined as:

typedef struct {

long int quot;

long int rem;

} ldiv_t;

where quot is the quotient of the division and rem is the remainder, such
that if result is of type ldiv_t:

result.quot * denom + result.rem = numer

Error Conditions

If denom is zero, the behavior of the ldiv function is undefined.

Example

#include <stdlib.h>

ldiv_t result;

result = ldiv(7, 2); /* result.quot=3, result.rem=1 */

See Also

div, fmod
2-62 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
log

natural logarithm

Synopsis

#include <math.h>

double log(double);

float logf (float f);

Description

The log function computes the natural (base e) logarithm of its input.

Error Conditions

The log function returns -HUGE_VAL if the input is zero or negative.

Example

#include <math.h>

double y;

y = log(1.0); /* y = 0.0 */

See Also

exp, log10
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-63
for Blackfin Processors

C Run-Time Library Reference
log10

base 10 logarithm

Synopsis

#include <math.h>

double log10(double f);

float log10f (float f);

Description

The log10 function returns the base 10 logarithm of its input.

Error Conditions

The log10 function returns -HUGE_VAL if the input is zero or negative.

Example

#include <math.h>

double y;

y = log10(100.0); /* y = 2.0 */

See Also

log, pow
2-64 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
longjmp

second return from setjmp

Synopsis

#include <setjmp.h>

void longjmp(jmp_buf env, int return_val);

Description

The longjmp function causes the program to execute a second return from
the place where setjmp (env) was called (with the same jmp_buf
argument).

The longjmp function takes as its arguments a jump buffer that contains
the context at the time of the original call to setjmp. It also takes an inte-
ger, return_val, which setjmp returns if return_val is nonzero.
Otherwise, setjmp returns a 1.

If env was not initialized through a previous call to setjmp or the function
that called setjmp has since returned, the behavior is undefined. Also,
automatic variables that are local to the original function calling setjmp,
that do not have volatile qualified type, and that have changed their
value prior to the longjmp call, have indeterminate value.

Error Conditions

The longjmp function does not return an error condition.

Example

#include <setjmp.h>
#include <stdio.h>
#include <errno.h>
#include <stdlib.h>
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-65
for Blackfin Processors

C Run-Time Library Reference
jmp_buf env;
int res;

if ((res == setjmp(env)) != 0) {
printf ("Problem %d reported by func ()", res);
exit (EXIT_FAILURE);

}
func ();

void func (void)
{

if (errno != 0) {
longjmp (env, errno);

}
}

See Also

setjmp
2-66 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
malloc

allocate memory

Synopsis

#include <stdlib.h>

void *malloc(size_t size);

Description

The malloc function returns a pointer to a block of memory of length
size. The block of memory is not initialized.

Error Conditions

The malloc function returns a null pointer if it is unable to allocate the
requested memory.

Example

#include <stdlib.h>

int *ptr;

ptr = (int *)malloc(10); /* ptr points to an */

/* array of length 10 */

See Also

calloc, realloc, free
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-67
for Blackfin Processors

C Run-Time Library Reference
memchr

find first occurrence of character

Synopsis

#include <string.h>

void *memchr(const void *s1, int c, size_t n);

Description

The memchr function compares the range of memory pointed to by s1 with
the input character c and returns a pointer to the first occurrence of c. A
null pointer is returned if c does not occur in the first n characters.

Error Conditions

The memchr function does not return an error condition.

Example

#include <string.h>

char *ptr;

ptr= memchr("TESTING", ‘E’, 7);
/* ptr points to the E in TESTING */

See Also

strchr, strrchr
2-68 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
memcmp

compare objects

Synopsis

#include <string.h>

int memcmp(const void *s1, const void *s2, size_t n);

Description

The memcmp function compares the first n characters of the objects pointed
to by s1 and s2. It returns a positive value if the s1 object is lexically
greater than the s2 object, a negative value if the s2 object is lexically
greater than the s1 object, and a zero if the objects are the same.

Error Conditions

The memcmp function does not return an error condition.

Example

#include <string.h>

char string1 = “ABC”;

char string2 = “BCD”;

int result;

result = memcmp (string1, string2, 3); /* result < 0 */

See Also

strcmp, strcoll, strncmp
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-69
for Blackfin Processors

C Run-Time Library Reference
memcpy

copy characters from one object to another

Synopsis

#include <string.h>

void *memcpy(void *s1, const void *s2, size_t n);

Description

The memcpy function copies n characters from the object pointed to by s2
into the object pointed to by s1. The behavior of memcpy is undefined if
the two objects overlap.

The memcpy function returns the address of s1.

Error Conditions

The memcpy function does not return an error condition.

Example

#include <string.h>

char *a = “SRC”;

char *b = “DEST”;

memcpy (b, a, 3); /* *b=”SRC” */

See Also

memmove, strcpy, strncpy
2-70 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
memmove

copy characters from one object to another

Synopsis

#include <string.h>

void *memmove(void *s1, const void *s2, size_t n);

Description

The memmove function copies n characters from the object pointed to by s2
into the object pointed to by s1. The entire object is copied correctly even
if the objects overlap.

The memmove function returns a pointer to s1.

Error Conditions

The memmove function does not return an error condition.

Example

#include <string.h>

char *ptr, *str = "ABCDE";

ptr = str + 2;

memmove(ptr, str, 5); /* *ptr = "ABCDE" */

See Also

memcpy, strcpy, strncpy
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-71
for Blackfin Processors

C Run-Time Library Reference
memset

set range of memory to a character

Synopsis

#include <string.h>

void *memset(void *s1, int c, size_t n);

Description

The memset function sets a range of memory to the input character c. The
first n characters of s1 are set to c.

The memset function returns a pointer to s1.

Error Conditions

The memset function does not return an error condition.

Example

#include <string.h>

char string1[50];

memset(string1, ‘\0’, 50); /* set string1 to 0 */

See Also

memcpy
2-72 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
modf

separate integral and fractional parts

Synopsis

#include <math.h>

double modf(double f, double *fraction);

float modff (float f, float *fraction);

Description

The modf function separates the first argument into integral and fractional
portions. The fractional portion is returned and the integral portion is
stored in the object pointed to by the second argument. The integral and
fractional portions have the same sign as the input.

Error Conditions

The modf function does not return an error condition.

Example

#include <math.h>

double y, n;

y = modf(-12.345, &n); /* y = -0.345, n = -12.0 */

See Also

frexp
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-73
for Blackfin Processors

C Run-Time Library Reference
pow

raise to a power

Synopsis

#include <math.h>

double pow(double f, double y);

float powf (float f, float y);

Description

The pow function computes the value of the first argument raised to the
power of the second argument.

Error Conditions

The function returns zero when the first argument x is zero and the second
argument y is not an integral value. When x is zero and y is less than zero,
or when the result cannot be represented, then the function will return the
constant HUGE_VAL.

Example

#include <math.h>

double z;

z = pow(4.0, 2.0); /* z = 16.0 */

See Also

exp, ldexp
2-74 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
qsort

quicksort

Synopsis

#include <stdlib.h>

void qsort (void *base, size_t nelem, size_t size,

 int (*compare) (const void *, const void *));

Description

The qsort function sorts an array of nelem objects, pointed to by base.
Each object is specified by its size.

The contents of the array are sorted into ascending order according to a
comparison function pointed to by compare, which is called with two
arguments that point to the objects being compared. The function returns
an integer less than, equal to, or greater than zero if the first argument is
considered to be respectively less than, equal to, or greater than the
second.

If two elements compare as equal, their order in the sorted array is unspec-
ified. The qsort function executes a binary search operation on a
presorted array. Note that:

• base points to the start of the array.

• nelem is the number of elements in the array.

• size is the size of each element of the array.

• compare is a pointer to a function that is called by qsort to com-
pare two elements of the array. The function should return a value
less than, equal to, or greater than zero, according to whether the
first argument is less than, equal to, or greater than the second.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-75
for Blackfin Processors

C Run-Time Library Reference
Error Condition

The qsort function returns no value.

Example

#include <stdlib.h>

float a[10];

int compare_float (const void *a, const void *b)

{

float aval = *(float *)a;

float bval = *(float *)b;

if (aval < bval)

return -1;

else if (aval == bval)

return 0;

else

return 1;

}

qsort (a, sizeof (a)/sizeof (a[0]), sizeof (a[0]),compare_float);

See Also

bsearch
2-76 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
raise

force a signal

Synopsis

#include <signal.h>

int raise(int sig);

Description

This function is an Analog Devices extension to the ANSI standard.

The raise() function sends the signal sig to the executing program. The
raise function forces interrupts wherever possible and simulates an inter-
rupt otherwise. The sig argument must be one of the signals listed in
priority order in Table 2-15.

Table 2-15. Raise Function Signals — Values and Meanings

Sig Value Definition

SIGEMU emulation trap

SIGRSET machine reset

SIGNMI non-maskable interrupt

SIGEVNT event vectoring

SIGHW hardware error

SIGTIMR timer events
Note that SIGALRM is mapped onto the signal SIGTIMR

SIGIVG7 - SIGIVG15 miscellaneous interrupts
Note that:
SIGUSR1 is mapped onto the signal SIGIVG15
SIGUSR2 is mapped onto the signal SIGIVG14

SIGINT software interrupt

SIGILL software interrupt
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-77
for Blackfin Processors

C Run-Time Library Reference
When an interrupt is forced, the current ISR registered in the Event Vec-
tor Table is invoked. Normally, this is a dispatcher installed by signal(),
which saves the context before invoking the signal handler, and restores it
afterwards.

When an interrupt is simulated, raise() calls the registered signal handler
directly.

Error Conditions

The raise() function returns a zero if successful, a nonzero value if it
fails.

Example

#include <signal.h>

raise(SIGABRT);

See Also

interrupt, signal

SIGBUS software interrupt

SIGFPE software interrupt

SIGSEGV software interrupt

SIGTERM software interrupt

SIGABRT software interrupt

Table 2-15. Raise Function Signals — Values and Meanings

Sig Value Definition
2-78 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
rand

random number generator

Synopsis

#include <stdlib.h>

int rand(void);

Description

The rand function returns a pseudo-random integer value in the range
[0, 232– 1].

For this function, the measure of randomness is its periodicity—the num-
ber of values it is likely to generate before repeating a pattern.
The output of the pseudo-random number generator has a period on the
order of 232– 1.

Error Conditions

The rand function does not return an error condition.

Example

#include <stdlib.h>

int i;

i = rand();

See Also

srand
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-79
for Blackfin Processors

C Run-Time Library Reference
realloc

change memory allocation

Synopsis

#include <stdlib.h>

void *realloc(void *ptr, size_t size);

Description

The realloc function changes the memory allocation of the object
pointed to by ptr to size. Initial values for the new object are taken from
those in the object pointed to by ptr. If the size of the new object is
greater than the size of the object pointed to by ptr, then the values in the
newly allocated section are undefined.

If ptr is a non-null pointer that was not allocated with malloc or
calloc, the behavior is undefined. If ptr is a null pointer, realloc imi-
tates malloc. If size is zero and ptr is not a null pointer, realloc imitates
free.

Error Conditions

If memory can not be allocated, ptr remains unchanged and realloc
returns a null pointer.

Example

#include <stdlib.h>

int *ptr;

ptr = (int *)malloc(10); /* intervening code */

ptr = (int *)realloc(ptr, 20); /* the size is now 20 */

See Also

calloc, free, malloc
2-80 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
setjmp

define a run-time label

Synopsis

#include <setjmp.h>

int setjmp(jmp_buf env);

Description

The setjmp function saves the calling environment in the jmp_buf argu-
ment. The effect of the call is to declare a run-time label that can be
jumped to via a subsequent call to longjmp.

When setjmp is called, it immediately returns with a result of zero to indi-
cate that the environment has been saved in the jmp_buf argument. If, at
some later point, longjmp is called with the same jmp_buf argument,
longjmp will restore the environment from the argument. The execution
will then resume at the statement immediately following the correspond-
ing call to setjmp. The effect is as if the call to setjmp has returned for a
second time but this time the function will return a non-zero result.

The effect of calling longjmp will be undefined if the function that called
setjmp has returned in the interim.

Error Conditions

The label setjmp does not return an error condition.

Example

See code example for “longjmp” on page 2-65.

See Also

longjmp
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-81
for Blackfin Processors

C Run-Time Library Reference
signal

define signal handling

Synopsis

#include <signal.h>

void (*signal(int sig, void (*func)(int))) (int);

Description

The signal function determines how a signal received during program
execution is handled. It causes a single occurrence of an interrupt to be
responded to. The sig argument must be one of the signals listed in prior-
ity order in Table 2-15 on page 2-77.

� Event handlers may also be installed directly; for more informa-
tion, refer to “Interrupt Handler Support” on page 1-116. The
default run-time header installs event handlers that invoke handlers
registered by signal().

The signal function installs a dispatcher ISR into the Event Vector
Table, and enables the relevant event. When the event occurs, the dis-
patcher saves the processor context before the invoked func, and restores
the context afterwards.

• If the function is SIG_DFL, the event is enabled, but the dispatcher
handles the event and return immediately, without calling a signal
handler.

• If the function is SIG_IGN, the event is disabled.

When operating in user mode, all events are enabled on startup, and left
enabled.

See Also

interrupt, raise
2-82 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
sin

sine

Synopsis

#include <math.h>

double sin(double x);

float sinf(float x);

fract16 sin_fr16(float x);

Description

The sin function returns the sine of x. The input is interpreted as a
radian; the output is in the range [-1, 1].

The sin_fr16 function inputs a fractional value in the range [-1.0, 1.0)
corresponding to [-π/2, π/2]. The domain represents half a cycle which
can be used to derive a full cycle if required. The result, in radians, is in
the range [-1.0, 1.0).

Error Conditions

The sin function does not return an error condition.

Example

#include <math.h>

double y;

y = sin(3.14159); /* y = 0.0 */

See Also

asin, cos
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-83
for Blackfin Processors

C Run-Time Library Reference
sinh

hyperbolic sine

Synopsis

#include <math.h>

double sinh(double x);

float sinhf (float x);

Description

The sinh function returns the hyperbolic sine of x.

Error Conditions

The sinh function returns HUGE_VAL if the argument is outside the
domain.

Example

#include <math.h>

double x,y;

y = sinh(x);

See Also

cosh
2-84 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
sqrt

square root

Synopsis

#include <math.h>

double sqrt(double x);

float sqrtf(float x);

fract16 sqrt_fr16(fract16 x);

Description

The sqrt function returns the positive square root of x.

Error Conditions

The sqrt function returns a zero for a negative input.

Example

#include <math.h>

double y;

y = sqrt(2.0); /* y = 1.414..... */

See Also

rsqrt
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-85
for Blackfin Processors

C Run-Time Library Reference
srand

random number seed

Synopsis

#include <stdlib.h>

void srand(unsigned int seed);

Description

The srand function sets the seed value for the rand function. A particular
seed value always produces the same sequence of pseudo-random
numbers.

Error Conditions

The srand function does not return an error condition.

Example

#include <stdlib.h>

srand(22);

See Also

rand
2-86 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
strcat

concatenate strings

Synopsis

#include <string.h>

char *strcat(char *s1, const char *s2);

Description

The strcat function appends a copy of the null-terminated string pointed
to by s2 to the end of the null-terminated string pointed to by s1. It
returns a pointer to the new s1 string, which is null-terminated. The
behavior of strcat is undefined if the two strings overlap.

Error Conditions

The strcat function does not return an error condition.

Example

#include <string.h>

char string1[50];

string1[0] = ‘A’;

string1[1] = ‘B’;

string1[2] = ‘\0’;

strcat(string1, “CD”); /* new string is “ABCD” */

See Also

strncat
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-87
for Blackfin Processors

C Run-Time Library Reference
strchr

find first occurrence of character in string

Synopsis

#include <string.h>

char *strchr(const char *s1, int c);

Description

The strchr function returns a pointer to the first location in s1, a
null-terminated string that contains the character c.

Error Conditions

The strchr function returns null if c is not part of the string.

Example

#include <string.h>

char *ptr1, *ptr2;

ptr1 = "TESTING";

ptr2 = strchr(ptr1, ‘E’);

/* ptr2 points to the E in TESTING */

See Also

memchr, strrchr
2-88 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
strcmp

compare strings

Synopsis

#include <string.h>

int strcmp(const char *s1, const char *s2);

Description

The strcmp function lexicographically compares the null-terminated
strings pointed to by s1 and s2. It returns a positive value if the s1 string
is greater than the s2 string, a negative value if the s2 string is greater than
the s1 string, and a zero if the strings are the same.

Error Conditions

The strcmp function does not return an error condition.

Example

#include <string.h>

char string1[50], string2[50];

if (strcmp(string1, string2))

printf(“%s is different than %s \n”, string1, string2);

See Also

memcmp, strncmp
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-89
for Blackfin Processors

C Run-Time Library Reference
strcoll

compare strings

Synopsis

#include <string.h>

int strcoll(const char *s1, const char *s2);

Description

The strcoll function compares the string pointed to by s1 to the string
pointed to by s2. The comparison is based on the LC_COLLATE locale
macro. Because only the C locale is defined in the Blackfin run-time envi-
ronment, the strcoll function is identical to the strcmp function. The
function returns a positive value if the s1 string is greater than the s2
string, a negative value if the s2 string is greater than the s1 string, and a
zero if the strings are the same.

Error Conditions

The strcoll function does not return an error condition.

Example

#include <string.h>

char string1[50], string2[50];

if (strcoll(string1, string2))

printf("%s is different than %s \n", string1, string2);

See Also

strcmp, strncmp
2-90 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
strcpy

copy from one string to another

Synopsis

#include <string.h>

void *strcpy(char *s1, const char *s2);

Description

The strcpy function copies the null-terminated string pointed to by s2
into the space pointed to by s1. Memory allocated for s1 must be large
enough to hold s2, plus one space for the null character (‘\0’). The behav-
ior of strcpy is undefined if the two objects overlap, or if s1 is not large
enough. The strcpy function returns the new s1.

Error Conditions

The strcpy function does not return an error condition.

Example

#include <string.h>

char string1[50];

strcpy(string1, “SOMEFUN”);

/* SOMEFUN is copied into string1 */

See Also

memcpy, memmove, strncpy
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-91
for Blackfin Processors

C Run-Time Library Reference
strcspn

length of character segment in one string but not the other

Synopsis

#include <string.h>

size_t strcspn(const char *s1, const char *s2);

Description

The strcspn function returns the length of the initial segment of s1 which
consists entirely of characters not in the string pointed to by s2. The string
pointed to by s2 is treated as a set of characters. The order of the charac-
ters in the string is not significant.

Error Conditions

The strcspn function does not return an error condition.

Example

#include

char *ptr1, *ptr2;

size_t len;

ptrl = "Tried and Tested";

ptr2 = "aeiou";

len = strcspn (ptrl,ptr2); /* len = 2 */

See Also

strlen, strspn
2-92 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
strerror

get string containing error message

Synopsis

#include <string.h>

char *strerror(int errnum);

Description

The strerror function returns a pointer to a string containing an error
message by mapping the number in errnum to that string.

Error Conditions

The strerror function does not return an error condition.

Example

#include <string.h>

char *ptr1;

ptr1 = strerror(1);

See Also

No references to this function.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-93
for Blackfin Processors

C Run-Time Library Reference
strlen

string length

Synopsis

#include <string.h>

size_t strlen(const char *s1);

Description

The strlen function returns the length of the null-terminated string
pointed to by s1 (not including the terminating null character).

Error Conditions

The strlen function does not return an error condition.

Example

#include <string.h>

size_t len;

len = strlen(“SOMEFUN”); /* len = 7 */

See Also

No references to this function.
2-94 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
strncat

concatenate characters from one string to another

Synopsis

#include <string.h>

char *strncat(char *s1, const char *s2, size_t n);

Description

The strncat function appends a copy of up to n characters in the
null-terminated string pointed to by s2 to the end of the null-terminated
string pointed to by s1. The function returns a pointer to the new s1
string.

The behavior of strncat is undefined if the two strings overlap. The new
s1 string is terminated with a null character (‘\0’).

Error Conditions

The strncat function does not return an error condition.

Example

#include <string.h>

char string1[50], *ptr;

string1[0]=’\0';

strncat(string1, “MOREFUN”, 4);

/* string1 equals “MORE” */

See Also

strcat
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-95
for Blackfin Processors

C Run-Time Library Reference
strncmp

compare characters in strings

Synopsis

#include <string.h>

int strncmp(const char *s1, const char *s2, size_t n);

Description

The strncmp function lexicographically compares up to n characters of the
null-terminated strings pointed to by s1 and s2. It returns a positive value
when the s1 string is greater than the s2 string, a negative value when the
s2 string is greater than the s1 string, and a zero when the strings are the
same.

Error Conditions

The strncmp function does not return an error condition.

Example

#include <string.h>

char *ptr1;

ptr1 = “TEST1”;

if (strncmp(ptr1, “TEST”, 4) ==0)

printf(“%s starts with TEST \n”, ptr1);

See Also

memcmp, strcmp
2-96 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
strncpy

copy characters from one string to another

Synopsis

#include <string.h>

char *strncpy(char *s1, const char *s2, size_t n);

Description

The strncpy function copies up to n characters of the null-terminated
string pointed to by s2 into the space pointed to by s1. If the last character
copied from s2 is not a null, the result does not end with a null. The
behavior of strncpy is undefined when the two objects overlap. The
strncpy function returns the new s1.

If the s2 string contains fewer than n characters, the s1 string is padded
with the null character until all n characters have been written.

Error Conditions

The strncpy function does not return an error condition.

Example

#include <string.h>

char string1[50];

strncpy(string1, “MOREFUN”, 4);

/* MORE is copied into string1 */

string1[4] = ‘\0’; /* must null-terminate string1 */

See Also

memcpy, memmove, strcpy
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-97
for Blackfin Processors

C Run-Time Library Reference
strpbrk

find character match in two strings

Synopsis

#include <string.h>

char *strpbrk(const char *s1, const char *s2);

Description

The strpbrk function returns a pointer to the first character in s1 that is
also found in s2. The string pointed to by s2 is treated as a set of charac-
ters. The order of the characters in the string is not significant.

Error Conditions

In the event that no character in s1 matches any in s2, a null pointer is
returned.

Example

#include <string.h>

char *ptr1, *ptr2, *ptr3;

ptr1 = "TESTING";

ptr2 = "SHOP"

ptr3 = strpbrk(ptr1, ptr2);

/* ptr3 points to the S in TESTING */

See Also

strcspn
2-98 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
strrchr

find last occurrence of character in string

Synopsis

#include <string.h>

char *strrchr(const char *s1, int c);

Description

The strrchr function returns a pointer to the last occurrence of character
c in the null-terminated input string s1.

Error Conditions

The strrchr function returns a null pointer if c is not found.

Example

#include <string.h>

char *ptr1, *ptr2;

ptr1 = "TESTING”;

ptr2 = strrchr(ptr1, ‘T’);

/* ptr2 points to the second T of TESTING */

See Also

memchr, strchr
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-99
for Blackfin Processors

C Run-Time Library Reference
strspn

length of segment of characters in both strings

Synopsis

#include <string.h>

size_t strspn(const char *s1, const char *s2);

Description

The strspn function returns the length of the initial segment of s1 which
consists entirely of characters in the string pointed to by s2. The string
pointed to by s2 is treated as a set of characters. The order of the charac-
ters in the string is not significant.

Error Conditions

The strspn function does not return an error condition.

Example

#include <string.h>

size_t len;

char *ptr1, *ptr2;

ptr1 = "TESTING";

ptr2 = "ERST";

len = strspn(ptr1, ptr2); /* len = 4 */

See Also

strcspn, strlen
2-100 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
strstr

find string within string

Synopsis

#include <string.h>

char *strstr(const char *s1, const char *s2);

Description

The strstr function returns a pointer to the first occurrence in the string
of s1 of the characters pointed to by s2. This excludes the terminating null
character in s1.

Error Conditions

If the string is not found, strstr returns a null pointer. If s2 points to a
string of zero length, s1 is returned.

Example

#include <string.h>

char *ptr1, *ptr2;

ptr1 = "TESTING";

ptr2 = strstr (ptr1, “E”);

/* ptr2 points to the E in TESTING */

See Also

strchr
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-101
for Blackfin Processors

C Run-Time Library Reference
strtod

convert portion of string to double representation

Synopsis

#include <stdlib.h>

double strtod(const char *nptr, char **endptr);

Description

The strtod function extracts a value from the string pointed to by nptr as
a double. The strtod function expects nptr to point to a string of the
form:

[whitespace] [sign] [digits] [.digits] [{d|D|e|E}[sign]digits]

The whitespace token may consist of space and tab characters, which are
ignored; sign is either plus (+) or minus (–); and digits are one or more
decimal digits. If no digits appear before the radix character (.), at least
one digit must appear after the radix character.

The decimal digits can be followed by an exponent, which consists of an
introductory letter (d, D , e, or E) and an optionally signed integer. If nei-
ther an exponent part nor a radix character appears, a radix character is
assumed to follow the last digit in the string. The first character that does
not fit this form stops the scan.

If endptr is not NULL, a pointer to the character that stopped the scan is
stored at the location pointed to by endptr. If no conversion can be per-
formed, the value of nptr is stored at the location pointed to by endptr.

Error Conditions

The strtod function returns a zero if no conversion can be made and a
pointer to the invalid string is stored in the object pointed to by endptr. If
the correct value results in an overflow, a positive or negative (as appropri-
2-102 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
ate) HUGE_VAL is returned. If the correct value results in an underflow, 0 is
returned.The ERANGE value is stored in errno in the case of either an over-
flow or underflow.

Example

#include <stdlib.h>

char *rem;

double dd;

dd = strtod ("2345.5E4 abc",&rem);

/* dd=2.3455E+7, rem=" abc" */

See Also

atof, strtol, strtoul
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-103
for Blackfin Processors

C Run-Time Library Reference
strtok

convert string to tokens

Synopsis

#include <string.h>

char *strtok(char *s1, const char *s2);

Description

The strtok function returns successive tokens from the string s1, where
each token is delimited by characters from s2.

A call to strtok, with s1 not NULL, returns a pointer to the first token in
s1, where a token is a consecutive sequence of characters not in s2. s1 is
modified in place to insert a null character at the end of the returned
token. If s1 consists entirely of characters from s2, NULL is returned.

Subsequent calls to strtok, with s1 equal to NULL, return successive
tokens from the same string. When the string contains no further tokens,
NULL is returned. Each new call to strtok may use a new delimiter
string, even if s1 is NULL. If s1 is NULL, the remainder of the string is
converted into tokens using the new delimiter characters.

Error Conditions

The strtok function returns a null pointer if there are no tokens remain-
ing in the string.

Example

#include <string.h>
static char str[] = "a phrase to be tested, today";
char *t;

t = strtok(str, " "); /* t points to "a" */
t = strtok(NULL, " "); /* t points to "phrase" */
2-104 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
t = strtok(NULL, ","); /* t points to "to be tested" */
t = strtok(NULL, "."); /* t points to " today" */
t = strtok(NULL, "."); /* t = NULL */

See Also

No references to this function.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-105
for Blackfin Processors

C Run-Time Library Reference
strtol

convert string to long integer

Synopsis

#include <stdlib.h>

long int strtol(const char *nptr, char **endptr, int base);

Description

The strtol function returns as a long int the value that was represented
by the string nptr. If endptr is not a null pointer, strtol stores a pointer
to the unconverted remainder in *endptr.

The strtol function breaks down the input into three sections: white
space (as determined by isspace), initial characters, and unrecognized
characters, including a terminating null character. The initial characters
may comprise an optional sign character, 0x or 0X, when base is 16, and
those letters and digits which represent an integer with a radix of base.
The letters (a-z or A-Z) are assigned the values 10 to 35 and are permitted
only when those values are less than the value of base.

If base is zero, the base is taken from the initial characters. A leading 0x
indicates base 16; a leading 0 indicates base 8. For any other leading char-
acters, base 10 is used. If base is between 2 and 36, it is used as a base for
conversion.

Error Conditions

The strtol function returns a zero if no conversion can be made and a
pointer to the invalid string is stored in the object pointed to by endptr,
provided that endptr is not a null pointer. If the correct value results in an
overflow, positive or negative (as appropriate) LONG_MAX is returned. If the
correct value results in an underflow, LONG_MIN is returned. The ERANGE is
stored in errno in the case of either overflow or underflow.
2-106 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
Example

#include <stdlib.h>

#define base 10

char *rem;

long int i;

i = strtol("2345.5", &rem, base);

/* i=2345, rem=".5" */

See Also

atoi, atol, strtoul
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-107
for Blackfin Processors

C Run-Time Library Reference
strtoul

convert string to unsigned long integer

Synopsis

#include <stdlib.h>

unsigned long int strtoul(const char *nptr,

char **endptr, int base);

Description

The strtoul function returns as an unsigned long int the value repre-
sented by the string nptr. If endptr is not a null pointer, strtoul stores a
pointer to the unconverted remainder in *endptr.

The strtoul function breaks down the input into three sections:

• white space (as determined by isspace)

• initial characters

• unrecognized characters including a terminating null character

The initial characters may comprise an optional sign character, 0x or 0X,
when base is 16, and those letters and digits which represent an integer
with a radix of base. The letters (a-z or A-Z) are assigned the values 10 to
35, and are permitted only when those values are less than the value of
base.

If base is zero, the base is taken from the initial characters. A leading 0x
indicates base 16; a leading 0 indicates base 8. For any other leading char-
acters, base 10 is used. If base is between 2 and 36, it is used as a base for
conversion.
2-108 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
Error Conditions

The strtoul function returns a zero if no conversion can be made and a
pointer to the invalid string is stored in the object pointed to by endptr,
provided that endptr is not a null pointer. If the correct value results in an
overflow, ULONG_MAX is returned. ERANGE is stored in errno in the case of
overflow.

Example

#include <stdlib.h>

#define base 10

char *rem;

unsigned long int i;

i = strtoul("2345.5", &rem, base);

/* i = 2345, rem = ".5" */

See Also

atoi, atol, strtol
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-109
for Blackfin Processors

C Run-Time Library Reference
strxfrm

transform string using LC_COLLATE

Synopsis

#include <string.h>
size_t strxfrm(char *s1, const char *s2, size_t n);

Description

The strxfrm function transforms the string pointed to by s2 using the
locale-specific category LC_COLLATE. The function places the result in the
array pointed to by s1.

If s1 and s2 are transformed and used as arguments to strcmp, the result is
identical to the result derived from strcoll using s1 and s2 as arguments.
However, since only C locale is implemented, this function does not per-
form any transformations other than the number of characters. The string
stored in the array pointed to by s1 is never more than n characters,
including the terminating null character.

The function returns 1. If this value is n or greater, the result stored in the
array pointed to by s1 is indeterminate. The s1 can be a null pointer if n is
0.

Error Conditions

The strxfrm function does not return an error condition.

Example

#include <string.h>
char string1[50];
strxfrm(string1, "SOMEFUN", 49);

/* SOMEFUN is copied into string1 */

See Also

strcmp, strcoll
2-110 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
tan

tangent

Synopsis

#include <math.h>

double tan(double x);

float tanf(float x);

fract16 tan_fr16(fract16 x);

Description

The tan function returns the tangent of the argument. The input, in radi-
ans, must be in the range [-9099, 9099].

The tan_fr16 function is defined for fractional input values between
[- π/4, π/4]. The result is in radians in the range [-1.0, 1.0).

Error Conditions

The tan function returns zero if the input argument is outside the defined
domain.

Example

#include <math.h>

double y;

y = tan(3.14159/4.0); /* y = 1.0 */

See Also

atan, atan2
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-111
for Blackfin Processors

C Run-Time Library Reference
tanh

hyperbolic tangent

Synopsis

#include <math.h>

double tanh(double x);

float tanhf (float x);

Description

The tanh function returns the hyperbolic tangent of x.

Error Conditions

The tanh function does not return an error condition.

Example

#include <math.h>

double x,y;

y = tanh(x);

See Also

sinh, cosh
2-112 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
tolower

convert from uppercase to lowercase

Synopsis

#include <ctype.h>

int tolower(int c);

Description

The tolower function converts the input character to lowercase if it is
uppercase; otherwise, it returns the character.

Error Conditions

The tolower function does not return an error condition.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

if(isupper(ch))

printf("tolower=%#04x", tolower(ch));

putchar(‘\n’);

}

See Also

islower, isupper, toupper
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-113
for Blackfin Processors

C Run-Time Library Reference
toupper

convert from lowercase to uppercase

Synopsis

#include <ctype.h>

int toupper(int c);

Description

The toupper function converts the input character to uppercase if it is in
lowercase; otherwise, it returns the character.

Error Conditions

The toupper function does not return an error condition.

Example

#include <ctype.h>

int ch;

for (ch=0; ch<=0x7f; ch++) {

printf("%#04x", ch);

if(islower(ch))

printf("toupper=%#04x", toupper(ch));

putchar(‘\n’);

}

See Also

islower, isupper, tolower
2-114 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
va_arg

get next argument in variable-length list of arguments

Synopsis

#include <stdarg.h>
void va_arg(va_list ap, type);

Description

The va_arg macro is used to walk through the variable length list of argu-
ments to a function.

After starting to process a variable-length list of arguments with va_start,
call va_arg with the same va_list variable to extract arguments from the
list. Each call to va_arg returns a new argument from the list.

Substitute a type name corresponding to the type of the next argument for
the type parameter in each call to va_arg. After processing the list, call
va_end.

The header file stdarg.h defines a pointer type called va_list that is used
to access the list of variable arguments.

The function calling va_arg is responsible for determining the number
and types of arguments in the list. It needs this information to determine
how many times to call va_arg and what to pass for the type parameter
each time. There are several common ways for a function to determine
this type of information. The standard C printf function reads its first
argument looking for %-sequences to determine the number and types of
its extra arguments. In the example below, all of the arguments are of the
same type (char*), and a termination value (NULL) is used to indicate the
end of the argument list. Other methods are also possible.

If a call to va_arg is made after all arguments have been processed, or if
va_arg is called with a type parameter that is different from the type of the
next argument in the list, the behavior of va_arg is undefined.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-115
for Blackfin Processors

C Run-Time Library Reference
Error Conditions

The va_arg macro does not return an error condition.

Example

#include <stdarg.h>
#include <string.h>
#include <stdlib.h>

char *concat(char *s1,...)
{

int len = 0;
char *result;
char *s;
va_list ap;

va_start (ap,s1);
s = s1;
while (s){

len += strlen (s);
s = va_arg (ap,char *);

}
va_end (ap);

result = malloc (len +7);
if (!result)

return result;
*result = '';
va_start (ap,s1);
s = s1;
while (s){

strcat (result,s);
s = va_arg (ap,char *);

}
va_end (ap);
return result;

}

2-116 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
See Also

va_start, va_end
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-117
for Blackfin Processors

C Run-Time Library Reference
va_end

finish variable-length argument list processing

Synopsis

#include <stdarg.h>

void va_end(va_list ap);

Description

The va_end macro can only be used after the va_start macro has been
invoked. A call to va_end concludes the processing of a variable length list
of arguments that was begun by va_start.

Error Conditions

The va_end macro does not return an error condition.

Example

See “va_arg” on page 2-115.

See Also

va_arg, va_start
2-118 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

C/C++ Run-Time Library
va_start

initialize the variable-length argument list processing

Synopsis

#include <stdarg.h>

void va_start(va_list ap, parmN);

Description

The va_start macro is used in a function declared to take a variable num-
ber of arguments to start processing those variable arguments. The first
argument to va_start should be a variable of type va_list, which is used
by va_arg to walk through the arguments. The second argument is the
name of the last named parameter in the function's parameter list; the list
of variable arguments immediately follows this parameter. The va_start
macro must be invoked before either the va_arg or va_end macro can be
invoked.

Error Conditions

The va_start macro does not return an error condition.

Example

See “va_arg” on page 2-115.

See Also

va_arg, va_end
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 2-119
for Blackfin Processors

C Run-Time Library Reference
2-120 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

3 DSP RUN-TIME LIBRARY

This chapter describes the DSP run-time library which contains a broad

collection of functions that are commonly required by signal processing
applications. The services provided by the DSP run-time library include
support for general-purpose signal processing such as companders, filters,
and Fast Fourier Transform (FFT) functions. All these services are Analog
Devices extensions to ANSI standard C.

For more information on the algorithms on which many of the C library's
math functions are based, see Cody, W. J. and W. Waite, Software Manual
for the Elementary Functions, Englewood Cliffs, New Jersey: Prentice Hall,
1980.

This chapter contains:

• “DSP Run-Time Library Guide” on page 3-2
It contains information about the library and provides a descrip-
tion of the DSP header files that are included with this release of
the ccblkfn compiler.

• “DSP Run-Time Library Reference” on page 3-26
It provides the complete reference for each DSP run-time library
function provided with this release of the ccblkfn compiler.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 3-1
for Blackfin Processors

DSP Run-Time Library Guide
DSP Run-Time Library Guide
The DSP run-time library contains functions that you can call from your
source program. This section describes how to use the library and provides
information about:

• “Linking DSP Library Functions”

• “Working With Library Source Code” on page 3-3

• “DSP Header Files” on page 3-4

Linking DSP Library Functions
The DSP run-time library is located under the VisualDSP++ installation
directory in the subdirectory Blackfin\lib. Different versions of the
library are supplied and catalogued in Table 3-1.

In general, different versions of the DSP run-time library are supplied in
binary form. For instance, one set of libraries have been built for execu-
tion on a ADSP-BF531, ADSP-BF532, ADSP-BF533, or ADSP-DM102
processor and all the files have 532 in their filenames, while another set of
libraries have been built for execution on a ADSP-BF535 or AD6532 pro-
cessor and all the files have 535 in their filenames.

Table 3-1. DSP Library Files

Blackfin\lib Directory Description

libdsp532.dlb
libdsp535.dlb

DSP run-time library

libdsp532y,dlb
libdsp532y.dlb

DSP run-time library built with -csync

libdspm3res532.dlb
libdspm3res535.dlb

DSP run-time library built with -reserve M3

libdspm3res532y.dlb
libdspm3res535y.dlb

DSP run-time library built with -reserve M3 -csync
3-2 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

DSP Run-Time Library
Versions of the library whose filename end with a y (for example,
libdsp532y.dlb) have been built with the compiler’s -csync switch (see
on page 1-26) and avoid a hardware anomaly that is associated with specu-
latively pre-fetching data from memory. Libraries are also supplied that
have m3res in their name; these libraries have been built with the com-
piler’s -reserve M3 switch (see on page 1-45) and do not use the M3
register (see Emulator documentation).

When an application calls a DSP library function, the call creates a refer-
ence that the linker resolves. One way to direct the linker to the library's
location is to use the default Linker Description File (<your_target>.ldf).
If a customized .LDF file is used to link the application, then the appropri-
ate DSP run-time library should be added to the .LDF file used by the
project.

� Instead of modifying a customized .LDF file, the -l switch (see “-l
library” on page 1-33) can be used to specify which library should
be searched by the linker. For example, the -ldsp532 switch will
add the library libdsp532.dlb to the list of libraries that the linker
will examine. For more information on .LDF files, see the
VisualDSP++ 3.1 Linker and Utilities Manual for Blackfin Processors.

Working With Library Source Code
The source code for some functions and macros in the DSP run-time
library is provided with your VisualDSP++ software. By default, the librar-
ies are installed in the directory Blackfin\lib and the source files are
copied into Blackfin\lib\src. Each function is kept in a separate file.
The file name is the name of the function with the extension .asm or .c.
If you do not intend to modify any of the runtime library functions, you
can delete this directory and its contents to conserve disk space.

The source code is provided to customize specific functions for your own
needs. To modify these files, proficiency in Blackfin assembly language
and an understanding of the run-time environment is needed.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 3-3
for Blackfin Processors

DSP Run-Time Library Guide
Refer to “C/C++ Run-Time Model and Environment” on page 1-135 for
more information.

Before making any modifications to the source code, copy the source code
to a file with a different file name and rename the function itself. Test the
function before you use it in your system to verify that it is functionally
correct.

� Analog Devices only supports the run-time library functions as
provided.

DSP Header Files
The DSP header files contains prototypes for all the DSP library func-
tions. When the appropriate #include preprocessor command is included
in your source, the compiler will use the prototypes to check that each
function is called with the correct arguments. The DSP header files
included in this release of the ccblkfn compiler are:

• “complex.h — Basic Complex Arithmetic Functions”

• “filter.h — Filters and Transformations” on page 3-7

• “math.h — Math Functions” on page 3-10

• “matrix.h — Matrix Functions” on page 3-13

• “stats.h — Statistical Functions” on page 3-13

• “vector.h — Vector Functions” on page 3-19

• “window.h — Window Generators” on page 3-24

complex.h � Basic Complex Arithmetic Functions

The complex.h header file contains type definitions and basic arithmetic
operations for variables of type complex_float, complex_double, and
complex_fract16. The complex functions defined in this header file are
listed in Table 3-2 on page 3-5.
3-4 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

DSP Run-Time Library
The following structures are used to represent complex numbers in rectan-
gular coordinates:

typedef struct
{

float re;
float im;

} complex_float;

typedef struct
{

double re;
double im;

} complex_double;

typedef struct
{

fract16 re;
fract16 im;

} complex_fract16;

Details of the basic complex arithmetic functions are included in “DSP
Run-Time Library Reference” starting on page 3-26.

Table 3-2. Complex Functions

Description Prototype

Complex
Absolute Value

double cabs (complex_double a)
float cabsf (complex_float a)
fract16 cabs_fr16 (complex_fract16 a)

Complex Addition complex_double cadd
(complex_double a, complex_double b)

complex_float caddf
(complex_float a, complex_float b)

complex_fract16 cadd_fr16
(complex_fract16 a, complex_fract16 b)
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 3-5
for Blackfin Processors

DSP Run-Time Library Guide
Complex Subtraction complex_double csub
(complex_double a, complex_double b)

complex_float csubf
(complex_float a, complex_float b)

complex_fract16 csub_fr16
(complex_fract16 a, complex_fract16 b)

Complex Multiply complex_double cmlt
(complex_double a, complex_double b)

complex_float cmltf
(complex_float a, complex_float b)

complex_fract16 cmlt_fr16
(complex_fract16 a, complex_fract16 b)

Complex Division complex_double cdiv
 (complex_double a, complex_double b)
complex_float cdivf

(complex_float a, complex_float b)
complex_fract16 cdiv_fr16

(complex_fract16 a, complex_fract16 b)

Get Phase of a
Complex Number

double arg (complex_double a)
float argf (complex_float a)
fract16 arg_fr16 (complex_fract16 a)

Complex
Conjugate

complex_double conj (complex_double a)
complex_float conjf (complex_float a)
complex_fract16 conj_fr16 (complex_fract16 a)

Complex Polar
Coordinates

complex_double polar
(double mag, double phase)

complex_float polarf
(float mag, float phase)

complex_fract16 polar_fr16
(fract16 mag, fract16 phase)

Complex
Exponential

complex_double cexp (double a)
complex_float cexpf (float a)

Normalization complex_double norm (complex_double a)
complex_float normf (complex_float a)

Table 3-2. Complex Functions (Cont’d)

Description Prototype
3-6 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

DSP Run-Time Library
filter.h � Filters and Transformations

The filter.h header file contains filters used in signal processing. It also
includes the A-law and µ-law companders that are used by voice-band
compression and expansion applications.

This header file also contains functions that perform key signal processing
transformations, including FFT and convolve.

The functions defined in this header file are listed in Table 3-3 on
page 3-7 and Table 3-4 on page 3-8 and are described in detail in “DSP
Run-Time Library Reference” on page 3-26.

Various forms of the FFT function are provided by the library correspond-
ing to radix-2, radix-4, and two dimensional FFTs. The number of points
is provided as an argument. The twiddle table for the FFT functions is
supplied as a separate argument and is normally calculated once during
program initialization.

Library functions are provided to initialize a twiddle table. A table can
accommodate several FFTs of different sizes by allocating the table at
maximum size, and then using the stride argument of the FFT function to
specify the step size through the table. If the stride argument is set to 1,
the FFT function will use all the table; if the FFT uses only half the num-
ber of points of the largest, the stride should be 2.

Table 3-3. Filter Library

Description Prototype

Finite Impulse
Response Filter

void fir_fr16
(const fract16 x[], fract16 y[],

int n, fir_state_fr16 *s)

Infinite Impulse
Response Filter

void iir_fr16
(const fract16 x[], fract16 y[],

int n, iir_state_fr16 *s)
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 3-7
for Blackfin Processors

DSP Run-Time Library Guide
Fir Decimation Filter void fir_decima_fr16
(const fract16 x[], fract16 y[],

int n, fir_state_fr16 *s)

Fir Interpolation Filter void fir_interp_fr16
(const fract16 x[], fract16 y[],

int n, fir_state_fr16 *s)

Complex Finite Impulse
Response Filter

void cfir_fr16
(const complex_fract16 x[],
complex_fract16 y[],
int n, cfir_state_fr16 *s)

Table 3-4. Transformational Functions

Description Prototype

Fast Fourier Transforms

Generate FFT Twiddle
Factors

void twidfft_fr16
(complex_fract16 w[], int n)

Generate FFT Twiddle
Factors for Radix 2 FFT

void twidfftrad2_fr16
(complex_fract16 w[], int n)

Generate FFT Twiddle
Factors for Radix 4 FFT

void twidfftrad4_fr16
(complex_fract16 w[], int n)

Generate FFT Twiddle
Factors for 2-D FFT

void twidfft2d_fr16
(complex_fract16 w[], int n)

N Point Radix 2
Complex Input FFT

void cfft_fr16
(const complex_fract16 *in,

complex fract16 *t, complex_fract16 *out,
const complex_fract16 *w, int wst, int n,
int block_exponent, int scale_method)

N Point Radix 2
Real Input FFT

void rfft_fr16
(const fract16 *in, complex_fract16 *t,

complex_fract16 *out,
const complex_fract16 *w, int wst, int n,
int block_exponent, int scale_method)

Table 3-3. Filter Library (Cont’d)

Description Prototype
3-8 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

DSP Run-Time Library
N Point Radix 2
Inverse FFT

void ifft_fr16
(const complex_fract16 *in,

complex_fract16 *t, complex_fract16 *out,
const complex_fract16 *w, int wst, int n,
int block_exponent, int scale_method)

N Point Radix 4
Complex Input FFT

void cfftrad4_fr16
(const complex_fract16 *in,

complex fract16 *t, complex_fract16 *out,
const complex_fract16 *w, int wst, int n,
int block_exponent, int scale_method)

N Point Radix 4
Real Input FFT

void rfftrad4_fr16
(const fract16 *in, complex_fract16 *t,

complex_fract16 *out,
const complex_fract16 *w, int wst, int n,
int block_exponent, int scale_method)

N Point Radix 4
Inverse Input FFT

void ifftrad4_fr16
(const complex_fract *in,

complex_fract16 *t, complex_fract16 *out,
const complex_fract16 *w, int wst, int n,
int block_exponent, int scale_method)

Nxn Point 2-D
Complex Input FFT

void cfft2d_fr16
(const complex_fract16 *in,

complex fract16 *t, complex_fract16 *out,
const complex_fract16 *w, int wst, int n,
int block_exponent, int scale_method)

Nxn Point 2-D
Real Input FFT

void rfft2d_fr16
(const fract16 *in, complex_fract16 *t,

complex_fract16 *out,
const complex_fract16 *w, int wst, int n,
int block_exponent, int scale_method)

Nxn Point 2-D
Inverse FFT

void ifft2d_fr16
(const complex_fract16 *in,

complex_fract16 *t, complex_fract16 *out,
const complex_fract16 *w, int wst, int n,
int block_exponent, int scale_method)

Table 3-4. Transformational Functions (Cont’d)

Description Prototype
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 3-9
for Blackfin Processors

DSP Run-Time Library Guide
math.h � Math Functions

The standard math functions have been augmented by implementations
for the float data type, and in some cases, for the fract16 data type.

Table 3-5 provides a summary of the functions defined by the math.h
header file. Descriptions of these functions are given under the name of
the double version in the “C Run-Time Library Reference” on page 2-23.

Convolutions

Convolution void convolve_fr16
(const fract16 cin1[], int clen1,

const fract16 cin2[], int clen2,
fract16 cout[])

2-D Convolution void conv2d_fr16
(const fract16 *cin1, int crow1, int ccol1,

const fract16 *cin2, int crow2, int ccol2,
fract16 *cout)

2-D Convolution
3x3 Matrix

void conv2d3x3_fr16
(const fract16 *cin, int crow1, int ccol1,

const fract16 cin2 [3] [3], fract16 *cout)

Compression/Expansion

A-law compression void a_compress
(const short in[], short out[], int n)

A-law expansion void a_expand
(const short in[], short out[], int n)

µ-law compression void mu_compress
(const short in[], short out[], int n)

µ-law expansion void mu_expand
(const char in[], short out[], int n)

Table 3-4. Transformational Functions (Cont’d)

Description Prototype
3-10 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

DSP Run-Time Library
This header file also provides prototypes for a number of additional math
function—clip, copysign, max, and min, and an integer function,
countones. These functions are described in the “DSP Run-Time Library
Reference” on page 3-26.

Table 3-5. Math Library

Description Prototype

Arc Cosine double acos (double x)
float acosf (float x)
fract16 acos_fr16 (fract16 x)

Arc Sine double asin (double x)
float asinf (float x)
fract16 asin_fr16 (fract16 x)

Arc Tangent double atan (double x)
float atanf (float x)
fract16 atan_fr16 (fract16 x)

Arc Tangent of Quotient double atan2 (double x, double y)
float atan2f (float x, float y)
fract16 atan2_fr16 (fract16 x, fract16 y)

Ceiling double ceil (double x)
float ceilf (float x)

Cosine double cos (double x)
float cosf (float x)
fract16 cos_fr16 (fract16 x)

Cotangent double cot (double x)
float cotf (float x)

Hyperbolic Cosine double cosh (double x)
float coshf (float x)

Exponential double exp (double x)
float expf (float x)

Floor double floor (double x)
float floorf (float x)

Floating-Point Remainder double fmod (double x, double y)
float fmodf (float x, float y)
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 3-11
for Blackfin Processors

DSP Run-Time Library Guide
Get Mantissa and Exponent double frexp (double x, int *n)
float frexpf (float x, int *n)

Multiply by Power of 2 double ldexp(double x, int n)
float ldexpf(float x, int n)

Natural Logarithm double log (double x)
float logf (float x)

Logarithm Base 10 double log10 (double x)
float log10f (float x)

Get Fraction and Integer double modf (double x, double *i)
float modff (float x, float *i)

Power double pow (double x, double y)
float powf (float x, float y)

Reciprocal Square Root double rsqrt(double x)
float rsqrtf(float x)

Sine double sin (double x)
float sinf (float x)
fract16 sin_fr16 (fract16 x)

Hyperbolic Sine double sinh (double x)
float sinhf (float x)

Square Root double sqrt (double x)
float sqrtf (float x)
fract16 sqrt_fr16 (fract16 x)

Tangent double tan (double x)
float tanf (float x)
fract16 tan_fr16 (fract16 x)

Hyperbolic Tangent double tanh (double x)
float tanhf (float x)

Table 3-5. Math Library (Cont’d)

Description Prototype
3-12 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

DSP Run-Time Library
matrix.h � Matrix Functions

The matrix.h header file contains matrix functions for operating on real
and complex matrices, both matrix-scalar and matrix-matrix operations.
See “complex.h — Basic Complex Arithmetic Functions” on page 3-4 for
definitions of the complex types.

The matrix functions defined in the matrix.h header file are listed in
Table 3-6 on page 3-14. In most of the function prototypes,

*a is a pointer to input matrix a [] []

*b is a pointer to input matrix b [] []

b is an input scalar

n is the number of rows

m is the number of columns

*c is a pointer to output matrix c [] []

In the matrix*matrix functions, n and k are the dimensions of matrix a
and k and m are the dimensions of matrix b.

The functions described by this header assume that input array arguments
are constant; that is, their contents do not change during the course of the
routine. In particular, this means the input arguments do not overlap with
any output argument.

stats.h � Statistical Functions

The statistical functions defined in the stats.h header file are listed in
Table 3-7 and are described in detail in “DSP Run-Time Library Refer-
ence” on page 3-26.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 3-13
for Blackfin Processors

DSP Run-Time Library Guide
Table 3-6. Matrix Functions

Description Prototype

Real Matrix +
Scalar Addition

void matsadd
(const double *a, double b,

int n, int m, double *c)
void matsaddf

(const float *a, float b,
int n, int m, float *c)

void matsadd_fr16
(const fract16 *a, fract16 b,

int n, int m, fract16 *c)

Real Matrix -
Scalar Subtraction

void matssub
(const double *a, double b,

int n, int m, double *c)
void matssubf

(const float *a, float b,
int n, int m, float *c)

void matssub_fr16
(const fract16 *a, fract16 b,

int n, int m, fract16 *c)

Real Matrix *
Scalar Multiplication

void matsmlt
(const double *a, double b,

int n, int m, double *c)
void matsmltf

(const float *a, float b,
int n, int m, float *c)

void matsmlt_fr16
(const fract16 *a, fract16 b,

int n, int m, fract16 *c)

Real Matrix +
Matrix Addition

void matmadd
(const double *a, const double *b,

int n, int m, double *c)
void matmaddf

(const float *a, const float *b,
int n, int m, float *c)

void matmadd_fr16
(const fract16 *a, const fract16 *b,

int n, int m, fract16 *c)
3-14 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

DSP Run-Time Library
Real Matrix –
Matrix Subtraction

void matmsub
(const double *a, const double *b,

int n, int m, double *c)
void matmsubf

(const float *a, const float *b,
int n, int m, float *c)

void matmsub_fr16
(const fract16 *a, const fract16 *b,

int n, int m, fract16 *c)

Real Matrix *
Matrix Multiplication

void matmmlt
(const double *a, int n, int k,

const double *b, int m, double *c)
void matmmltf

(const float *a, int n, int k,
const float *b, int m, float *c)

void matmmlt_fr16
(const fract16 *a, int n, int k,

const fract16 *b, int m, fract16 *c)

Complex Matrix +
Scalar Addition

void cmatsadd
(const complex_double *a,

complex_double b,
int n, int m, complex_double *c)

void cmatsaddf
(const complex_float *a,

complex_float b,
int n, int m, complex_float *c)

void cmatsadd_fr16
(const complex_fract16 *a,

complex_fract16 b,
int n, int m, complex_fract16 *c)

Table 3-6. Matrix Functions (Cont’d)

Description Prototype
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 3-15
for Blackfin Processors

DSP Run-Time Library Guide
Complex Matrix –
Scalar Subtraction

void cmatssub
(const complex_double *a,

complex_double b,
int n, int m, complex_double *c)

void cmatssubf
(const complex_float *a,

complex_float b,
int n, int m, complex_float *c)

void cmatssub_fr16
(const complex_fract16 *a,

complex_fract16 b,
int n, int m, complex_fract16 *c)

Complex Matrix *
Scalar Multiplication

void cmatsmlt
(const complex_double *a,

complex_double b,
int n, int m, complex_double *c)

void cmatsmltf
(const complex_float *a,

complex_float b,
int n, int m, complex_float *c)

void cmatsmlt_fr16
(const complex_fract16 *a,

complex_fract16 b,
int n, int m, complex_fract16 *c)

Complex Matrix +
Matrix Addition

void cmatmadd
(const complex_double *a,

const complex_double *b,
int n, int m, complex_double *c)

void cmatmaddf
(const complex_float *a,

const complex_float *b,
int n, int m, complex_float *c)

void cmatmadd_fr16
(const complex_fract16 *a,

const complex_fract16 *b,
int n, int m, complex_fract16 *c

Table 3-6. Matrix Functions (Cont’d)

Description Prototype
3-16 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

DSP Run-Time Library
Complex Matrix –
Matrix Subtraction

void cmatmsub
(const complex_double *a,

const complex_double *b,
int n, int m, complex_double *c)

void cmatmsubf
(const complex_float *a,

const complex_float *b,
int n, int m, complex_float *c)

void cmatmsub_fr16
(const complex_fract16 *a,

const complex_fract16 *b,
int n, int m, complex_fract16 *c)

Complex Matrix *
Matrix Multiplication

void cmatmmlt
(const complex_double *a,

int n, int k, const complex_double *b,
int m, complex_double *c)

void cmatmmltf
(const complex_float *a,

int n, int k, const complex_float *b,
int m, complex_float *c)

void cmatmmlt_fr16
(const complex_fract16 *a,

int n, int k, const complex_fract16 *b,
int m, complex_fract16 *c)

Transpose void transpm
(const double *a, int n, int m, double *c)

void transpmf
(const float *a, int n, int m, float *c)

void transpm_fr16
(const fract16 *a, int n, int m, fract16 *c)

Table 3-6. Matrix Functions (Cont’d)

Description Prototype
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 3-17
for Blackfin Processors

DSP Run-Time Library Guide
Table 3-7. Statistical Functions

Description Prototype

Autocoherence void autocohf
(const float a[], int n, int m, float c[])

void autocoh_fr16
(const fract16 a[], int n, int m, fract16 c[])

Autocorrelation void autocorrf
(const float a[], int n, int m, float c[])

void autocorr_fr16
(const fract16 a[], int n, int m, fract16 c[])

Cross-coherence void crosscohf
(const float a[], const float b[],

int n, int m, float c[])
void crosscoh_fr16

(const fract16 a[], const fract16 b[],
int n, int m, fract16 c[])

Cross-correlation void crosscorrf
(const float a[], const float b[],

int n, int m, float c[])
void crosscorr_fr16

(const fract16 a[], const fract16 b[],
int n, int m, fract16 c[])

Histogram void histogramf
(const float a[], int c[],

float max, float min, int n, int m)
void histogram_fr16

(const fract16 a[], int c[],
fract16 max, fract16 min, int n, int m)

Mean float meanf (const float a[], int n)
fract16 mean_fr16 (const fract16 a[], int n)

Root Mean Square float rmsf (const float a[], int n)
fract16 rms_fr16 (const fract16 a[], int n)

Variance float varf (const float a[], int n)
fract16 var_fr16 (const fract16 a[], int n)

Count Zero Crossing int zero_crossf (const float a[], int n)
int zero_cross_fr16 (const fract16 a[], int n)
3-18 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

DSP Run-Time Library
vector.h � Vector Functions

The vector.h header file contains functions for operating on real and
complex vectors, both vector-scalar and vector-vector operations.
See “complex.h — Basic Complex Arithmetic Functions” on page 3-4 for
definitions of the complex types.The functions in the vector.h header file
are listed in Table 3-8.

In the Prototype column, a[] and b[] are input vectors, b is an input sca-
lar, c[] is an output vector and n is the number of elements.The functions
assume that input array arguments are constant; that is, their contents will
not change during the course of the routine. In particular, this means the
input arguments do not overlap with any output argument. In general,
better run-time performance is achieved by the vector functions if the
input vectors and the output vector are in different memory banks. This
structure avoids any potential memory bank collisions.

Table 3-8. Vector Functions

Description Prototype

Real Vector +
Scalar Addition

void vecsadd
(const double a[], double b,

double c[], int n)
void vecsaddf

(const float a[], float b,
float c[], int n)

void vecsadd_fr16
(const fract16 a[], fract16 b,

fract16 c[], int n)

Real Vector –
Scalar Subtraction

void vecssub
(const double a[], double b,

double c[], int n)
void vecssubf

(const float a[], float b,
float c[], int n)

void vecssub_fr16
(const fract16 a[], fract16 b,

fract16 c[], int n)
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 3-19
for Blackfin Processors

DSP Run-Time Library Guide
Real Vector *
Scalar Multiplication

void vecsmlt
(const double a[], double b,

double c[], int n)
void vecsmltf

(const float a[], float b,
float c[], int n)

void vecsmlt_fr16
(const fract16 a[], fract16 b,

fract16 c[], int n)

Real Vector +
Vector Addition

void vecvadd
(const double a[], const double b [],

double c[], int n)
void vecvaddf

(const float a[], const float b [],
float c[], int n)

void vecvadd_fr16
(const fract16 a[], const fract16 b [],

fract16 c[], int n)

Real Vector –
Vector Subtraction

void vecvsub
(const double a[], const double b [],

double c[], int n)
void vecvsubf

(const float a[], const float b [],
float c[], int n)

void vecvsub_fr16
(const fract16 a[], const fract16 b [],

fract16 c[], int n)

Real Vector *
Vector Multiplication

void vecvmlt
(const double a[], const double b [],

double c[], int n)
void vecvmltf

(const float a[], const float b [],
float c[], int n)

void vecvmlt_fr16
(const fract16 a[], const fract16 b [],

fract16 c[], int n)

Table 3-8. Vector Functions (Cont’d)

Description Prototype
3-20 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

DSP Run-Time Library
Maximum Value of
Vector Elements

double vecmax (const double a[], int n)
float vecmaxf (const float a[], int n)
fract16 vecmax_fr16

(const fract16 a[], int n)

Minimum Value of
Vector Elements

double vecmin (const double a[], int n)
float vecminf (const float a[], int n)
fract16 vecmin_fr16

(const fract16 a[], int n)

Index of Maximum Value
of Vector Elements

int vecmaxloc (const double a[], int n)
int vecmaxlocf (const float a[], int n)
fract16 vecmaxloc_fr16

(const fract16 a[], int n)

Index of Minimum Value
of Vector Elements

int vecminloc (const double a[], int n)
int vecminlocf (const float a[], int n)
fract16 vecminloc_fr16

(const fract16 a[], int n)

Complex Vector +
Scalar Addition

void cvecsadd
(const complex_double a[],

complex_double b,
complex_double c[], int n)

void cvecsaddf
(const complex_float a[],

complex_float b,
complex_float c[], int n)

void cvecsadd_fr16
(const complex_fract16 a[],

complex_fract16 b,
complex_fract16 c[], int n)

Table 3-8. Vector Functions (Cont’d)

Description Prototype
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 3-21
for Blackfin Processors

DSP Run-Time Library Guide
Complex Vector –
Scalar Subtraction

void cvecssub
(const complex_double a[],

complex_double b,
complex_double c[], int n)

void cvecssubf
(const complex_float a[],

complex_float b,
complex_float c[], int n)

void cvecssub_fr16
(const complex_fract16 a[],

complex_fract16 b,
complex_fract16 c[], int n)

Complex Vector *
Scalar Multiplication

void cvecsmlt(
(const complex_double a[],

complex_double b,
complex_double c[], int n)

void cvecsmltf
(const complex_float a[],

complex_float b,
complex_float c[], int n)

void cvecsmlt_fr16
(const complex_fract16 a[],

complex_fract16 b,
complex_fract16 c[], int n)

Complex Vector + Vector
Addition

void cvecvadd
(const complex_double a[],

const complex_double b[],
complex_double c[], int n)

void cvecvaddf
(const complex_float a[],

const complex_float b[],
complex_float c[], int n)

void cvecvadd_fr16
(const complex_fract16 a[],

const complex_fract16 b[],
complex_fract16 c[], int n)

Table 3-8. Vector Functions (Cont’d)

Description Prototype
3-22 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

DSP Run-Time Library
Complex Vector –
Vector Subtraction

void cvecvsub
(const complex_double a[],

const complex_double b[],
complex_double c[], int n)

void cvecvsubf
(const complex_float a[],

const complex_float b[],
complex_float c[], int n)

void cvecvsub_fr16
(const complex_fract16 a[],

const complex_fract16 b[],
complex_fract16 c[], int n)

Complex Vector *
Vector Mutliplication

void cvecvmlt
(const complex_double a[],

const complex_double b[],
complex_double c[], int n)

void cvecvmltf
(const complex_float a[],

const complex_float b[],
complex_float c[], int n)

void cvecvmlt_fr16
(const complex_fract16 a[],

const complex_fract16 b[],
complex_fract16 c[], int n)

Table 3-8. Vector Functions (Cont’d)

Description Prototype
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 3-23
for Blackfin Processors

DSP Run-Time Library Guide
window.h � Window Generators

The window.h header file contains various functions to generate windows
based on various methodologies. The functions defined in the window.h
header file are listed in Table 3-9 and are described in detail in “DSP
Run-Time Library Reference” on page 3-26.

For all window functions, a stride parameter a can be used to space the
window values. The window length parameter n equates to the number of
elements in the window. Therefore, for a stride a of 2 and a length n of 10,
an array of length 20 is required, where every second entry is untouched.

Real Vector Dot Product double vecdot
(const double a[],

const double b[], int n)
float vecdotf

(const float a[],
const float b[], int n)

fract16 vecdot_fr16
(const fract16 a[],

const fract16 b[], int n)

Complex Vector Dot
Product

complex_double cvecdot
(const complex_double a[],

const complex_double b[], int n)
complex_float cvecdotf

(const complex_float a[],
const complex_float b[], int n)

complex_fract16 cvecdot_fr16
(const complex_fract16 a[],

const complex_fract16 b[],
complex_fract16 c[], int n)

Table 3-8. Vector Functions (Cont’d)

Description Prototype
3-24 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

DSP Run-Time Library
Table 3-9. Window Generator Functions

Description Prototype

Generate Bartlett
Window

void gen_bartlett_fr16
(fract16 w[], int a, int n)

Generate Blackman
Window

void gen_blackman_fr16
(fract16 w[], int a, int n)

Generate Gaussian
Window

void gen_gaussian_fr16
(fract16 w[], float alpha, int a, int n)

Generate Hamming
Window

void gen_hamming_fr16
(fract16 w[], int a, int n)

Generate Hanning
 Window

void gen_hanning_fr16
(fract16 w[], int a, int n)

Generate Harris
Window

void gen_harris_fr16
(fract16 w[], int a, int n)

Generate Kaiser
Window

void gen_kaiser_fr16
(fract16 w[], float beta, int a, int n)

Generate Rectangular
Window

void gen_rectangular_fr16
(fract16 w[], int a, int n)

Generate Triangle
Window

void gen_triangle_fr16
(fract16 w[], int a, int n)

Generate Vonhann
Window

void gen_vonhann_fr16
(fract16 w[], int a, int n)
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 3-25
for Blackfin Processors

DSP Run-Time Library Reference
DSP Run-Time Library Reference
This section provides descriptions of the DSP run-time library functions.
The reference pages for the library functions use the following format.

Notation Conventions
The reference pages for the library functions use the following format.

Name and purpose of the function

Synopsis — Required header file and functional prototype. When
the functionality is provided for several data types (for example,
float, double, or fract16), several prototypes are given.

Description — Function specification

Algorithm — High level mathematical representation of the
function

Domain — Range of values supported by the function

Notes — Other miscellaneous notations

� For some functions, the interface is presented using the “K&R”
style for ease of documentation. An ANSI C prototype is provided
in the header file.
3-26 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

DSP Run-Time Library
a_compress

A-law compression

Synopsis

#include <filter.h>

void a_compress(in, out, n)

const short in[]; /* Input array */

short out[]; /* Output array */

int n; /* Number of elements to be compressed */

Description

The a_compress function takes a vector of linear 13-bit signed speech
samples and performs A-law compression according to ITU recommenda-
tion G.711. Each sample is compressed to 8 bits and is returned in the
vector pointed to by out.

Algorithm

C(k)=a-law compression of A(k) for k=0 to n-1

Domain

Content of input array: –4096 to 4095
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 3-27
for Blackfin Processors

DSP Run-Time Library Reference
a_expand

A-law expansion

Synopsis

#include <filter.h>

void a_expand(in, out, n)

const short in[]; /* Input array */

short out[]; /* Output array */

int n; /* Number of elements to be expanded */

Description

The a_expand function inputs a vector of 8-bit compressed speech samples
and expands them according to ITU recommendation G.711. Each input
value is expanded to a linear 13-bit signed sample in accordance with the
A-law definition and is returned in the vector pointed to by out.

Algorithm

C(k)=a-law expansion of A(k) for k = 0 to n-1

Domain

Content of input array: 0 to 255
3-28 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

DSP Run-Time Library
arg

get phase of a complex number

Synopsis

#include <complex.h>

float argf (complex_float a);

double arg (complex_double a);

fract16 arg_fr16 (complex_fract16 a);

Description

This function computes the phase of complex input a and returns the
result.

Algorithm

Domain

–3.4 x 1038 to +3.4 x 1038 for argf (), arg ()

–1.0 to +1.0 for arg_fr16 ()

Note

Im (a) /Re (a) < =1 for arg_fr16 ()

c atan a
a

=










Im()
Re()
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 3-29
for Blackfin Processors

DSP Run-Time Library Reference
autocoh

autocoherence

Synopsis

#include <stats.h>

void autocohf(a,n,m,c)

const float a[]; /* Input vector a */

int n; /* Input samples */

int m; /* Lag count */

float c[]; /* Output vector c */

void autocoh_fr16 (a,n,m,c)

const fract16 a[]; /* Input vector a */

int n; /* Input samples */

int m; /* Lag count */

fract16 c[]; /* Output vector c */

Description

This function computes the autocoherence of the input elements con-
tained within input vector a, and stores the result to output vector c.

Algorithm

where k = {0,1,...,m-1} and a is the mean value of input vector a.

Domain

–3.4 x 1038 to +3.4 x 1038 for autocohf ()

–1.0 to 1.0 for autocoh_fr16 ()

c
n

a a a ak j j k
j

n k

= − −+
=

− −

∑
1

0

1

* (() * ())
3-30 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

DSP Run-Time Library
autocorr

autocorrelation

Synopsis

#include <stats.h>
void autocorrf(a,n,m,c)
const float a[]; /* Input vector a */
int n; /* Number of input samples */
int m; /* Lag count */
float c[]; /* Output vector c */
void autocorr_fr16 (a,n,m,c)
const fract16 a[]; /* Input vector a */
int n; /* Number of input samples */
int m; /* Lag count */
fract16 c[]; /* Output vector c */

Description

This function computes the autocorrelation of the input elements con-
tained within input vector a, and stores the result to output vector c. The
autocorr function is used in digital signal processing applications such as
speech analysis.

Algorithm

where k = {0,1,...,m-1}

Domain

–3.4 x 1038 to +3.4 x 1038 for autocorrf ()

–1.0 to + 1.0 for autocorr_fr16 ()

c
n

a ak j j k
j

n k

= +
=

− −

∑
1

0

1

*(*)
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 3-31
for Blackfin Processors

DSP Run-Time Library Reference
cabs

complex absolute value

Synopsis

#include <complex.h>
float cabsf (complex_float a);
double cabs (complex_double a);
fract16 cabs_fr16 (fract16 a);

Description

This function computes the complex absolute value of a complex input
and returns the result.

Algorithm

Domain

Re 2 (a) + Im2 (a) <= 3.4 x 10 38 for cabsf (), cabs ()

Re 2 (a) + Im2 (a) <= 1.0 for cabs_fr16

Note

The minimum input value for both real and imaginary parts can be less
than 1/256 for cabs_fr16 but the result may have bit error of 2–3 bits.

 c a a= +Re () Im ()2 2
3-32 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

DSP Run-Time Library
cadd

complex addition

Synopsis

#include <complex.h>

complex_float caddf (complex_float a, complex_float b);

complex_double cadd (complex_double a, complex_double b);

complex_fract16 cadd_fr16 (complex_fract16 a, complex_fract16 b);

Description

This function computes the complex addition of two complex inputs, a
and b, and returns the result.

Algorithm

Re(c) = Re(a) + Re(b)

Im(c) = Im(a) + Im(b)

Domain

–3.4 x 1038 to +3.4 x 1038 for caddf (), cadd ()

–1.0 to +1.0 for cadd_fr16 ()
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 3-33
for Blackfin Processors

DSP Run-Time Library Reference
cdiv

complex division

Synopsis

#include <complex.h>
complex_float cdivf (complex_float a, complex_float b);
complex_double cdiv (complex_double a, complex_double b);

complex_fract16 cdiv_fr16 (complex_fract16 a, complex_fract16 b);

Description

This function computes the complex division of complex input a by com-
plex input b, and returns the result.

Algorithm

Domain

–3.4 x 1038 to +3.4 x 1038 for cdivf (), cdiv ()

–1.0 to 1.0 for cdiv_fr16 ()

)(Im)(Re
)Re(*)Im()Im(*)Re()Im(

)(Im)(Re
)Im(*)Im()Re(*)Re()Re(

22

22

bb
ababc

bb
babac

+
−=

+
+=
3-34 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

DSP Run-Time Library
cexp

complex exponential

Synopsis

#include <complex.h>

complex_float cexpf (float a);

complex_double cexp (double a);

Description

This function computes the complex exponential of real input a and
returns the result.

Algorithm

Re(c) = cos(a)

Im(c) = sin(a)

Domain

a = [–9099 ... 9099] for cexpf (), cexp ()
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 3-35
for Blackfin Processors

DSP Run-Time Library Reference
cfft

n point radix-2 complex input FFT

Synopsis

#include <filter.h>

void cfft_fr16(in[], t[], out[], w[], wst, n, block_exponent,

scale_method)

const complex_fract16 in[]; /* input sequence */

complex_fract16 t[]; /* temporary working buffer */

complex_fract16 out[]; /* output sequence */

const complex_fract16 w[] /* twiddle sequence */

int wst; /* twiddle factor stride */

int n; /* number of FFT points */

int block_exponent; /* block exponent of output data */
int scale_method; /* scaling method desired:

0-none, 1-static, 2-dynamic */

Description

This function transforms the time domain complex input signal sequence
to the frequency domain by using the radix-2 Fast Fourier Transform
(FFT).

The size of the input array in, the output array out, and the temporary
working buffer t is n, where n represents the number of points in the FFT.
By allocating these arrays in different memory banks, any potential data
bank collisions will be avoided, thus improving run-time performance. If
the input data can be overwritten, the optimum memory usage can be
achieved by also specifying the input array as the output array.
3-36 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

DSP Run-Time Library
The twiddle table is passed in the argument w, which must contain at least
n/2 twiddle factors. The function twidfftrad2_fr16 may be used to ini-
tialize the array. If the twiddle table contains more factors than needed for
a particular call on cfft_fr16, then the stride factor has to be set appro-
priately; otherwise it should be 1.

The arguments block_exponent and scale_method have been added for
future expansion. These arguments are ignored by the function. To avoid
overflow, the function scales the output by 1/n.

Algorithm

When the sequence length, n, equals power of four, the cfftrad4 algo-
rithm is also available.

Domain

Input sequence length n must be a power of two and at least 16.

X k x n W
n

N

N
nk() ()=

=

−

∑
0

1

VisualDSP++ 3.1 C/C++ Compiler and Library Manual 3-37
for Blackfin Processors

DSP Run-Time Library Reference
cfftrad4

n point radix-4 complex input FFT

Synopsis

#include <filter.h>

void cfftrad4_fr16 (in[], t[], out[], w[], wst, n,

block_exponent, scale_method)

const complex_fract16 in[]; /* input sequence */

complex_fract16 t[]; /* temporary working buffer */

complex_fract16 out[]; /* output sequence */

const complex_fract16 w[] /* twiddle sequence */

int wst; /* twiddle factor stride */

int n; /* number of FFT points */

int block_exponent; /* block exponent of output data */
int scale_method; /* scaling method desired:

0-none, 1-static, 2-dynamic */

Description

This function transforms the time domain complex input signal sequence
to the frequency domain by using the radix-4 Fast Fourier Transform. The
cfftrad4_fr16 function will decimate in frequency by the radix-4 FFT
algorithm.

The size of the input array in, the output array out, and the temporary
working buffer t is n, where n represents the number of points in the FFT.
Memory bank collisions, which have an adverse effect on run-time perfor-
mance, may be avoided by allocating all input and working buffers to
different memory banks. If the input data can be overwritten, the opti-
mum memory usage can be achieved by also specifying the input array as
the output array.
3-38 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

DSP Run-Time Library
The twiddle table is passed in the argument w, which must contain at least
¾n twiddle coefficients. The function twidfftrad4_fr16 may be used to
initialize the array. If the twiddle table contains more coefficients than
needed for a particular call on cfftrad4_fr16 , then the stride factor has
to be set appropriately; otherwise it should be one.

The arguments block_exponent and scale_method have been added for
future expansion. These arguments are ignored by the function. To avoid
overflow, the function performs static scaling by first dividing the input
by n.

Algorithm

When the sequence length, n, is not a power of four, the radix2 method
must be used. See “cfft” on page 3-36.

Domain

Input sequence length n must be a power of four and at least 16.

X k x n W
n

N

N
nk() ()=

=

−

∑
0

1

VisualDSP++ 3.1 C/C++ Compiler and Library Manual 3-39
for Blackfin Processors

DSP Run-Time Library Reference
cfft2d

n x n point 2-d complex input FFT

Synopsis

#include <filter.h>

void cfft2d_fr16(*in, *t, *out, w[], wst, n, block_exponent,

scale_method)

const complex_fract16 *in; /* pointer to input matrix a[n][n] */
complex_fract16 *t /* pointer to working buffer t[n][n] */
complex_fract16 *out; /* pointer to output matrix\ c[n][n] */
const complex_fract16 w[]; /* twiddle sequence */

int wst; /* twiddle factor stride */

int n; /* number of FFT points */

int block_exponent; /* block exponent of output data */

int scale_method; /* scaling method desired:
0-none, 1-static, 2-dynamic */

Description

This function computes the two-dimensional Fast Fourier Transform of
the complex input matrix a[n][n] and stores the result to the complex
output matrix c[n][n].

The size of the input array in, the output array out, and the temporary
working buffer t is n, where n represents the number of points in the FFT.
Memory bank collisions, which have an adverse effect on run-time perfor-
mance, may be avoided by allocating all input and working buffers to
different memory banks. If the input data can be overwritten, the opti-
mum memory usage can be achieved by also specifying the input array as
the output array.
3-40 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

DSP Run-Time Library
The twiddle table is passed in the argument w, which must contain at least
n twiddle factors. The function twidfft2d_fr16 may be used to initialize
the array. If the twiddle table contains more factors than needed for a par-
ticular call on cfft2d_fr16, then the stride factor has to be set
appropriately; otherwise it should be 1.

The arguments block_exponent and scale_method have been added for
future expansion. These arguments are ignored by the function. To avoid
overflow, the function scales the output by n*n.

Algorithm

where i={0,1,...,n-1}, j={0,1,2,...,n-1}

Domain

Input sequence length n must be a power of two and at least 16.

c i j a k l e j i k j l n

l

n

k

n

(,) (,) * (* *) /= − +

=

−

=

−

∑∑ 2

0

1

0

1
π

VisualDSP++ 3.1 C/C++ Compiler and Library Manual 3-41
for Blackfin Processors

DSP Run-Time Library Reference
cfir

complex finite impulse response filter

Synopsis

#include <filter.h>

void cfir_fr16(x,y,n,s)
const complex_fract16 x[]; /* Input sample vector x */
complex_fract16 y[]; /* Output sample vector y */
int n; /* Number of input samples */
cfir_state_fr16 *s; /* Pointer to filter state

structure */

The function uses the following structure to maintain the state of the
filter.

typedef struct
{

int k; /* Number of coefficients */
complex_fract16 *h; /* Filter coefficients */
complex_fract16 *d; /* Start of delay line */
complex_fract16 *p; /* Read/write pointer */

} cfir_state_fr16;

Description

The cfir_fr16 function implements a complex finite impulse response
(CFIR) filter. It generates the filtered response of the complex input data x
and stores the result in the complex output vector y.

The function maintains the filter state in the structured variable s, which
must be declared and initialized before calling the function. The macro
cfir_init, in the filter.h header file, is available to initialize the struc-
ture and is defined as:
3-42 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

DSP Run-Time Library
#define cfir_init(state, coeffs, delay, ncoeffs) \

(state).h = (coeffs); \

(state).d = (delay); \

(state).p = (delay); \

(state).k = (ncoeffs)

The characteristics of the filter (passband, stopband, etc.) are dependent
upon the number of complex filter coefficients and their values. A pointer
to the coefficients should be stored in s->h, and s->k should be set to the
number of coefficients.

Each filter should have its own delay line which is a vector of type
complex_fract16 and whose length is equal to the number of coefficients.
The vector should be cleared to zero before calling the function for the
first time and should not otherwise be modified by the user program. The
structure member s->d should be set to the start of the delay line, and the
function uses s->p to keep track of its current position within the vector.

Algorithm

Domain

�1.0 to +1.0

y k h i x k i k n
i

p

() () * () , ,...= − =
=

−

∑
0

1

0 1 for
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 3-43
for Blackfin Processors

DSP Run-Time Library Reference
clip

clip

Synopsis

#include <math.h>

int clip (int parm1, int parm2)

float fclipf (float parm1, float parm2)

double fclip (double parm1, double parm2)

fract16 clip_fr16 (fract16 parm1, fract16 parm2)

long int lclip(long int parm1, long int parm2)

Description

This function clips a value if it is too large.

Algorithm

If (|parm1| < |parm2|)

return(parm1)

else

return(|parm2| * signof(parm1))

Domain

Full range for various input parameter types.
3-44 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

DSP Run-Time Library
cmlt

complex multiply

Synopsis

#include <complex.h>

complex_float cmltf (complex_float a, complex_float b)

complex_double cmlt (complex_double a, complex_double b)

complex_fract16 cmlt_fr16 (complex_fract16 a, complex_fract16 b)

Description

This function computes the complex multiplication of two complex
inputs, a and b, and returns the result.

Algorithm

Re(c) = Re(a) * Re(b) - Im(a) * Im(b)

Im(c) = Re(a) * Im(b) + Im(a) * Re(b)

Domain

�3.4 x 1038 to +3.4 x 1038 for cmltf (), cmlt ()

�1.0 to 1.0 for cmlt_fr16 ()
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 3-45
for Blackfin Processors

DSP Run-Time Library Reference
conj

complex conjugate

Synopsis

#include <complex.h>

complex_float conjf (complex_float a)

complex_double conj (complex_double a)

complex_fract16 conj_fr16 (complex_fract16 a)

Description

This function conjugates the complex input a and returns the result.

Algorithm

Re(c) = Re(a)

Im(c) = -Im(a)

Domain

�3.4 x 1038 to +3.4 x 1038 for conjf (), conj ()

�1.0 to 1.0 for conj_fr16 ()
3-46 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

DSP Run-Time Library
convolve

convolution

Synopsis

#include <filter.h>

void convolve_fr16(cin1, clen1, cin2, clen2, cout)

const fract16 cin1[]; /* pointer to input sequence 1 */

int clen1; /* length of the input sequence 1 */

const fract16 cin2[]; /* pointer to input sequence 2 */

int clen2; /* length of the input sequence 2 */

fract16 cout[]; /* pointer to output sequence */

Description

This function convolves two sequences pointed to by cin1 and cin2. If
cin1 points to the sequence whose length is clen1 and cin2 points to the
sequence whose length is clen2, the resulting sequence pointed to by cout
has length clen1 + clen2 � 1.

Algorithm

Convolution between two sequences cin1 and cin2 is described as:

for n = 0 to clen1 +clen2-1. Values for cin1[j] are considered to be zero
for j < 0 or j > clen1-1.

[] ()[] ()[]∑
−

=

−−•−−+=
12

0
12 1

clen

k
kclen2cin2clenkn1cinncout
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 3-47
for Blackfin Processors

DSP Run-Time Library Reference
Example

Here is an example of a convolution where cin1 is of length 4 and cin2 is
of length 3. If we represent cin1 as “A” and cin2 as “B”, the elements of
the output vector are:

{A[0]*B[0],

A[1]*B[0] + A[0]*B[1],

A[2]*B[0] + A[1]*B[1] + A[0]*B[2],

A[3]*B[0] + A[2]*B[1] + A[1]*B[2],

A[3]*B[1] + A[2]*B[2],

A[3]*B[2]}

Domain

�1.0 to +1.0
3-48 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

DSP Run-Time Library
conv2d

2-d convolution

Synopsis

#include <filter.h>
void conv2d_fr16(min1, mrow1, mcol1, min2, mrow2, mcol2, mout)
const fract16 *min1; /* pointer to input matrix 1 */
int mrow1; /* number of rows in matrix 1 */
int mcol1; /* number of columns in matrix 1 */
const fract16 *min2; /* pointer to input matrix 2 */
int mrow2; /* number of rows in matrix 2 */
int mcol2; /* number of columns in matrix 2 */
fract16 *mout; /* pointer to output matrix */

Description

The conv2d function computes the two-dimensional convolution of input
matrix min1 of size mrow1 x mcol1 and min2 of size mrow2 x mcol2 and
stores the result in matrix mout of dimension (mrow1 + mrow2-1) x (mcol1
+ mcol2-1).

� A temporary work area is allocated from the run-time stack that the
function uses to preserve accuracy while evaluating the algorithm.
The stack may therefore overflow if the sizes of the input matrices
are sufficiently large. The size of the stack may be adjusted by mak-
ing appropriate changes to the .LDF file

Algorithm

Two dimensional input matrix min1 is convolved with input matrix min2,
placing the result in a matrix pointed to by the mout.

for c = 0 to mcol1+mcol2-1 and r = 0 to mrow2-1

[] () ()]1 ,1[] ,[,
12

0

12

0

j2mrowi2mcolmin2jricmin1rcmout
mcol

i

mrow

j

−−−−•++= ∑ ∑
−

=

−

=

VisualDSP++ 3.1 C/C++ Compiler and Library Manual 3-49
for Blackfin Processors

DSP Run-Time Library Reference
Domain

�1.0 to +1.0
3-50 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

DSP Run-Time Library
conv2d3x3

2-d convolution with 3 x 3 matrix

Synopsis

#include <filter.h>
void conv2d3x3_fr16(min1, mrow1, mcol1, min2, mout)
const fract16 *min1; /* pointer to input matrix 1 */
int mrow1; /* number of rows in matrix 1 */
int mcol1; /* number of columns in matrix 1 */
const fract16 *min2; /* pointer to input matrix 2 */
fract16 *mout; /* pointer to output matrix */

Description

The conv2d3x3 function computes the two-dimensional convolution of
matrix min1 (size mrow1 x mcol1) with matrix min2 (size 3 x 3).

Algorithm

Two dimensional input matrix min1 is convolved with input matrix min2,
placing the result in a matrix pointed to by mout.

for c = 0 to mcol1+2 and r = 0 to mrow1+2

Domain

�1.0 to +1.0

[]]2 ,2[] ,[,
2

0

2

0
jimin2jricmin1rcmout

i j
−−•++= ∑ ∑

= =
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 3-51
for Blackfin Processors

DSP Run-Time Library Reference
copysign

copysign

Synopsis

#include <math.h>

float copysignf (float parm1, float parm2)

double copysign (double parm1, double parm2)

fract16 copysign_fr16 (fract16 parm1, fract16 parm2)

Description

This function copies the sign of the second argument to the first
argument.

Algorithm

return(|parm1| * copysignof(parm2))

Domain

Full range for type of parameters used.
3-52 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

DSP Run-Time Library
cot

cotangent

Synopsis

#include <math.h>

float cotf (float a)

double cot (double a)

Description

This function calculates the cotangent of its argument a, which is mea-
sured in radians. If a is outside of the domain, the function returns 0.

Algorithm

 c = cot(a)

Domain

 x = [�9099 ... 9099] for cotf(), cot()
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 3-53
for Blackfin Processors

DSP Run-Time Library Reference
countones

count one bits in word

Synopsis

#include <math.h>

int countones(int word)

int lcountones(long word)

Description

This function counts the number of one bits in a word.

Algorithm

return = bit[j] of word

where N is the number of bits in word.

∑
=

-1-N

0j
3-54 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

DSP Run-Time Library
crosscoh

cross-coherence

Synopsis

#include <stats.h>
void crosscohf(a,b,n,m,c)
const float a[]; /* Input vector a */
const float b[]; /* Input vector b */
int n; /* Number of input samples */
int m; /* Lag count */
float c[]; /* Output vector c */
void crosscoh _fr16(a,n,m,c)
const fract16 a[]; /* Input vector a */
const fract16 b[]; /* Input vector b */
int n; /* Number of input samples */
int m; /* Lag count */
fract16 c[]; /* Output vector c */

Description

This function computes the cross-coherence of the input elements con-
tained within input vector a and input vector b. It stores the result to
output vector c.

Algorithm

where k = {0,1,...,m-1}, a is the mean value of input vector a, and b is the
mean value of input vector b.

Domain

�3.4 x 1038 to +3.4 x 1038 for crosscohf ()

�1.0 to +1.0 for crosscoh_fr16 ()

))(*)((*1 1

0
∑

−−

=
+ −−=

kn

j
kjjk bbaa

n
c

VisualDSP++ 3.1 C/C++ Compiler and Library Manual 3-55
for Blackfin Processors

DSP Run-Time Library Reference
crosscorr

cross-correlation

Synopsis

#include <stats.h>
void crosscorrf(a,b,n,m,c)
const float a[]; /* Input vector a */
const float b[]; /* Input vector b */
int n; /* Number of input samples */
int m; /* Lag count */
float c[]; /* Pointer to output vector c */
void crosscorr_fr16(a,n,m,c)
const fract16 a[]; /* Input vector a */
const fract16 b[]; /* Input vector b */
int n; /* Number of input samples */
int m; /* Lag count */
fract16 c[]; /* Pointer to output vector c */

Description

This function computes the cross-correlation of the input elements con-
tained within input vector a and input vector b. It stores the result to
output vector c.

Algorithm

where k = {0,1,...,m-1}

Domain

-3.4 x 1038 to +3.4 x 1038 for crosscorrf ()

-1.0 to +1.0 for crosscorr_fr16 ()

c
n

a bk j j k
j

n k

= +
=

− −

∑
1

0

1

*(*)
3-56 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

DSP Run-Time Library
csub

complex subtraction

Synopsis

#include <complex.h>
complex_float csubf (complex_float a, complex_float b);
complex_double csub (complex_double a, complex_double b);
complex_fract16 csub_fr16 (complex_fract16 a, complex_fract16 b);

Description

This function computes the complex subtraction of two complex inputs, a
and b, and returns the result.

Algorithm

Re(c) = Re(a) � Re(b)
Im(c) = Im(a) � Im(b)

Domain

�3.4 x 1038 to +3.4 x 1038 for csubf (), csub ()

�1.0 to 1.0 for csub_fr16 ()
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 3-57
for Blackfin Processors

DSP Run-Time Library Reference
fir

finite impulse response filter

Synopsis

#include <filter.h>

void fir_fr16(x,y,n,s)
const fract16 x[]; /* Input sample vector x */
fract16 y[]; /* Output sample vector y */
int n; /* Number of input samples */
fir_state_fr16 *s; /* Pointer to filter state structure */

The function uses the following structure to maintain the state of the
filter.

typedef struct

{
fract16 *h, /* filter coefficients */
fract16 *d, /* start of delay line */
fract16 *p, /* read/write pointer */
int k; /* number of coefficients */
int l; /* interpolation/decimation index */

} fir_state_fr16;

Description

The fir_fr16 function implements a FIR filter. The function generates
the filtered response of the input data x and stores the result in the output
vector y. The number of input samples and the length of the output vector
is specified by the argument n.

The function maintains the filter state in the structured variable s which
must be declared and initialized before calling the function. The macro
fir_init, in the filter.h header file, is available to initialize the structure
and is defined as:
3-58 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

DSP Run-Time Library
#define fir_init(state, coeffs, delay, ncoeffs. index) \

(state).h = (coeffs); \
(state).d = (delay); \
(state).p = (delay); \
(state).k = (ncoeffs); \
(state).l = (index)

The characteristics of the filter (passband, stopband, and so on) are depen-
dent upon the number of filter coefficients and their values. A pointer to
the coefficients should be stored in s->h, and s->k should be set to the
number of coefficients.

Each filter should have its own delay line which is a vector of type fract16
and whose length is equal to the number of coefficients. The vector should
be initially cleared to zero and should not otherwise be modified by the
user program. The structure member s->d should be set to the start of the
delay line, and the function uses s->p to keep track of its current position
within the vector.

The structure member s->l is not used by fir_fr16. This field is normally
set to an interpolation/decimation index before calling either the
fir_interp_fr16 or fir_decima_fr16 functions.

Algorithm

Domain

�1.0 to +1.0

1,...1,0for)(*)()(
1

0
−=−=∑

−

=

nijixjhiy
k

j

VisualDSP++ 3.1 C/C++ Compiler and Library Manual 3-59
for Blackfin Processors

DSP Run-Time Library Reference
fir_decima

FIR decimation filter

Synopsis

#include <filter.h>

void fir_decima_fr16(x,y,n,s)
const fract16 x[]; /* Input sample vector x */
fract16 y[]; /* Output sample vector y */
int n; /* Number of input samples */
fir_state_fr16 *s; /* Pointer to filter state structure */

The function uses the following structure to maintain the state of the
filter.

typedef struct
{

fract16 *h; /* filter coefficients */
fract16 *d; /* start of delay line */
fract16 *p; /* read/write pointer */
int k; /* number of coefficients */
int l; /* interpolation/decimation index */

} fir_state_fr16;

Description

The fir_decima_fr16 function performs a FIR-based decimation filter. It
generates the filtered decimated response of the input data x and stores the
result in the output vector y. The number of input samples is specified by
the argument n, and the size of the output vector should be n/l where l is
the decimation index.

The function maintains the filter state in the structured variable s, which
must be declared and initialized before calling the function. The macro
fir_init, in the filter.h header file, is available to initialize the structure
and is defined as:
3-60 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

DSP Run-Time Library
#define fir_init(state, coeffs, delay, ncoeffs, index) \

(state).h = (coeffs); \
(state).d = (delay); \
(state).p = (delay); \
(state).k = (ncoeffs); \
(state).l = (index)

The characteristics of the filter are dependent upon the number of filter
coefficients and their values, and on the decimation index supplied by the
calling program. A pointer to the coefficients should be stored in s->h,
and s->k should be set to the number of coefficients. The decimation
index is supplied to the function in s->l.

Each filter should have its own delay line which is a vector of type fract16
and whose length is equal to the number of coefficients. The vector should
be initially cleared to zero and should not otherwise be modified by the
user program. The structure member s->d should be set to the start of the
delay line, and the function uses s->p to keep track of its current position
within the vector.

Algorithm

where i = 0,1,...,(n/l) - 1

Domain

�1.0 to + 1.0

∑
−

=

=
1

0j
)j+1-k(*)j - *()(

k

hlixiy
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 3-61
for Blackfin Processors

DSP Run-Time Library Reference
fir_interp

FIR interpolation filter

Synopsis

#include <filter.h>
void fir_interp_fr16(x,y,n,s)
const fract16 x[]; /* Input sample vector x */
fract16 y[]; /* Output sample vector y */
int n; /* Number of input samples */
fir_state_fr16 *s; /* Pointer to filter state structure */

The function uses the following structure to maintain the state of the
filter.

typedef struct
{

fract16 *h; /* filter coefficients */
fract16 *d; /* start of delay line */
fract16 *p; /* read/write pointer */
int k; /* number of coefficients */
int l; /* interpolation/decimation index */

} fir_state_fr16;

Description

The fir_interp_fr16 function performs a FIR-based interpolation filter.
It generates the interpolated filtered response of the input data x and
stores the result in the output vector y. The number of input samples is
specified by the argument n, and the size of the output vector should be
n*l where l is the interpolation index.

The function maintains the filter state in the structured variable s, which
must be declared and initialized before calling the function. The macro
fir_init, in the filter.h header file, is available to initialize the struc-
ture and is defined as:
3-62 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

DSP Run-Time Library
#define fir_init(state, coeffs, delay, ncoeffs, index) \
 (state).h = (coeffs); \
 (state).d = (delay); \
 (state).p = (delay); \
 (state).k = (ncoeffs); \
 (state).l = (index)

The characteristics of the filter are dependent upon the number of
polyphase filter coefficients and their values, and on the interpolation
index supplied by the calling program. A pointer to the coefficients should
be stored in s->h, and s->k should be set to the number of coefficients.
The interpolation index is supplied to the function in s->l.

Each filter should have its own delay line which is a vector of type fract16
and whose length is equal to the number of coefficients. The vector should
be cleared to zero before calling the function for the first time and should
not otherwise be modified by the user program. The structure member
s->d should be set to the start of the delay line, and the function uses s->p
to keep track of its current position within the vector.

Algorithm

where i = 0,1,...,n-1

Domain

�1.0 to +1.0

∑
−

=

−=
1

0
1-l0,1,..., = mfor))k*(m + j(*)(m) + i*y(l

k

j
hjix
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 3-63
for Blackfin Processors

DSP Run-Time Library Reference
gen_bartlett

generate Bartlett window

Synopsis

#include <window.h>
void gen_bartlett_fr16(w,a,N)
fract16 w[]; /* Window vector */
int a; /* Address stride in samples for window vector */
int N; /* Length of window vector */

Description

This function generates a vector containing the Bartlett window. The
length is specified by parameter N. This window is similar to the Triangle
window but has two different properties:

• The Bartlett window always returns a window with two zeros on
either end of the sequence, so that for odd n, the center section of a
N+2 Bartlett window equals a N Triangle window.

• For even n, the Bartlett window is still the convolution of two rect-
angular sequences. There is no standard definition for the Triangle
window for even n�the slopes of the Triangle window are slightly
steeper than those of the Bartlett window.

Algorithm

where n = {0, 1, 2, ..., N-1}

Domain

a > 0; N > 0

w n
n N

N[] = −
− −

−1

1
2
1

2

3-64 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

DSP Run-Time Library
gen_blackman

generate Blackman window

Synopsis

#include <window.h>
void gen_blackman_fr16(w,a,N)
fract16 w[]; /* Window vector */
int a; /* Address stride in samples for window vector */
int N; /* Length of window vector */

Description

This function generates a vector containing the Blackman window. The
length is specified by parameter N.

Algorithm

where n = {0, 1, 2, ..., N-1}

Domain

a > 0; N > 0

w n n
N

n
N

[] . . cos . cos= −
−







 +

−






0 42 0 5 2

1
0 08 4

1
π π
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 3-65
for Blackfin Processors

DSP Run-Time Library Reference
gen_gaussian

generate Gaussian window

Synopsis

#include <window.h>
void gen_gaussian_fr16(w,alpha,a,N)
fract16 w[]; /* Window vector */
float alpha; /* Gaussian alpha parameter */
int a; /* Address stride in samples for window vector */
int N; /* Length of window vector */

Description

This function generates a vector containing the Gaussian window. The
length is specified by parameter N.

Algorithm

where n = {0, 1, 2, ..., N-1} and α is an input parameter.

Domain

a > 0; N > 0; α > 0.0

w n
n N

N() exp
/ /

/
= −

− −



















1
2

2 1 2
2

2

α

3-66 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

DSP Run-Time Library
gen_hamming

generate Hamming window

Synopsis

#include <window.h>
void gen_hamming_fr16(w,a,N)
fract16 w[]; /* Window vector */
int a; /* Address stride in samples for window vector */
int N; /* Length of window vector */

Description

This function generates a vector containing the Hamming window. The
length is specified by parameter N.

Algorithm

where n = {0, 1, 2, ..., N-1}

Domain

a > 0; N > 0

w n n
N

[] . . cos= −
−







054 0 46 2

1
π

VisualDSP++ 3.1 C/C++ Compiler and Library Manual 3-67
for Blackfin Processors

DSP Run-Time Library Reference
gen_hanning

generate Hanning window

Synopsis

#include <window.h>
void gen_hanning_fr16(w,a,N)
fract16 w[]; /* Window vector */
int a; /* Address stride in samples for window vector */
int N; /* Length of window vector */

Description

This function generates a vector containing the Hanning window. The
length is specified by parameter N. This window is also known as the
Cosine window.

Algorithm

where n = {0, 1, 2, ..., N+1}

Domain

a > 0; N > 0

w n n
N

[] . . cos= −
+







0 5 0 5 2

1
π

3-68 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

DSP Run-Time Library
gen_harris

generate Harris window

Synopsis

#include <window.h>
void gen_harris_fr16(w,a,N)
fract16 w[]; /* Window vector */
int a; /* Address stride in samples for window vector */
int N; /* Length of window vector */

Description

This function generates a vector containing the Harris window. The
length is specified by parameter N. This window is also known as the
Blackman-Harris window.

Algorithm

where n = {0, 1, 2, ..., N-1}

Domain

a > 0; N > 0

w n n
N

n
N

n
N

[] . . * cos . * cos . * cos= −
−









 +

−








 +

−








0 35875 0 48829 2

1
014128 4

1
0 01168 6

1
π π π
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 3-69
for Blackfin Processors

DSP Run-Time Library Reference
gen_kaiser

generate Kaiser window

Synopsis

#include <window.h>
void gen_kaiser_fr16(w,beta,a,N)
fract16 w[]; /* Window vector */
float beta; /* Kaiser beta parameter */
int a; /* Address stride in samples for window vector */
int N; /* Length of window vector */

Description

This function generates a vector containing the Kaiser window. The
length is specified by parameter N. The β value is specified by the parame-
ter beta.

Algorithm

where n = {0, 1, 2, ..., N-1}, α = (N - 1) / 2, and I0(β) represents the
zeroth-order modified Bessel function of the first kind.

Domain

α > 0; N > 0; β > 0.0

()w n

I n

I
[]

/

=

− −






























0

2 1 2

0

1β α
α

β

3-70 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

DSP Run-Time Library
gen_rectangular

generate rectangular window

Synopsis

#include <window.h>

void gen_rectangular_fr16(w,a,N)

fract16 w[]; /* Window vector */
int a; /* Address stride in samples for window vector */
int N; /* Length of window vector */

Description

This function generates a vector containing the Rectangular window. The
length is specified by parameter N.

Algorithm

w[n] = 1 where n = {0, 1, 2, ..., N-1}

Domain

a > 0; N > 0
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 3-71
for Blackfin Processors

DSP Run-Time Library Reference
gen_triangle

 generate triangle window

Synopsis

#include <window.h>
void gen_triangle_fr16(w,a,N)
fract16 w[]; /* Window vector */
int a; /* Address stride in samples for window vector */
int N; /* Length of window vector */

Description

This function generates a vector containing the Triangle window. The
length is specified by parameter N. Refer to the Bartlett window regarding
the relationship between it and the Triangle window.

Algorithm

For even n:

where n = {0, 1, 2, ..., N-1}

 For odd n:

where n = {0, 1, 2, ..., N-1}

Domain

a > 0; N > 0

w n

n
N

n N

N n
N

n N
[] =

+ <

− − >









2 1 2

2 2 1 2

w n

n
N

n N

N n
N

n N
[] =

+
+

<

−
+

>









2 2
1

2

2 2
1

2

3-72 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

DSP Run-Time Library
gen_vonhann

generate Von Hann window

Synopsis

#include <window.h>
void gen_vonhann_fr16(w,a,N)
fract16 w[]; /* Window vector */
int a; /* Address stride in samples for window vector */
int N; /* Length of window vector */

Description

This function is identical to the Hanning window.

Domain

a > 0; N > 0
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 3-73
for Blackfin Processors

DSP Run-Time Library Reference
histogram

histogram

Synopsis

#include <stats.h>
void histogramf(a,c,max,min,n,m)
const float a[]; /* Pointer to input vector a */
int c[]; /* Pointer to output vector c */
float max; /* Maximum value of the bin */
float min; /* Minimum value of the bin */
int n; /* Number of input samples */
int m; /* Number of bins */

void histogram_fr16(a,n,m,c)
const fract16 a[]; /* Pointer to input vector a */
int c[]; /* Pointer to output vector c */
fract16 max; /* Maximum value of the bin */
fract16 min; /* Minimum value of the bin */
int n; /* Number of input samples */
int m; /* Number of bins */

Description

This function computes the histogram of the input elements contained
within input vector a, and stores the result to output vector c.

Algorithm

It bins n elements of input vector a into m equally spaced containers, and
returns the number of elements in each container.

Domain

�3.4 x 1038 to +3.4 x 1038 for histogramf ()

�1.0 to +1.0 for histogram_fr16 ()
3-74 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

DSP Run-Time Library
ifft

n point radix-2 inverse FFT

Synopsis

#include <filter.h>
void ifft_fr16(in[], t[], out[], w[], wst, n, block_exponent,

scale_method)
const complex_fract16 in[]; /* input sequence */
complex_fract16 t[]; /* temporary working buffer */
complex_fract16 out[]; /* output sequence */
const complex_fract16 w[]; /* twiddle sequence */
int wst; /* twiddle factor stride */
int n; /* number of FFT points */
int block_exponent; /* block exponent of output data */
int scale_method; /* scaling method desired:

 0-none, 1-static, 2-dynamic */

Description

This function transforms the frequency domain complex input signal
sequence to the time domain by using the radix-2 Fast Fourier Transform.

The size of the input array in, the output array out, and the temporary
working buffer t is n, where n represents the number of points in the FFT.
To avoid potential data bank collisions the input and temporary buffers
should be allocated in different memory banks; this will result in
improved run-time performance. If the input data can be overwritten, the
optimum memory usage can be achieved by also specifying the input array
as the output array.

The twiddle table is passed in the argument w, which must contain at least
n/2 twiddle coefficients. The function twidfftrad2_fr16 may be used to
initialize the array. If the twiddle table contains more coefficients than
needed for a particular call on ifft_fr16, then the stride factor has to be
set appropriately; otherwise it should be 1.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 3-75
for Blackfin Processors

DSP Run-Time Library Reference
The arguments block_exponent and scale_method have been added for
future expansion. These arguments are ignored by the function. To avoid
overflow the function scales the output by 1/n.

Algorithm

The implementation uses core FFT functions. To get the inverse effect, it
first swaps the real and imaginary parts of the input, performs the direct
radix-2 transformation, and finally swaps the real and imaginary parts of
the output.

Domain

Input sequence length n must be a power of two and at least 16.

x n
N

X k W
k

N

N
nk() ()=

=

−
−

∑
1

0

1

3-76 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

DSP Run-Time Library
ifftrad4

n point radix-4 inverse input FFT

Synopsis

#include <filter.h>
void ifftrad4_fr16 (in[], t[], out[], w[], wst, n,

block_exponent, scale_method)
const complex_fract16 in[]; /* input sequence */
complex_fract16 t[]; /* temporary working buffer */
complex_fract16 out[]; /* output sequence */
const complex_fract16 w[]; /* twiddle sequence */
int wst; /* twiddle factor stride */
int n; /* number of FFT points */
int block_exponent; /* block exponent of output data */
int scale_method; /* scaling method desired:

 0-none, 1-static, 2-dynamic */

Description

This function transforms the frequency domain complex input signal
sequence to the time domain by using the radix-4 Inverse Fast Fourier
Transform.

The size of the input array in, the output array out, and the temporary
working buffer t is n, where n represents the number of points in the FFT.
Memory bank collisions, which have an adverse effect on run-time perfor-
mance, may be avoided by allocating all input and working buffers to
different memory banks. If the input data can be overwritten, the opti-
mum memory usage can be achieved by also specifying the input array as
the output array.

The twiddle table is passed in the argument w, which must contain at least
¾n twiddle factors. The function twidfftrad4_fr16 may be used to ini-
tialize the array. If the twiddle table contains more factors than needed for
a particular call on ifftrad4_fr16, then the stride factor has to be set
appropriately; otherwise it should be 1.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 3-77
for Blackfin Processors

DSP Run-Time Library Reference
The arguments block_exponent and scale_method have been added for
future expansion. These arguments are ignored by the function. To avoid
overflow the function performs static scaling by first dividing the input by
n.

Algorithm

The implementation uses core FFT functions. To get the inverse effect,
the function first swaps the real and imaginary parts of the input, performs
the direct radix-4 transformation, and finally swaps the real and imaginary
parts of the output.

Domain

Input sequence length n must be a power of four and at least 16.

x n
N

X k W
k

N

N
nk() ()=

=

−
−

∑
1

0

1

3-78 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

DSP Run-Time Library
ifft2d

n x n point 2-d inverse input FFT

Synopsis

#include <filter.h>
void ifft2d_fr16(*in, *t, *out, w[], wst, n, block_exponent,

scale_method)

const complex_float *in; /* pointer to input matrix a[n][n] */
complex_fract16 *t; /* pointer to working buffer t[n][n] */
const complex_fract16 w[]; /* twiddle sequence */
int wst; /* twiddle factor stride */
int n; /* number of FFT points */
int block_exponent; /* block exponent of output data */
int scale_method; /* scaling method desired:

0-none, 1-static, 2-dynamic */

Description

This function computes a two-dimensional Inverse Fast Fourier Trans-
form of the complex input matrix a[n][n] and stores the result to the
complex output matrix c[n][n].

The size of the input array in, the output array out, and the temporary
working buffer t is n, where n represents the number of points in the FFT.
Memory bank collisions, which have an adverse effect on run-time perfor-
mance, may be avoided by allocating all input and working buffers to
different memory banks. If the input data can be overwritten, the opti-
mum memory usage can be achieved by also specifying the input array as
the output array.

The twiddle table is passed in the argument w, which must contain at least
n twiddle factors. The function twidfft2d_fr16 may be used to initialize
the array. If the twiddle table contains more factors than needed for a par-
ticular call on ifft2d_fr16, then the stride factor has to be set
appropriately; otherwise it should be one.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 3-79
for Blackfin Processors

DSP Run-Time Library Reference
The arguments block_exponent and scale_method have been added for
future expansion. These arguments are ignored by the function. To avoid
overflow the function performs static scaling by first dividing the input by
n*n.

Algorithm

where i={0,1,...,n-1}, j={0,1,2,...,n-1}

Domain

Input sequence length n must be a power of two and at least 16.

c i j
n

a k l e j i k j l n

l

n

k

n

(,) (,) * (* *)/= +

=

−

=

−

∑∑
1

2
2

0

1

0

1
π

3-80 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

DSP Run-Time Library
iir

infinite impulse response filter

Synopsis

#include <filter.h>
void iir_fr16(x,y,n,s)
const fract16 x[]; /* Input sample vector x */
fract16 y[]; /* Output sample vector y */
int n; /* Number of input samples */
iir_state_fr16 *s; /* Pointer to filter state structure */

The function uses the following structure to maintain the state of the
filter.

typedef struct

{
 fract16 *c; /* coefficients */
 fract16 *d; /* start of delay line */
 int k; /* number of bi-quad stages */
} iir_state_fr16;

Description

The iir_fr16 function implements a bi-quad, canonical form, infinite
impulse response (IIR) filter. It generates the filtered response of the input
data x and stores the result in the output vector y.

The function maintains the filter state in the structured variable s, which
must be declared and initialized before calling the function. The macro
iir_init, in the filter.h header file, is available to initialize the struc-
ture and is defined as:

#define iir_init(state, coeffs, delay, stages) \
(state).c = (coeffs); \
(state).d = (delay); \
(state).k = (stages)
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 3-81
for Blackfin Processors

DSP Run-Time Library Reference
The characteristics of the filter are dependent upon filter coefficients and
the number of stages. Each stage has five coefficients which must be stored
in the order A2, A1, B2, B1, and B0. The value of A0 is implied to be 1.0 and
A1 and A2 should be scaled accordingly. A pointer to the coefficients
should be stored in s->c, and s->k should be set to the number of stages.

Each filter should have its own delay line which is a vector of type fract16
and whose length is equal to twice the number of stages. The vector
should be initially cleared to zero and should not otherwise be modified by
the user program. The structure member s->d should be set to the start of
the delay line.

Algorithm

where

where m = {0, 1, 2, ..., n-1}

Domain

�1.0 to +1.0

H z
B B z B z

A z A z
() =

+ +
− −

− −

− −
0 1

1
2

2

1
1

2
21

D A D A D x
Y B D B D B D

m m m m

m m m m

= + +
= + +

− −

− −

2 2 1 1

2 2 1 1 0

* *
* * *
3-82 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

DSP Run-Time Library
max

maximum

Synopsis

#include <math.h>
int max (int parm1, int parm2)
float fmaxf (float parm1, float parm2)
double fmax (double parm1, double parm2)
fract16 max_fr16 (fract16 parm1, fract16 parm2)

Description

This function returns the larger of its two arguments.

Algorithm

if (parm1 > parm2)
return(parm1)

else
return(parm2)

Domain

Full range for type of parameters.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 3-83
for Blackfin Processors

DSP Run-Time Library Reference
mean

mean

Synopsis

#include <stats.h>
fract16 mean_fr16(a,n)
const fract16 a[]; /* Input vector a */
int n; /* Number of input samples */
float meanf(a,n)
const float a[]; /* Input vector a */
int n; /* Number of input samples */

Description

This function computes the mean of the input elements contained within
input vector a and returns the result.

Algorithm

Domain

�3.4 x 1038 to +3.4 x 1038 for meanf ()

�1.0 to +1.0 for mean_fr16 ()

c
n

ai
i

n

=
=

−

∑
1

0

1

* ()
3-84 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

DSP Run-Time Library
min

minimum

Synopsis

#include <math.h>
int min (int parm1, int parm2)
float fminf (float parm1, float parm2)
double fmin (double parm1, double parm2)
fract16 min_fr16 (fract16 parm1, fract16 parm2)

Description

This function returns the smaller of its two arguments.

Algorithm

if (parm1 < parm2)
return(parm1)

else
return(parm2)

Domain

Full range for type of parameters used.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 3-85
for Blackfin Processors

DSP Run-Time Library Reference
mu_compress

µ-law compression

Synopsis

#include <filter.h>
void mu_compress(in, out, n)
const short in[]; /* Input array */
short out[]; /* Output array */
int n; /* Number of elements to be compressed */

Description

The mu_compress function takes a vector of linear 14-bit signed speech
samples and performs µ-law compression according to ITU recommenda-
tion G.711. Each sample is compressed to 8 bits and is returned in the
vector pointed to by out.

Algorithm

C(k)= mu_law compression of A(k) for k=0 to n-1

Domain

Content of input array: �8192 to 8191
3-86 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

DSP Run-Time Library
mu_expand

µ-law expansion

Synopsis

#include <filter.h>
void mu_expand(in, out, n)
const short in[]; /* Input array */
short out[]; /* Output array */
int n; /* Number of elements to be expanded */

Description

The mu_expand function inputs a vector of 8-bit compressed speech sam-
ples and expands them according to ITU recommendation G.711. Each
input value is expanded to a linear 14-bit signed sample in accordance
with the µ-law definition and is returned in the vector pointed to out.

Algorithm

C(k)= mu_law expansion of A(k) for k=0 to n-1

Domain

Content of input array: 0 to 255
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 3-87
for Blackfin Processors

DSP Run-Time Library Reference
norm

normalization

Synopsis

#include <complex.h>

complex_float normf (complex_float a)

complex_double norm (complex_double a)

Description

This function normalizes the complex input a and returns the result.

Algorithm

Domain

�3.4 x 1038 to +3.4 x 1038

Re()
Re()

Re () Im ()

Im()
Im()

Re () Im ()

c
a

a a

c
a

a a

=
+

=
+

2 2

2 2
3-88 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

DSP Run-Time Library
polar

construct from polar coordinates

Synopsis

#include <complex.h>

complex_float polarf (float mag, float phase)

complex_double polar (double mag, double phase)

complex_fract16 polar_fr16 (fract16 mag, fract16 phase)

Description

This function transforms the polar coordinate to normal coordinate.

Algorithm

Re(c) = r*cos(θ)
Im(c) = r*sin(θ)

where θ is the phase, and r is the magnitude

Domain

phase = [�9099 ... 9099] for polarf(), polar()

mag = –3.4 x 1038 to +3.4 x 1038 for polarf(), polar()

phase = �1.0 to +1.0 for polar _fr16()

mag = �1.0 to +1.0 for polar_fr16()
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 3-89
for Blackfin Processors

DSP Run-Time Library Reference
rfft

n point radix-2 real input FFT

Synopsis

#include <filter.h>
void rfft_fr16(in[], t[], out[], w[], wst, n,

block_exponent, scale_method)
const fract16 in[]; /* input/output sequence */
complex_fract16 t[]; /* temporary working buffer */
complex_fract16 out[]; /* working buffer */
const complex_fract16 w[]; /* twiddle sequence */
int wst; /* twiddle factor stride */
int n; /* number of FFT points */
int block_exponent; /* block exponent of output data */
int scale_method; /* scaling method desired:

0-none, 1-static, 2-dynamic */

Description

This function transforms the time domain real input signal sequence to
the frequency domain by using the radix-2 FFT. The function takes
advantage of the fact that the imaginary part of the input equals zero,
which in turn eliminates half of the multiplications in the butterfly.

The size of the input array in, the output array out, and the temporary
working buffer t is n, where n represents the number of points in the FFT.
Memory bank collisions, which have an adverse effect on run-time perfor-
mance, may be avoided by allocating all input and working buffers to
different memory banks. If the input data can be overwritten, the opti-
mum memory usage can be achieved by also specifying the input array as
the output array.
3-90 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

DSP Run-Time Library
The twiddle table is passed in the argument w, which must contain at least
n/2 twiddle factors. The function twidfftrad2_fr16 may be used to ini-
tialize the array. If the twiddle table contains more factors than needed for
a particular call on rfft_fr16, then the stride factor has to be set appro-
priately; otherwise it should be 1.

The arguments block_exponent and scale_method have been added for
future expansion. These arguments are ignored by the function. To avoid
overflow the function performs static scaling by first dividing the input by
1/n.

Algorithm

See “cfft” on page 3-36 for more information.

Domain

Input sequence length n must be a power of two and at least 16.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 3-91
for Blackfin Processors

DSP Run-Time Library Reference
rfftrad4

n point radix-4 real input FFT

Synopsis

#include <filter.h>
void rfftrad4_fr16(in[], t[], out[], w[], wst, n,

block_exponent, scale_method)
const fract16 in[]; /* input/output sequence */
complex_fract16 t[]; /* temporary working buffer */
complex_fract16 out[]; /* working buffer */
const complex_fract16 w[]; /* twiddle sequence */
int wst; /* twiddle factor stride */
int n; /* number of FFT points */
int block_exponent; /* block exponent of output data */
int scale_method; /* scaling method desired:

0-none, 1-static, 2-dynamic */

Description

This function transforms the time domain real input signal sequence to
the frequency domain by using the radix-4 Fast Fourier Transform. The
rfftrad4_fr16 function takes advantage of the fact that the imaginary
part of the input equals zero, which in turn eliminates half of the multipli-
cations in the butterfly.

The size of the input array in, the output array out, and the temporary
working buffer t is n, where n represents the number of points in the FFT.
To avoid potential data bank collisions, the input and temporary buffers
should reside in different memory backs; this will result in improved
run-time performance. If the input data can be overwritten, the optimum
memory usage can be achieved by also specifying the input array as the
output array.
3-92 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

DSP Run-Time Library
The twiddle table is passed in the argument w, which must contain at least
¾n twiddle factors. The function twidfftrad4_fr16 may be used to ini-
tialize the array. If the twiddle table contains more factors than needed for
a particular call on rfftrad4_fr16, then the stride factor has to be set
appropriately; otherwise it should be one.

The arguments block_exponent and scale_method have been added for
future expansion. These arguments are ignored by the function. To avoid
overflow the function performs static scaling by first dividing the input by
n.

Algorithm

See “cfftrad4” on page 3-38 for more information.

Domain

Input sequence length n must be a power of four and at least 16.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 3-93
for Blackfin Processors

DSP Run-Time Library Reference
rfft2d

n x n point 2-d real input FFT

Synopsis

#include <filter.h>
void rfft2d_fr16(*in, *t, *out, w[], wst, n, block_exponent
 scale_method)
const fract16 *in; /* pointer to input matrix a[n][n] */
complex_fract16 *t; /* pointer to working buffer t[n][n] */
complex_fract16 *out; /* pointer to output matrix [n][n] */
const complex_fract16 w[]; /* twiddle sequence */
int wst; /* twiddle factor strid */
int n; /* number of FFT points */
int block_exponent; /* block exponent of output data */
int scale_method; /* scaling method desired:

0-none, 1-static, 2-dynamic */

Description

This function computes a two-dimensional Fast Fourier Transform of the
real input matrix a[n][n], and stores the result to the complex output
matrix c[n][n].

The size of the input array in, the output array out, and the temporary
working buffer t is n, where n represents the number of points in the FFT.
Improved run-time performance can be achieved by allocating the input
and temporary arrays in separate memory banks; this will avoid any mem-
ory bank collisions. If the input data can be overwritten, the optimum
memory usage can be achieved by also specifying the input array as the
output array.

The twiddle table is passed in the argument w, which must contain at least
n twiddle coefficients. The function twidfft2d_fr16 may be used to ini-
tialize the array. If the twiddle table contains more coefficients than
needed for a particular call on rfft2d_fr16, then the stride factor has to
be set appropriately; otherwise it should be one.
3-94 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

DSP Run-Time Library
The arguments block_exponent and scale_method have been added for
future expansion. These arguments are ignored by the function. To avoid
overflow the function scales the output by n*n.

Algorithm

where i={0,1,...,n-1}, j={0,1,2,...,n-1}

Domain

Input sequence length n must be a power of two and at least 16.

c i j a k l e j i k j l n

l

n

k

n

(,) (,) * (* *) /= − +

=

−

=

−

∑∑ 2

0

1

0

1
π

VisualDSP++ 3.1 C/C++ Compiler and Library Manual 3-95
for Blackfin Processors

DSP Run-Time Library Reference
rms

root mean square

Synopsis

#include <stats.h>
float rmsf(a,n)
const float a[]; /* Pointer to input vector a */
int n; /* Number of input samples */
fract16 rms_fr16(a,n)
const fract16 a[]; /* Pointer to input vector a */
int n; /* Number of input samples */

Description

This function computes the root mean square of the input elements con-
tained within input vector a and returns the result.

Algorithm

Domain

�3.4 x 1038 to +3.4 x 1038 for rmsf ()

�1.0 to +1.0 for rms_fr16 ()

c
a

n

i
i

n

= =

−

∑ 2

0

1

3-96 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

DSP Run-Time Library
rsqrt

reciprocal square root

Synopsis

#include <math.h>

float rsqrtf (float a)

double rsqrt (double a)

Description

This function calculates the reciprocal of the square root of the number a.
If a is negative, the function returns 0.

Algorithm

 c = 1/

Domain

 0.0 ... 3.4 x 1038 for rsqrtf()

a

VisualDSP++ 3.1 C/C++ Compiler and Library Manual 3-97
for Blackfin Processors

DSP Run-Time Library Reference
twidfftrad2

generate FFT twiddle factors for radix-2 FFT

Synopsis

#include <filter.h>

void twidfftrad2_fr16 (complex_fract16 w[], int n)

Description

This function calculates complex twiddle coefficients for a radix-2 FFT
with n points and returns the coefficients in the vector w. The vector w,
known as the twiddle table, is normally calculated once and is then passed
to an FFT function as a separate argument. The size of the table must be
at least ½ of n, the number of points in the FFT.

FFTs of different sizes can be accommodated with the same twiddle table.
Simply allocate the table at the maximum size. Each FFT has an addi-
tional parameter, the “stride” of the twiddle table. To use the whole table,
specify a stride of 1. If the FFT uses only half the points of the largest ele-
ment, the stride should be 2 (this takes only every other element).

Algorithm

This function takes FFT length n as an input parameter and generates the
lookup table of complex twiddle coefficients. The samples are:

where k = {0, 1, 2, ..., n/2 - 1}

twid re k
n

k_ () cos= 







2π

twid im k
n

k_ () sin= 







2π
3-98 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

DSP Run-Time Library
Domain

The FFT length n must be a power of two and at least 16.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 3-99
for Blackfin Processors

DSP Run-Time Library Reference
twidfftrad4

generate FFT twiddle factors for radix-4 FFT

Synopsis

#include <filter.h>

void twidfftrad4_fr16 (complex_fract16 w[], int n)

void twidfft_fr16(complex_fract16 w[], int n)

Description

The twidfftrad4_fr16 function initializes a table with complex twiddle
factors for a radix-4 FFT. The number of points in the FFT are defined by
n, and the coefficients are returned in the twiddle table w.

The size of the twiddle table must be at least ¾n, the length of the FFT
input sequence. A table can accommodate several FFTs of different sizes
by allocating the table at maximum size, and then using the stride argu-
ment of the FFT function to specify the step size through the table. If the
stride is set to 1, the FFT function uses all the table; if your FFT uses only
half the number of points of the largest FFT, the stride should be 2.

For efficiency, the twiddle table is normally generated once during pro-
gram initialization and is then supplied to the FFT routine as a separate
argument.

The twidfft_fr16 routine is provided as an alternative to the
twidfftrad4_fr16 routine and performs the same function.

Algorithm

This function takes FFT length n as an input parameter and generates the
lookup table of complex twiddle coefficients.
3-100 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

DSP Run-Time Library
The samples generated are:

where k = {0, 1, 2, ..., ¾n - 1}

Domain

The FFT length n must be a power of two and at least 16.

twid re k
n

k_ () cos= 







2π

twid im k
n

k_ () sin= 







2π
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 3-101
for Blackfin Processors

DSP Run-Time Library Reference
twidfft2d

generate FFT twiddle factors for 2-D FFT

Synopsis

#include <filter.h>

void twidfft2d_fr16 (complex_fract16 w[], int n)

Description

The twidfft2d_fr16 function generates complex twiddle factors for a 2-D
FFT. The size of the FFT input sequence is given by the argument n and
the function writes the twiddle factors to the vector w, known as the twid-
dle table.

The size of the twiddle table must be at least n, the number of points in
the FFT. Normally, the table is only calculated once and is then passed to
an FFT function as an argument. A twiddle table may be used to generate
several FFTs of different sizes by initializing the table for the largest FFT
and then using the stride argument of the FFT function to specify the step
size through the table. For example, to generate the largest FFT, the stride
would be set to 1, and to generate an FFT of half this size the stride would
be set to 2.

Algorithm

This function takes FFT length n as an input parameter and generates the
lookup table of complex twiddle coefficients.

The samples generated are:

twid re k
n

k_ () cos= 







2π

twid im k
n

k_ () sin= 







2π
3-102 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

DSP Run-Time Library
where k = {0, 1, 2, ..., n-1}

Domain

The FFT length n must be a power of two and at least 16.
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 3-103
for Blackfin Processors

DSP Run-Time Library Reference
var

variance

Synopsis

#include <stats.h>
float varf(a,n)
const float a[]; /* Pointer to input vector a */
int n; /* Number of input samples */
fract16 var_fr16(a, n)
const fract16 a[]; /* Pointer to input vector a */
int n; /* Number of input samples */

Description

This function computes the variance of the input elements contained
within input vector a and returns the result.

Algorithm

Domain

�3.4 x 1038 to +3.4 x 1038 for varf ()

�1.0 to +1.0 for var_fr16 ()

c
n a a

n n

i
i

n

i
i

n

=
−

−
=

−

=

−

∑ ∑* ()

()

2

0

1

0

1
2

1

3-104 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

DSP Run-Time Library
zero_cross

count zero crossing

Synopsis

#include <stats.h>

int zero_crossf(a,n)

const float a[]; /* Pointer to input vector a */

int n; /* Number of input samples */

int zero_cross_fr16 (a, n)

const fract16 a[]; /* Pointer to input vector a */

int n; /* Number of input samples */

Description

This function computes the number of times that a signal crosses over the
zero line and returns the result.

Algorithm

The actual algorithm is different from the one shown below because the
algorithm needs to handle the case where an element of the array is zero.
However, this example should give you a basic understanding.

 if (a(i) > 0 && a(i+1) < 0)|| (a(i) < 0 && a(i+1) > 0)

 the number of zeros is increased by one

 Domain

�3.4 x 1038 to +3.4 x 1038 for zero_crossf ()

�1.0 to +1.0 for zero_cross_fr16 ()
VisualDSP++ 3.1 C/C++ Compiler and Library Manual 3-105
for Blackfin Processors

DSP Run-Time Library Reference
3-106 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

I INDEX

Symbols C function

#pragma 1-97
#pragma align num 1-99
#pragma linkage_name 1-106
#pragma no_alias 1-104
#pragma optimize_for_space 1-105
#pragma optimize_for_speed 1-105
#pragma optimize_off 1-105
#pragma pack (alignopt) 1-100
#pragma pad (alignopt) 1-101
#pragma retain_name 1-106
#pragma vector_for 1-103
#pragma weak_entry -xxiv, 1-107
.IDL files 1-131
@ filename (command file) compiler

switch 1-23
___cplb_ctrl global variable 1-124

changing value of 1-127
___lib_prog_term label 2-41
__ADI__THREADS macro 1-47
__builtin prefix 1-83
__NO_BUILTIN preprocessor macro

1-36
__STRICT_ANSI__ macro 1-53
_cplb_init routine 1-124
_heap_table table 1-139
_primIO()

 2-11
_Sbrk() library function 1-116
µ-law compression function 3-86
µ-law expansion function 3-87

Numerics
profiling

-p 1-113
2-d convolution (conv2d) function 3-49
2-d convolution (conv2d3x3) function

3-51

A
-A (assert) compiler switch 1-23
a_compress (A-law compression)

function 3-27
a_expand (A-law expansion) function

3-28
Abend (See abort function)
abort (abnormal program end) function

2-24
Abridged C++ library 2-12…2-19
abs (absolute value) function 2-25
accumulator register 1-91
accumulators 1-122
acos (arc cosine) function 2-26
VisualDSP++ 3.1 C/C++ Compiler and Library Manual I-1
for Blackfin Processors

INDEX
aggregate
initializers 1-79
return pointer 1-144

A-law compression 3-27
A-law expansion 3-28
algebraic functions (See math

functions)
alloca() function 1-95
allocate memory (See calloc, free,

malloc, realloc functions)
allocated events 1-122, 1-123
alphanumeric character test (See

isalnum function)
alternate keywords 1-36
-alttok (alternative tokens) C++

mode compiler switch 1-24
-analog (Analog C compilation)

compiler switch 1-22
anomaly #25 1-26
ANSI C signal handler 1-119
ANSI standard warnings 1-42
ANSI/ISO standard C++ 1-22
Application Binary Interface (ABI)

1-58
arg (get phase of a complex number)

function 3-29
argc argument 1-109
argc support 1-109
argument passing 1-149
arguments

passed to main() 1-109
arguments and return transfer 1-148
argv argument 1-109
argv support 1-109

argv/argc
arguments 1-109

arithmetic functions 3-4
array search, binary (See bsearch

function)
array sorting 2-75
ASCII string (See atof, atoi, atol

functions)
asin (arc sine) function 2-27
asm()

compiler keyword 1-62
(See also Assembly language

support keyword (asm))
constructs

registers for 1-69
reordering 1-75

operand constraints 1-70, 1-73
template in C programs 1-66

asm() constructs
flow control 1-77
operands 1-69
syntax 1-65
syntax rules 1-67

assembler
Blackfin processors 1-2

assembly language support keyword
(asm) 1-64

atan (arc tangent) function 2-28
atan2 (arc tangent of quotient)

function 2-29
atan2_fr16 function 2-29
atexit (select exit function) function

2-30
I-2 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

INDEX
atof (convert string to double)
function 2-31

atoi (convert string to integer)
function 2-32

atol (convert string to long integer)
function 2-33

autocoh (autocoherence) function
3-30

autocoherence 3-30
autocorr (autocorrelation) function

3-31
autocorrelation 3-31

B
Bartlett window 3-64
base 10 logarithms 2-64
basic complex arithmetic functions

3-4
basic startup code 1-153
basiccrt.s file 1-108, 1-153
binary array search (See bsearch

function)
Blackfin-specific functionality

1-108
argv/argc arguments 1-109
caching of external memory 1-124
default startup code 1-108
heap size 1-116
interrupts 1-116
MEM_ARGV section 1-109
profiling

routine 1-112
profiling routine 1-113
profiling routine for

single-threaded systems 1-113
Blackman window 3-65
Blackman-Harris window 3-69
blank space character 2-57
Boolean type support keywords

(bool, true, false) 1-78
bsearch (binary search in sorted

array) function 2-34
-bss compiler switch 1-25
-build-lib (build library) compiler

switch 1-25
built-in functions 1-83, 1-84, 2-4

circular buffer 1-93
compiler 2-4
complex fract 1-88
exceptions 1-96
fract16 1-84
fract32 1-84
fractional arithmetic 1-84
fracts in C 1-88
fracts in C++ 1-86
idle mode 1-96
IMASK 1-96
interrupts 1-96
synchronization 1-96
system 1-95
system register read/write 1-96
Viterbi functions 1-91

C
-C (comments) compiler switch

1-25
-c (compile only) compiler switch

1-25
VisualDSP++ 3.1 C/C++ Compiler and Library Manual I-3
for Blackfin Processors

INDEX
C and C++ library files 2-4
C data types 1-54
C function

_primIO() 2-11
C language extensions

C++ style comments 1-63
indexed initializers 1-63
non-constant initializers 1-63
preprocessor-generated warnings

1-63
variable length arrays 1-63

C run-time
library guide 2-3
library reference 2-23…2-119

C++ complex class 1-89
C++ fractional classes -xxiv, 1-86
C++ library

abridged 2-12…2-19
C++ mode compiler switches

-explicit (explicit specifier) 1-51
-namespace 1-52
-newforinit (new for initialization)

1-52
-newvec (new vector) 1-52
-no-demangle (disable demangler)

1-52
-no-explicit (disable explicit

specifier) 1-52
-no-namespace 1-52
-no-newvec (disallow a new

vector) 1-53
-notstrict (non-strict compilation)

1-53
-no-wchar (disable wide char type)

1-53
-strict (strict standard) 1-53
-strictwarn 1-53
-tpautooff (disable automatic

template instantiation) 1-54
-trdforinit (traditional

initialization) 1-54
-typename 1-54
-wchar (enable wide char type)

1-54
C/assembly interfacing (See mixed

C/assembly programming)
C/C++ compiler

guide 1-1, 1-2
overview 1-1, 1-2

C/C++ compiler mode switches
-analog 1-22
-c++ (C++ mode) 1-22
-traditional (traditional

compilation) 1-22
C/C++ language extensions

1-61…??
asm keyword 1-64
bool keyword 1-62
false keyword 1-62
inline keyword 1-63
restrict 1-62
section keyword 1-62
true keyword 1-62

C/C++ library functions
calling 2-3

C/C++ run-time
environment

(See also mixed C/C++/assem-
I-4 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

INDEX
bly programming)
environment, defined 1-135
library guide 2-3…2-19

C/C++ run-time libraries 2-3
linking 2-4
start-up files 2-6
variants 2-4, 2-6

cabs (complex absolute value)
function 3-32

cache
configuration 1-124, 1-126
default configuration 1-126
enabling 1-126
enabling on ADSP-BF535

processor 1-126
cache protection lookaside buffers

(CPLBs) 1-124
caching

external memory 1-124
cadd (complex addition) function

3-33
call preserved registers 1-144
calling assembly language

subroutine 1-155
calling library functions 2-3
calloc (allocate and initialize

memory) function 2-36
ccblkfn (Blackfin C/C++ compiler)

1-1, 1-2
cdiv (complex division) function

3-34
ceil (ceiling) function 2-37
cexp (complex exponential)

function 3-35

cfft (n point radix 2 complex fft)
function 3-36

cfft2d (n x n point 2-d complex
input fft) function 3-40

cfftrad4 (n point radix 4 complex
fft) function 3-38

cfir (complex FIR filter) function
3-42

changing memory allocation 2-80
char storage format 1-151
character string search (See strchr

function)
-circbuf (circular buffer) compiler

switch 1-25
circular buffer registers 1-122
circular buffers 1-143

automatic generation 1-93
increments of index 1-93
increments of pointer 1-94
switch setting 1-25

clip (clip) function 3-44
clobber string specifiers 1-72
cmlt (complex multiply) function

3-45
code optimization

enabling 1-39
for size 1-40, 1-58

command-line
interface 1-4…1-59
syntax 1-5

comparing characters in strings 2-96
comparing null-terminated strings

2-89
compiler
VisualDSP++ 3.1 C/C++ Compiler and Library Manual I-5
for Blackfin Processors

INDEX
built-in functions 2-4
C/C++ language extensions 1-61
command-line syntax 1-5

compiler common switches
@ filename 1-23
-A (assert) 1-23
-bss 1-25
-build-lib (build library) 1-25
-C (comments) 1-25
-c (compile only) 1-25
-circbuf 1-25
-const-read-write 1-26
-csync 1-26
-D (define macro) 1-27
-debug-types 1-27
-dry (a verbose dry-run) 1-27
-dryrun (a terse dry-run) 1-28
-E (stop after preprocessing) 1-28
-EE (run after preprocessing) 1-28
-extra-keywords (enable

short-form keywords) 1-28
-fast-fp (fast floating point) 1-29
-flags (command-line input) 1-29
-full-version (display version)

1-29
-g (generate debug information)

1-30
-H (list headers) 1-30
-help (command-line help) 1-31
-HH (list headers and compile)

1-30
-ieee-fp (slow floating point) 1-31
-include (include file) 1-32
-jcs21 1-32

-jcs21+ 1-33
-L (library search directory) 1-33
-l (link library) 1-33
-M (generate make rules only)

1-33
-map (generate a memory map)

1-34
-mem (invoke memory initializer)

1-35
-mem-bsz 1-35
-MM (generate make rules and

compile) 1-34
-Mt (output make rule for named

file) 1-34
-no-alttok (disable alternative

tokens) 1-35
-no-bss 1-35
-no-builtin (no built-in functions)

1-36
-no-defs (disable defaults) 1-36
-no-extra-keywords 1-36
-no-inline (disable inline

keyword) 1-37
-no-int-to-fact (disable integer to

fractional conversion) 1-37
-no-int-to-fract 1-37
-no-jcs21+ 1-37
-no-jcs2l 1-37
-no-mem (not invoking memory

initializer) 1-38
-no-restrict (disable restrict) 1-38
-no-saturation (no faster

operations) 1-38
-no-std-def (disable standard
I-6 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

INDEX
macro definitions) 1-38
-no-std-inc (disable standard

include search) 1-38
-no-std-lib (disable standard

library search) 1-39
-nothreads (disable thread-safe

build) 1-39
-O (enable optimizations) 1-39
-o (output file) 1-40
-Ofp (frame pointer

optimizations) 1-39
-Os (enable code size

optimizations) 1-40
-p (generate profiling

implementation) 1-40
-P omit line numbers) 1-40
-path (tool location) 1-41
-path-def (alternative driver) 1-41
-path-install (installation location)

1-41
-path-output (non-temporary files

location) 1-42
-path-temp (temporary files

location) 1-42
-pedantic (ANSI standard

warnings) 1-42
-pedantic-errors (ANSI standard

errors) 1-42
-PP (omit line numbers and run)

1-40
-pplist (preprocessor listing) 1-42
-R (add source directory) 1-44
-ref (cross-reference list) 1-50
-restrict 1-45

-S (stop after compilation) 1-45
-s (strip debug information) 1-45
-sat32 (32 bit saturation) 1-45
-sat40 40 bit saturation) 1-45
-save-temps (save intermediate

files) 1-46
-show (display command line)

1-46
-signed-char (make char signed)

1-46
sourcefile 1-23
-syntax-only (just check syntax)

1-46
-T (linker description file) 1-46
-threads (enable thread-safe build)

1-47
-time (tell time) 1-47
-U (undefine macro) 1-47
-unsigned-char (make char

unsigned) 1-47
-v (version and verbose) 1-47
-verbose (display command line)

1-48
-version (display version) 1-48
-w (disable all warnings) 1-49
-W (override error message) 1-48
-Wremarks (enable diagnostic

warnings) 1-49
-write-files (enable driver I/O

redirection) 1-49
-Wterse (enable terse warnings)

1-49
complex

absolute value 3-32
VisualDSP++ 3.1 C/C++ Compiler and Library Manual I-7
for Blackfin Processors

INDEX
addition 3-33
conjugate 3-46
division 3-34
exponential 3-35
fract built-ins 1-88
functions 3-5
multiply 3-45
number 3-29
subtraction 3-57

complex.h header file 3-4
complex_fract16 type 1-88
complex_fract32 1-88
compression/expansion 3-10
conj (complex conjugate) function

3-46
const pointers 1-26
-const-read-write compiler switch

1-26
constructs

flow control 1-77
input and output operands 1-76
operand description 1-69
reordering and optimization 1-75
template for assembly 1-65
with multiple instructions 1-75

control character test (See iscntrl
function)

controlling
inlining 1-58
optimization 1-56

conv2d (2-d convolution) function
3-49

conv2d3x3 (2-d convolution)
function 3-51

conventions, of this manual -xxxi
convert

characters (See tolower, toupper
functions)

strings (See atof, atoi, atol,strtok,
strtol, strtoul, functions)

convolve (convolution) function
3-47

convolve transformations 3-7
copying

characters from one string to
another 2-97

from one string to another 2-91
copysign (copysign) function 3-52
cos (cosine) function 2-38
cosh (hyperbolic cosine) function

2-39
Cosine window 3-68
cot (cotangent) function 3-53
cotangent 3-53
counting one bits in word 3-54
countones (count one bits in word)

function 3-54
cplb_code memory section 1-125,

1-127
CPLBs

enabling 1-124
mapping into memory 1-127

crosscoh (cross-coherence) function
3-55

crosscorr (cross-correlation)
function 3-56

crt*.doj startup files 2-6
I-8 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

INDEX
csub (complex subtraction) function
3-57

-csync compiler switch 1-26
CSYNC instruction 1-26
C-type functions

iscntrl 2-51
isgraph 2-53
islower 2-54
isprint 2-55
ispunct 2-56
isspace 2-57
isupper 2-58
isxdigit 2-59
tolower 2-113
toupper 2-114

custom processors 1-43
customer support -xxv
cycle

counter 1-115
counts 1-115

D
-D (define macro) compiler switch

1-27, 1-47
DAG registers 1-143
data

storage formats 1-151
type sizes 1-54, 1-151
types 1-54

data alignment pragmas 1-98, 1-99
deallocate memory (See free

function)
debug information

removing 1-45

-debug-types compiler switch 1-27
dedicated registers 1-143
default

event handlers 1-122
heap 1-138
LDF file 1-116
startup code 1-108, 1-122, 1-124,

1-125, 1-153
target processor 1-43

demangler 1-52
detect punctuation character

(ispunct) function 2-56
detecting control character 2-51
device driver 1-110
div (division) function 2-40
division

complex 3-34
division (See div, ldiv functions)
double

data type 1-55
representation 2-102
storage format 1-151

driver.def file 1-41
-dry (terse -dry-run) compiler

switch 1-27
-dry-run (verbose dry-run) compiler

switch 1-28
DSP

filters 3-7
header files 3-4
library functions, linking 3-2
run-time library format 3-26

DSP library functions
calling 3-3
VisualDSP++ 3.1 C/C++ Compiler and Library Manual I-9
for Blackfin Processors

INDEX
linking 3-2
DSP run-time library

source code 3-3
variants 3-2

E
-E (stop after preprocessing)

compiler switch 1-28
easmblkfn assembler 1-2
-EE (run after preprocessing)

compiler switch 1-28
elfar archive library 1-2
embedded C++ header files

complex.h 2-13
exception.h 2-13
fract.h 2-13
fstream.h 2-13
iomanip.h 2-13
ios.h 2-13
iosfwd.h 2-14
iostream.h 2-14
istream.h 2-14
new.h 2-14
ostream.h 2-14
shortfract.h 2-14
sstream.h 2-14
stdexcept.h 2-15
streambuf.h 2-15
string.h 2-15
strstream.h 2-15

Embedded C++ Library 2-13
embedded standard template library

2-16
End (See atexit, exit functions)

errno.h header file 2-8
ETSI

fract functions 1-85
routines for fracts 1-87
run-time support library 2-5

ETSI_SOURCE fract functions
1-85

ETSI_SOURCE macro 1-87
event

context, gaining access to 1-120
handlers 2-82

event details
exceptions 1-121
fetching 1-120

event vector table 1-102, 1-118,
1-119, 2-82

events
allocated values in user mode

1-122
EX_EXCEPTION_HANDLER

compiler macro 1-117
EX_INT_DEFAULT value 1-119
EX_INT_IGNORE value 1-119
EX_INTERRUPT_HANDLER

compiler macro 1-117
EX_NMI_HANDLER compiler

macro 1-117
EX_REENTRANT_HANDLER

compiler macro 1-118
EXCAUSE macro 1-122
EXCAUSE values 1-120
exception.h file 1-118
executable

running 1-113
I-10 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

INDEX
exit (normal program termination)
function 2-41

exp (exponential) function 2-42
-expert-linker compiler switch 1-28
-explicit (explicit specifier) C++

mode compiler switch 1-51
-extra-keywords (not quite -analog)

compiler switch 1-28

F
fabs (float absolute value) function

2-43
false (See Boolean type support

keywords (bool, true, false))
far jump return (See longjmp,

setjmp functions)
Fast Fourier Transforms 3-7, 3-8
-fast-fp (fast floating point)

compiler switch 1-29
fclose() function 2-11
fetching event details 1-120
FFT function versions 3-7
file extensions 1-5, 1-7, 1-8, 1-23
file I/O access 1-110
File I/O support 1-110
file I/O values 1-123
file searching 1-7

<filename> 1-131
filenames 1-23
filter library 3-7
filter.h header file 3-7
filters

library 3-7
signal processing 3-7

FIR (finite impulser response filter)
function 3-58

fir_decima (fir decimation filter)
function 3-60

fir_interp (FIR interpolation filter)
function 3-62

-flags (command line input)
compiler switch 1-29

float storage format 1-151
float.h (floating point) header file

2-9
floating-point emulation library

1-14, 1-29, 1-56
floor () function 2-44
flow control operations 1-77
FLT_ROUNDS macro 2-9
fmod (floating-point modulus)

function 2-45
fopen() function 2-11
for loop construct 1-105
-fp-associative (floating-point

associative) compiler switch
1-29

fprintf() function 2-11
fract.h header file 1-84, 1-85
fract16 type 1-84
fract32 1-84
fractional values

built-in 1-84
C type 1-84
complex_fract16 1-88
fract class 1-86
in C 1-88
shortfract class 1-86
VisualDSP++ 3.1 C/C++ Compiler and Library Manual I-11
for Blackfin Processors

INDEX
frame pointer 1-58, 1-122, 1-145,
1-147

dedicated register 1-143
fread() function 2-11
free (deallocate memory) function

2-46
frexp (separate fraction and

exponent) function 2-47
fstreams.h header file 2-18
-full-version (display version)

compiler switch 1-29
functions

arguments/return value transfer
1-148

arithmetic 3-4
complex 3-5
entry (prologue) 1-145
exit (epilogue) 1-145
math 3-10
matrix 3-13
primitive I/O 2-11
statistical 3-13
transformational 3-7
vector 3-19

fwrite() function 2-11

G
-g (generate debug information)

compiler switch 1-30
Gaussian window 3-66
gen_bartlett (generate bartlett

window) function 3-64
gen_blackman (generate blackman

window) function 3-65

gen_gaussian (generate gaussian
window) function 3-66

gen_hamming (generate hamming
window) function 3-67

gen_hanning (generate hanning
window) function 3-68

gen_harris (generate harris window)
function 3-69

gen_kaiser (generate kaiser window)
function 3-70

gen_rectangular (generate
rectangular window) function
3-71

gen_triangle (generate triangle
window) function 3-72

gen_vonhann (generate von hann
window) function 3-73

general optimization pragmas 1-105
generating

instrumented code 1-113
get_interrupt_info() function 1-120
getting string containing error

message 2-93
global variable 1-159
graphical character test (See isgraph

function)

H
-H (list *.h) compiler switch 1-30
Hamming window 3-67
Hanning window 3-68
hardware error value 1-121
hardware loop registers 1-122
Harris window 3-69
I-12 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

INDEX
header files 3-4
accessing 1-132
C/C++ declarations 1-132
macro definitions 1-132
search for 1-38
standard C library 2-7…??

header files (new form)
cassert.h 2-16
cctype.h 2-16
cerrno.h 2-16
cfloat.h 2-16
climits.h 2-16
clocale.h 2-16
cmath.h 2-16
csetjmp.h 2-16
csignal.h 2-16
cstdarg.h 2-16
cstddef.h 2-16
cstdio.h 2-16
cstdlib.h 2-16
cstring.h 2-16

header files (standard)
assert.h 2-8
ctype.h 2-8
errno.h 2-8
float.h 2-9
limits.h 2-9
locale.h 2-9
math.h 2-9
setjmp.h 2-10
signal.h 2-10
stdarg.h 2-10
stddef.h 2-10
stdio.h 1-110, 2-11

stdlib.h 2-12
string.h 2-12

header files (template library)
<algorithm> 2-17
<deque> 2-17
<functional> 2-17
<hash_map> 2-17
<hash_set> 2-17
<iterator> 2-17
<list> 2-17
<map> 2-17
<memory> 2-17
<numeric> 2-18
<queue> 2-18
<set> 2-18
<stack> 2-18
<utility> 2-18
<vector> 2-18

heap 1-116
memory control 1-116
section 1-138

heap extension routines 1-138,
1-141

heap_calloc 1-138
heap_free 1-138
heap_malloc 1-138
heap_realloc 1-138

heap functions
calloc 1-138
free 1-138
malloc 1-138
realloc 1-138
standard 1-141

heaps
VisualDSP++ 3.1 C/C++ Compiler and Library Manual I-13
for Blackfin Processors

INDEX
default 1-138
defining 1-139
defining at link time 1-139
defining at run-time 1-140
freeing space for 1-142
reinitializing 1-142

-help (command-line help)
compiler switch 1-31

hexadecimal digit test (See isxdigit
function)

-HH (list *.h and compile) compiler
switch 1-30

histogram (histogram) function
3-74

HUGE_VAL macro 2-9
hyperbolic sine function 2-84
hyperbolic tangent 2-112

I
-I (include search directory)

compiler switch 1-38
-I (start include directory) compiler

switch 1-31
I/O interface to host 2-11
I/O support

accessing files 1-110
for new devices 1-110

IEEE single/double precision
description 1-151

-ieee-fp (slow floating point)
compiler switch 1-31

ifft (n point radix 2 inverse fft)
function 3-75

ifft2d (n x n point 2-d inverse input
fft) function 3-79

ifftrad4 (n point radix 4 inverse
input fft) function 3-77

iir function 3-81
IMASK value 1-96
-include (include file) compiler

switch 1-32
include directives 1-131
indexed initializer support 1-80
infinite impulse response filter 3-81
initializer support

indexed 1-80
non-constant 1-79

initializers
aggregate 1-79

inline assembly language support
keyword (asm) 1-64

constructs
optimization 1-75
template 1-66
template operands 1-69

constructs with multiple
instructions 1-75

inline function support keyword
(inline) 1-62, 1-63

inlining 1-58
input operand 1-76
installation location 1-41
-instantall (instantiate all templates)

compiler switch 1-51
instantiation of templates 1-51
I-14 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

INDEX
-instantlocal (instantiate used with
internal linkage) compiler
switch 1-51

-instantused (instantiate used)
compiler switch 1-51

int storage format 1-151
interfacing C/C++ and assembly

(See mixed C/C++/assembly
programming)

intermediate files 1-46
interrupt

function 2-48
handler pragmas 1-102
service routines (ISR) 1-116

iomanip.h header file 2-18
iostream.h header file 2-19
-ipa (interprocedural analysis)

compiler switch 1-32
isalnum (detect alphanumeric

character) function 2-49
isalpha (detect alphabetic character)

function 2-50
iscntrl (detect control character)

function 2-51
isdigit (detect decimal digit)

function 2-52
isgraph (detect printable character)

function 2-53
isgraph function 2-53
islower (detect lowercase character)

function 2-54
isprint (detect printable character)

function 2-55

ispunct (detect punctuation
character) function 2-56

ISRs
default 1-119
defining 1-117
registering 1-118
saved registers 1-121

ISRs (see interrupt service routines)
1-116

isspace (detect whitespace character)
function 2-57

isupper (detect uppercase character)
function 2-58

isxdigit (detect hexadecimal digit)
function 2-59

J
-jcs2l compiler switch 1-32
-jcs2l+ compiler switch 1-33

K
Kaiser window 3-70
keywords (compiler)

(See also compiler C/C++
extensions)

extensions 1-36

L
-L (library search directory)

compiler switch 1-33
-l (link library) compiler switch

1-33, 1-39
L_mac() macro 1-86
L_msu() macro 1-86
VisualDSP++ 3.1 C/C++ Compiler and Library Manual I-15
for Blackfin Processors

INDEX
L1 SRAM memory 1-124
L2 SRAM memory

caching 1-124
labs (long integer absolute value)

function 2-60
language extensions (compiler) (See

compiler C/C++ extensions)
LC_COLLATE locale category

2-110
ldexp (multiply by power of 2)

function 2-61
ldiv (division) function 2-62
library

C run-time guide 2-3
C run-time reference

2-23…2-119
C++ abridged 2-12…2-19
calling functions 2-3
format for DSP run-time 3-26
functions, documented 2-20
linking DSP functions 3-2
linking functions 2-4
source code

working with 3-3
limits.h header file 2-9
Linker Description File (LDF) 1-46
linking

DSP library functions 3-2
library functions 2-4
pragmas for 1-106

locale.h header file 2-9
log (natural logarithm) function

2-63

log10 (base 10 logarithm) function
2-64

long file names
handling with -write-files switch

1-49
long int storage format 1-151
long jump (See longjmp, setjmp

functions)
longjmp (second return from

setjmp) function 2-65
loop

optimization 1-103
vectorizing 1-103

lower case (See islower, tolower
functions)

M
-M (make only) compiler switch

1-33
macros

compound statements 1-132
interrupt handler 1-118
predefined 1-129
writing 1-132

malloc (allocate memory) function
2-67

-map (generate a memory map)
compiler switch 1-34

map files 1-34
math functions 3-10

library 3-10
math.h (mathematics) header file

2-9
math.h header file 3-10
I-16 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

INDEX
matrix functions 3-13
matrix.h header file 3-13
max (maximum) function 3-83
-MDUSERMODE flag 1-122
mean (mean) function 3-84
-mem (invoke memory initializer)

compiler switch 1-35
MEM_ARGV section 1-109
-mem-bsz compiler switch 1-35
memchr (find first occurrence of

character) function 2-68
memcmp (compare objects)

function 2-69
memcpy (copy characters from one

object to another) function
2-70

memmove (move characters from
one object to another) function
2-71

memory
allocation functions 1-138
map 1-116
protection hardware 1-124

memory (See calloc, free, malloc,
memcmp, memcpy, memset,
memmove, memchar, realloc
functions)

memory sections 1-136
bsz 1-137
constdata 1-137
cplb_code 1-125, 1-127, 1-137
cplb_data 1-137
data1 1-137
heap 1-138

program 1-137
stack 1-137
sysstack 1-137
voldata 1-137

memory size
controlling 1-116

memset (set range of memory to a
character) function 2-72

min (minimum) function 3-85
mixed C/Assembly naming

conventions 1-159
mixed C/assembly programming

arguments and return 1-148
asm() constructs 1-64, 1-66, 1-69,

1-75
data storage and type sizes 1-151
scratch registers 1-144
stack registers 1-145
stack usage 1-145

mixed C/assembly reference 1-157
mixed C/C++/assembly

programming 1-135
mixed C/C++/assembly reference

1-135
-MM (make and compile) compiler

switch 1-34
mode selection switches 1-12
modf (separate integral and

fractional parts) function 2-73
mon.out file 1-115

post-processing 1-115
move memory range (See memmove

function)
VisualDSP++ 3.1 C/C++ Compiler and Library Manual I-17
for Blackfin Processors

INDEX
-MQ (output without compile)
compiler switch 1-34

-Mt preprocessor switch 1-34
mu_compress (µ-law compression)

function 3-86
mu_expand (µ-law expansion)

function 3-87
multiline asm() C program

constructs 1-75
multiple heaps 1-138
multi-threaded architecture 1-127
multi-threaded environments 2-6

N
-namespace (enable namespaces)

C++ mode compiler switch
1-52

naming conventions
C and assembly 1-159

natural logarithms 2-63
new.h header file 2-19
-newforinitl (new for initialization)

C++ mode compiler switch
1-52

-newvec (new vector) C++ mode
compiler switch 1-52

next argument in variable list 2-115
NMI events 1-117, 1-121
-no-alttok (disable tokens) compiler

switch 1-35
-no-bss compiler switch 1-35
-no-builtin (no builtin functions)

compiler switch 1-36

-no-char (disable wide char type)
C++ mode compiler switch
1-53

-no-def (disable definitions)
compiler switch 1-36

-no-demangle (disable demangler)
C++ mode compiler switch
1-52

-no-dir-warnings (disable directory
warning) compiler switch 1-36

-no-explicit (disable explicit
specifier) C++ mode compiler
switch 1-52

-no-extra-keywords (not quite -ansi)
compiler switch 1-36

-no-fp-associative compiler switch
1-37

-no-inline (disable inline keyword)
compiler switch 1-37

-no-int-to-fract (disable integer to
fractional conversion) compiler
switch 1-37

-no-jcs2l compiler switch 1-37
-no-jcs2l+ compiler switch 1-37
-no-mem (not invoking memory

initializer) compiler switch 1-38
-no-namespace (disable

namespaces) C++ mode
compiler switch 1-52

non-constant initializer support
(compiler) 1-82

-no-newvec (disallow a new vector)
C++ mode compiler switch
1-53
I-18 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

INDEX
-no-restrict (no restrict support)
C++ mode compiler switch
1-38

norm (normalization) function 3-88
-no-saturation (no faster operations)

compiler switch 1-38
-no-std-def (disable standard

definitions) compiler switch
1-38

-no-std-inc (disable standard
include search) compiler switch
1-38

-no-std-lib (disable standard library
search) compiler switch 1-39

-nothreads (disable thread-safe
build) compiler switch 1-39

-notstrict (non-strict compilation)
C++ mode compiler switch
1-53

O
-O (enable optimization) compiler

switch 1-39, 1-40
-o (output) compiler switch 1-40
offsetting frame pointer 1-58
-Ofp (frame pointer optimizations)

switch 1-39
operand constraints 1-70
optimization

enabling 1-39
interprocedural analysis 1-57,

1-59
levels 1-56
switches 1-57, 1-58

optimizer 1-103
optimizing asm() C program

constructs 1-75
output operands 1-76
-Ov (optimize for speed vs. size)

compiler switch 1-40
-Ov num (optimize for speed versus

size) compiler switch 1-40, 1-58

P
-P (omit #line) compiler switch

1-40
passing

arguments 1-149
parameters 1-148

-path-install (installation location)
compiler switch 1-41

-path-output (non-temporary files
location) compiler switch 1-41,
1-42

-path-temp (temporary files
location) compiler switch 1-42

-path-tool (tool location) compiler
switch 1-41

-pedantic (ANSI standard warnings)
compiler switch 1-42

-pedantic-errors (ANSI standard
errors) compiler switch 1-42

perror (map error number to error
message) function 2-74

placement support keyword
(section) 1-77

pointer class support keyword
(restrict) 1-62, 1-78
VisualDSP++ 3.1 C/C++ Compiler and Library Manual I-19
for Blackfin Processors

INDEX
polar (construct from polar
coordinates) function 3-89

post-processing mon.out file from
profiler 1-115

pow (raise to a power) function 2-74
pow function 2-74
-pplist (preprocessor listing)

compiler switch 1-42
pragmas 1-97

align num 1-99
data alignment 1-98
exception 1-102
interrupt 1-102
linkage_name 1-106
linking 1-106
linking control 1-106
loop optimization 1-103
nmi 1-102
no_alias 1-104
optimize_for_space 1-105
optimize_for_speed 1-105
optimize_off 1-105
pack (alignopt) 1-100
pad (alignopt) 1-101
retain_name 1-106
vector_for 1-103
weak_entry -xxiv, 1-107

predefined macros 1-129
__ADSPBLACKFIN__ 1-130
__ANALOG_EXTENSIONS__

1-130
__cplusplus 1-130
__DATE__ 1-130
__ECC__ 1-130

__EDG__ 1-130
__EDG_VERSION__ 1-130
__FILE__ 1-130
__LINE__ 1-130
__NO_BUILTIN 1-130
__NO_LONGLONG 1-130
__STDC__ 1-130
__STDC_VERSION__ 1-130
__TIME__ 1-131
__VERSION__ 1-131
ADSPBLACKFIN 1-130

prelinker 1-51, 1-59
preprocessing

.IDL files 1-131
a program 1-129

preprocessor
generated warnings 1-81

preserved registers 1-143
primitive I/O functions 2-11
printable character test (See isprint

function)
printable characters 2-53, 2-55
printf() function 2-11
-proc (target processor) compiler

switch 1-43
processor context on supervisor

stack 1-120
profblkfn.exe program 1-115
profiling 1-113

executable outputs 1-113
library 1-115
routine 1-112

profiling routine
for single-threaded systems 1-113
I-20 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

INDEX
program control functions
calloc 2-36
malloc 2-67
realloc 2-80

Q
qsort (quicksort) function 2-75

R
-R- (disable source path) compiler

switch 1-44
-R (search for source files) compiler

switch 1-44
raise (raise a signal) function 2-77
rand (random number generator)

function 2-79
random number generator (See

rand, srand functions) 2-79
realloc (change memory allocation)

function 2-80
reciprocal square root (rsqrt)

function 3-97
rectangular window 3-71
register_handler() function 1-118
registers

call preserved 1-144
dedicated 1-143
for asm()

constructs 1-69
preserved 1-143
reserved 1-45
saved during ISR prologue 1-121
scratch 1-144
stack 1-145

usage (See mixed C/assembly
programming)

-reserve (reserve register) compiler
switch 1-45

restrict (See pointer class support
keyword (restrict))

-restrict (support restrict keyword)
C++ mode compiler switch
1-45

restrict keyword 1-78
retain_name pragma 1-60, 1-106
return value transfer 1-148
return values 1-149
returning

floating-point input multiplied by
2 2-61

long integer absolute value 2-60
rfft (n point radix 2 real input fft)

function 3-90
rfft2d (n x n point 2-d real input fft)

function 3-94
rfftrad4 (n point radix 4 real input

fft) function 3-92
rms (root mean square) function

3-96
root mean square (rms) function

3-96
rsqrt (reciprocal square root)

function 3-97
running

the executable 1-113
run-time environment 1-135

(See also mixed C/C++/assembly
programming)
VisualDSP++ 3.1 C/C++ Compiler and Library Manual I-21
for Blackfin Processors

INDEX
programming (See mixed
C/C++/assembly
programming)

run-time stack 1-137, 1-145

S
-S (stop after compilation) compiler

switch 1-45
-s (strip debug information)

compiler switch 1-45
-sat32 (32 bit saturation) compiler

switch 1-45
-sat40 (40 bit saturation) compiler

switch 1-45
SAVE_REGS() compiler macro

1-120
saved registers in SYSSTACK 1-121
-save-temps (save intermediate files)

compiler switch 1-46
scratch registers 1-144
search

character string (See strchr, strrchr
functions)

for #included files 1-131
memory, character (See memchar

function)
path for include files 1-31
path for library files 1-33

segment (See Placement support
keyword (section))

sending
signal to executing program 2-77

set jump (See longjmp, setjmp
functions)

setjmp (define run-time label)
function 2-81

setjmp.h header file 2-10
setting

range of memory to a character
2-72

short storage format 1-151
-show (display command line)

compiler switch 1-46
SIG_DFL function 2-82
SIG_IGN function 2-82
signal

handling 1-119, 2-82
processing transformations 3-7

signal (define signal handling)
function 2-82

signal.h (signal handling) header file
2-10

-signed-char (make char signed)
compiler switch 1-46

simulator 1-109
sin (sine) function 2-83
single fractional values 1-84
sinh (hyperbolic sine) function 2-84
source code

DSP run-time library 3-3
space allocator 1-95
sqrt (square root) function 2-85
srand (random number seed)

function 2-86
stack 1-145

managing 1-145
registers 1-145

stack pointer 1-145
I-22 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

INDEX
stack pointer dedicated register
1-143

Standard C Library 2-15
standard heap functions 1-141
Standard library functions

abort 2-24
abs 2-25
acos 2-26
asin 2-27
atan 2-28
atan2 2-29
atexit 2-30
atof 2-31
atoi 2-32
atol 2-33
bsearch 2-34
calloc 2-36
ceil 2-37
cos 2-38
cosh 2-39
div 2-40
exit 2-41
exp (exponential) 2-42
fabs 2-43
floor 2-44
fmod 2-45
free 2-46
frexp 2-47
isalnum 2-49
isalpha 2-50
iscntrl 2-51
isdigit 2-52
isgraph 2-53
islower 2-54

isprint 2-55
isspace 2-57
isupper 2-58
isxdigit 2-59
labs 2-60
ldexp 2-61
ldiv 2-62
log 2-63
log10 2-64
longjmp 2-65
malloc 2-67
memchr 2-68
memcmp 2-69
memcpy 2-70
memmove 2-71
memset 2-72
modf 2-73
pow 2-74
qsort 2-75
raise 2-77
rand 2-79
realloc 2-80
setjmp 2-81
signal 2-82
sin 2-83
sqrt 2-85
srand 2-86
strbrk 2-98
strcat 2-87
strchr 2-88
strcmp 2-89
strcoll 2-90
strcpy 2-91
strcspn 2-92
VisualDSP++ 3.1 C/C++ Compiler and Library Manual I-23
for Blackfin Processors

INDEX
strerror 2-93
strlen 2-94
strncat 2-95
strncmp 2-96
strncpy 2-97
strrchr 2-99
strspn 2-100
strstr 2-101
strtok 2-104
strtol 2-106
strtoul 2-108
strxfrm 2-110
tan 2-111
tanh 2-112
tolower 2-113
toupper 2-114
va_arg macro 2-115
va_end macro 2-118
va_start macro d 2-119

start-up files 2-6
statistical functions 3-13
stats.h header file 3-13
status argument 2-41
stdard.h header file 2-10
stddef.h header file 2-10
stdio functions 1-110
stdio.h header file 1-110, 2-11
stdlib.h header file 2-12
stop (See atexit, exit functions)
storage formats

short 1-151
strcat (concatenate strings) function

2-87

strchr (find first occurrence of
character in string) function
2-88

strcmp (compare strings) function
2-89

strcoll (compare strings) function
2-90

strcpy (copy from one string to
another) function 2-91

strcspn (compare string span)
function 2-92

strerror (get string containing error
message) function 2-93

strerror function 2-93
-strict (strict compilation) C++

mode compiler switch 1-53
-strictwarn (warn if non-strict) C++

mode compiler switch 1-53
string conversion (See atof, atoi,

atol, strtok, strtol, strxfrm
functions)

string functions
memchar 2-68
memmove 2-71
strchr 2-88
strcoll 2-90
strcspn 2-92
strerror 2-93
strpbrk 2-98
strrchr 2-99, 2-100
strspn 2-100
strstr 2-101
strtok 2-104
strxfrm 2-110
I-24 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

INDEX
string transformation using
LC_COLLATE 2-110

string.h header file 2-12
strlen (string length) function 2-94
strncat (concatenate characters from

one string to another) function
2-95

strncmp (compare characters in
strings) function 2-96

strncpy (copy characters from one
string to another) function 2-97

strpbrk (find character match in two
strings) function 2-98

strrchr (find last occurrence of
character in string) function
2-99

strspn (length of segment of
characters in both strings)
function 2-100

strstr (compare string, string)
function 2-101

strstr (find string within string)
function 2-101

strtod (convert portion of string to
double) function 2-102

strtok (convert string to tokens)
function 2-104

strtol (convert string to long integer)
function 2-106

strtoul (convert string to unsigned
long integer) function 2-108

strxfrm (transform string using
LC_COLLATE) function
2-110

switch 1-113
switches

C++ mode compiler
-instantused (instantiate used)

1-51
compiler common

-expert-linker 1-28
-fp-associative (floating-point

associative operation) 1-29
-I directory (include search di-

rectory) 1-31
-ipa (interprocedural analysis)

1-32
-MQ (output without compila-

tion) 1-34
-no-dir-warnings 1-36
-no-fp-associative 1-37
-Ov (optimize for speed vs. size)

1-40
-R- (disable source path) 1-44
-reserve (reserve register) 1-45
-warn-protos (warn if incom-

plete prototype) 1-48
-Wdriver-limit (maximum pro-

cess errors) 1-48
-Werror-limit (maximum com-

piler errors) 1-49
-write-opts (user options) 1-50
-xml (generate map file in xml)

1-50
mode selection 1-12

synchronization 1-96
-syntax-only (just check syntax)

compiler switch 1-46
VisualDSP++ 3.1 C/C++ Compiler and Library Manual I-25
for Blackfin Processors

INDEX
system
header files 1-132
request values 1-122
requests 1-123

system registers
read/write 1-96

T
-T (linker description file) compiler

switch 1-46
tan (tangent) function 2-111
tanh (hyperbolic tangent) function

2-112
template for asm() in C programs

1-66
terminate (See atexit, exit functions)
threads 1-127
-threads (enable thread-safe build)

compiler switch 1-47
-time (tell time) compiler switch

1-47
tokens, string convert (See strtok

function)
tolower (convert from uppercase to

lowercase) function 2-113
toupper (convert characters to upper

case) function 2-114
-tpautooff (no automatic templates)

C++ mode compiler switch
1-54

-traditional (traditional
compilation) compiler switch
1-22

transferring

function arguments and return
value 1-148

transformation functions 3-7
-trdforinit (traditional initialization)

C++ mode compiler switch
1-54

Triangle window 3-72
true (See Boolean type support

keywords (bool, true, false))
twidfft2d function 3-102
twidfftrad2 function 3-98
twidfftrad4 function 3-100
-typename (support typename) C++

mode compiler switch 1-54

U
-U (undefine macro) compiler

switch 1-27, 1-47
UNIX signal() function 1-118
-unsigned-char (make char

unsigned) compiler switch 1-47
upper case (See isupper, toupper

functions)
uppercase characters 2-58
user header files 1-132

V
-v (version & verbose) compiler

switch 1-47
va_arg (get next argument in

variable list) function 2-115
va_arg macro 2-115
va_end (reset variable list pointer)

function 2-118
I-26 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

INDEX
va_end macro 2-118
va_start (set variable list pointer)

function 2-119
va_start macro 2-119
var (variance) function 3-104
variable length arrays 1-82
variable-length argument list

finishing 2-118
initializing 2-119

variance (VAR) function 3-104
vector functions 3-19
vector.h header file 3-19
-verbose (display command line)

compiler switch 1-48
-version (display version) compiler

switch 1-48
VIDL source text 1-131
Visual DSP++ compiler (ccblkfn)

guide 1-2
Viterbi decoder 1-91
Viterbi functions

lvitmax1x16() 1-91
lvitmax2x16() 1-92
rvitmax1x16() 1-91
rvitmax2x16() 1-92

volatile and asm() C program
constructs 1-75

von Hann window 3-73

W
-w (disable all warnings) switch 1-49
-W (override error) compiler switch

1-48

warning messages 1-81
-Warn-protos (warn if incomplete

prototype) compiler switch
1-48

-wchar (support wide char type)
C++ mode compiler switch
1-54

-Wdriver-limit (maximum process
errors) compiler switch 1-48

-Werror-limit (maximum compiler
errors) compiler switch 1-49

white space character test (See
isspace function)

window
functions 3-24
generators 3-24

window.h header file 3-24
-Wremarks (enable diagnostic

warnings) compiler switch 1-49
-write-files (enable driver I/O pipe)

compiler switch 1-49
-write-opts (enable driver I/O pipe)

compiler switch 1-50
writing

preprocessor macros 1-132
-Wterse (enable terse warnings)

compiler switch 1-49

Z
zero_cross (count zero crossing)

function 3-105
VisualDSP++ 3.1 C/C++ Compiler and Library Manual I-27
for Blackfin Processors

I-28 VisualDSP++ 3.1 C/C++ Compiler and Library Manual
for Blackfin Processors

	Contents
	Preface
	Purpose
	Intended Audience
	Manual Contents Description
	What’s New in this Manual
	Technical or Customer Support
	Supported Processors
	Product Information
	MyAnalog.com
	DSP Product Information
	Related Documents
	Online Technical Documentation
	From VisualDSP++
	From Windows
	From the Web

	Printed Manuals
	VisualDSP++ Documentation Set
	Hardware Manuals
	Data Sheets

	Contacting DSP Publications

	Notation Conventions

	1 Compiler
	C/C++ Complier Overview
	Compiler Command-Line Interface
	Running the Compiler
	Table 1-1. File Extensions Specifying Compiler Action
	Table 1-2. Input and Output File Extensions�

	Specifying Compiler Options in VisualDSP++
	Figure 1-1. Project Options – Compile (General) Property Page
	Figure 1-2. Project Options – Compile (Preprocessor) Pane
	Figure 1-3. Project Options – Compile (Warning) Pane

	C/C++ Compiler Switches
	C/C++ Compiler Switch Summaries
	Table 1-3. C or C++ Mode Selection Switches �
	Table 1-4. C/C++ Compiler Common Switches �
	Table 1-5. C++ Mode Compiler Switches �

	C/C++ Mode Selection Switch Descriptions
	-analog
	-c++
	-traditional

	C/C++ Compiler Common Switch Descriptions
	sourcefile
	-@ filename
	-A name(tokens)
	-alttok
	-bss
	-build-lib
	-C
	-c
	-circbuf
	-const-read-write
	-csync
	-Dmacro[=definition]
	-debug-types <file.h>
	-dry
	-dryrun
	-E
	-EE
	-expert-linker
	-extra-keywords
	-fast-fp
	-flags{-asm | -compiler | -lib | -link | -mem} switch [,switch2 [,...]]
	-fp-associative
	-full-version
	-g
	-H
	-HH
	-h[elp]
	-I directory
	-ieee-fp
	-include filename
	-inline
	-ipa
	-jcs2l
	-jcs2l+
	-L directory[{,|;} directory…]
	-l library
	-M
	-MM
	-Mt filename
	-MQ
	-map filename
	-mem
	-mem-bsz
	-no-alttok
	-no-bss
	-no-builtin
	-no-defs
	-no-dir-warnings
	-no-extra-keywords
	�no-fp-associative
	-no-inline
	-no-int-to-fract
	-no-jcs2l
	-no-jcs2l+
	-no-mem
	-no-restrict
	-no-saturation
	-no-std-def
	-no-std-inc
	-no-std-lib
	-nothreads
	-O[0|1]
	-Ofp
	-Os
	�Ov num
	-o filename
	-P
	-PP
	-p[1|2]
	-path [-asm | -compiler | -lib | -link | -mem] directory
	-path-def filename
	-path-install directory
	-path-output directory
	-path-temp directory
	-pedantic
	-pedantic-errors
	-pplist filename
	-proc processorID
	-R directory[{:|,}directory …]
	-R-
	�reserve register[, register …]
	-restrict
	-S
	-s
	-sat32
	-sat40
	-save-temps
	-show
	-signed-char
	-syntax-only
	-T filename
	-threads
	-time
	-U macro
	-unsigned-char
	-v
	-verbose
	-version
	-warn-protos
	-W[error|remark|suppress|warn] number[, number ...]
	-Wdriver-limit number
	-Werror-limit number
	-Wremarks
	-Wterse
	-w
	-write-files
	-write�opts
	-xml
	-xref filename

	C++ Mode Compiler Switch Descriptions
	-explicit
	-instant{all|local|used}
	-namespace
	-newforinit
	-newvec
	-no-demangle
	-no-explicit
	-no-namespace
	-no-newvec
	-notstrict
	-no-wchar
	-strict
	-strictwarn
	-tpautooff
	-trdforinit
	-typename
	-wchar

	Data Type Sizes
	Table 1-6. Data Type Sizes for Blackfin Processors

	Optimization Control
	Inlining Control
	Interprocedural Analysis
	Interaction with Libraries

	C/C++ Compiler Language Extensions
	Table 1-7. Keyword Extensions �
	Table 1-8. Operational Extensions �
	Inline Function Support Keyword (inline)
	Inline Assembly Language Support Keyword (asm)
	Assembly Construct Template
	asm() Constructs Syntax
	asm() Construct Syntax Rules
	asm() Construct Template Example

	Assembly Construct Operand Description
	Table 1-9. asm() Operand Constraints �
	Table 1-10. Register Names for asm() Constructs�

	Assembly Constructs with Multiple Instructions
	Assembly Construct Reordering and Optimization
	Assembly Constructs with Input and Output Operands
	Assembly Constructs and Flow Control

	Placement Support Keyword (section)
	Boolean Type Support Keywords (bool, true, false)
	Pointer Class Support Keyword (restrict)
	Non-Constant Aggregate Initializer Support
	Indexed Initializer Support
	Preprocessor Generated Warnings
	Variable-Length Arrays
	C++ Style Comments
	Built-In Functions
	Fractional Value Builtins in C
	Table 1-11. Fractional Value C Types
	Single Fractional Values

	Fractional Value Builtins in C++
	Fractional Literal Values in C
	Complex Fractional Builtins in C
	Complex Operations in C++
	Viterbi History and Decoding Functions
	Circular Buffer Built-In Functions
	Automatic Circular Buffer Generation
	Circular Buffer Increment of an Index
	Circular Buffer Increment of a Pointer

	System Built-In Functions

	Pragmas
	Data Alignment Pragmas
	#pragma align
	#pragma pack (
	#pragma pad (

	Interrupt Handler Pragmas
	Loop Optimization Pragmas
	#pragma vector_for
	#pragma no_alias

	General Optimization Pragmas
	Linking Control Pragmas
	#pragma linkage_name
	#pragma retain_name
	#pragma weak_entry

	Blackfin Processor-Specific Functionality
	Default Startup Code
	Support for argv/argc
	File I/O Support
	Extending I/O Support To New Devices

	Profiling with Instrumented Code
	Generating Instrumented Code
	Running the Executable
	Post-Processing mon.out File
	Computing Cycle Counts

	Controlling Available Memory Size
	Interrupt Handler Support
	Table 1-12. System Events
	Defining an ISR
	Registering an ISR
	ISRs and ANSI C Signals
	Saved Processor Context
	Fetching Event Details
	Fetching Saved Registers
	User-Mode Configuration
	Allocated Events in User-Mode Configuration
	Table 1-13. Allocated Events �
	Table 1-14. File I/O Values �
	Table 1-15. System Requests �

	Caching and Memory Protection
	Cache Configuration
	Default Cache Configuration
	Changing Cache Configuration
	LDF Implications

	C/C++ Preprocessor Features
	Predefined Macros
	Table 1-16. Predefined Compiler Macro Listing�

	Preprocessing of .IDL Files
	Figure 1-4. #INCLUDE Syntax Diagram

	Header Files
	Writing Preprocessor Macros

	C/C++ Run-Time Model and Environment
	Figure 1-5. Assembly Language Interfacing Overview
	Using Memory Sections
	Using Multiple Heaps
	Defining a Heap
	Defining Heaps at Link Time
	Defining Heaps at Run-Time
	Tips for Working with Heaps
	Standard Heap Interface
	Using the Alternate Heap Interface
	Freeing Space

	Dedicated Registers
	Call Preserved Registers
	Scratch Registers
	Stack Registers
	Managing the Stack
	Figure 1-6. Example Run-Time Stack

	Transferring Function Arguments and Return Value
	Passing Arguments
	Return Values
	Table 1-17. Examples of Parameter Passing�

	Using Data Storage Formats
	Table 1-18. Data Storage Formats and Data Type Sizes �
	Figure 1-7. Data Storage Format for Float and Double Types

	Basic Startup Code Sequence

	C/C++ and Assembly Interface
	Calling Assembly Subroutines from C/C++ Programs
	Calling C/C++ Functions from Assembly Programs
	Using Mixed C/C++ and Assembly Naming Conventions
	Table 1-19. C/C++ Naming Conventions for Symbols �

	2 C/C++ Run-Time Library
	C and C++ Run-Time Library Guide
	Calling Library Functions
	Using the Compiler’s Built-In Functions
	Linking Library Functions
	Table 2-1. C and C++ Library Files �
	Table 2-2. Filename Suffices
	Table 2-3. crt Filename Suffices

	Working with Library Header Files
	Table 2-4. Standard C Run-Time Library Header Files �
	assert.h
	ctype.h
	errno.h
	float.h
	limits.h
	locale.h
	math.h
	setjmp.h
	signal.h
	stdarg.h
	stddef.h
	stdio.h
	stdlib.h
	string.h

	Abridged C++ Library Support
	Embedded C++ Library Header Files
	complex
	exception
	fract
	fstream
	iomanip
	ios
	iosfwd
	iostream
	istream
	new
	ostream
	shortfract
	sstream
	stdexcept
	streambuf
	string
	strstream

	C++ Header Files for C Library Facilities
	Table 2-5. C++ Header Files for C Library Facilities �

	Embedded Standard Template Library Header Files
	algorithm
	deque
	functional
	hash_map
	hash_set
	iterator
	list
	map
	memory
	numeric
	queue
	set
	stack
	utility
	vector
	fstream.h
	iomanip.h
	iostream.h
	new.h

	Documented Library Functions
	Table 2-6. Library Functions in the ctype.h Header File �
	Table 2-7. Library Functions in the math.h Header File �
	Table 2-8. Library Functions in the setjmp.h Header File �
	Table 2-9. Library Functions in the signal.h Header File �
	Table 2-10. Library Functions in the stdarg.h Header File �
	Table 2-11. Library Functions in the stdio.h Header File �
	Table 2-12. Library Functions in stdlib.h Header File �
	Table 2-13. Library Functions in string.h Header File �

	C Run-Time Library Reference
	abort
	abs
	acos
	asin
	atan
	atan2
	atexit
	atof
	atoi
	atol
	bsearch
	calloc
	ceil
	cos
	cosh
	div
	exit
	exp
	fabs
	floor
	fmod
	free
	frexp
	interrupt
	Table 2-14. Interrupt Handling

	isalnum
	isalpha
	iscntrl
	isdigit
	isgraph
	islower
	isprint
	ispunct
	isspace
	isupper
	isxdigit
	labs
	ldexp
	ldiv
	log
	log10
	longjmp
	malloc
	memchr
	memcmp
	memcpy
	memmove
	memset
	modf
	pow
	qsort
	raise
	Table 2-15. Raise Function Signals — Values and Meanings

	rand
	realloc
	setjmp
	signal
	sin
	sinh
	sqrt
	srand
	strcat
	strchr
	strcmp
	strcoll
	strcpy
	strcspn
	strerror
	strlen
	strncat
	strncmp
	strncpy
	strpbrk
	strrchr
	strspn
	strstr
	strtod
	strtok
	strtol
	strtoul
	strxfrm
	tan
	tanh
	tolower
	toupper
	va_arg
	va_end
	va_start
	Notation Conventions.

	3 DSP Run-Time Library
	DSP Run-Time Library Guide
	Linking DSP Library Functions
	Table 3-1. DSP Library Files

	Working With Library Source Code
	DSP Header Files
	complex.h — Basic Complex Arithmetic Functions
	Table 3-2. Complex Functions �

	filter.h — Filters and Transformations
	Table 3-3. Filter Library �
	Table 3-4. Transformational Functions �

	math.h — Math Functions
	Table 3-5. Math Library �

	matrix.h — Matrix Functions
	Table 3-6. Matrix Functions �

	stats.h — Statistical Functions
	Table 3-7. Statistical Functions �

	vector.h — Vector Functions
	Table 3-8. Vector Functions�

	window.h — Window Generators
	Table 3-9. Window Generator Functions �

	DSP Run-Time Library Reference
	a_compress
	a_expand
	arg
	autocoh
	autocorr
	cabs
	cadd
	cdiv
	cexp
	cfft
	cfftrad4
	cfft2d
	cfir
	clip
	cmlt
	conj
	convolve
	conv2d
	conv2d3x3
	copysign
	cot
	countones
	crosscoh
	crosscorr
	csub
	fir
	fir_decima
	fir_interp
	gen_bartlett
	gen_blackman
	gen_gaussian
	gen_hamming
	gen_hanning
	gen_harris
	gen_kaiser
	gen_rectangular
	gen_triangle
	gen_vonhann
	histogram
	ifft
	ifftrad4
	ifft2d
	iir
	max
	mean
	min
	mu_compress
	mu_expand
	norm
	polar
	rfft
	rfftrad4
	rfft2d
	rms
	rsqrt
	twidfftrad2
	twidfftrad4
	twidfft2d
	var
	zero_cross
	Notation Conventions

	I Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

