
3 TUTORIAL
Figure 1-0.

Table 1-0.

Listing 1-0.
In This Chapter
This chapter contains the following topics:

• “Overview” on page 3-2

• “Exercise One: Building and Running a C Program” on page 3-4

• “Exercise Two: Modifying a C Program to Call an Assembly
Routine” on page 3-18

• “Exercise Three: Plotting Data” on page 3-36

• “Exercise Four: Statistical Profiling” on page 3-45

• “Exercise Five: Multiprocessor Debugging” on page 3-51

• “What’s Next” on page 3-73
VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs 3-1

Overview
Overview
This tutorial demonstrates key features and capabilities of the
VisualDSP++ Integrated Development and Debugging Environment
(IDDE). The exercises use sample programs written in C, C++, and
assembly for SHARC DSPs. For these exercises, you will use the
ADSP-2106x simulator for the ADSP-21065L target, the ADSP-21065
(MP,2) target, and the ADSP-21061 (MP,6) target.

You can use different SHARC processors with only minor changes to the
Linker Description Files (.LDFs) included with each project.

VisualDSP++ includes basic Linker Description Files for each processor
type in the ldf folder. The default installation path is:

Analog Devices\VisualDSP\21k\ldf folder

The source files for these exercises are installed during the VisualDSP++
software installation.

The tutorial contains five exercises:

• In Exercise One, you will start up VisualDSP++, build a project
containing C source code, and profile the performance of a C
function.

• In Exercise Two, you will create a new project, modify sources to
call an assembly routine, rebuild the project, and profile the
performance of the assembly language routine.

• In Exercise Three, you will plot the various waveforms produced by
a Convolution algorithm.

• In Exercise Four, you will use statistical profiling to examine the
efficiency of the Convolution algorithm used in Exercise Three.
Using the collected statistical profile data, you will pinpoint the
most time-consuming areas of the algorithm, which are likely to
require hand tuning in the assembly language.
3-2 VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs

Tutorial
• In Exercise Five, you will explore the multiprocessor debugging
capabilities of VisualDSP++, including synchronous control of
multiple targets, window pinning, and the use of multiprocessor
groups to control complex systems.

Tip: Become familiar with the VisualDSP++ toolbar buttons, shown in
Figure 3-1. They are shortcuts for menu commands such as File, Open.
Toolbar buttons and menu commands that are not available for the task
that you are performing are disabled and displayed in gray.

Figure 3-1. VisualDSP++ Toolbar Buttons
VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs 3-3

Exercise One: Building and Running a C Program
Exercise One: Building and Running a C
Program

In this exercise, you will complete the following tasks:

• Start up the VisualDSP++ environment

• Open and build an existing project

• Examine windows and dialog boxes

• Run the program

The sources for this exercise are in the dot_product_c folder. The default
installation path is:

Analog Devices\VisualDSP\21k\Examples\Tutorial\dot_product_c

Step 1: Start VisualDSP++ and Open a Project
To start VisualDSP++ and open a project:

1. Click the Windows Start button and select Programs, VisualDSP,
and VisualDSP++ for SHARC.

If you are running VisualDSP++ for the first time, the New Session
dialog box opens to enable you to set up a session. Select the values
shown in the table under step 2 on page 3-10. Then click OK. The
VisualDSP++ main window appears.

If you have already run VisualDSP++ and the Reload last project at
startup option is selected in the Project Options dialog box,
VisualDSP++ opens the last project that you worked on. To close
this project, choose Close from the Project menu, and then click
No when prompted to save the project. Since you have made no
changes to the project, you do not have to save it.
3-4 VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs

Tutorial
2. From the Project menu, choose Open. VisualDSP++ displays the
Open Project dialog box.

3. In the Look in box, open the Program Files\Analog Devices
folder and double-click the following sub-folders in succession:

VisualDSP\21k\Examples\Tutorial\dot_product_c

Note: This path is based on the default installation.

4. Double-click the dotprodc project (.dpj) file.

VisualDSP++ loads the project, and generates dependencies for the
source files. The environment also displays the project files in the
Project window and displays messages on the Build tab in the
Output window as it processes the project settings and file
dependencies. See Figure 3-2.

Figure 3-2. The dotprodc Project Files in the Project Window
VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs 3-5

Exercise One: Building and Running a C Program
Note: The first time that you open projects installed from the
software kit, VisualDSP++ may detect that files, folders, or both
have moved. If you receive a “Project has been moved” message,
click OK to continue.

The dotprodc project comprises two C language source files,
dotprod_main.c and dotprod.c, which define the arrays and
calculate their dot products.

5. From the Settings menu, choose Preferences to open the
Preferences dialog box.

6. On the General tab page, under General Preferences, make sure
that the following options are selected:

• Run to main after load

• Load executable after build

7. Click OK to close the Preferences dialog box.

You are now ready to build the project.
3-6 VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs

Tutorial
Step 2: Build the dotprodc Project
To build the dotprodc project:

1. From the Project menu, choose Build Project.

VisualDSP++ builds the project by using the project source files.

As the build progresses, the Output window’s Build tab displays
status messages (error and informational) from the tools. For
example, when a tool detects invalid syntax or a missing reference,
the tool reports the error on the Build tab.

If you double-click the file name in the error message,
VisualDSP++ opens the source file in an Editor window. You can
then edit the source to correct the error, rebuild, and launch the
debug session.

If the project build is up-to-date (the files, dependencies, and
options have not changed since the last project build), no build is
performed unless you select Rebuild All. Instead, you see the
message “Project is up to date.” If the build has no errors, a
message reports “Build completed successfully.”

In this example, notice that the compiler detects an undefined
identifier and issues the following error in the Output window:

2. Double-click the error message text in the Output window.

VisualDSP++ opens the C source file dotprod_main.c in an Editor
window, and places the cursor on the line that contains the error
(see Figure 3-3).
VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs 3-7

Exercise One: Building and Running a C Program
The Editor window in Figure 3-3 shows that the integer variable
declaration int has been misspelled as itn.

Figure 3-3. Output Window and Editor Window

3. In the Editor window, click on itn and change it to int.

4. Save the source file by choosing Save from the File menu. Notice
that int is now color-coded to signify that it is a valid C keyword.

5. Build the project again by choosing Build Project from the Project
menu. The project is now built without any errors, as reported on
the Build tab page in the Output window.

Now that you have built your project successfully, you can run the
example program.
3-8 VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs

Tutorial
Step 3: Run the Program
In this procedure, you will complete these tasks:

• Set up the debug session before running the program

• View debugger windows and dialog boxes

Since you enabled Load executable after build on the General tab page in
the Preferences dialog box, the executable file dotprodc.dxe is
automatically downloaded to the target. If the debug session’s processor
does not match the project’s build target, VisualDSP++ reports the
discrepancy and asks if you want to select another session before
downloading the executable to the target. Click Yes to continue. If
VisualDSP++ does not open the Session List dialog box, skip steps 1–5.

To set up the debug session:

1. From the Session List dialog box, click New Session to open the
New Session dialog box, shown in Figure 3-4.

Figure 3-4. New Session Dialog Box
VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs 3-9

Exercise One: Building and Running a C Program
For subsequent debugging sessions, use the New Session command
on the Sessions menu to open the New Session dialog box.

2. Specify the target and processor information listed in the following
table:

3. Click OK to close the New Session dialog box and return to the
Session List dialog box.

4. With the new session name highlighted, click Activate.

Note: If you do not click Activate, the session mismatch message is
displayed again.

VisualDSP++ closes the Session List dialog box, automatically
loads your project’s executable file (dotprodc.dxe), and advances to
the main function of your code (see Figure 3-5).

Box Value

Debug Target ADSP-2106x Family Simulator

Platform ADSP-2106x Simulator

Session Name ADSP-21065L ADSP-2106x Simulator

Processor ADSP-21065L
3-10 VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs

Tutorial

Figure 3-5. Disassembly, Editor, Output Windows: Load dotprodc.dxe

By default, VisualDSP++ opens an Output window, a Disassembly
window, and an Editor window that displays the source file
containing the project’s main function, dotprod_main.c.

5. Look at the information in the open windows.

The Output window’s Console tab contains messages about the
status of the debug session. In this case, VisualDSP++ reports that
the dotprodc.dxe load is complete.

The Disassembly window displays the machine code for the
executable. Use the scroll bars to move around the Disassembly
window. Note that a solid red circle containing a yellow arrow
appears at address 0x80E1.
VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs 3-11

Exercise One: Building and Running a C Program
The solid red circle indicates that a breakpoint is set on that
instruction, and the yellow arrow indicates that the processor is
currently halted at that instruction. When VisualDSP++ loads your
C program, it automatically sets two breakpoints, one at the
beginning and one at the end of code execution.

6. From the Settings menu, choose Breakpoints to view the
breakpoints set in your program. VisualDSP++ displays the
Breakpoints dialog box, shown in Figure 3-6.

Figure 3-6. Breakpoints Dialog Box

The breakpoints are set at these C program labels:

• “dotprod_main.c” 118

• __lib_prog_term

The Breakpoints dialog box enables you to view, add, and delete
breakpoints, as well as browse for symbols.
3-12 VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs

Tutorial
In the Disassembly and Editor windows, double-clicking on a line
of code toggles (adds or deletes) breakpoints. In the Editor
window, however, you must place the cursor in the gutter before
double-clicking. Use these tool buttons to set or clear breakpoints:

 Toggles a breakpoint for the current line

 Clears all breakpoints

7. Click OK or Cancel to exit the Breakpoints dialog box.

Step 4: Run dotprodc
To run dotprodc, click the Run button or choose Run from the
Debug menu.

VisualDSP++ computes the dot products and displays the following
results on the Console tab page (Figure 3-7) in the Output window:

Dot product [0] = 0.000000
Dot product [1] = 0.707107
Dot product [2] = �0.500000

Figure 3-7. Results of the dotprodc Program
VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs 3-13

Exercise One: Building and Running a C Program
Step 5: Profile a_dot_c
You can examine program execution within a selected range of code by
using a profile to determine the following information:

• Percentage of time spent executing instructions

• Number of clock cycles spent executing instructions

• Number of instructions executed

• Number of times memory is read from or written to

In this procedure, you will complete the following tasks to profile the
a_dot_c function:

• Enable profiling to collect execution information during the next
program execution

• Specify a start and end address for the code segment to be profiled

• Run the a_dot_c program to collect the profile information

To set up profiling for the a_dot_c function:

1. From the Tools menu, choose Profile and then choose Enable
Profiling, as shown in Figure 3-8.

Figure 3-8. Tools Menu: Enable Profiling for a_dot_c
3-14 VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs

Tutorial
Profiling will be performed when you run the a_dot_c program.
When the profile is enabled, a check mark appears beside the
Enable Profiling command on the Tools menu. By default,
profiling is disabled.

2. From the Tools menu, choose Profile. Then choose Add/Remove
Profile Ranges to open the Profile Ranges dialog box, shown in
Figure 3-9.

Figure 3-9. Profile Ranges Dialog Box

3. In the New Profile Range group box, complete the address boxes
as follows:

Start address
Click the Browse button next to this box to open the Browse for
Symbol dialog box. Select a_dot_c, the label identifying the start of
the function, and then click OK to enter the label in the Start
address box.
VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs 3-15

Exercise One: Building and Running a C Program
End address
Use the Browse button to select a_dot_c_end, the label identifying
the last instruction in the function a_dot_c.

4. Click Add.

The profile defaults to Memory type Program(PM) Memory,
which is required for this example.

5. Click OK to exit the Profile Ranges dialog box and return to the
Disassembly window.

6. From the View menu, choose Debug Windows, and then choose
Profile. The Profile window displays the results of the profiling
session. You can drag and dock the window to the top of the main
window (directly under the toolbars) to improve the column view.

The Profile window shows the address range that you just
specified. To collect profile information, however, you must run
the program.

7. From the Debug menu, choose Restart. From the Tools menu,
choose Profile, and then choose Reset Profile Information.

8. Press F5 to run the program. The program runs to the breakpoint
set at main().

9. Clear the text displayed on the Console tab page as follows:

a. Right-click on the Console tab page in the Output window.

b. Choose Clear from the popup menu.

Press F5 to continue running the program.

The program computes the dot products and writes the results to
the Console tab page. When the program is finished running, the
message “Halted” appears in the status bar at the bottom of the
main window.
3-16 VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs

Tutorial
The Profile window (Figure 3-10) now contains the results of
running the C program. Later in this tutorial, you will compare
these results with a profile of the assembly language function
a_dot_c_asm.

Figure 3-10. Profile Window: Results of the C Function Profile

The fields in the Profile window are described as follows:

Exec %
The total number of clock cycles spent executing instructions in
the specified range compared to the total number of cycles spent
executing instructions

Exec Cycles
The total number of clock cycles, including all wait states and extra
cycles, spent while executing instructions within the profile range

Exec Count
Number of instructions executed in the profile range. This value is
0 when the profiled memory space does not contain instructions.
Profiling data memory would result in a 0 Exec count.

Read Count
Number of memory reads from any address in the profile range.
The read count includes instruction fetches.

Write Count
Number of memory writes to any address in the profile range

You are now ready to start Exercise Two.
VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs 3-17

Exercise Two: Modifying a C Program to Call an Assembly
Routine
Exercise Two: Modifying a C Program to
Call an Assembly Routine

In Exercise One, you built and ran a C program. In this exercise, you will
modify this program to call an assembly language routine, rebuild the
project, and profile the assembly function. The project files are largely
identical to those of Exercise One. Minor modifications illustrate the
changes needed to call an assembly language routine from C source code.

Step 1: Create a New Project
To create a new project:

1. From the Project menu, choose Close to close the dotprodc project.
Click Yes when prompted to close all open source windows.

If you have modified your project during this session, you are
prompted to save the project. Click No.

2. From the Project menu, choose New to open the Save New Project
As dialog box, shown in Figure 3-11.

Figure 3-11. Save New Project As Dialog Box
3-18 VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs

Tutorial
3. Click the up-one-level button until you locate the
dot_product_asm folder, and then double-click this folder.

4. In the File name box, type dot_product_asm, and click Save.

The Project Options dialog box (Figure 3-12) appears.

Figure 3-12. Project Options Dialog Box: Project Tab Page

This dialog box enables you to specify project build information.

5. Take a moment to view the tab pages in the Project Options
window: Project, General, Compile, Assemble, Link, Split, Load,
and Post Build. On each tab page, you specify the tool options used
to build the project.
VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs 3-19

Exercise Two: Modifying a C Program to Call an Assembly
Routine
6. On the Project tab page (Figure 3-12), specify the following values:

These settings specify information for building an executable file
for the ADSP-21065L. The executable contains debug
information, so you can examine program execution.

7. Click the Compile tab to display the Compile tab page, shown in
Figure 3-13.

Box Value

Processor ADSP-21065L

Type DSP executable file

Name dot_product_asm

Settings for configuration Debug
3-20 VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs

Tutorial
Figure 3-13. Project Options Dialog Box: Compile Tab Page

Complete the General group box as follows:

• Select the Enable optimization check box to enable
optimization.

• Select the Generate debug information check box, if it is not
already selected, to enable debug information for the C source.

These settings direct the C compiler to optimize code for the
ADSP-21065L DSP. Because the optimization takes advantage of
DSP architecture and assembly language features, some of the C
debug information is not saved. Debugging is, therefore, performed
through debug information at the assembly language level.
VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs 3-21

Exercise Two: Modifying a C Program to Call an Assembly
Routine
8. Click OK to apply changes to the project options and to close the
Project Options dialog box. You are asked if you want to add
VisualDSP++ kernel support to the project. Click No.

You are now ready to add the source files to the project.

Step 2: Add Source Files to dot_product_asm

To add the source files and Linker Description File to the new project:

1. Click the Add File button , or from the Project menu, choose
Add to Project, and then choose File(s).

The Add Files dialog box (Figure 3-14) appears.

Figure 3-14. Add Files Dialog Box: Adding Source Files to the
Project

2. In the Look in box, locate the project folder, dot_product_asm.

3. In the Files of type box, select All Source Files.
3-22 VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs

Tutorial
4. Press and hold down the Ctrl key and click on dotprod.c,
dotprod_func.asm, dotprod_main.c, and dotprodasm.ldf. Then
click Add.

To display the files that you added in step 4, open the Source
Files folder and Linker Files folder in the Project window.

You are now ready to modify the sources to call the assembly function.

Step 3: Modify the Project Source Files

In this procedure, you will:

• Modify dotprod_main.c to call a_dot_c_asm instead of a_dot_c

• Save the modified file

To modify dotprod_main.c to call the assembly function:

1. In the Project window, double-click dotprod_main.c.

The C source file opens in an Editor window. Resize or maximize
the window for better viewing.

2. From the Edit menu, choose Find to open the Find dialog box,
shown in Figure 3-15.

Figure 3-15. Find Dialog Box: Locating All Occurrences of /*
VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs 3-23

Exercise Two: Modifying a C Program to Call an Assembly
Routine
3. In the Find What box, type /*, and then click Mark All.

The Editor bookmarks all lines containing /* and positions the
cursor at the first instance of /* in the extern a_dot_c_asm
declaration.

4. Select the comment characters /* and use the Ctrl+X key
combination to cut the comment characters from the beginning of
the a_dot_c_asm declaration. Then move the cursor up one line
and use the Ctrl+V key combination to paste the comment
characters at the beginning of the a_dot_c declaration. Because
syntax coloring is turned on, you will see the code change color as
you cut and paste the comment characters.

Repeat this step for the end-of-comment characters */ at the end of
the a_dot_c_asm declaration. The a_dot_c declaration is now fully
commented out, and the a_dot_c_asm declaration is no longer
commented.

5. Press F3 to move to the next bookmark.

The Editor positions the cursor on the /* in the function call to
a_dot_c_asm, which is currently commented out. Note that the
previous line is the function call to the a_dot_c routine.

6. Press Ctrl+X to cut the comment characters from the beginning of
the function call to a_dot_c_asm. Then move the cursor up one
line and press Ctrl+V to paste the comment characters at the
beginning of the call to a_dot_c.

Repeat this step for the end-of-comment characters */. The main()
function should now be calling the a_dot_c_asm routine instead of
the a_dot_c function, previously called in Exercise One.

Figure 3-16 shows the changes made in step 6.
3-24 VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs

Tutorial
Figure 3-16. Editor Window: Modifying dotprod_main.c to Call
a_dot_c_asm

7. From the File menu, choose Save to save the changes that you just
made to the file.

8. Place the cursor in the Editor window. Then, from the File menu,
choose Close to close the dotprod_main.c file.

You are now ready to modify dotprodasm.ldf.
VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs 3-25

Exercise Two: Modifying a C Program to Call an Assembly
Routine
Step 4: Modify dotprodasm.ldf

In this procedure you will:

• View the Linker Description File to see what information and
specifications are included

• Modify the Linker Description File to link against the a_dot_c_asm
assembly routine

To examine and then modify dotprodasm.ldf to link with the assembly
function:

1. In the Project window, double-click dotprodasm.ldf to open the
file for editing.

Use the scroll bar on the right side of the window to scroll through
the .ldf file. The beginning of the file contains the ADSP-21065L
memory map, which describes the processor’s physical memory.

Following the memory map are commands (SEARCH_DIR and
$OBJECTS) used to define the path names that the linker uses to
search and resolve references in the input files.

Next is the MEMORY command, which defines the system’s physical
memory and assigns labels to logical segments within it. These
logical segments define program, data, and stack memory types.
3-26 VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs

Tutorial
Following the MEMORY command is the SECTIONS command. The
SECTIONS command defines the placement of code in physical
memory by mapping the sections specified in program files to the
sections declared in the MEMORY command. The INPUT_SECTIONS
statement specifies the object file that the linker uses to resolve the
mapping.

2. Try to build the project by performing one of these actions:

• Click the Build Project button .

• From the Project menu, choose Build Project.

Notice the linker error in the Output window, shown in
Figure 3-17.

Figure 3-17. Output Window: Linker Error

The reference to _a_dot_c_asm could not be resolved because that
code has not been placed into the target program’s memory. You
must change the SECTIONS command in the .ldf file to inform the
linker where to place the code.
VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs 3-27

Exercise Two: Modifying a C Program to Call an Assembly
Routine
3. From the Edit menu, choose Replace to open the Replace dialog
box, shown in Figure 3-18.

Figure 3-18. Replace Dialog Window

4. In the Find What box, type: dotprod.doj(pm_code

5. In the Replace With box, type: dotprod_func.doj(pm_code

6. Click Replace All.

Now the .LDF links by using dotprod_func.doj for the program
code segments pm_code1, pm_code2, and pm_code3. The edited
statement should look like this:

INPUT_SECTIONS (dotprod.doj (seg_pmco) dotprod_func.doj
(pm_code1) dotprod_func.doj (pm_code2) dotprod_func.doj
(pm_code3)

7. From the File menu, choose Save to save the modified file.

As shown in Figure 3-19, your dot_product_asm.dpj project
should now contain the files dotprod.c, dotprod_func.asm,
dotprod_main.c, and dotprodasm.ldf.
3-28 VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs

Tutorial
Figure 3-19. Files in the dot_product_asm Project

You are now ready to rebuild and run the modified project.

Step 5: Rebuild and Run dot_product_asm

To run dot_product:

1. Build the project by performing one of these actions:

• Click the Build Project button .

• From the Project menu, choose Build Project.

At the end of the build, the Output window displays the following
message on the Console tab page:

“Load complete.”

VisualDSP++ loads the program, runs to main, and displays the
Project, Output, Disassembly, and Profile windows (shown in
Figure 3-20).
VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs 3-29

Exercise Two: Modifying a C Program to Call an Assembly
Routine
Figure 3-20. Windows Left Open at the End of the Previous
Debugger Session

2. Click the Run button to run dot_product_asm.

The program calculates the three dot products and displays the
results on the Console tab page in the Output window. When the
program stops running, the message “Halted” appears in the status
bar at the bottom of the window. The results, shown below, are
identical to the results obtained in Exercise One.

Dot product [0] = 0.000000
Dot product [1] = 0.707107
Dot product [2] = �0.500000

You are now ready to profile a_dot_c_asm.
3-30 VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs

Tutorial
Step 6: Set Up the Profile dot_product_asm

In this procedure, you will set up the profile of the a_dot_c_asm function.
You will:

• Enable profiling to collect execution information during the next
program execution

• Define the starting address and ending address of the code segment
to be profiled

To set up the profile of the a_dot_c_asm function:

1. From the Tools menu, choose Profile and then choose Enable
Profiling if it is not checked (➼).

Figure 3-21. Tools Menu: Enable Profiling for a_dot_c_asm

2. From the Tools menu, choose Profile. Then choose Add/Remove
Profile Ranges to open the Profile Ranges dialog box, shown in
Figure 3-22.
VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs 3-31

Exercise Two: Modifying a C Program to Call an Assembly
Routine
Figure 3-22. Profile Ranges Dialog Box

3. Click Remove All to remove the profile ranges that you set up in
Exercise One.

4. In the New Profile Range group box, complete the address boxes
as follows:

Start address
Click the Browse button next to this box to open the Browse
Program Symbols dialog box. Select _a_dot_c_asm, the label
identifying the start of the function, and then click OK to enter the
label in the Start address box.

End address
Use the Browse button to select _a_dot_c_asm_end, the label
identifying the last instruction in the function a_dot_c.

5. Click Add to add this range to the Profile list.
3-32 VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs

Tutorial
The profile Memory type defaults to Program (PM) Memory,
which is required for this example.

6. Click OK to exit the Profile Ranges dialog box and return to the
Disassembly window.

7. From the View menu, choose Debug Windows, and then choose
Profile. The Profile window displays the results of the profiling
session. You can drag and dock the window to the top of the main
window (directly under the toolbars) to improve the column view.

The Profile window shows the address range that you just
specified. To collect profile information, however, you must run
the program.

You are now ready to run the dot_product_asm program.

Step 7: Run dot_product_asm
To run dot_product_asm:

1. From the Debug menu, choose Restart. From the Tools menu,
choose Profile, and then choose Reset Profile Information.

2. Press F5 to run the program. The program runs to the breakpoint
set at main().

3. Clear the text displayed on the Console tab page as follows:

a. Right-click on the Console tab page in the Output window.

b. Choose Clear from the popup menu.

4. Press F5 to continue running the program.
VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs 3-33

Exercise Two: Modifying a C Program to Call an Assembly
Routine
The program computes the dot products and writes the results to
the Console tab page. The program halts at a_dot_c_asm_end and
displays the profile results in the Profile window, as shown in
Figure 3-23.

Figure 3-23. Profile Window: Results of the Assembly Language Function
a_dot_c_asm

The fields in the Profile window are described on page 3-17.

You are now ready to compare the profile results.

Step 8: Compare the Profile Results

You have now profiled two functions that solve the same problem (each
computes a dot product). One function is written in C and one is written
in assembly. Table 3-1 compares the results of the two versions. The
hand-coded assembly version shows a significant performance boost.

Note: Your actual values may differ slightly from those shown in the
following table, depending on the compiler version that you are using.

Table 3-1. Profile Results: a_dot_c vs. a_dot_c_asm

Function Exec % Exec
Cycles

Exec
Count

Read
Count

Write
Count

a_dot_c 0.478998% 52 51 51 0

_a_dot_c_asm 0.406504% 45 38 22 0
3-34 VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs

Tutorial
Assembly language routines have two advantages over C code. First, the
assembly instruction set is optimized for the processor. The instruction set
supports multifunction, parallel operation instructions that provide highly
specialized optimizations and perform multiple operations that complete
in a single cycle.

Second, programs coded in assembly also have low overhead, compared to
programs coded in C. When you code in assembly, you save only the used
registers. When you code in C, the compiler saves and restores reserved
registers. The C code operates in a run-time environment, defined for the
DSP, which also adds some overhead to the code.

You are now ready to start Exercise Three.
VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs 3-35

Exercise Three: Plotting Data
Exercise Three: Plotting Data
In this exercise, you will load and debug a pre-built program that applies a
simple convolution algorithm to a buffer of data. You will use
VisualDSP++’s plotting engine to view the different data arrays
graphically, both before and after running the program.

Step 1: Load the Convolution Program
To load the Convolution program:

1. Keep the Disassembly window and Console tab page (in the
Output window) open, but close all other windows still open from
the previous exercises.

2. From the File menu, choose Load Program or click .

The Open a Processor Program dialog box appears.

3. Select the Convolution.dxe program to load as follows:

a. Open your Analog Devices folder and double-click the following
sub-folders in succession:

VisualDSP\21k\Examples\Tutorial\convolution\debug

b. Double-click Convolution.dxe to load the program.

c. When prompted to look for Convolution.cpp, click Yes to open
the Find dialog box.

d. Click the up-one-level button to access the Convolution
folder.

e. Double-click Convolution.cpp to display the file in an Editor
window, as shown in Figure 3-24.
3-36 VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs

Tutorial
Figure 3-24. Loading the Convolution Program

4. Look at the source code of the Convolution program.

You can see four global data arrays: Table, Input, Output, and
Impulse.

You can also see four functions that operate on these arrays:
InitializeSineTable(), GenerateInputPulse(),
GenerateImpulseCoeffs(), and CalculateOutputPulse().
Stepping over each function will enable you to see the data being
calculated in a plot window.

You are now ready to open a Plot window.
VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs 3-37

Exercise Three: Plotting Data
Step 2: Open a Plot Window
To open a plot window:

1. From the View menu, choose Debug Windows and Plot. Then
choose New to open the Plot Configuration dialog box, shown in
Figure 3-25.

Figure 3-25. Plot Configuration Dialog Box: Specifying Data Sets
to Be Plotted

Here you will add the data sets that you want to view in the Plot
window.
3-38 VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs

Tutorial
2. In the Plot group box, specify the following values:

• In the Type box, select Line Plot from the drop-down menu.

• In the Title box, type convolution.

3. Enter three data sets to plot by using the values in Table 3-2.

After entering each data set, click Add to add the data set to the
Data Sets list, as shown in Figure 3-26.

Table 3-2. Three Data Sets: Table, Input, and Output

Data Setting
Field

Table
Data Set

Input
Data Set

Output
Data Set

Description

Name Table Input Output Data set

Memory Data(DM)
Memory

Data(DM)
Memory

Data(DM)
Memory

Data memory

Address Table Input Output The address of this data
set is that of the Input or
Output array.

Click Browse to select the
value from the list of
loaded symbols.

Count 360 360 396 The arrays are 360 and
396 elements long.

Stride 1 1 1 The data is contiguous in
memory.

Data float float float Input and Output are
arrays of float values.

Offset 0 0 0 Use zero, the default
value.
VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs 3-39

Exercise Three: Plotting Data
The Plot Configuration dialog box should now look like this:

Figure 3-26. Plot Configuration Dialog Box: Entering the Table,
Input, and Output Data Sets

4. Click OK to apply the changes and to open the Plot window with
these data sets.

The Plot window now displays the three arrays. Since, by default,
the Simulator initializes memory to zero, the three data sets appear
as one horizontal line, shown in Figure 3-27.
3-40 VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs

Tutorial
Figure 3-27. Plot Window: Before Running the Convolution
Program

Step 3: Run the Convolution Program and View the
Data

To run the Convolution program and view the data:

1. Press F10 or click the Step Over button to step over the first
line in main that calls the InitializeSine Table() function.

Once you finish stepping over the function, the word “Halted”
appears in the status bar at the bottom of the screen. The Plot
window should now show the sine wave data in the Table array.

2. Step over the call to GenerateInputPulse() by using the Step Over
command as you did in the previous step. The Plot window now
displays the data for both the Input array and the Table array.

3. Press F5 or click the Run button to run to the end of the
program. When the program halts, you see the results of the
Convolution algorithm in the Output array. All three data sets are
now visible in the Plot window, as shown in Figure 3-28.
VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs 3-41

Exercise Three: Plotting Data
Figure 3-28. Plot Window: After Running the Convolution Program to
Completion

Next you will zoom in on a particular region of interest in the Plot
window to focus in on the data.

4. Click the left mouse button inside the Plot window and drag the
mouse to create a rectangle to zoom into. Then release the mouse
button to magnify the selected region.
3-42 VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs

Tutorial
Figure 3-29 shows the selected region, and Figure 3-30 shows the
magnified result.

Figure 3-29. Plot Window: Selecting a Region to Magnify

Figure 3-30. Plot Window: Magnified Result

To return to the previous view (before magnification), right-click
in the Plot window and choose Reset Zoom from the popup menu.
VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs 3-43

Exercise Three: Plotting Data
You can view individual data points in the Data Cursor from the
popup menu. Then move through the individual data points in the
current data set by pressing and holding the Left (←) and Right
(→) arrow keys on the keyboard.

The value of the current data point appears in the lower-left corner
of the Plot window, as shown in Figure 3-31.

Figure 3-31. Plot Window: Viewing Individual Data Points by
Using the Data Cursor Feature

To switch data sets, press the Up (↑) and Down (↓) arrow key.

To disable the data cursor, right-click in the Plot window and
choose (de-select) Data Cursor.

To return to the previous view (before magnification), right-click
in the Plot window and choose Reset Zoom from the popup menu.

You are now ready to start Exercise Four.
3-44 VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs

Tutorial
Exercise Four: Statistical Profiling
In this exercise, you will load and debug the Convolution program from
the previous exercise. You will use statistical profiling, however, to
evaluate the program’s efficiency and to determine where the application
is spending the majority of its execution time in the code.

Tip: VisualDSP++ supports two types of profiling: linear and statistical.

• You use linear profiling with a simulator. The count in the Linear
Profiling Results window is incremented every time a line of code is
executed.

• You use statistical profiling with a JTAG emulator connected to a
DSP target. The count in the Statistical Profiling Results window is
based on random sampling.

Step 1: Load the Convolution Program
To load the Convolution program:

1. Close all open windows except for the Disassembly window and
the Output window.

2. From the File menu, choose Load Program, or click .

The Open a Processor Program dialog box appears.

3. Select the program to load as follows:

a. Open the Analog Devices folder and double-click the following
sub-folders in succession:

VisualDSP\21k\Examples\Tutorial\convolution\debug

b. Double-click Convolution.dxe to load and run the Convolution
program.
VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs 3-45

Exercise Four: Statistical Profiling
c. When prompted to look for Convolution.cpp, click Yes to open
the Find dialog box.

d. Click the up-one-level button to access the Convolution
folder.

e. Double-click Convolution.cpp to display the file in an Editor
window.

You are now ready to enable statistical profiling.

Step 2: Enable Statistical Profiling
To enable statistical profiling:

1. From the Tools menu, choose Statistical Profiling, and then choose
Enable Profiling.

Figure 3-32. Enabling Statistical Profiling for
the Convolution Program

A check mark appears beside Enable Profiling to indicate that
statistical profiling is enabled.

Statistical profiling will be performed when you next run the
Convolution program. By default, statistical profiling is disabled.
3-46 VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs

Tutorial
2. From the View menu, choose Debug Windows. Then choose
Statistical Profiling Results to open the Statistical Profiling Results
window, shown in Figure 3-33.

Figure 3-33. Statistical Profiling Results Window (Empty)

The Statistical Profiling Results window is intially empty. After
you run the program and collect data, this window displays the
results of the profiling session.

For a better view of the data, use the window’s title bar to drag and
dock the window to the top of the VisualDSP++ main window.

You are now ready to collect and examine statistical profile data.
VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs 3-47

Exercise Four: Statistical Profiling
Step 3: Collect and Examine the Statistical Profile
Data

To collect and examine the statistical profile data:

1. Press F5 or click to run to the end of the program.

When the program halts, the results of the linear profile appear in
the left pane of the Statistical Profiling Results window (see
Figure 3-34).

The Statistical Profiling Results window is divided into two,
three-column panes.

2. Double-click on a line in the left pane to display the corresponding
source code for the profile data in the right pane.

3. When prompted to look for the Convolution.cpp file, click Yes.

The source code for the profile data appears in the right pane, as
shown in Figure 3-34.

Figure 3-34. Statistical Profiling Results of Analyzing the Performance of
the Convolution Program

4. Examine the results of your statistical profiling session.
3-48 VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs

Tutorial
The field values in the left pane are defined as follows:

Histogram
A graphical representation of the percentage of time spent in a
particular execution unit. This percentage is based on the total
time that the program spent running, so longer bars denote more
time spent in a particular execution unit. The Statistical Profiling
Results window always sorts the data with the most
time-consuming (expensive) execution units at the top.

%
The numerical percent of the same data found in the Histogram
column. You can view this value as an absolute number of samples
by right-clicking in the Statistical Profiling Results window and by
selecting View Sample Count from the popup menu.

Execution Unit
The program location to which the samples belong. If the
instructions are inside a C function or a C++ method, the
execution unit is the name of the function or method. For
instructions that have no corresponding symbolic names, such as
hand-coded assembly or source files compiled without debugging
information, this value is an address in the form of PC[xxx], where
xxx is the address of the instruction.

If the instructions are part of an assembly file, the execution unit is
the assembly file followed by the line number in parentheses.

The left pane in Figure 3-34 shows that the function
CalculateOutputPulse() has consumed over 84% of the total
execution time. Double-clicking one of these lines displays the
source file, Convolution.cpp, in the right (source) pane. The
source pane displays data for each line of executable code in the file
for which statistical profile data has been collected.
VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs 3-49

Exercise Four: Statistical Profiling
Double-clicking the line with the CalculateOutputPulse()
function in the left pane displays the statistical profile data shown
in Figure 3-35 in the right pane.

Figure 3-35. Statistical Profile Data for Convolution.cpp

The details of the CalculateOutputPulse() function show that
59% of the time spent running the entire Convolution program is
spent inside the nested for loop, calculating the convolution.

The data suggests that you should rewrite this function in
hand-tuned assembly language to decrease the total running time
of the algorithm and improve performance.

You are now ready to start Exercise Five.
3-50 VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs

Tutorial
Exercise Five: Multiprocessor Debugging
In this exercise you will create a multiprocessor (MP) simulator session
and explore the various features for debugging complex multiprocessor
systems. You will use synchronous MP commands to control multiple
targets, pin windows to specific processors, and use MP groups to control
multiple subsets of processors in an MP system.

Step 1: Create a Multiprocessor Simulator Session
To create a multiprocessor simulator session:

1. If necessary, start VisualDSP++. (VisualDSP++ automatically
connects to the last session that was open.)

2. From the Session menu, choose New Session to open the New
Session dialog box, shown in Figure 3-36.

Figure 3-36. New Session Dialog Box: Setting up a
Multiprocessor Simulator Session
VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs 3-51

Exercise Five: Multiprocessor Debugging
3. Create a new multiprocessor simulator session by specifying the
values listed in the following table:

4. Under Multiprocessor System, select the check boxes next to
processors P0 and P1, as shown in Figure 3-36.

The check marks (�) indicate that these processors belong to the
default multiprocessor group created when VisualDSP++ attaches
to the session. Multiprocessor groups are described in greater detail
later in this exercise.

5. Click OK to create the session.

VisualDSP++ closes the current session and attaches to the new
multiprocessor session specified above.

Figure 3-37 shows the windows in the new multiprocessor session.

Box Value

Debug Target ADSP-2106x Family MP Simulator

Platform ADSP-21065 (MP,2) Simulator

Session Name ADSP-21065L (MP,2) Simulator
3-52 VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs

Tutorial
Figure 3-37. VisualDSP++ Windows: After Creating a Multiprocessor
Session

6. Take a moment to examine the session windows. Except for a few
minor changes, notice that a multiprocessor session looks nearly
identical to a single-processor session.
VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs 3-53

Exercise Five: Multiprocessor Debugging
The main differences are the:

• Multiprocessor window, with the tabs Status and Groups

• Name of the processor (such as P0) in the title bar of each debug
window displaying processor information

• Multiprocessor toolbar buttons to run five MP commands

In Figure 3-37, the Multiprocessor window (Figure 3-38) appears
under the Disassembly window in the lower-right portion of the
VisualDSP++ main window.

Figure 3-38. Multiprocessor Window: Status Tab Page

The Status tab page lists each processor in the session and its
current status: Running, Halted, Stepping, or Unknown.

The title bar of each debug window (such as Disassembly,
Memory, or Registers) includes the name of the processor from
which information has been collected.

For example, the title bar of the Disassembly window shown in
Figure 3-37 and in Figure 3-39 indicates that information was
collected from processor P0.
3-54 VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs

Tutorial
Figure 3-39. Disassembly Window: Disassembled Instructions in
Processor P0

Figure 3-40 shows the Multiprocessor toolbar.

Figure 3-40. Multiprocessor Toolbar: Provides Access to Common
Multiprocessor Commands

The buttons on this toolbar provide easy access to the following
commands:

 Multiprocessor Run

 Multiprocessor Restart

 Multiprocessor Halt

 Multiprocessor Step

 Multiprocessor Reset
VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs 3-55

Exercise Five: Multiprocessor Debugging
You can also access these commands from the Debug menu by
choosing Multiprocessor.

You are now ready to change focus and pin windows.

Step 2: Changing Focus and Pinning Windows
You can easily view data from any processor in the current session.
Displaying data from a different processor in the same window is called
changing focus. On the Multiprocessor window’s Status tab page
(Figure 3-38), the first processor listed, P0, is highlighted and currently
has focus by default.

During a debug session, you may want a debugger window to display the
data from only one particular processor and to maintain that focus as new
processors are selected. This feature is known as pinning a window.

To change focus and pin windows:

1. On the Multiprocessor window’s Status tab page (Figure 3-38),
click P1.

Notice that the title bar of the Disassembly window changes to
“P1: Disassembly” to indicate that this window is now focused on
processor P1. The window displays P1’s disassembled instructions.

2. Click on the text field to the right of address 0x8007 in the
Disassembly window. A gray box appears around the field.

3. Type the instruction r0=0x1234 and press Enter. The instruction is
written into P1’s memory, and the Disassembly window is updated
as shown in Figure 3-41 to reflect this new instruction.
3-56 VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs

Tutorial
Figure 3-41. Disassembly Window: Patching a New Instruction
into Processor P1’s Memory

4. Open a second Disassembly window from the View menu by
choosing Debug Windows and Disassembly.

Two Disassembly windows focus on processor P1, as shown in
Figure 3-42.
VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs 3-57

Exercise Five: Multiprocessor Debugging
Figure 3-42. Two Open Disassembly Windows Focused on
Processor P1

5. Select different processors from the Multiprocessor window’s
Status tab page (Figure 3-38) and notice that both Disassembly
windows change focus to the currently selected processor. Also
note that the r0=0x1234 instruction is present only when the
Disassembly windows are focused on P1.

6. Select processor P0.

7. Right-click in the top Disassembly window and choose Pin to
Processor from the popup menu, shown in Figure 3-43.
3-58 VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs

Tutorial
Figure 3-43. Selecting Pin to Processor

A small pin icon appears in the title bar of the Disassembly
window. This icon indicates that the window is now “locked” onto
processor P0, and will always display data from P0, regardless of
the currently focused processor.

8. On the Multiprocessor window’s Status tab page (Figure 3-38),
select processor P1. Notice that the bottom Disassembly window
changes focus to processor P1 and that the top Disassembly
window stays focused on processor P0.

Figure 3-44 shows the top (P0) and bottom (P1) Disassembly
windows.
VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs 3-59

Exercise Five: Multiprocessor Debugging
Figure 3-44. Pinning a Disassembly Window

The top Disassembly window is shaded gray to indicate that it is
not displaying data from the currently focused processor. When
many windows are open simultaneously during a debug session,
shading helps you see which windows are focused on the current
processor.

9. Right-click in the bottom Disassembly window and choose Pin to
Processor from the popup menu.

The bottom Disassembly window is now pinned to P1.

You are now ready to load programs in a multiprocessor session.
3-60 VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs

Tutorial
Step 3: Loading Programs in a Multiprocessor
Session

To load programs to all the processors in a multiprocessor session:

1. On the Multiprocessor window’s Status tab page (Figure 3-38),
select P0 to set focus to processor P0.

2. Click the Load Program button , or choose Load Program from
the File menu. The Open a Processor Program dialog box appears.

3. Open your Analog Devices folder and double-click the following
sub-folders in succession:

VisualDSP\21k\examples\tutorial\dot_product_c\debug

4. Double-click dotprodc.dxe to open the Load Multiprocessor
Confirmation dialog box, shown in Figure 3-45.

Figure 3-45. Load Multiprocessor Confirmation Dialog Box:
Specifying Load dotprodc.dxe into Processor P0
VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs 3-61

Exercise Five: Multiprocessor Debugging
Since P0 is the currently selected processor, the path to
dotprodc.dxe is added to the P0 row.

5. Click the left mouse button in the Program File Name column next
to P1.

An edit box appears to enable you to enter the name of the
program to load into processor P1.

6. Load the dot_product_asm.dxe program as follows:

a. Click the Browse button to open the Select a Processor
Program dialog box, which enables you to browse for the
program to load.

b. Click the up-one-level button until you locate the
dot_product_asm folder. Then double-click the
dot_product_asm and debug folders in succession.

c. Double-click dot_product_asm.dxe to place the path to this
program into the P1 row of the Load Multiprocessor
Confirmation dialog box (see Figure 3-46).
3-62 VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs

Tutorial
Figure 3-46. Load Multiprocessor Confirmation Dialog Box:
Specifying Load dot_product_asm.dxe into Processor P1

d. Click OK to load each program into its respective processor.

The source files for each program open in Editor windows, and
both processors run to the first executable line in main(). If the
source files do not appear, right-click in each Disassembly
window and choose View Source.

7. Perform one of the following actions to rearrange the Editor
windows for easier viewing:

• From the Window menu, choose Tile Vertically.

• Click the Tile Vertically button .

Figure 3-47 shows the Editor windows tiled vertically.
VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs 3-63

Exercise Five: Multiprocessor Debugging
Figure 3-47. Two Programs Loaded onto Two Separate Processors

Notice that the Editor windows are pinned to their respective
processors.

8. Click the left mouse button in the Disassembly window pinned to
P0. Then click the left mouse button in the bottom Disassembly
window pinned to P1.

Notice that for all pinnable windows, including Editor windows,
the focus follows the currently active window to facilitate
navigation between processors.
3-64 VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs

Tutorial
Step 4: Stepping in a Multiprocessor Session
When debugging a multiprocessor session, you can still use all the
standard single-processor commands such as Run, Step, Halt, Reset, and
Restart. Each command operates only on the currently focused processor.
All other processors are unaffected.

The multiprocessor commands MP Run, MP Step, and MP Halt operate
synchronously. All three operations execute on exactly the same clock cycle
in all processors. This feature is helpful when critical multiprocessor
interaction issues arise during the development process. MP Load, MP
Reset, and MP Restart are not synchronous operations. They are executed
in order, one after the other.

To step instructions in a multiprocessor session:

1. Set the focus to processor P0.

2. Step P0 two assembly instructions as follows:

a. Click the left mouse button in the Disassembly window pinned
to P0.

b. Click the Step Into button twice.

Notice that the P0 Disassembly window is now at address 0x80E3,
and the P1 Disassembly window is still at address 0x80E1.

You can issue Multiprocessor commands to both processors at the
same time.

3. Click the Multiprocessor Step button twice.

Notice that both processors P0 and P1 have stepped instructions.
P0 is now at address 0x80E5, and P1 is at address 0x80E3.
VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs 3-65

Exercise Five: Multiprocessor Debugging
Step 5: Configuring and Using Multiprocessor
Groups

Often, in large multiprocessor systems, individual processors are organized
into a group of processors that work together to perform a related task.
Using multiprocessor groups is helpful for debugging complex systems.
For example, you can send multiprocessor commands to all the groups at
one time. By changing the active group, you can send debugging
commands to only the processors in one particular group.

When you create a multiprocessor session, a group named “Default” is
created. The processors that you select in the New Session dialog box are
added to the Default group. (See “Step 1: Create a Multiprocessor
Simulator Session” on page 3-51.) Up to this point, you have worked with
only two processors in a multiprocessor session. You will now work with
six processors to configure and use multiprocessor groups.

In this step you will complete the following tasks:

• Create a new multiprocessor session that uses six processors

• Add processors to the Default group and issue an MP Reset
command to all the processors

• Create new groups and add processors to them

• Make different groups active

Creating a New Multiprocessor Simulator Session

To create a multiprocessor simulator session:

1. If necessary, start VisualDSP++. (VisualDSP++ automatically
connects to the last session that was open.)

2. From the Session menu, choose New Session to open the New
Session dialog box, shown in Figure 3-48.
3-66 VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs

Tutorial
Figure 3-48. New Session Dialog Box: Setting up a
Multiprocessor Simulator Session

3. Create a new multiprocessor simulator session by specifying the
values listed in the following table:

4. Under Multiprocessor System, select the check boxes next to
processors P0 and P1, as shown in Figure 3-48.

Box Value

Debug Target ADSP-2106x Family MP Simulator

Platform ADSP-21061 (MP,6) Simulator

Session Name ADSP-21061 (MP,6) Simulator
VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs 3-67

Exercise Five: Multiprocessor Debugging
The check marks (�) indicate that these processors belong to the
default multiprocessor group created when VisualDSP++ attaches
to the session. Multiprocessor groups are described in greater detail
later in this exercise.

5. Click OK to create the session.

VisualDSP++ closes the current session and attaches to the new
multiprocessor session specified above.

Figure 3-49 shows the windows in the new multiprocessor session.

Figure 3-49. VisualDSP++ Windows in the New Multiprocessor Session
3-68 VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs

Tutorial
Adding Processors to the Default Group and Issuing MP Reset

To add processors to the Default group and issue an MP Reset command:

1. In the Multiprocessor window, click the Groups tab to display the
Groups tab page, shown in Figure 3-50.

Figure 3-50. Multiprocessor Window: Groups Tab Page

Notice that processors P0 and P1 are checked to show that they are
in the Default group, and processors P2–P5 are not. All the MP
commands (MP Run, MP Step, MP Halt, MP Reset, and MP
Restart) are sent only to the processors in this Default group. The
remaining processors are unaffected by these commands.

2. Right-click in the Multiprocessor Group window.

3. Choose Select All Processors from the popup menu, shown in
Figure 3-51.
VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs 3-69

Exercise Five: Multiprocessor Debugging
Figure 3-51. Moving All Processors into the Default Group

In the Multiprocessor Group window, a check mark appears for all
six processors in the Default group (see Figure 3-52).

Figure 3-52. All Processors Moved into the Default Group

4. Issue an MP Reset command to all six processors by performing
one of these actions:

• Click the Multiprocessor Reset button .

• From the Debug menu, choose Multiprocessor and Reset.

Because all six processors are in the selected group, the reset is
applied to all of them.
3-70 VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs

Tutorial
Creating and Configuring New Multiprocessor Groups

To create new groups and add processors to them:

1. Right-click in the Multiprocessor Group window.

2. Choose Add New Group from the popup menu.

This command creates an empty group (Group 1), as shown in
Figure 3-53. You can change the group’s name. For this exercise,
however, you will use the default.

Figure 3-53. Multiprocessor Window, Groups Tab Page: Creating a
New Group

3. Press Enter to accept the default name, Group 1.

4. Place processor P0 into this new group by clicking the left mouse
button in the P0 column of the Group 1 row.

5. Create a second new group as explained above and accept the
default name Group 2.

6. Place processor P1 into this new group by clicking the left mouse
button in the P1 column of the Group 2 row.

Figure 3-54 shows the two new multiprocessor groups.
VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs 3-71

Exercise Five: Multiprocessor Debugging
Figure 3-54. Multiprocessor Window, Groups Tab Page: Creating
Two New Groups

Activating New Multiprocessor Groups

To make the new groups active:

1. Open a second Disassembly window and pin one window to P0
and the other window to P1. For details, see “Step 2: Changing
Focus and Pinning Windows” on page 3-56.

2. Make Group 1 active by clicking the left mouse button on the
Group 1 label.

3. Click the Multiprocessor Step button a few times and notice
that only processor P0 advances.

Because P0 is the only processor in the active group, only the P0
processor is affected by multiprocessor commands.

4. Make Group 2 active by clicking the left mouse button on the
Group 2 label.

5. Click the Multiprocessor Step button a few times and notice
that only processor P1 advances.

You have now completed this exercise and the tutorial.
3-72 VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs

Tutorial
What�s Next
After completing the tutorial, you can begin building your own project
or you can look at some of the VDK examples included with your
VisualDSP++ software.

These example programs are in the following folder:

VisualDSP\21k\Examples\VDK Examples
VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs 3-73

What�s Next
3-74 VisualDSP++ 2.0 Getting Started Guide for ADSP-21xxx DSPs

	Contents
	3 Tutorial
	In This Chapter
	Overview
	Figure 3-1. VisualDSP++ Toolbar Buttons

	Exercise One: Building and Running a C Program
	Step 1: Start VisualDSP++ and Open a Project
	Figure 3-2. The dotprodc Project Files in the Project Window

	Step 2: Build the dotprodc Project
	Figure 3-3. Output Window and Editor Window

	Step 3: Run the Program
	Figure 3-4. New Session Dialog Box
	Figure 3-5. Disassembly, Editor, Output Windows: Load dotprodc.dxe
	Figure 3-6. Breakpoints Dialog Box

	Step 4: Run dotprodc
	Figure 3-7. Results of the dotprodc Program

	Step 5: Profile a_dot_c
	Figure 3-8. Tools Menu: Enable Profiling for a_dot_c
	Figure 3-9. Profile Ranges Dialog Box
	Figure 3-10. Profile Window: Results of the C Function Profile

	Exercise Two: Modifying a C Program to Call an Assembly Routine
	Step 1: Create a New Project
	Figure 3-11. Save New Project As Dialog Box
	Figure 3-12. Project Options Dialog Box: Project Tab Page
	Figure 3-13. Project Options Dialog Box: Compile Tab Page

	Step 2: Add Source Files to dot_product_asm
	Figure 3-14. Add Files Dialog Box: Adding Source Files to the Project

	Step 3: Modify the Project Source Files
	Figure 3-15. Find Dialog Box: Locating All Occurrences of /*
	Figure 3-16. Editor Window: Modifying dotprod_main.c to Call a_dot_c_asm

	Step 4: Modify dotprodasm.ldf
	Figure 3-17. Output Window: Linker Error
	Figure 3-18. Replace Dialog Window
	Figure 3-19. Files in the dot_product_asm Project

	Step 5: Rebuild and Run dot_product_asm
	Figure 3-20. Windows Left Open at the End of the Previous Debugger Session

	Step 6: Set Up the Profile dot_product_asm
	Figure 3-21. Tools Menu: Enable Profiling for a_dot_c_asm
	Figure 3-22. Profile Ranges Dialog Box

	Step 7: Run dot_product_asm
	Figure 3-23. Profile Window: Results of the Assembly Language Function a_dot_c_asm

	Step 8: Compare the Profile Results
	Table 3-1. Profile Results: a_dot_c vs. a_dot_c_asm

	Exercise Three: Plotting Data
	Step 1: Load the Convolution Program
	Figure 3-24. Loading the Convolution Program

	Step 2: Open a Plot Window
	Figure 3-25. Plot Configuration Dialog Box: Specifying Data Sets to Be Plotted
	Table 3-2. Three Data Sets: Table, Input, and Output
	Figure 3-26. Plot Configuration Dialog Box: Entering the Table, Input, and Output Data Sets
	Figure 3-27. Plot Window: Before Running the Convolution Program

	Step 3: Run the Convolution Program and View the Data
	Figure 3-28. Plot Window: After Running the Convolution Program to Completion
	Figure 3-29. Plot Window: Selecting a Region to Magnify
	Figure 3-30. Plot Window: Magnified Result
	Figure 3-31. Plot Window: Viewing Individual Data Points by Using the Data Cursor Feature

	Exercise Four: Statistical Profiling
	Step 1: Load the Convolution Program
	Step 2: Enable Statistical Profiling
	Figure 3-32. Enabling Statistical Profiling for the Convolution Program
	Figure 3-33. Statistical Profiling Results Window (Empty)

	Step 3: Collect and Examine the Statistical Profile Data
	Figure 3-34. Statistical Profiling Results of Analyzing the Performance of the Convolution Program
	Figure 3-35. Statistical Profile Data for Convolution.cpp

	Exercise Five: Multiprocessor Debugging
	Step 1: Create a Multiprocessor Simulator Session
	Figure 3-36. New Session Dialog Box: Setting up a Multiprocessor Simulator Session
	Figure 3-37. VisualDSP++ Windows: After Creating a Multiprocessor Session
	Figure 3-38. Multiprocessor Window: Status Tab Page
	Figure 3-39. Disassembly Window: Disassembled Instructions in Processor P0
	Figure 3-40. Multiprocessor Toolbar: Provides Access to Common Multiprocessor Commands

	Step 2: Changing Focus and Pinning Windows
	Figure 3-41. Disassembly Window: Patching a New Instruction into Processor P1’s Memory
	Figure 3-42. Two Open Disassembly Windows Focused on Processor P1
	Figure 3-43. Selecting Pin to Processor A small pin icon appears in the title bar of the Disassem...
	Figure 3-44. Pinning a Disassembly Window

	Step 3: Loading Programs in a Multiprocessor Session
	Figure 3-45. Load Multiprocessor Confirmation Dialog Box: Specifying Load dotprodc.dxe into Proce...
	Figure 3-46. Load Multiprocessor Confirmation Dialog Box: Specifying Load dot_product_asm.dxe int...
	Figure 3-47. Two Programs Loaded onto Two Separate Processors

	Step 4: Stepping in a Multiprocessor Session
	Step 5: Configuring and Using Multiprocessor Groups
	Creating a New Multiprocessor Simulator Session
	Figure 3-48. New Session Dialog Box: Setting up a Multiprocessor Simulator Session
	Figure 3-49. VisualDSP++ Windows in the New Multiprocessor Session

	Adding Processors to the Default Group and Issuing MP Reset
	Figure 3-50. Multiprocessor Window: Groups Tab Page
	Figure 3-51. Moving All Processors into the Default Group
	Figure 3-52. All Processors Moved into the Default Group

	Creating and Configuring New Multiprocessor Groups
	Figure 3-53. Multiprocessor Window, Groups Tab Page: Creating a New Group
	Figure 3-54. Multiprocessor Window, Groups Tab Page: Creating Two New Groups

	Activating New Multiprocessor Groups

	What’s Next

