
Contents

2 COMPILER
Figure 2-0.

Table 2-0.

Listing 2-0.
Overview
The C/C++ compiler (cc21k) compiles ANSI/ISO standard C and C++
code for ADSP-21xxx DSP systems. Analog Devices extensions to the C
and C++ standards in the compiler aid development of DSP applications.
The cc21k compiler runs from the VisualDSP++ environment or from an
operating system command line shell or interpreter.

The sections of this chapter present the following information on the
compiler:

• “Compiler Command-Line Interface” on page 2-3 explains the
operation of the compiler as it processes programs, including input
and output files and command-line switches.

• “C/C++ Compiler Language Extensions” on page 2-54 contains ref-
erence information on ADI extensions to the ANSI/ISO standards
for the C and C++ programming languages.

• “Preprocessing a Program” on page 2-102 contains information on
the preprocessor, which lets you modify source compilation in a
number of ways.

• “C/C++ Run-Time Model” on page 2-121 contains reference infor-
mation about how C and C++ programs, data, and function calls are
implemented on the ADSP-21xxx DSPs. This is important for
low-level program analysis and interfacing assembly code with
C/C++ programs.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-1

Overview
• “C/C++ and Assembly Interface” on page 2-147 describes how to
call an assembly language subroutine from within a C or C++ pro-
gram, and how to call a C/C++ function from within an assembly
language program.

• “C/C++ Compiler Glossary” on page 2-177 contains a glossary of
compiler-related terms.

The C/C++ compiler (cc21k) processes your C and C++ language source
files and produces ADSP-21xxx assembler source files. The assembler
source files are assembled by the ADSP-21xxx family assembler
(easm21k). The assembler creates Executable and Linkable Format (ELF)
object files that can either be linked (using the linker) to create an
ADSP-21xxx executable file or included in an archive library (elfar). The
way in which the compiler controls the assemble, link, and archive phases
of the process depends on the source input files and the compiler options
used.

Your source files contain the C/C++ program to be processed by the com-
piler. The cc21k compiler supports the ANSI/ISO standard definitions of
the C and C++ languages. For information on the C language standard,
see any of the many reference texts on the C language. Analog Devices rec-
ommends the Bjarne Stroustrup text “The C++ Programming Language”
from Addison Wesley Longman Publishing Co (ISBN: 0201889544)
(1997) as a reference text for the C++ programming language.

The cc21k compiler supports the proposed Embedded C++ standard,
which defines a subset of the full ISO/IEC 14882:1998 C++ language
standard. The proposal excludes features that can detract from compiler
performance in embedded systems, such as exception handling and
run-time type identification. In addition to the Embedded C++ standard
features, cc21k supports templates and all other features of the full C++
standard with the exception of exception handling and run-time type
identifications. The additional supported features provide extra function-
ality without degrading the compiler performance.
2-2 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
The cc21k compiler supports a set of C/C++ language extensions. These
extensions support hardware features of the ADSP-21xxx family DSPs.
For information on these extensions, see “C/C++ Compiler Language
Extensions” on page 2-54

You set the compiler options from the Project menu, Project Options
command, Compile tab of the VisualDSP++ IDDE. The selections on this
tab control how the compiler processes your source files, letting you select
features that include the language dialect, error reporting, and debugger
output. For more information on the VisualDSP++ IDDE, see the
VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs and online Help.

Compiler Command-Line Interface
This section describes the following:

• Method used to invoke the compiler from the command line,

• Types of files used by and generated from the compiler

• The option (switch) set used to tailor the compiler’s operation

In the default mode of operation, the compiler runs in C mode. This
means that the compiler processes source files written in ANSI/ISO stan-
dard C language, supplemented with Analog Devices, Inc. (ADI)
extensions. Several options allow you to change the compilation mode and
language dialect, thus enforcing certain standards and/or disabling the
ADI extensions. Table 2-2 on page 2-9 identifies the options that select
the language dialect.

While many options are generic between C and C++ dialects, some of
them are valid in C++ mode only. Table 2-3 on page 2-9 provides a sum-
mary of the generic C/C++ compiler options. Table 2-4 on page 2-16
provides a summary of the C++-specific compiler options.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-3

Compiler Command-Line Interface
For a brief description of each option, see

• “C/C++ Mode Selection Switch Descriptions” on page 2-18

• “C/C++ Compiler Common Switch Descriptions” on page 2-19

• “C++ Mode Compiler Switch Descriptions” on page 2-43.

For information on the corresponding compiler options specified from the
VisualDSP++ IDDE, see the VisualDSP++ 2.0 User’s Guide for
ADSP-21xxx DSPs and online Help.

Running the Compiler
Use the following syntax for the cc21k command line:

cc21k [-switch [-switch …] sourcefile [sourcefile …]]

where:

• -switch is the name of the switch to be processed. The compiler sup-
ports many switches. These switches select the operations and
modes for the compiler and other tools. Command-line switches are
case-sensitive, for example, -O is not the same as -o.

• sourcefile is the name the file to be preprocessed, compiled,
assembled, and/or linked.

A file name can include the drive, directory, file name, and file
extension. The compiler supports both Win32- and POSIX-style
paths, using either forward or back slashes as the directory delimiter.
It also supports Universal Control Network (UNC) path names
(starting with two slashes and a network name). If a file name
exceeds eight characters in length or contains spaces, enclose it in
straight quotes: "long file name.c".
2-4 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
The cc21k compiler uses the file extension to determine what the
file contains and what operations to perform upon it. Table 2-1 on
page 2-7 lists the allowed extensions. In the default mode of opera-
tion, the compiler processes the input file through the listed stages
to produce a .DXE file.

The following command line, for example:

cc21k -O -21062 -Wremarks -o program.dxe source.c

runs cc21k with:

The following example command line:

cc21k -c++ fdot.cpp -T 062.ldf

 runs cc21k with:

The normal function of cc21k is to invoke the compiler, assembler, and
linker as required to produce an executable object file. The precise opera-
tion is determined by the extensions of the input filenames and by various
switches.

-O Specifies optimization for the compiler

-21062 Identifies the target processor type in your DSP system

-Wremarks Selects extra diagnostic remarks in addition to warning and error
messages

-o program.dxe Selects a name for the compiled, linked output

source.c Specifies the C language source file to be compiled

-c++ Specifies that all of the source files are written in C++

fdot.cpp Specifies the C++ language source file for your program

-T 062.ldf Specifies the Linker Description File for your DSP system
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-5

Compiler Command-Line Interface
In normal operation the compiler uses the following files to perform the
specified action:

If multiple files are specified, each is first processed to produce an object
file; then all object files are presented to the linker.

This sequence can be stopped at various points by the use of appropriate
compiler switches, or by selecting options in the compiler dialogs within
the IDDE. These switches are: -E, -P, -M, -H, -S, -c, -save-temps.

Because the compiler runs the preprocessor, assembler, and linker as your
program is compiled, the compiler’s command line can receive input for
these programs and direct their operation. Many of the compiler’s
switches take a file name as an optional parameter. If you do not use the
optional output name switch, cc21k names the output for you. Table 2-1
on page 2-7 lists the type of files, names, and extensions cc21k appends to
output files.

File searches vary by command line switch and file type. These searches
are influenced by the program that is processing the file, any search direc-
tories that you select, and any path information that you include in the
file name. Table 2-1 on page 2-7 indicates the searches that the preproces-
sor, compiler, assembler, and linker support. The compiler supports
relative and absolute directory names to define file search paths. For infor-
mation on additional search directories, see the command line switch that
controls the specific type of search.

EXTENSION ACTION

.c, .cpp, .cxx C/C++ language source file is compiled, assembled, and linked

.asm, .s assembly language source file is assembled and linked

.doj object file (from previous assembly) is linked
2-6 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
When you provide an input or output file name as an optional parameter,
use the following guidelines:

• Use a file name (include the file extension) with either an unambig-
uous relative path or an absolute path. A file name with an absolute
path includes the drive, directory, file name, and file extension.
Enclose long file names within straight quotes: "long file name.c".
cc21k uses the file extension convention listed in Table 2-1 to deter-
mine the input file type.

• Verify that the compiler is using the correct file. If you do not pro-
vide the complete file path as part of the parameter or add additional
search directories, cc21k looks for input in the current project direc-
tory.

� Using the verbose output switches for the preprocessor, compiler,
assembler, and linker causes each of these tools to echo the name of
each file as it is processed.

Table 2-1. Input and Output Files

Input File
Extension

File Extension Description

.c C/C++ source file.

.cpp, .cxx C++ source file.

.h Header file (referenced by a #include directive).

.pch C++ pre-compiled header file.

.ii, .ti Template instantiation files — used internally by the compiler when instan-
tiating templates.

.ipa, .opa Interprocedural analysis files — used internally by the compiler when per-
forming interprocedural analysis.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-7

Compiler Command-Line Interface
C/C++ Compiler Switches
This section describes the command line switches you can use when com-
piling. It contains a set of tables that provide a brief description of each
switch. These tables are organized by type of switch. Following these
tables are sections that provide fuller descriptions of each switch.

C/C++ Compiler Switch Summaries

This section contains a set of tables that summarize generic and specific
switches (options), as follows:

• Table 2-2, “C or C++ Mode Selection Switches,” on page 2-9

• Table 2-3, “C/C++ Compiler Common Switches,” on page 2-9

• Table 2-4, “C++ Mode Compiler Switches,” on page 2-16.

.i Preprocessed C source, created when preprocess only (-E or -P compiler
switch) is specified.

.s, .asm Assembler source file.

.is Preprocessed assembly source (retained when -save_temps is specified).

.ldf Linker Description File.

.doj Object file to be linked.

.dlb Library of object files to be linked as needed.

.map DSP system memory map file output.

.sym DSP system symbol map file output.

Table 2-1. Input and Output Files (Cont’d)

Input File
Extension

File Extension Description
2-8 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
A brief description of each switch follows the tables, beginning on
page 2-18.

Table 2-2. C or C++ Mode Selection Switches

Switch Name Description

-analog
(page 2-18)

Supports ANSI/ISO standard C with Analog Devices
extensions. Default mode.

-c++
(page 2-18)

Supports ANSI/ISO standard C++ with Analog Devices
extensions.

-traditional
(page 2-19)

Supports pre-ANSI K&R C.

Table 2-3. C/C++ Compiler Common Switches

Switch Name Description

sourcefile
(page 2-19)

Specifies file to be compiled.

-@ filename
(page 2-19)

Reads command-line input from the file.

-21020
(page 2-20)

Generates code for ADSP-21020 DSPs.

-21060
(page 2-20)

Generates code for ADSP-21060 DSPs.

-21061
(page 2-20)

Generates code for ADSP-21061 DSPs.

-21062
(page 2-20)

Generates code for ADSP-21062 DSPs.

-21065L
(page 2-21)

Generates code for ADSP-21065L DSPs.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-9

Compiler Command-Line Interface
-21160
(page 2-21)

Generate code for ADSP-21160 DSPs.

-21161
(page 2-21)

Generate code for ADSP-21161 DSPs.

-A name[tokens]
(page 2-21)

Asserts the specified name as a predicate.

-aligned-stack
(page 2-22)

Aligns the program stack on a double-word boundary.

-alttok
(page 2-22)

Allows alternative keywords and sequences in sources.

-auto-inline factor
(page 2-23)

Controls how much the compiler automatically inlines
functions.

-build-lib
(page 2-23)

Directs the librarian to build a library file.

-C
(page 2-23)

Retains preprocessor comments in the output file; must
run with the -E or -P switch).

-c
(page 2-23)

Compiles and/or assembles only, but do not link.

-const-read-write
(page 2-24)

Specifies that data accessed via a pointer to const data
may be modified elsewhere.

-Dmacro[=def]
(page 2-24)

Defines macro.

-default-linkage
(page 2-24)

Sets the default linkage type (C, C++, asm).

-double-size [-32|-64]
(page 2-24)

Selects 32- or 64-bit IEEE format for double.

Table 2-3. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description
2-10 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
-dry
(page 2-25)

Displays, but does not perform, main driver actions
(verbose dry-run).

-dryrun
(page 2-25)

Displays, but does not perform, top-level driver actions
(terse dry-run).

-E
(page 2-26)

Preprocesses, but does not compile, the source file.

-EE
(page 2-26)

Preprocesses and compiles the source file.

-extra-keywords
(page 2-26)

Recognizes ADI extensions to ANSI/ISO standards for
C and C++. Default mode.

-flags-tool
(page 2-27)

Passes command-line switches through the compiler to
other build tools.

-full-version
(page 2-27)

Displays the version number of the driver and any pro-
cesses invoked by the driver.

-g
(page 2-27)

Generates DWARF-2 debug information.

-H
(page 2-28)

Outputs a list of included header files, but does not
compile.

-HH
(page 2-28)

Outputs a list of included header files and compiles.

-h[elp]
(page 2-28)

Outputs a list of command-line switches.

-ipa
(page 2-29)

Specifies that inter-procedural analysis should be per-
formed for optimization between translation units.

-Idirectory
(page 2-28)

Appends directory to the standard search path.

Table 2-3. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-11

Compiler Command-Line Interface
-include filename
(page 2-29)

Includes the header file for preprocessing.

-L directory
(page 2-29)

Appends directory to the standard library search
path.

-l library
(page 2-29)

Searches library for functions when linking.

-M
(page 2-30)

Generates make rules only, but does not compile.

-MM
(page 2-30)

Generates make rules and compiles.

-map filename
(page 2-30)

Directs the linker to generate a memory map of all sym-
bols.

-mem
(page 2-30)

Enables memory initialization.

-no-aligned-stack
(page 2-30)

Does not double-word align the program stack.

-no-alttok
(page 2-30)

Does not allow alternative keywords and sequences in
sources.

-no-builtin
(page 2-31)

Recognizes only built-in functions that begin with two
underscores(__).

-no-defs
(page 2-31)

Disables preprocessor definitions: macros, include direc-
tories, library directories, run-time headers, or keyword
extensions.

-no-extra-keywords
(page 2-31)

Does not accept ADI keyword extensions that might
affect ISO/ANSI standards for C and C++.

-no-inline
(page 2-31)

Ignores the inline keyword.

Table 2-3. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description
2-12 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
-no-mem
(page 2-31)

Disables memory initialization.

-no-restrict (page 2-32) Disables the restrict keyword.

-no-std-def
(page 2-32)

Disables preprocessor definitions and ADI keyword
extensions that do not have leading underscores(__).

-no-std-inc
(page 2-32)

Searches for preprocessor include header files only in the
current directory and in directories specified with the -I
switch.

-no-std-lib
(page 2-32)

Searches for only those library files specified with the -l
switch.

-O
(page 2-33)

Enables code optimizations.

-o filename
(page 2-33)

Specifies the output file.

-Os
(page 2-33)

Disables optimizations that increase code size.

-P
(page 2-33)

Omits line numbers in the preprocessor output.

-PP
(page 2-33)

Preprocesses and compiles the source file. Output does
not contain #inline directives.

-path-tool directory
(page 2-34)

Uses the specified directory as the location of the speci-
fied compilation tool (assembler, compiler, driver,
librarian, or linker).

-path-install directory
(page 2-34)

Uses the specified directory as the location of all compi-
lation tools.

-path-output directory
(page 2-34)

Specifies the location of non-temporary files.

Table 2-3. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-13

Compiler Command-Line Interface
-path-temp directory
(page 2-34)

Specifies the location of temporary files.

-pch
(page 2-34)

Generates and uses precompiled header files (*.pch)

-pchdir directory
(page 2-35)

Specifies the location of PCHRepository.

-pedantic
(page 2-35)

Issues compiler warnings for any constructs that are not
ISO/ANSI standard C/C++-compliant.

-pedantic-errors
(page 2-35)

Issues compiler errors for any constructs that are not
ISO/ANSI standard C/C++-compliant.

-pplist filename
(page 2-35)

Outputs a raw preprocessed listing to the specified file.

-proc identifier
(page 2-36)

Specifies that the compiler should produce code suitable
for the specified DSP.

-R directory
(page 2-36)

Appends directory to the standard search path for
source files.

-reserve register
(page 2-37)

Reserves register.

-restrict
(page 2-37)

Enables the restrict keyword.

-S
(page 2-37)

Stops compilation before running the assembler.

-s
(page 2-37)

Removes debug info from the output executable file.

-save-temps
(page 2-38)

Saves intermediate files.

Table 2-3. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description
2-14 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
-show
(page 2-38)

Displays the driver command-line information.

-signed-char
(page 2-38)

Makes the char data type signed.

-syntax-only
(page 2-38)

Checks the source code for compiler syntax errors, but
does not write any output.

-T filename
(page 2-38)

Specifies the Linker Description File.

-threads
(page 2-39)

Specifies that support for multi-threaded applications is
to be enabled.

-time
(page 2-39)

Displays the elapsed time as part of the output informa-
tion on each part of the compilation process.

-traditional
(page 2-19)

Applies traditional C compiler rules (consistent with
pre-ANSI K&R C compilers).

-Umacro
(page 2-39)

Undefines macro.

-unsigned-char
(page 2-39)

Makes the char data type unsigned.

-v
(page 2-39)

Displays both the version and command-line informa-
tion.

-verbose
(page 2-40)

Displays command-line information.

-version
(page 2-40)

Displays version information.

-warn-protos
(page 2-40)

Produces a warnings when a function is called without a
prototype.

Table 2-3. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-15

Compiler Command-Line Interface
-Werror number
(page 2-40)

Overrides the default severity of the specified error mes-
sage.

-Wdriver-limit number
(page 2-40)

Halts the driver after reaching the specified number of
errors.

-Werror-limit number
(page 2-41)

Stops compiling after reaching the specified number of
errors.

-Wremarks
(page 2-40)

Issues compiler remarks.

-Wterse
(page 2-40)

Issues only the briefest form of compiler warning, errors,
and remarks.

-w
(page 2-40)

Disables all warnings.

-write-files
(page 2-41)

Enables compiler I/O redirection.

-xref filename
(page 2-42)

Outputs cross-reference information to the specified file.

Table 2-4. C++ Mode Compiler Switches

Switch Name Description

-explicit
(page 2-43)

Supports the explicit specifier on constructor declarations. This is
the default mode.

-instant[all|used]
(page 2-43)

Instantiates all or used members of a class.

-namespace
(page 2-43)

Supports namespaces. This is the default mode.

Table 2-3. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description
2-16 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
-newforinit
(page 2-43)

Limits the scope of any symbol declared within a “for” statement.

-newvec
(page 2-44)

Allows the overloading of new[] and delete[].

-no-demangle
(page 2-44)

Prevents filtering of any linker errors through the demangler.

-no-explicit
(page 2-44)

Does not support the explicit specifier on constructor declara-
tions.

-no-namespace
(page 2-44)

Does not support namespaces.

-no-newvec
(page 2-44)

Does not allow the overloading of new[] and delete[].

-no-std
(page 2-44)

Disables the implicit use of the std namespace.

-no-wchar
(page 2-45)

Disables new wchar_t.

-std
(page 2-45)

Enables the implicit use of the std namespace.

-strict
(page 2-45)

Generates error messages for non-ANSI constructs.

-strictwarn
(page 2-45)

Generates warning messages for non-ANSI constructs.

-tpautooff
(page 2-46)

Disables automatic instantiation of templates.

-trdforinit
(page 2-46)

Limits the scope of any symbol declared within a “for” statement.

Table 2-4. C++ Mode Compiler Switches (Cont’d)

Switch Name Description
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-17

Compiler Command-Line Interface
C/C++ Mode Selection Switch Descriptions

-analog

The -analog (Analog C compilation) switch directs the compiler to sup-
port Analog Devices extensions to ANSI/ISO standard C. This is the
default mode. For more information about these extensions, see “C/C++
Compiler Language Extensions” on page 2-54.

-c++

The -c++ (C++ mode) switch directs the compiler to compile the source
file(s) written in ANSI/ISO standard C++ with Analog Devices language
extensions. When using this switch, source files with an extension of .c
will be compiled and linked in C++ mode.

-typename
(page 2-46)

Recognizes the typename keyword. This is the default mode.

-wchar
(page 2-46)

Enables new wchar_t.

Table 2-4. C++ Mode Compiler Switches (Cont’d)

Switch Name Description
2-18 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
-traditional

The -traditional (traditional compilation) switch directs the compiler to
apply the following rules (consistent with pre-ANSI K&R C compilers) to
compilation:

• All extern declarations (including implicit declarations of func-
tions) take effect globally

• The keywords inline, signed, const, and volatile are not
recognized

• Analog Devices C/C++ language extensions are disabled except for
the forms of the extra keywords that begin with a double
underscore (__).

• Pointer/integer comparisons are always allowed

C/C++ Compiler Common Switch Descriptions

sourcefile

The sourcefile parameter (or parameters) specifies the name of the file
(or files) to be preprocessed, compiled, assembled, and/or linked. A file
name can include the drive, directory, file name, and file extension. cc21k
uses the file extension to determine the operations to perform. Table 2-1
on page 2-7 lists the permitted extensions and matching compiler
operations.

-@ filename

The @ filename (command file) switch directs the compiler to read com-
mand-line input from filename.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-19

Compiler Command-Line Interface
-21020

The -21020 (compile for ADSP-21020) switch directs the compiler to
generate code suitable for the ADSP-21020. When compiling for
ADSP-21020, the C/C++ preprocessor defines the __2102x__,
__ADSP21000__, and __ADSP21020__ macros. The ADSP21000 and
ADSP21020 macros are also defined unless the -pedantic-errors switch is
used.

-21060

The -21060 (compile for ADSP-21060) switch directs the compiler to
generate code suitable for the ADSP-21060. When compiling for
ADSP-21060, the C/C++ preprocessor defines the __2106x__,
__ADSP21000__, and __ADSP21060__ macros. The ADSP21000 and
ADSP21060 macros are also defined unless the -pedantic-errors switch is
used.

-21061

The -21061 (compile for ADSP-21061) switch directs the compiler to
generate code suitable for the ADSP-21061. When compiling for the
ADSP-21061, the C/C++ preprocessor defines the __2106x__,
__ADSP21000__, and __ADSP21061__ macros. The ADSP21000 and
ADSP21061 macros are also defined unless the -pedantic-errors switch is
used.

-21062

The -21062 (compile for ADSP-21062) switch directs the compiler to
generate code suitable for the ADSP-21062. When compiling for the
ADSP-21062, the C/C++ preprocessor defines the __2106x__,
__ADSP21000__, and __ADSP21062__ macros. The ADSP21000 and
ADSP21062 macros are also defined unless the -pedantic-errors switch is
used.
2-20 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
-21065L

The -21065L (compile for ADSP-21065L) switch directs the compiler to
generate code suitable for the ADSP-21065L. When compiling for the
ADSP-21065L, the C/C++ preprocessor defines the __2106x__,
__ADSP21000__, and __ADSP21065L__ macros. The ADSP21000 and
ADSP21065L macros are also defined unless the -pedantic-errors switch is
used.

-21160

The -21160 (compile for ADSP-21160) switch directs the compiler to
generate code suitable for the ADSP-21160. When compiling for the
ADSP-21160, the C/C++ preprocessor defines __2116x__, __ADSP21000__,
and __ADSP21160__ macros. The ADSP21000 and ADSP21160 macros are
also defined unless the -pedantic-errors switch is used.

-21161

The -21161 (compile for ADSP-21161) switch directs the compiler to
generate code suitable for the ADSP-21161. When compiling for the
ADSP-21161, the C/C++ preprocessor defines the __2116x__,
__ADSP21000__, and __ADSP21161__ macros. The ADSP21000 and
ADSP21161 macros are also defined unless the -pedantic-errors switch is
used.

-A name[tokens]

The -A (assert) switch directs the compiler to assert name as a predicate
with the specified tokens. This has the same effect as the #assert prepro-
cessor directive.The following assertions are predefined:

system() machine() cpu() compiler()

embedded adsp21xxx
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-21

Compiler Command-Line Interface
-aligned-stack

The -aligned-stack (align stack) switch directs the compiler to align the
program stack on a double-word boundary.

-alttok

The -alttok (alternative tokens) switch directs the compiler to allow
alternative operator keywords and digraph sequences in source files. This
is the default mode.

ANSI C trigraphs sequences are always expanded (even with the
-no-alttok option), and only digraph sequences are expanded in C source
files.

The following operator keywords are enabled by default:

Keyword Equivalent

and &&

and_eq &=

bitand &

bitor |

compl ~

or ||

or_eq |=

not !

not_eq !=

xor ^

xor_eq ^=
2-22 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
-auto-inline factor

The -auto-inline (auto inline) switch directs the optimizer to automati-
cally inline functions where the reduction in execution time justifies the
increase in code size. The amount of inlining that is effected is specified
by factor, which is a floating point number that determines how aggres-
sively functions are inlined. The amount of inlining effected is shown by
the following examples:

-build-lib

The -build-lib (build library) switch directs the compiler to use the
librarian to produce a library file (.dlb) as the output instead of using the
linker to produce an executable file (.dxe). The -o option must be used to
specify the name of the resulting library.

-C

The -C (comments) switch, which may only be run in combination with
the -E or -P switches, directs the C/C++ preprocessor to retain comments
in its output file.

-c

The -c (compile only) switch directs the compiler to compile and/or
assemble the source files, but stop before linking. The output is an object
file (.doj) for each source file.

0.0 Reject all inlining.

1.0 Inline if code size increase does not exceed speed improvement.

10.0 Inline allowing a reasonable amount of code size increase.

1000.0 Inline practically everything
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-23

Compiler Command-Line Interface
-const-read-write

The cc21k compiler’s default behavior assumes that data referenced
through const pointers will never change. The -const-read-write switch
changes the cc21k’s behavior to match the ANSI C assumption, which is
that other non-const pointers may be used to change the data at some
point.

-Dmacro[=definition]

The -D (define macro) switch directs the compiler to define a macro. If
you do not include the optional definition string, the compiler defines the
macro as the string ‘1’. Note that the compiler processes all -D switches on
the command line before any -U (undefine macro) switches.

-default-linkage[-asm | -c | -c++]

The -default-linkage-asm (assembler linkage), -default-linkage-c (C
linkage), and -default-linkage-c++ (C++ linkage) directs the compiler to
set the default linkage type. C linkage is the default type in C mode, and
C++ linkage is the default type in C++ mode.

� This switch can be invoked with the Definitions: dialog field
located in the IDDE’s Compile dialog, Preprocessor selection.

-double-size[-32|-64]

The -double-size-32 (double is 32 bits) and the -double-size-64 (dou-
ble is 64 bits) switches select the storage format that the compiler uses for
type double. The default mode is -double-size-32.

The C/C++ type double poses a special problem for the compiler. The C
and C++ languages default to double for floating-point constants and
many floating-point calculations. If double has the customary size of 64
bits, many programs will inadvertently use slow speed emulated 64-bit
floating-point arithmetic, even when variables are declared consistently as
float.
2-24 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
To avoid this problem, cc21k provides a mode in which double is the
same size as float. This mode is enabled with the -double-size-32 switch
and is the default mode.

Representing double using 32 bits gives good performance and provides
enough precision for most DSP applications. This, however, does not fully
conform to the C and C++ standards. The standard requires that double
maintains 10 digits of precision, which requires 64 bits of storage. The
-double-size-64 switch sets the size of double to 64 bits for full standard
conformance.

With -double-size-32, a double is stored in 32-bit IEEE single-precision
format and is operated on using fast hardware floating-point instructions.
Standard math functions such as sin also operate on 32-bit values. This
mode is the default and is recommended for most programs. Calculations
that need higher precision can be done with the long double type, which
is always 64 bits.

With -double-size-64, a double is stored in 64-bit IEEE single precision
format and is operated on using slow floating-point emulation software.
Standard math functions such as sin also operate on 64-bit values and are
similarly slow. This mode is recommended only for porting code that
requires that double have more than 32 bits of precision.

The -double-size-32 switch defines the __DOUBLES_ARE_FLOATS__
macro, while the -double-size-64 switch undefines the
__DOUBLES_ARE_FLOATS__ macro.

-dry

The -dry (verbose dry-run) switch directs the compiler to display main
driver actions, but not to perform them.

-dryrun

The -dryrun (terse dry-run) switch directs the compiler to display
top-level driver actions, but not to perform them.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-25

Compiler Command-Line Interface
-E

The -E (stop after preprocessing) switch directs the compiler to stop after
the C/C++ preprocessor runs (without compiling). The output, prepro-
cessed source code, prints to the standard output stream unless the output
file is specified with -o. Note that the -C switch can only be run in combi-
nation with the -E switch.

� This switch can be invoked with the Stop after: Preprocessor
check box located in the IDDE’s Compile dialog box,
General selection.

-EE

The -EE (run after preprocessing) switch is similar to the -E switch, but it
does not halt compilation after preprocessing.

-extra-keywords

The -extra-keywords (enable short-form keywords) switch directs the
compiler to recognize the Analog Devices keyword extensions to
ANSI/ISO standard C and C++, such as pm and dm, without leading under-
scores, which can affect conforming ANSI/ISO C and C++ programs.
This is the default mode.
2-26 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
-flags[-asm | -compiler | -gco | -lib | -link | -mem | -prelink]--switch
[, argument [, …]]

The -flags (command-line input) switch directs the compiler to pass
command-line switches to the other build tools.

-full-version

The -version (display version) switch directs the compiler to display ver-
sion information for all the compilation tools as they process each file.

-g

The -g (generate debug information) switch directs the compiler to out-
put symbols and other information used by the debugger. When -g is used
without -O, then the -no-inline option is also implied. If the -g switch is
used in conjunction with the enable optimization (-O) switch, the com-
piler performs standard optimizations. It also outputs symbols and other
information to provide limited source level debugging through the
VisualDSP++ debugger. The debugging capability enabled by this combi-
nation of options is line debugging and global variable debugging.

Table 2-5. Build Tools -flags Options

Option Tool

-flags-asm Assembler

-flags-compiler Compiler

-flags-lib Library builder

-flags-prelink Prelinker

-flags-link Linker

-flags-mem Memory initializer
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-27

Compiler Command-Line Interface
� When -g and -O are specified, no debug information is available for
local variables and the standard optimizations can sometimes
re-arrange program code in a way that inaccurate line number infor-
mation may be produced. For full debugging capabilities, use the -g
switch without the -O switch.

This switch can be invoked with the Generate debug information check
box located in the IDDE’s Compile dialog, General selection.

-H

The -H (list headers) switch directs the compiler to output only a list of
the files included by the preprocessor via the #include directive, without
compiling.

-HH

The -HH (list headers and compile) switch directs the compiler to output to
the standard output stream a list of the files included by the preprocessor
via the #include directive. After preprocessing, compilation proceeds
normally.

-h[elp]

The -help (command-line help) switch directs the compiler to output a
list of command-line switches with a brief syntax description.

-I directory[{;|,}directory…]

The -I (include search directory) switch directs the C/C++ preprocessor
to append the directory to the search path for include files. This option
may be specified more than once; all specified directories are added to the
search path.
2-28 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
-include filename

The -include (include file) switch directs the preprocessor to process the
specified file before processing the regular input file. Any -D and -U
options on the command line are processed before an -include switch.

-ipa

The -ipa (interprocedural analysis) switch turns on Interprocedural
Analysis (IPA) in the compiler. This option enables optimization across
the entire program, including between source files that were compiled sep-
arately. The -ipa option should be applied to all C anc C++ files in the
program. For more information, see “Interprocedural Analysis” on page
2-51. Specifying -ipa also implies -O.

-L directory[{;|,}directory…]

The -L (library search directory) switch directs the linker to append the
directory to the search path for library files.

-l library

The -l (link library) switch directs the linker to search the library for
functions and global variables when linking. The library name is the por-
tion of the file name between the lib prefix and .dlb extension.

For example, the -lc compiler switch directs the linker to search in the
library named c. This library resides in a file named libc.dlb.

Normally, you should list all object files on the command line before
using the -l switch; this ensures that functions referred by object files are
loaded from the library in the given order. This option may be specified
more than once; libraries are searched as encountered during the
left-to-right processing of the command line.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-29

Compiler Command-Line Interface
-M

The -M (generate make rules only) switch directs the compiler not to com-
pile the source file, but to output a rule suitable for the make utility,
describing the dependencies of the main program file. The format of the
make rule output by the preprocessor is:

object-file: include-file …

-MM

The -MM (generate make rules and compile) switch directs the preprocessor
to print to standard out a rule describing the dependencies of the main
program file. After preprocessing, compilation proceeds normally.

-map filename

The -map (generate a memory map) switch directs the linker to output a
memory map of all symbols. The map file name corresponds to the file-
name argument. For example, if the argument is test, the map file name is
test.map. The .map extension is added where necessary.

-mem

The -mem (enable memory initialization) switch directs the compiler to
run the mem21k initializer.

-no-aligned-stack

The no-aligned-stack (disable stack alignment) switch directs the com-
piler to not align the program stack on a double-word boundary.

-no-alttok

The -no-alttok (disable alternative tokens) switch directs the compiler
not to accept alternative operator keywords and digraph sequences in the
source files. For more information, see “-alttok” on page 2-22.
2-30 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
-no-builtin

The -no-builtin (no built-in functions) switch directs the compiler to
ignore built-in functions that begin with two underscores (__). Note that
this switch influences many functions. For more information on built-in
functions, see “Linking Library Functions” on page 3-4.

-no-defs

The -no-defs (disable defaults) switch directs the preprocessor not to
define any default preprocessor macros, include directories, library direc-
tories, libraries, and run-time headers. It also disables the Analog Devices
cc21k C/C++ keyword extensions.

-no-extra-keywords

The -no-extra-keywords (disable short-form keywords) switch directs the
compiler not to recognize the Analog Devices keyword extensions that
might affect conformance to ISO/ANSI standards for C and C++ lan-
guages. These include keywords such as pm and dm, which may be used as
identifiers in standard conforming programs. Alternate keywords, which
are prefixed with two leading underscores such as __pm and __dm, continue
to work.

-no-inline

The -no-inline (disable inline keyword) switch directs the compiler not
to perform any high-level optimizations associated with function inlining.

-no-mem

The -no-mem (disable memory initialization) switch directs the compiler
not to run the mem21k initializer. Note that if you use -no-mem, the com-
piler does not initialize globals and statics.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-31

Compiler Command-Line Interface
-no-restrict

The -no-restrict (disable restrict) switch directs the compiler to disable
recognition of the restrict keyword as a type qualifier for pointers and
array parameters to functions.

-no-std-def

The -no-std-def (disable standard macro definitions) switch prevents the
compiler from defining default preprocessor macro definitions. Note that
this switch also disables the Analog Devices keyword extensions that have
no leading underscores, such as pm and dm.

-no-std-inc

The -no-std-inc (disable standard include search) switch directs the
C/C++ preprocessor to search for header files in the current directory and
directories specified with the -I switch.

� This switch can be invoked with the Ignore standard include
paths check box located in the IDDE’s Compile dialog box, Prepro-
cessor selection.

-no-std-lib

The -no-std-lib (disable standard library search) switch directs the linker
to search for libraries in only the current project directory and directories
specified with the -L switch.

-nothreads

The -nothreads (disable thread-safe build) switch specifies that all com-
piled code and libraries used in the build need not be thread-safe. This is
the default setting.
2-32 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
-O

The -O (enable optimizations) switch directs the compiler to produce code
that is optimized for performance. Optimizations are not enabled by
default for the cc21k compiler.

� This switch can be invoked with the Enable optimization check
box located in the IDDE’s Compile dialog, General selection.

-Os

The -Os (optimize for size) switch directs the compiler to produce code
that is optimized for size. This is achieved by performing all optimizations
except those that increase code size. When this option is used, the com-
piler disables loop unrolling, delay slot filling, and jump avoidance.

-o filename

The -o (output file) switch directs the compiler to use filename for the
name of the final output file.

-P

The -P (omit line numbers) switch directs the compiler to stop after the
C/C++ preprocessor runs (without compiling) and to omit the #line pre-
processor command with line number information from the preprocessor
output. The -C switch can be used in conjunction with -P to retain
comments.

-PP

The -PP (omit line numbers and compile) switch is similar to the -P
switch; however, it does not halt compilation after preprocessing.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-33

Compiler Command-Line Interface
-path [-asm | -compiler | -lib | -link | - mem | -prelink] directory

The -path (tool location) switch directs the compiler to use the specified
directory as the location of the specified compilation tool. Respectively,
the tools are the assembler, compiler, librarian, linker, memory initializer,
and prelinker. Use this switch when one or more of the tools is in a direc-
tory other than the directory that you name with the -path-install
switch.

-path-install directory

The -path-install (installation location) switch directs the compiler to
use the specified directory as the location for all compilation tools instead
of the default path. This is useful when working with multiple versions of
the tool set.

� You can selectively override this switch with the -path-tool switch.

-path-output directory

The -path-output (non-temporary files location) switch directs the com-
piler to place final output files in the specified directory.

-path-temp directory

The -path-temp (temporary files location) switch directs the compiler to
place temporary files in the specified directory.

-pch

The -pch (precompiled header) switch directs the compiler to automati-
cally generate and use precompiled header files. A precompiled output
header has a .pch extension attached to the source file name. By default,
all precompiled headers are stored in a directory called PCHRepository.

� Precompiled header files can significantly speed compilation; pre-
compiled headers tend to occupy more disk space.
2-34 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
-pchdir directory

The -pchdir (locate PCHRepository) switch specifies the location of an
alternative PCHRepository for storing and invocation of precompiled
header files. If the directory does not exist, the compiler creates it. Note
that -o (output) does not influence the -pchdir option.

-pedantic

The -pedantic (ANSI standard warnings) switch causes the compiler to
issue a warning for each construct found in your program that does not
strictly conform to ANSI/ISO standard C or C++. Note that the compiler
may not detect all such constructs. In particular, the -pedantic switch
does not cause the compiler to issue errors when Analog Devices keyword
extensions are used.

-pedantic-errors

The -pedantic-errors (ANSI standard errors) switch causes the compiler
to issue errors instead of warnings for cases described in the -pedantic
switch.

-pplist filename

The -pplist (preprocessor listing) directs the preprocessor to output a
listing to the named file. When more than one source file has been prepro-
cessed, the listing file contains information about the last file processed.
The generated file contains raw source lines, information on transitions
into and out of include files, and diagnostics generated by the compiler.
Each listing line begins with a key character that identifies its type, as
follows:

Character Meaning

N Normal line of source

X Expanded line of source
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-35

Compiler Command-Line Interface
-proc identifier

The -proc (target processor) switch specifies that the compiler should pro-
duce code suitable for the identified DSP. If the processor identifier is
unknown to the compiler it will attempt to read required switches for
code generation from file <identifier>.ini. It will search for this file in the
VisualDSP System folder.

-R directory[{:|,}directory …]

The -R (add source directory) switch directs the compiler to add the spec-
ified directory to the list of directories searched for source files.

Multiple source directories are given as a colon-, comma-, or semico-
lon-separated (on Windows platforms) list. The compiler searches for the
source files in the order specified on the command line. The compiler
searches the specified directories before reverting to the current project
directory. This option is position-dependent on the command line. That
is, it affects only source files that follow the option.

� Source files whose file names begin with /, ./, or ../ (or Windows
equivalent) and contain drive specifiers (on Windows platforms) are
not affected by this option

S Line of source skipped by #if or #ifdef

L Change in source position

R Diagnostic message (remark)

W Diagnostic message (warning)

E Diagnostic message (error)

C Diagnostic message (catastrophic error)

Character Meaning
2-36 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
-reserve register[, register …]

The -reserve (reserve register) switch directs the compiler not to use the
specified registers. This guarantees that a known set of registers are avail-
able for inline assembly code or linked assembly modules. Separate each
register name with a comma on the compiler command line. You can
reserve the following registers: b0, l0, m0, i0, b1, l1, m1, i1, b8, l8, m8, i8,
b9, l9, m9, i9, ustat1, and ustat2. When reserving an L (length) register,
you must reserve the corresponding I (index) register; reserving an L regis-
ter without reserving the corresponding I register may result in execution
problems.

-restrict

The -restrict (restrict) switch directs the compiler to recognize the
restrict keyword as a type qualifier for pointers and function parameter
arrays that decay to pointers. This is the default setting.

-S

The -S (stop after compilation) switch directs cc21k to stop compilation
before running the assembler. The compiler outputs an assembly file
with a .s extension.

� This switch can be invoked with the Stop after: Compiler check
box located in the IDDE’s Compile dialog box, General selection

-s

The -s (strip debug information) switch directs the compiler to remove
debug information (symbol table and other items) from the output execut-
able file during linking.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-37

Compiler Command-Line Interface
-save-temps

The -save-temps(save intermediate files) switch directs the compiler not
to discard intermediate files. The compiler places the intermediate output
(*.i, *.is, *.s, *.doj) files in the temp subdirectory of the current
project directory. See Table 2-1 on page 2-7 for a list of intermediate files.

-show

The -show (display command line) switch directs the compiler to display
the command-line arguments passed to the driver, including expanded
option files and environment variables. This option allows you to ensure
that command-line options have been successfully invoked by the driver.

-signed-char

The -signed-char (make char signed) switch directs the compiler to make
the default type for char signed. The compiler also defines the
__SIGNED_CHARS__ preprocessor macro. This is the default mode.

-syntax-only

The -syntax-only (check syntax only) switch directs the compiler to
check the source code for syntax errors but not to write any output.

-T filename

The -T (Linker Description File) switch directs the linker to use the speci-
fied Linker Description File (.LDF) as control input for linking. If -T is not
specified, a default LDF is selected based on the processor variant.
2-38 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
-threads

The -threads (enable thread-safe build) specifies that the build and link
should be thread-safe. The macro _ADI_THREADS is defined to one (1). It is
used for conditional compilation by the preprocessor and by the default
LDF files to link with thread-safe libraries.

� This switch is only likely to be used by applications involving VDK.

-time

The -time (tell time) switch directs the compiler to display the elapsed
time as part of the output information about each phase of the compila-
tion process.

-Umacro

The -U (undefine macro) switch lets you undefine macros. Note that the
compiler processes all -D (define macro) switches on the command line
before any -U (undefine macro) switches.

� This switch can be invoked with the Undefines dialog field located
in the IDDE’s Compile dialog box, Preprocessor selection.

-unsigned-char

The -unsigned-char (make char unsigned) switch directs the compiler to
make the default type for char unsigned. The compiler also undefines the
__SIGNED_CHARS__ macro.

-v

The -v (version and verbose) switch directs the compiler to display both
the version and command-line information for all the compilation tools as
they process each file.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-39

Compiler Command-Line Interface
-verbose

The -verbose (display command line) switch directs the compiler to dis-
play command-line information for all the compilation tools as they
process each file.

-version

The -version (display version) switch directs the compiler to display ver-
sion information for all the compilation tools as they process each file.

-warn-protos

The -warn-protos (warn if incomplete prototype) switch directs the com-
piler to issue a warning when it calls a function for which an incomplete
function prototype has been supplied. This option has no effect in C++
mode.

-W[error|remark|suppress|warn] number[,number ...]

The -W (override error message) witch directs the compiler to override the
severity of the specified diagnostic messages (errors, remarks, or warnings).
The number argument specifies the message to override.

The number of a specific compiler diagnostic message is given at compila-
tion time. The -D (discretionary) suffix attached to the message number
marks the message whose severity can be overridden. The message repre-
sentation numbers are constant between the compiler software releases.

-Wdriver-limit number

The -Wdriver-limit (maximum process errors) switch sets a maximum
number of driver errors (command-line, etc.) at which the driver aborts.
2-40 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
-Werror-limit number

The -Werror-limit (maximum compiler errors) switch sets a maximum
number of errors for the compiler.

-Wremarks

The -Wremarks (enable diagnostic warnings) switch directs the compiler to
issue remarks, which are diagnostic messages milder than warnings.

� This switch can be invoked with the Enable remarks check box
located in the IDDE’s Compile dialog, Warning selection.

-Wterse

The -Wterse (enable terse warnings) switch directs the compiler to issue
the briefest form of warnings. This also applies to errors and remarks.

-w

The -w (disable all warnings) switch directs the compiler not to issue
warnings.

� This switch can be invoked with the Disable all warnings and
remarks check box located in the IDDE’s Compile dialog box, Warn-
ing selection.

-write-files

The -write-files (enable driver I/O redirection) switch directs the com-
piler driver to redirect the file name portions of its command line through
a temporary file. This technique helps to handle long file names, which
can make the compiler driver’s command line too long for some operating
systems.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-41

Compiler Command-Line Interface
-xref filename

The -xref (cross-reference list) switch directs the compiler to write
cross-reference listing information to the specified file. When more than
one source file has been compiled, the listing contains information about
the last file processed.

For each reference to a symbol in the source program, a line of the form:

symbol-id name ref-code filename line-number column-number

is written to the named file.

symbol-id represents a unique decimal number for the symbol, and
ref-code is a character from one the following:

Character Meaning

D Definition

d Declaration

M Modification

A Address taken

U Used

C Changed (used and modified)

R Any other type of reference

E Error (unknown type of reference)
2-42 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
C++ Mode Compiler Switch Descriptions

The following switches apply only to C++.

-explicit

The -explicit (explicit specifier) switch directs the compiler to enable
support for the explicit specifier on constructor declarations. The com-
piler defines the __EXPLICIT preprocessor macro. This option is enabled
by default.

-instant[all | used]

The default behavior that the compiler uses to perform template instantia-
tion is to suppress the instantiation of any templates on the first
compilation and let the prelinker decide which files need to be recompiled
to instantiate the required templates. However, the-instantused switch
automatically instantiates any template entities that are used in the first
compilation and the -instantall switch automatically instantiates all
template entities whether they are used or not. Both of these options can
still be used in combination with the prelinker.

-namespace

The -namespace (namespace) switch directs the compiler to enables sup-
port for namespaces.

-newforinit

The -newforinit (new ‘for’ initialization) switch directs the compiler to
limit a scope of any declaration within a ‘for’ statement to the block con-
tained within that ‘for’ statement.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-43

Compiler Command-Line Interface
-newvec

The -newvec (new vector) switch directs the compiler to allow the over-
loading of the new[] and delete[] operators. The compiler also defines
the __ARRAY_OPERATORS macro when this option, or another option that
enables overloading of the dynamic memory allocation operators, is used.
This is the default mode.

-no-demangle

The -no-demangle (disable demangler) switch directs the compiler to pre-
vent the driver from filtering any linker errors through the demangler.
The demangler’s primary role is to convert the encoded name of a func-
tion into a more understandable version of the name.

-no-explicit

The -no-explicit (disable explicit specifier) switch directs the compiler
to disable support for the explicit specifier on constructor declarations.
For more information, see “-explicit” on page 2-43.

-no-namespace

The -no-namespace (disable namespace) switch directs the compiler to
disable support for namespaces.

-no-newvec

The -no-newvec (disallow a new vector) switch directs the compiler to dis-
allow the overloading of the new[] and delete[] operators. For more
information, see “-newvec” on page 2-44.

-no-std

The -no-std (disable std namespace) switch directs the compiler to disable
the implicit use of the std namespace when the standard header files are
included. For more information, see “-std” on page 2-45.
2-44 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
-notstrict

The -notstrict (non-strict compilation) switch directs the compiler to
omit diagnostic messages (warnings and errors) for any constructs in a
C++ source file that do not conform to the ANSI standard for the C++
programming language.

-no-wchar

The -no-wchar (disable wide char type) switch directs the compiler to dis-
able the new wchar_t construct.

-std

The -std (std namespace) switch directs the compiler to enable the
implicit use of the std namespace when a standard header file is included.
It also allows the inclusion of a standard header with an .h extension. The
-std switch automatically enables the -namespace option. Note that -std
is disabled by default.

-strict

The -strict (strict standard) switch directs the compiler to generate diag-
nostic error messages for any constructs of a source file that do not
conform to the ANSI standard for the C++ programming language. Both
-strict and -ansi define the __STRICT_ANSI__ macro.

-strictwarn

The -strictwarn (warn if non-strict) switch directs the compiler to gener-
ate diagnostic warning messages for any constructs of a source file that do
not conform to the ANSI standard for the C++ programming language.
Both -strictwarn and -ansi define the __STRICT_ANSI__ macro.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-45

Compiler Command-Line Interface
-tpautooff

The -tpautooff (disable automatic template instantiation) switch directs
the compiler to disable automatic instantiation of templates and prevents
implicit inclusion of source files as a method of finding definitions of tem-
plate entities to be instantiated.

-trdforinit

The -trdforinit (traditional initialization) switch directs the compiler to
limit a scope of any declaration within a ‘for’ statement to the block con-
taining that ‘for’ statement.

-typename

The -typename (type name) switch directs the compiler to recognize the
typename keyword and to define the __TYPENAME macro. This is the
default mode.

-wchar

The -wchar (enable wide char type) switch directs the compiler to enable
the new wchar_t construct.
2-46 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
Data Type Sizes
The sizes of intrinsic C/C++ data types are selected by Analog Devices so
that normal C/C++ programs execute with hardware-native data types and
therefore at high speed. Table 2-6 shows the size used for each of the
intrinsic C/C++ data types.

Table 2-6. Data Type Sizes for the ADSP-21xxx DSPs

Type Bit Size

int 32 bits signed

unsigned int 32 bits unsigned

long 32 bits signed

unsigned long 32 bits unsigned

char 32 bits signed

unsigned char 32 bits unsigned

short 32 bits signed

unsigned short 32 bits unsigned

pointer 32 bits

float 32 bits float

double either 32 or 64 bits float (default 32)

long double 64 bits float

fract 32 bits fixed-point
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-47

Compiler Command-Line Interface
Analog Devices does not support data sizes smaller than a single word
location for a processor. For the ADSP-21xxx processors, this means that
both short and char have the same size as int. Although 32-bit chars are
unusual, they do conform to the standard. For information about the fract
data type, refer to “C++ Fractional Type Support” on page 2-84.

Integer

On any platform the basic type int will be the native word size; on
ADSP-21xxx DSPs, it is 32 bits. Many library functions are available for
32-bit integers, and these functions provide support for the C/C++ data
types int and long int. Pointers are the same size as ints. The long long
int data type is not supported.

Floating Point

On ADSP-21xxx DSPs, the long data type is 32 bits, as is float; double is
option-selectable for 32- or 64-bits. The C/C++ language tends to default to
double for constants and for many floating-point calculations. In general,
double word data types run more slowly than 32-bit data types because
they rely largely on software-emulated arithmetic.

Type double poses a special problem. Without some special handling,
many programs would inadvertently end up using slow-speed, emulated,
64-bit floating point arithmetic, even when variables are declared consis-
tently as float. In order to avoid this problem, Analog provides an option
(switch) control: the size of double may be set to either 32- (default) or
64-bits. The 32-bit setting gives good performance and should be accept-
able for most DSP programming. However, it does not conform fully to
the ANSI C standard. For a larger floating-point type, long double pro-
vides 64-bit floating point.
2-48 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
For either size of double, the standard #include files automatically rede-
fine the math library interfaces so that functions such as sin can be
directly called with the proper size operands. Access to 64-bit floating
point arithmetic and libraries is always provided via long double.
Therefore:

float sinf (float); /* 32-bit */
double sin (double); /* 32 or 64-bit */

For full descriptions of these functions and their implementation, see
“C/C++ Run-Time Library” on page 3-1.

Optimization Control
The cc21k compiler can operate at several different levels of optimization.
The following list identifies these levels with least optimization listed first
and most optimization listed last:

• Debugging. The compiler produces debug information to ensure
that the object code can be matched to the appropriate source code
line. See “-g” on page 2-27 for more information.

• Default. The compiler does basic high-level optimization, such as
inlining functions that are explicitly marked for inlining.

• Procedural optimization. The compiler does advanced, aggressive
optimization on each procedure in the file being compiled. If
debugging is also requested, the optimization is given priority so
that debugging functionality may be limited. See “-O” on page 2-33
for more information.

• Interprocedural optimization. The compiler does advanced, aggres-
sive optimization over the whole program in addition to the per-file
optimizations in procedural optimization. See “-ipa” on page 2-29
for more information.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-49

Compiler Command-Line Interface
Interprocedural analysis (see “Interprocedural Analysis” on page 2-51)
allows the compiler to see all of the source files that are used and to use
that information to enable the other optimizations to be exploited as fully
as possible.

When no optimization switches are specified, cc21k effects only basic high
level optimizations, such as inlining functions, which have been explicitly
marked for inlining. When -g is specified, however, all inlining is sup-
pressed to provide as comprehensive debugging information as possible.
When -inline is specified with -g, then explicitly specified inlining is
provided, which reduces the amount of source line debug information that
is available. Therefore, the use of -g by itself effectively disables almost all
optimizations.

Normally, a program is optimized to process the data as quickly as possi-
ble, but in some circumstances, the speed of the program may be less
important than reducing the size of the generated code. When the -Os
switch is specified, the compiler will only perform standard optimizations
that do not significantly increase the size of the generated code. (See “-Os”
on page 2-33 for more information.)

The -O switch requests the compiler to effect all normally safe optimiza-
tions. It also requests the compiler to generate the fastest possible
executing code while conforming to standard language interpretations and
a conservative view of any possible interactions between variables. The use
of interprocedural analysis can be very useful in enabling the compiler to
be more aggressive in optimizing the program since it has much greater
knowledge of the overall structure of the program and the data being
manipulated by the program.

For the ADSP-2116x DSPs, the optimizer always attempts to vectorize
loops when it is safe to do so and uses information from the Interproce-
dural Analyzer to identify more opportunities to do so. In addition, there
may be other loops that you know are safe candidates for the vectorizer;
you can use pragmas to inform the optimizer of such loops (see “SIMD
Support Annotation (#pragma SIMD_for)” on page 2-88).
2-50 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
Inlining Control

By default, cc21k inlines class members and those functions that are
explicitly marked to be inlined. When the -no-inline switch is specified,
then any explicit request for inlining is ignored.

When the -O switch has been specified or implied, then the optimizer also
inlines some additional functions in cases where the reduction in execu-
tion time justifies the increase in code size.

Interprocedural Analysis

The cc21k compiler has a capability called interprocedural analysis (IPA),
an optimization that allows the compiler to optimize across translation
units instead of within just one translation unit. This capability effectively
allows the compiler to see all of the source files that are used in a final link
at compilation time and make use of that information when optimizing.

Interprocedural analysis is enabled by selecting the Interprocedural
analysis option in the Project Options dialog box, on the Compiler tab
in VisualDSP++, or by specifying the -ipa command-line switch.

The -ipa switch automatically enables the -O switch to turn on optimiza-
tion. However, all object files that are supplied in the final link must have
been compiled with the -ipa switch; otherwise, undefined behavior may
result.

Use of the -ipa switch causes additional files to be generated along with
the object file produced by the compiler. These files have .ipa and .opa
filename extensions and should not be deleted manually unless the associ-
ated object file is also deleted. All of the -ipa optimizations are invoked
after the initial link, whereupon a special program called the prelinker
reinvokes the compiler to perform the new optimizations.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-51

Compiler Command-Line Interface
Because a file may be recompiled by the prelinker, you cannot use the -S
option to see the final optimized assembler file when -ipa is enabled.
Instead, you must use the -save-temps switch, so that the full com-
pile/link cycle can be performed first.

Interaction with Libraries

When IPA is enabled, the compiler examines all of the source files to build
up usage information about all of the function and data items. It then uses
that information to make additional optimizations across all of the source
files. One of these optimizations is to remove functions that are never
called. This optimization can significantly reduce the overall size of the
final executable.

Because IPA operates only during the final link, the -ipa switch has no
benefit when initially compiling source files to object format for inclusion
in a library. Although IPA generates usage information for potential addi-
tional optimizations at the final link stage, as normal, neither the usage
information nor the module's source file are available when the linker
includes a module from a library. Each library module has been compiled
to the normal -O optimization level, but the prelinker cannot access the
previously-generated additional usage information for an object in a
library. Therefore, IPA cannot exploit the additional information associ-
ated with a library module.

If a library module has to make calls to a function in a user module in the
program, IPA must be told that this call may occur. The reason IPA needs
to know about the call is because IPA examines all the visible calls to the
function and determines how best to optimize it based on that informa-
tion. However, it cannot “see” the calls to the function from the library
because the library code has no associated usage information to show that
it uses the function.
2-52 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
There is a pragma, retain_name, that tells IPA that there are calls that it
cannot see, as shown in the following example:

int delete_me(int x) {
return x-2;

}

#pragma retain_name("keep_me")
int keep_me(int y) {

return y+2;
}

int main(void) {
return 0;

}

When this program is compiled and linked with the -ipa switch, IPA can
see that there are no calls to delete_me() in any of the source files (one
source file, in this case); therefore, IPA deletes it since it is unnecessary.
IPA does not delete keep_me() because the retain_name pragma tells IPA
that there are uses of the function not visible to IPA. No pragma is neces-
sary for main() because IPA knows this is the entry-point to the program.

IPA assumes that it can see all calls to a function and makes use of its
knowledge of the parameters being passed to a function to effectively tai-
lor the code generated for a function. If there are calls on a function from
an object module in a library, then IPA will not have access to the infor-
mation for that invocation of the function; this may cause it to incorrectly
optimize the generated code.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-53

C/C++ Compiler Language Extensions
C/C++ Compiler Language Extensions
The compiler supports a set of extensions to the ANSI standard for the C
and C++ languages. These extensions add support for DSP hardware and
allow some C++ programming features when compiling in C mode. The
extensions are also available when compiling in C++ mode.

The additional keywords that are part of the C/C++ extensions do not
conflict with any ANSI C/C++ keywords. The formal definitions of these
extension keywords are prefixed with a leading double underscore (__).
Unless the -no-extra-keywords command-line switch is used, the com-
piler defines the shorter form of the keyword extension that omits the
leading underscores. For more information, see “C++ Mode Compiler
Switch Descriptions” on page 2-43.

This section describes only the shorter forms of the keyword extensions,
but in most cases you can use either form in your code. For example, all
references to the inline keyword in this text appear without the leading
double underscores, but you can interchange inline and __inline in your
code.

You might need to use the longer form (such as __inline) exclusively if
you are porting a program that uses the extra Analog Devices keywords as
identifiers. For example, a program might declare local variables, such as
pm or dm. In this case, use the -no-extra-keywords switch, and if you need
to declare a function as inline, or allocate variables to memory spaces, you
can use __inline or __pm/__dm respectively.

This section provides an overview of the extensions, with brief descrip-
tions, and directs you to text with more information on each extension.
2-54 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
Table 2-7 provides a brief description of each keyword extension and
directs you to sections of this chapter that document the extensions in
more detail. Table 2-8 provides a brief description of each operational
extension and directs you to sections that document these extensions in
more detail.

Table 2-7. Keyword Extensions

Keyword extensions Description

inline(function) Directs the compiler to integrate the function code into the code of
the callers. For more information, see “Inline Function Support
Keyword (inline)” on page 2-57.

asm() Places ADSP-21xxx family assembly language instructions directly
in your C/C++ program. For more information, see “Inline Assem-
bly Language Support Keyword (asm)” on page 2-58.

dm Specifies the location of a static or global variable or qualifies a
pointer declaration “*” as referring to Data Memory (DM). For
more information, see “Dual Memory Support Keywords (pm dm)”
on page 2-68.

pm Specifies the location of a static or global variable or qualifies a
pointer declaration “*” as referring to Program Memory (PM). For
more information, see “Dual Memory Support Keywords (pm dm)”
on page 2-68.

section("string") Specifies the section in which an object or function is placed. The
section keyword has replaced the segment keyword of the previous
releases of the compiler software. For more information, see “Place-
ment Support Keyword (section)” on page 2-73.

bool, true, false A boolean type. For more information, see “Boolean Type Support
Keywords (bool, true, false)” on page 2-74.

restrict keyword Specifies restricted pointer features. For more information, see
“Pointer Class Support Keyword (restrict)” on page 2-74.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-55

C/C++ Compiler Language Extensions
Table 2-8. Operational Extensions

Operation
extensions

Description

Variable-length
arrays

Support for variable-length arrays lets you use arrays whose length is not
known until run time. For more information, see “Variable-Length
Array Support” on page 2-75.

Non-constant ini-
tializers

Support for non-constant initializers lets you use non-constants as ele-
ments of aggregate initializers for automatic variables. For more informa-
tion, see “Non-Constant Initializer Support” on page 2-77.

Indexed
initializers

Support for indexed initializers lets you specify elements of an aggregate
initializer in an arbitrary order. For more information, see “Indexed Ini-
tializer Support” on page 2-77.

Aggregate
constructor expres-
sions

Support for aggregate assignments lets you create an aggregate array or
structure value from component values within an expression. For more
information, see “Aggregate Constructor Expression Support” on page
2-79.

fract data type
(C++ mode)

Support for the fractional data type, fractional and saturated arithmetic.
For more information, see “C++ Fractional Type Support” on page 2-84.

Preprocessor gener-
ated warnings

Lets you generate warning messages from the preprocessor.For more
information, see “Preprocessor Generated Warnings” on page 2-80.

C++ style comments Allows for “//” C++ style comments in C programs. For more informa-
tion, see “C++ Style Comments” on page 2-80.
2-56 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
Inline Function Support Keyword (inline)
The cc21k inline keyword directs cc21k to integrate the code for the
function you declare as inline into the code of its callers. Using this key-
word eliminates the function-call overhead and therefore can increase the
speed of your program’s execution. Argument values that are constant and
that have known values may permit simplifications at compile time. The
example that follows shows a function definition that uses the inline
keyword:

inline int add_one (int *a)
{
 (*a)++;
}

A function declared inline must be defined (its body must be included)
in every file in which the function is used. The normal way to do this is to
place the inline definition in a header file.

In some cases cc21k does not output assembler code for the function; for
example, the address is not needed for an inline function called only
from within the defining program. However, recursive calls, and functions
whose addresses are explicitly referred to by the program, are compiled to
assembler code.

� The -no-inline and -traditional switches disable function inlin-
ing. For more information, see “C/C++ Compiler Common Switch
Descriptions” on page 2-19.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-57

C/C++ Compiler Language Extensions
Inline Assembly Language Support Keyword (asm)
The cc21k asm() construct lets you code ADSP-21xxx family assembly
language instructions within a C or C++ function. The asm() construct is
useful for expressing assembly language statements that cannot be
expressed easily or efficiently with C or C++ constructs.

With asm() you can code complete assembly language instructions or you
can specify the operands of the instruction using C or C++ expressions.
When specifying operands with a C or C++ expression, you do not need to
know which registers or memory locations contain C or C++ variables.

The compiler does not analyze code defined with the asm() construct; it
passes this code directly to the assembler. The compiler does perform sub-
stitutions for operands of the formats %0 through %9; however it passes
everything else through to the assembler without reading or analyzing it.

� Any asm() constructs defined before the variable declarations within
main() are flagged as errors because executable statements are not
allowed before declarations in C code.

An asm() construct without operands takes the form shown below:

asm("r0=0;");

The complete assembly language instruction, enclosed in quotes, is the
argument to asm(). Using asm() constructs with operands requires some
additional syntax. The following sections cover this syntax:

• “Assembly Construct Template” on page 2-59

• “Assembly Construct Operand Description” on page 2-62

• “Assembly Constructs With Multiple Instructions” on page 2-64

• “Assembly Construct Reordering and Optimization” on page 2-65
2-58 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
• “Assembly Constructs with Input and Output Operands” on
page 2-66

• “Assembly Constructs and Macros” on page 2-67

Assembly Construct Template

Using asm() constructs, you can specify the operands of the assembly
instruction using C or C++ expressions. You do not need to know which
registers or memory locations contain C/C++ variables. Use the following
general syntax for your asm() constructs:

asm(
 template
 [:[constraint(output operand)[,constraint(output operand)…]]
 [:[constraint(input operand)[,constraint(input operand)…]]
 [:clobber]]]
);

• template

The template is a string containing the assembly instruction(s) with
%number indicating where the compiler should substitute the oper-
ands. Operands are numbered in order of appearance from left to
right, starting at 0. Separate multiple instructions with a semicolon,
and enclose the entire string within double quotes. For more infor-
mation on templates containing multiple instructions, see “Assem-
bly Constructs With Multiple Instructions” on page 2-64.

• constraint

The constraint string directs cc21k to use certain groups of registers
for the input and output operands. Enclose the constraint string
within double quotes. For more information on operand con-
straints, see “Assembly Construct Operand Description” on
page 2-62.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-59

C/C++ Compiler Language Extensions
• output operand

The output operand is the name of a C/C++ variable that receives
output from a corresponding operand in the assembly instruction.

• input operand

The input operand is a C or C++ expression that provides an input
to a corresponding operand in the assembly instruction.

• clobber

The clobber list informs cc21k that a list of registers are overwritten
by the assembly instructions. Use lowercase for clobbered register
names. Enclose each name within double quotes, and separate each
quoted register name with a comma.

The following rules apply to assembly construct template syntax:

• The template is the only mandatory argument to asm(). All other
arguments are optional.

• An operand constraint string followed by a C or C++ expression in
parentheses describes each operand. For output operands, it must be
possible to assign to the expression, that is, the expression must be
legal on the left side of an assignment statement.

• A colon separates the template from the first output operand, the
last output operand from the first input operand, and the last input
operand from the clobbered registers. If there are no output oper-
ands and there are input operands, there must be two consecutive
colons separating the assembly template from the input operands.

• A comma separates operands and registers within arguments.

• The number of operands in arguments must match the number of
operands in your template.
2-60 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
• The maximum permissible number of operands is ten (%0, %1, %2,
%3, %4, %5, %6, %7, %8, and %9).

� The compiler cannot check whether the operands have data types
that are reasonable for the instruction being executed. The compiler
does not parse the assembler instruction template, interpret the tem-
plate, or verify whether the template contains valid input for the
assembler.

The following example shows how to apply the asm() construct template
to the ADSP-21xxx family assembly language clip instruction:

{
 int result, x, y;
 asm (
 "%0=clip %1 by %2;" :
 "=d" (result) :
 "d" (x), "d" (y)
);
}

In the above example, note the following points:

• The template is "%0=clip %1 by %2;". The %0 is replaced with oper-
and zero (result), the first operand, %1, is replaced with operand
one (x), and %2 is replaced with operand two (y).

• The output operand is the C/C++ variable, result. The letter d is
the operand constraint for the variable. This constrains the output
to an r0 - r15 register. The compiler generates code to copy the out-
put from the R register to the variable result, if necessary. The = in
=d indicates that the operand is an output.

• The input operands are the C/C++ variables, x and y. The letter d
in the operand constraint position for these variables constrains x
and y, each to an r0 - r15 register. If x and y are stored in different
kinds of registers or on the stack, the compiler generates code to
copy the values into R registers before the asm() construct uses
them.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-61

C/C++ Compiler Language Extensions
Assembly Construct Operand Description

The second and third arguments to the asm() construct describe the oper-
ands in the assembly language template. There are several pieces of
information that need to be conveyed for cc21k to know how to assign
registers to operands. You convey this information with an operand con-
straint. Primarily, cc21k needs to know what kind of registers your
assembly instructions can operate on, so that it can allocate the correct
register type. You convey this information with a letter in the operand
constraint string that describes the class of allowable registers.

Table 2-8 on page 2-56 describes the correspondence between constraint
letters and register classes. Note that the use of any letter not listed in
Table 2-8 results in unspecified behavior. The compiler does not check
the validity of the code by using the constraint letter.

For example, if your assembly template contains “r0 = dm(m5, %0);” and
the address from which you want to load is in the variable p, the compiler
needs to know that it should put p in a DAG1 I register (I0–I7) before it
generates your instruction. You convey this information to cc21k by spec-
ifying the operand “w” (p) where “w” is the constraint letter for DAG1 I
registers.

To assign registers to the operands, cc21k must also be told which oper-
ands in an assembly language instruction are inputs, which are outputs,
and which outputs may not overlap inputs. The compiler is told this in
three ways.

• The output operand list appears as the first argument after the
assembly language template. The list is separated from the assembly
language template with a colon. The input operands are separated
from the output operands with a colon and always follow the output
operands.

• The operand constraints describe which registers are modified by an
assembly language instruction. The = in =constraint indicates that
the operand is an output; all output operand constraints must use =.
2-62 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
• The compiler may allocate an output operand in the same register
as an unrelated input operand, unless the output operand has the &=
constraint modifier. This is because cc21k assumes that the inputs
are consumed before the outputs are produced. This assumption
may be false if the assembler code actually consists of more than one
instruction. In such a case, use &= for each output operand that must
not overlap an input.

Table 2-9. ASM() Operand Constraints

Constraint1 Register type Registers

a DAG2 B registers b8 — b15

b Q2 R registers r4 — r7

c Q3 R registers r8 — r11

d All R registers r0 — r15

e DAG2 L registers l8 — l15

F Floating-point registers F0 — F15

f Accumulator register mrf, mrb

h DAG1 B registers b0 — b7

j DAG1 L registers l0 — l7

k Q1 R registers r0 - r3

l Q4 R registers r12 - r15

r All general registers r0 — r15, i0 — i15, l0 — l15,
m0 — m15, b0 — b15, ustat1, ustat2

u User registers ustat1, ustat2
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-63

C/C++ Compiler Language Extensions
Assembly Constructs With Multiple Instructions

There can be many assembly instructions in one template. The input
operands are guaranteed not to use any of the clobbered registers, so you
can read and write the clobbered registers as often as you like. If the asm()
string is longer than one line, you may continue it on the next line by
placing a backslash (\) at the end of the line. The following listing is an
example of multiple instructions in a template:

/* (pseudo code) r9 = from; r10 = to; result = from + to; */
asm (“r9=%1; \
r10=%2; \
%0=r9+r10;”
: “=d” (result) /* output */
: “d” (from), “d” (to) /* input */
: “r9”, “r10”); /* clobbers */

w DAG1 I registers I0 — I7

x DAG1 M registers M0 — M7

y DAG2 I registers I8 — I15

z DAG2 M registers M8 — M15

=&constraint Indicates that the constraint is applied to an output operand that may
not overlap an input operand

=constraint Indicates that the constraint is applied to an output operand

1 The use of any letter not listed in Table 2-9 results in unspecified behavior. The compiler does
not check the validity of the code by using the constraint letter.

Table 2-9. ASM() Operand Constraints (Cont’d)

Constraint1 Register type Registers
2-64 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
Assembly Construct Reordering and Optimization

For the purpose of optimization, the compiler assumes that the side effects
of an asm() construct are limited to changes in the output operands. This
assumption does not mean that you cannot use instructions with side
effects, but you must be careful. The compiler may eliminate them if the
output operands are not used, or move them out of loops, or replace two
with one if they constitute a common subexpression. Also, if your instruc-
tion does have a side effect on a variable that otherwise appears not to
change, the old value of the variable may be reused later if it happens to be
found in a register.

Use the keyword volatile to prevent an asm() instruction from being
moved, combined, or deleted. For example:

asm volatile("idle;": /* no outputs */ : /* no inputs */ : /* no clobbers */);

A sequence of asm volatile() constructs is not guaranteed to be com-
pletely consecutive; it may be moved across jump instructions or in other
ways that are not significant to the compiler. To force the compiler to
keep the output consecutive, use only one asm volatile() construct, or
use the output of the asm() construct in a C or C++ statement.

Restrictions on the Use of the asm Construct

Due to possible interactions between the assembler code and the code gen-
erated by the compiler, the asm statement has the following restrictions:

• Control flow through a procedure must not be changed using
instructions contained in an asm() construct. Control flow should
only be specified through use of the C/C++ source constructs.

• C variables should not be referenced explicitly in the asm() con-
struct template code. Such references should be through the input
and output operands of the construct.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-65

C/C++ Compiler Language Extensions
• All registers changed in the asm() construct template must be listed
in the clobber section.

• Pre-processor macros defined in the C/C++ source if used in the
asm() construct template must be expanded in the C/C++ source or
defined in an prior asm() construct to achieve the correct definition.

Assembly Constructs with Input and Output Operands

The output operands must be write only; cc21k assumes that the values in
these operands do not need to be preserved. When the assembler instruc-
tion has an operand that is both read from and written to, you must
logically split its function into two separate operands: one input operand
and one write-only output operand. The connection between them is
expressed by constraints that say they need to be in the same location
when the instruction executes.

You can use the same C or C++ expression for both operands, or different
expressions. For example, in the following statement, the modify instruc-
tion uses ball as its read only source operand and foot as its read write
destination:

/* (pseudo code) modify (foot,ball); */
asm("modify (%0,%2);":"=w"(foot):"0"(foot),"x"(ball));

The constraint "0" for operand 1 says that it must occupy the same loca-
tion as operand 0. A digit in an operand constraint is allowed only in an
input operand, and it must refer to an output operand.

Only a digit in the constraint can guarantee that one operand is in the
same place as another. Just because a variable (for example foot in the
code that follows) is used for more than one operand does not guarantee
that the operands are in the same place in the generated assembler code.
The following does not work:

/* Do NOT try to control placement with operand names, use
the %digit. The following code does NOT work */

asm("modify (%0,%2);":"=w"(foot):"w"(foot),"x"(ball));
2-66 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
Various optimizations or reloading could cause operands 0 and 1 to be in
different registers. For example, the compiler might find a copy of the
value of foot in one register and use it for operand 1, but generate the out-
put operand 0 in a different register.

Be aware that asm() does not support input operands that are used as both
read operands and write operands. The example below shows a dangerous
use of such an operand. In this example, my_variable is modified during
the asm() operation. The compiler only knows that the output,
result_asm, has changed. Subsequent use of my_variable after the asm()
instruction may yield incorrect results since those values may have been
modified during the asm() instruction and may not have been restored.

int result_asm;
int *my_variable;

/* NOT recommended
--(pseudo code) result_asm=dm(*my_variable,3);
--asm() operation changes value of my_variable */

asm("%0=dm(%1,3);":"=d"(result_asm):"w"(my_variable));

Assembly Constructs and Macros

A way to use asm() constructs is to encapsulate them in macros that look
like functions. For example, the following shows macros that contain
asm() constructs. This code defines a macro, clip_macro(), which uses
the asm() instruction to perform an assembly-language clip operation of
variable x_var by y_var, putting the result in result_var:

#define clip_macro(result,x,y) \
 asm("%0=clip %1 by %2;":"=d"(result):"d"(x),"d"(y))

main () {
 int result_var;
 int x_var=10;
 int y_var=2;
 clip_macro(result_var, 10, 2);
 /* or */
 clip_macro(result_var, x_var, y_var);
}
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-67

C/C++ Compiler Language Extensions
Dual Memory Support Keywords (pm dm)
This section describes cc21k language extension keywords to C and C++
that support the dual-memory space, modified Harvard architecture of the
ADSP-21xxx family processors. There are two keywords used to designate
memory space: dm and pm. They can be used to specify the location of a
static or global variable or to qualify a pointer declaration.

The following rules apply to dual memory support keywords:

• The memory space keyword (dm or pm) refers to the expression to the
right of the keyword.

• You can specify a memory space for each level of pointer. This cor-
responds to one memory space for each * in the declaration.

• The compiler uses Data Memory (DM) as the default memory space
for all variables. All undeclared spaces for data are Data Memory
spaces.

• The compiler always uses Program Memory (PM) as the memory
space for functions. Function pointers always point to Program
Memory.

• You cannot assign memory spaces to automatic variables. All auto-
matic variables reside on the stack, which is always in Data Memory.

• Literal character strings always reside in Data Memory.
2-68 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
The following listing shows examples of dual memory keyword syntax.

int pm buf[100];
/* declares an array buf with 100 elements in Program Memory */

int dm samples[100];
/* declares an array samples with 100 elements in Data Memory */

int points[100];
/* declares an array points with 100 elements in Data Memory */

int pm * pm xy;
/* declares xy to be a pointer which resides in Program
 Memory and points to a Program Memory integer */

int dm * dm xy;
/* declares xy to be a pointer which resides in Data Memory and
 points to a Data Memory integer */

int *xy;
/* declares xy to be a pointer which resides in Data Memory
 and points to a Data Memory integer */

int pm * dm datp;
/* declares datp to be a pointer which resides in Data Memory
 and points to a Program Memory integer */

int pm * datp;
/* declares datp to be a pointer which resides in Data Memory
 and points to a Program Memory integer */

int dm * pm progd;
/* declares progd to be a pointer which resides in Program
 Memory and points to a Data Memory integer */

int * pm progd;
/* declares progd to be a pointer which resides in Program
 Memory and points to a Data Memory integer */

float pm * dm * pm xp;
/* The first *xp is in Program Memory,
 the following *xp in Data Memory, and xp itself is
 in Program Memory */
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-69

C/C++ Compiler Language Extensions
Memory space specification keywords cannot qualify type names and
structure tags, but you can use them in pointer declarations. The follow-
ing listing shows examples of memory space specification keywords in
typedef and struct statements.

/* Dual Memory Support Keyword typedef & struct Examples */

typedef float pm * PFLOATP;
/* PFLOATP defines a type which is a pointer to a */
/* float which resides in pm. */

struct s {int x; int y; int z;};
static pm struct s mystruct={10,9,8};
/* Note that the pm specification is not used in */
/* the structure definition. The pm specification */
/* is used when defining the variable mystruct */

Memory Keywords and Assignments/Type Conversions

Memory space specifications limit the kinds of assignments your program
can make, as follows:

• You may make assignments between variables allocated in different
memory spaces.

• Pointers to Program Memory must always point to Program Mem-
ory. Pointers to Data Memory must always point to Data Memory.
You may not mix addresses from different memory spaces within
one expression. Do not attempt to explicitly cast one type of pointer
to another.
2-70 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
The following listings show a code segment with variables in different
memory spaces being assigned and a code segment with illegal mixing of
memory space assignments.

/* Legal Dual Memory Space Variable Assignment Example */
int pm x;
int dm y;
x = y; /* Legal code */

/* Illegal Dual Memory Space Type Cast Example */
int pm *x;
int dm *y;
int dm a;
x = y; /* Compiler will flag error */
x = &a; /* Compiler will flag error */

Memory Keywords and Function Declarations/Pointers

Functions always reside in Program Memory. Pointers to functions always
point to Program Memory. The following listing shows some sample
function declarations with pointers.

/* Dual Memory Support Keyword Function Declaration (With
Pointers) Syntax Examples */

int * y(); /* function y resides in*/
/* pm and returns a */
/* pointer to an integer*/
/* which resides in dm */

int pm * y(); /* function y resides in*/
/* pm and returns a */
/* pointer to an integer*/
/* which resides in pm */

int dm * y(); /* function y resides in*/
/* pm and returns a */
/* pointer to an integer*/
/* which resides in dm */
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-71

C/C++ Compiler Language Extensions
int * pm * y(); /* function y resides in*/
/* pm and returns a */
/* pointer to a pointer */
/* residing in pm that */
/* points to an integer */
/* which resides in dm */

Memory Keywords and Function Arguments

cc21k checks calls to prototyped functions for memory space specifica-
tions consistent with the function prototype. The following listing shows
sample code that cc21k flags as inconsistent use of memory spaces
between a function prototype and a call to the function.

/* Illegal Dual Memory Support Keywords & Calls To Prototyped
Functions */

extern int foo(int pm*);
/* declare function foo() which expects a pointer to an int
residing in pm as its argument and which returns an int */

int x; /* define int x in dm */

foo(&x); /* call function foo() */
/* using pm pointer (location of x) as the */
/* argument. cc21k FLAGS AS AN ERROR; this is an */
/* inconsistency between the function’s */
/* declared memory space argument and function */
/* call memory space argument */
2-72 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
Memory Keywords and Macros

Using macros when making memory space specification for variables or
pointers can make your code easier to maintain. If you must change the
definition of a variable or pointer (moving it to another memory space),
declarations that depend on the definition may need to be changed to
ensure consistency between different declarations of the same variable or
pointer.

To make changes of this type easier, you can use C/C++ preprocessor mac-
ros to define common memory spaces that must be coordinated. The
following listing shows two code segments that are equivalent after pre-
processing. The segment on the right lets you redefine the memory space
specifications by redefining the macro SPACE1 and SPACE2.

/* Dual Memory Support Keywords & Macros */
 #define SPACE1 pm
 #define SPACE2 dm

char pm * foo (char dm *) char SPACE1 * foo (char SPACE2 *)
char pm *x; char SPACE1 *x;
char dm y; char SPACE2 y;

x = foo(&y); x = foo(&y);

Placement Support Keyword (section)
The section keyword directs the compiler to place an object or function
in an assembly .SECTION of the compiler’s intermediate output file. You
name the assembly .SECTION with the section()’s string literal parameter.
If you do not specify a section() for an object or function declaration,
the compiler uses a default section. For information on the default sec-
tions, see “Memory Usage” on page 2-123.

� Applying section() is meaningful only when the data item is some-
thing that the compiler can place in the named section. Apply sec-
tion() only to top-level, named objects that have a static duration,
are explicitly static, or are given as external-object definitions.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-73

C/C++ Compiler Language Extensions
The following example shows the declaration of a static variable that is
placed in the section called bingo:

static section("bingo") int x;

Note that section has replaced the segment keyword of the Release 4.x
compiler. Although the segment() struct is supported by the compiler of
the present release, we recommend you to revise the legacy code.

 Boolean Type Support Keywords (bool, true, false)
The bool, true, and false keywords are extensions that support the C++
boolean type. The bool keyword is a unique signed integral type, just as
the wchar_t is a unique unsigned type. There are two built-in constants of
this type: true and false. When converting a numeric or pointer value to
bool, a zero value becomes false and a nonzero value becomes true. A
bool value may be converted to int by promotion, taking true to one and
false to zero. A numeric or pointer value is automatically converted to
bool when needed.

These keyword extensions behave more or less as if the declaration that
follows had appeared at the beginning of the file, except that assigning a
nonzero integer to a bool type always causes it to take on the value true.

typedef enum { false, true } bool;

 Pointer Class Support Keyword (restrict)
The restrict operator keyword is an extension that supports restricted
pointer features. The use of restrict is limited to the declaration of a
pointer and specifies that the pointer provides exclusive initial access to
the object to which it points. More simply, restrict is a way that you can
identify that a pointer does not create an alias. Also, two different
restricted pointers cannot designate the same object, and therefore, they
are not aliases.
2-74 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
The compiler is free to use the information about restricted pointers and
aliasing to better optimize C or C++ code that uses pointers.The keyword
is most useful when applied to function parameters about which the com-
piler would otherwise have little information, as shown in the following
example:

void fir(short *in, short *c, short *restrict out, int n)

The behavior of a program is undefined if it contains an assignment
between two restricted pointers, except for the following cases:

• A function with a restricted pointer parameter may be called with
an argument that is a restricted pointer.

• A function may return the value of a restricted pointer that is local
to the function, and the return value may then be assigned to
another restricted pointer.

If you have a program that uses a restricted pointer in a way that it does
not uniquely refer to storage, then the behavior of the program is
undefined.

Variable-Length Array Support
The compiler supports variable-length automatic arrays when in C mode
(variable-length array are not supported for C++). Unlike other automatic
arrays, variable-length arrays are declared with a non-constant length. This
means that the space is allocated when the array is declared, and deallo-
cated when the brace-level is exited.

The compiler does not allow jumping into the brace-level of the array, and
produces a compile time error message if this is attempted. The compiler
does allow breaking or jumping out of the brace-level, and it deallocates
the array when this occurs.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-75

C/C++ Compiler Language Extensions
You can use variable-length arrays as function arguments, as shown in the
following example:

struct entry
tester (int len, char data[len][len])
{
 …
}

The compiler calculates the length of an array at the time of allocation. It
then remembers the array length until the brace-level is exited and can
return it as the result of the sizeof() function performed on the array.

Because variable-length arrays must be stored on the stack, it is impossible
to have variable-length arrays in Program Memory. The compiler issues an
error if an attempt is made to use a variable-length array in pm.

As an example, if you were to implement a routine for computation of a
product of three matrices, you need to allocate a temporary matrix of the
same size as the input matrices. Declaring an automatic variable size
matrix is much easier then explicitly allocating it in a heap.

The expression declares an array with a size that is computed at run time.
The length of the array is computed on entry to the block and saved in
case sizeof() is applied to the array. For multidimensional arrays, the
boundaries are also saved for address computation. After leaving the block,
all the space allocated for the array is deallocated.

For example, the following program prints 10, not 50:

main ()
{
 foo(10);
}

void foo (int n)
{
 char c[n];
 n = 50;
 printf(“%d”, sizeof(c));
}
2-76 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
Non-Constant Initializer Support
The cc21k compiler includes support for the ISO/ANSI standard defini-
tion of the C and C++ language and includes extended support for
initializers. The compiler does not require the elements of an aggregate
initializer for an automatic variable to be constant expressions. The fol-
lowing example shows an initializer with elements that vary at run time:

void initializer (float a, float b)
{

float the_array[2] = { a-b, a+b };
}

void foo (float f, float g)
{

float beat_freqs[2] = { f-g, f+g };
}

Indexed Initializer Support
ANSI/ISO standard C/C++ requires the elements of an initializer to
appear in a fixed order, the same as the order of the elements in the array
or structure being initialized. The cc21k compiler C/C++, by comparison,
supports labeling elements for array initializers. This feature lets you spec-
ify the array or structure elements in any order by specifying the array
indices or structure field names to which they apply. All index values must
be constant expressions, even in automatic arrays.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-77

C/C++ Compiler Language Extensions
The following example shows equivalent array initializers, the first in stan-
dard C/C++ and the next using cc21k C/C++. Note that the [index]
precedes the value being assigned to that element.

/* Example 1 Standard & cc21k C/C++ Array Initializer */

/* Standard array initializer */

int a[6] = { 0, 0, 15, 0, 29, 0 };

/* equivalent cc21k C/C++ array initializer */

int a[6] = { [4] 29, [2] 15 };

You can combine this technique of naming elements with standard C/C++
initialization of successive elements. The standard and cc21k instructions
below are equivalent. Note that any unlabeled initial value is assigned to
the next consecutive element of the structure or array.

/* Example 2 Standard & cc21k C/C++ Array Initializer */

/* Standard array initializer */

int a[6] = { 0, v1, v2, 0, v4, 0 };

/* equivalent cc21k C/C++ array initializer that uses
indexed elements */

int a[6] = { [1] v1, v2, [4] v4 };

The following example shows how to label the array initializer elements
when the indices are characters or an enum type.

/* Example 3 Array Initializer With enum Type Indices */

/* cc21k C/C++ array initializer */

int whitespace[256] =
{
 [' '] 1, ['\t'] 1, ['\v'] 1, ['\f'] 1, ['\n'] 1, ['\r'] 1
};
2-78 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
In a structure initializer, specify the name of a field to initialize with
fieldname: before the element value. The standard C/C++ and cc21k
C/C++ struct initializers in the example below are equivalent.

/* Example 4 Standard C & cc21k C/C++ struct Initializer */

/* Standard C struct Initializer */

struct point {int x, y;};
struct point p = {xvalue, yvalue};

/* Equivalent cc21k C/C++ struct Initializer With Labeled
Elements */

struct point {int x, y;};
struct point p = {y: yvalue, x: xvalue};

Aggregate Constructor Expression Support
Extended initializer support in cc21k C/C++ includes support for aggre-
gate constructor expressions, which enable you to assign values to large
structure types without requiring each element’s value to be individually
assigned.

The following example shows an ISO/ANSI standard C struct usage fol-
lowed by equivalent cc21k C/C++ code that has been simplified using a
constructor expression:

/* Standard C struct & cc21k C/C++ Constructor struct */

/* Standard C struct */
struct foo {int a; char b[2];};
struct foo make-foo(int x, char *s)
{

struct foo temp;
temp.a = x;
temp.b[0] = s[0];
if (s[0] != '\0')
 temp.b[1] = s[1];
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-79

C/C++ Compiler Language Extensions
else
 temp.b[1] = '\0';
return temp;

}

/* Equivalent cc21k C/C++ constructor struct */
struct foo make_foo(int x, char *s)
{

return((struct foo) {x, {s[0], s[0] ? s[1] : '\0'}});
}

Preprocessor Generated Warnings
The preprocessor directive #warning causes the preprocessor to generate a
warning and continue preprocessing. The text on the remainder of the line
that follows #warning is used as the warning message.

C++ Style Comments
The compiler accepts C++ style comments in C programs, beginning with
// and ending at the end of the line. This is essentially compatible with
standard C, except for the following case:

a = b

//* highly unusual */ c

which a standard C compiler processes as:

a = b / c;
2-80 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
Compiler intrinsic Functions
The compiler supports intrinsic functions that enable efficient use of
hardware resources. Knowledge of these functions is built into the cc21k
compiler. Your program uses them via normal function call syntax. The
compiler notices the invocation and generates one or more machine
instructions, just as it does for normal operators, such as + and *.

Builtins have names which begin with __builtin_. Note that identifiers
beginning with double underlines (__) are reserved by the C standard, so
these names will not conflict with user program identifiers. The header
files also define more readable names for the built-in functions without
the __builtin_ prefix. These additional names are disabled if the
-no-builtin option is used.

The cc21k compiler provides built-in versions of some of the C library
functions as described in “Using the Compiler’s Built-In C library Func-
tions” on page 3-19.

The sysreg.h header file defines a set of functions that provide efficient
system access to registers, modes, and addresses not normally accessible
from C source. These functions are specific to individual architectures.
The built-in functions supported at this time on ADSP-21xxx family
DSPs are listed in the sub-sections that follow.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-81

C/C++ Compiler Language Extensions
Access to System Registers

This section describes the functions that provide access to system registers.
These functions are based on the ADSP-21xxx family DSPs underlying
hardware capabilities. The functions are defined in the header file
sysreg.h. They allow direct read and write access, as well as, the testing
and modifying of bit sets.

int sysreg_read (const int SR_number);

sysreg_read reads the value of the designated register and returns it.

void sysreg_write (const int SR_number, const int new_value);

sysreg_write stores the specified value in the nominated system
register.

void sysreg_bit_clr (const int SR_number, const int bit_mask);

sysreg_bit_clr clears all the bits of the nominated system register that
are set in the supplied bit mask.

void sysreg_bit_set (const int SR_number, const int bit_mask);

sysreg_bit_set sets all the bits of the nominated system register that
are also set in the supplied bit mask.

void sysreg_bit_tgl (const int SR_number, const int bit_mask);

sysreg_bit_tgl toggles all the bits of the nominated system register
that are set in the supplied bit mask.

int sysreg_bit_tst (const int SR_number, const int bit_mask);

sysreg_bit_tst returns a non-zero value if all of the bits that are set in
the supplied bit mask are also set in the nominated system register.

int sysreg_bit_tst_all (const int SR_number, const int value);

sysreg_bit_tst_all returns a non-zero value if the contents of the
nominated system register are equal to the supplied value.
2-82 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
� The register names are defined in sysreg.h and must be a
compile-time literal. The effect of using the incorrect function
for the size of the register or using an undefined register number
is undefined. The register names (and their values) used by the func-
tions are as follows.

sysreg_USTAT1 = 0x7,

sysreg_USTAT2 = 0x8,

sysreg_IRPTL = 0x2,

sysreg_MODE2 = 0x1,

sysreg_MODE1 = 0x0,

sysreg_ASTAT = 0x5,

sysreg_IMASK = 0x3,

sysreg_STKY = 0x6,

sysreg_IMASKP = 0x4
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-83

C/C++ Compiler Language Extensions
� Due to hardware characteristics of the SHARC processor, the bit
values for the sysreg_bit_* interrogation and manipulation func-
tions must be compile-time constants. For the ADSP-2106x DSP,
the header files def21060.h, def21061.h, and def21065.h provide
symbolic names for the individual bits in the system registers. For
the ADSP-2116x DSP the header files def21160.h, def21161.h, and
def21065.h provide symbolic names for the individual bits in the
system registers.

� For the ADSP-2116x SHARC DSP, the compiler considers USTAT1
and USTAT2 to be “preserved” registers. If one is modified by a
sysreg operation, it will be saved during the prolog of the contain-
ing function and restored to its old value on exit.

C++ Fractional Type Support
While in C++ mode, the cc21k compiler supports fractional (fixed-point)
arithmetic that provides a way of computing with non-integral values
within the confines of the fixed-point representation. Hardware support
for the 32-bit fractional arithmetic is available on the ADSP-21xxx family
DSPs.

Fractional values are declared with the fract data type. Ensure that your
program incudes the <fract> header file. The fract data type is a C++
class that supports a set of standard arithmetic operators used in arith-
metic expressions. Fractional values are represented as signed values in a
range of [-1 … 1) with a binary point immediately after the sign bit. Other
value ranges are obtained by scaling or shifting. In addition to the arith-
metic, assignment, and shift operations, fract provides several
type-conversion operations.
2-84 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
For more information about supported fractional arithmetic operators, see
page 2-86. For sample programs demonstrating the use of the fract type,
see Listing 2-5 on page 2-163 and Listing 2-6 and Listing 2-7 on
page 2-164.

� The current release of the software does not provide for automatic
scaling of fractional values.

Format of Fractional Literals

Fractional literals use the floating-point representation with an “r” suffix
to distinguish them from floating-point literals, for example, 0.5r. The
cc21k compiler validates fractional literal values at run time to ensure they
reside within the valid range of values.

Fractional literals are written with the “r” suffix to avoid certain precision
loss. Literals without an “r” are of the type double, and are implicitly con-
verted to fract as needed. After the conversion of a 32-bit double literal
to a fract literal, the value of the latter may retain only 25 bits of preci-
sion compared with the full 32 for a fractional literal with the “r” suffix.

Conversions Involving Fractional Values

The following notes apply to type-conversion operations:

• Conversion between a fractional value and a floating value is sup-
ported. The conversion to the floating-point type may result in
some precision loss.

• Conversion between a fractional value and an integer value is sup-
ported. The conversion is not recommended because the only com-
mon values are 0 and –1.

• Conversion between a fractional value and a long double value is
supported via float and may result in some precision loss.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-85

C/C++ Compiler Language Extensions
Fractional Arithmetic Operations

The following notes summarize information about fractional arithmetic
operators supported by the cc21k compiler:

• Standard arithmetic operations on two fract items include addi-
tion, subtraction, and multiplication.

• Assignment operations include +=, -=, and *=.

• Shift operations include left and right shifts. A left shift is imple-
mented as a logical shift and a right shift is an arithmetic shift. Shift-
ing left by a negative amount is not recommended.

• Comparison operations are supported between two fract items.

• Mixed-mode arithmetic has a preference for fract. For more infor-
mation about the mixed-mode arithmetic, see page 2-87.

• Multiplication of a fractional and an integer produces an integer
result or a fractional result. The program context determines which
type of result is generated following the conversion algorithm of
C++. When the compiler does not have enough context, it generates
an ambiguous operator message, for example:

error: more than one operator "*" matches these operands:
…

You cast the result of the multiply operation if the error occurs.
2-86 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
Mixed Mode Operations

Most operations supported for fractional values are supported for mixed
fractional/float or fractional/double arithmetic expressions. At run time, a
floating-point value is converted to a fractional value, and the operation is
completed using fractional arithmetic.

The assignment operations, such as +=, are the exception to the rule. The
logic of an assignment operation is defined by the type of a variable posi-
tioned on the left side of the expression.

Floating-point operations require an explicit cast of a fractional value to
the desired floating type.

Saturated Arithmetic
The cc21k compiler supports saturated arithmetic for fractional data in
the saturated arithmetic mode.

Whenever a calculation results in a bigger value than the fract data type
represents, the result is truncated (wrapped around). An overflow flag is
set to warn the program that the value has exceeded its limits. To prevent
the overflow and to get the result as the maximum representable value
when processing signal data, use saturated arithmetic. Saturated arithmetic
forces an overflowed value to become the maximum representable value.

The mode is set to be saturated or default with the set_saturate_mode()
and reset_saturate_mode() functions. Each arithmetic operator has its
corresponding variant effected in the saturated mode, for example,
add_sat, sub_sat, neg_sat, ….
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-87

C/C++ Compiler Language Extensions
SIMD Support Annotation (#pragma SIMD_for)
The ADSP-2116x processor supports Single-Instruction, Multiple-Data
operations, which, under certain conditions, double the computational
rate over ADSP-2106x family DSPs. It is important to gain some under-
standing of the DSP’s architecture to take advantage of SIMD mode.

The ADSP-2116x processor includes a second processing element that has
its own register file and computational units. When the second element is
active, the processor operates in a “Single-Instruction, Multiple-Data”
(SIMD) mode—each computation executes on both processing elements,
and each element operates independently on different (“multiple”) data.

SIMD is effective for performing exactly the same calculations simulta-
neously on two parallel sets of data. As a special case — which is what the
compiler supports—programs can use the SIMD mechanism to perform a
single task (such as summing a vector), by dividing it into two parts and
doing both parts in parallel, simultaneously.

Also, there are situations where it is effective to perform two copies of a
task simultaneously, such as summing two separate vectors.

SIMD processing is intimately linked with the memory model. In Single-
Instruction, Single-Data (SISD) processing (ADSP-2106x compatible
mode), the processor fetches single values from memory, performs single
arithmetic operations, and stores single values back. In ADSP-2116x
SIMD mode, each memory reference fetches a pair of values (from the
designated address and the following address), one into each of the two
compute blocks. Arithmetic instructions are done in pairs, and paired
results are written back.
2-88 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
When compiling for the ADSP-2116x DSPs, the cc21k compiler automat-
ically generates SIMD code wherever possible. However, there are
occasions when the cc21k compiler does not generate SIMD code because
the compiler does not have enough information to be sure that it is safe to
use SIMD. If such a situation occurs, the compiler generates a warning,
specifying the reason the automatic generation of SIMD code was dis-
abled. This situation occurs most often in functions, where the data to be
processed is passed as parameters.

The primary causes of disabling automatic SIMD generation are a lack of
alias information or a lack of alignment information. Normally, IPA helps
to resolve these issues automatically. However, even with IPA, there may
be times when the compiler cannot determine if it is safe to use SIMD
code. If SIMD code is appropriate, then the SIMD_for pragma can be
used to indicate this to the compiler.

Using SIMD Mode with Multichannel Data

When processing multichannel data in SIMD mode, the program essen-
tially runs two copies of the algorithm simultaneously. Multichannel
could be used for a whole program, for processing two modem channels,
or for more local processes, such as calculating the sine of two values
simultaneously.

Because there are two copies of the algorithm running, there must be two
copies of the data as well. Due to the ADSP-2116x’s SIMD memory archi-
tecture, the data must be interleaved in memory. The data for one channel
uses only even locations, while data for the other channel uses the corre-
sponding odd locations. Because the DSP implicitly doubles the memory
references, arranging data in memory can be as simple as allocating twice
as much space for all variables. Correct data arrangement in memory
depends on the algorithm.

Such a program could increment loop indices by 2 instead of 1, as each
fetch has consumed two words of memory. Data that is common to both
could be loaded with a broadcast load or duplicated in memory.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-89

C/C++ Compiler Language Extensions
The ADSP-2116x can handle conditional execution at a single-instruction
level in SIMD mode and counted loops. Programs cannot do a condi-
tional branch that depends on the result of a computation in SIMD mode
because there would be two different results (one for each channel) and
the branch must go one way or the other.

� The compiler does not provide extended C/C++ support for SIMD
mode and multichannel data.

Using SIMD Mode with Single Channel Data

When processing single channel data in SIMD mode, most of the program
operates in SISD mode. At key places where the program loops over a col-
lection of contiguous data elements, the program enters SIMD mode to
perform computations on both processing elements.

For example, a program adds two vectors element by element. The normal
SISD code picks up elements one at a time, evaluating

c[j] = a[j] + b[j] for each j.

Since each element is processed independently, the operation can as well
be done in pairs in SIMD mode:

c[j] = a[j] + b[j] in one processing element,

c[j+1] = a[j+1] + b[j+1] in the other.

� Note that the loop index now increments by 2.

This kind of processing is an effective use of the SIMD capability.

SIMD processing can also be used when one of the terms is a scalar. In
that case, you should make sure that the same scalar value is loaded into
both compute blocks, and the rest of the SIMD processing is the same.
2-90 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
A useful variant of the SIMD loop occurs in a form called a reduction. In
such a loop, a vector is reduced to a scalar value by the action of the loop.
For example, summing a vector or calculating the dot product of two vec-
tors are areas where a program could use reduction. Again, SIMD
processing lets the program process the vector on both processor elements
at the same time (half in each).

Note that a reduction loop has to compute a single result. To use SIMD
processing, the SISD algorithm would be transformed slightly. Two par-
tial results are accumulated with all the even elements contributing to one
result and the odds to the other. At the end of the loop, the program must
combine the partial results into a final one. The reduction approach has
two effects for which you must account:

• If the data is floating-point, the results will likely differ slightly due
to floating-point round-off differences.

• The final combination of the partial results takes a little time that
will detract from the SIMD performance gain.

In any of the single channel cases, if the array contains an odd number of
elements, an extra step of processing will be required after the SIMD
region. Note that when the number is not known at compile time, the
extra step will be conditional on a run-time check.

� The compiler provides extended C/C++ support for SIMD mode
and single channel data. For more information, see “SIMD Support
Annotation (#pragma SIMD_for)” on page 2-88.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-91

C/C++ Compiler Language Extensions
Pitfalls in Using SIMD C/C++

Be aware that there are various pitfalls, as well as advantages, when a pro-
gram is transformed to process single channel data in SIMD mode.

• The data and the access pattern must be arranged for SIMD fetches,
which are always at immediately adjoining locations. For example,
a program that sums every third element of an array or the first col-
umn of a multi-dimensional array would not be a good candidate
for SIMD, because the second fetch does not pick up the element
for the next iteration.

• The data must always be aligned on double-word boundaries when
in SIMD mode. The compiler attempts to align arrays properly in
memory, so that operations on whole arrays work.

You must be careful about situations that force misalignment. This can
occur by calling a function with an argument that points to an arbitrary
location in an array. For instance, a function func(A[j] where func
expects a pointer or array parameter could have a data alignment problem
if the value of j is odd. In this case, the parameter denotes a misaligned
array, and an attempt to use SIMD processing within func fails.

Another SIMD failure situation arises when the reference pattern involves
odd locations. A reference to A[j-1] fails. Similarly, programs cannot have
locations that change between even and odd addresses (for example,
A[j+k]). The FIR loop nest is an example of the latter.

� You have to be careful about any interaction or dependency between
different iterations of the loop in SIMD. This is important because
the SIMD processing changes the order of evaluation. The data for
iteration N+1 is actually fetched from memory before the results of
iteration N are written back. Some programs get wrong answers if
done in SIMD.
2-92 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
Looking at the example:

a[j] = a[j-1] + 2;

the current iteration uses the results from the previous one; if these results
have not yet been written back, the current iteration is incorrect.

SIMD_for Syntax

The code transformation of a loop to run in SIMD mode involves one
command. You indicate which loops are suitable for SIMD execution, and
the compiler does the rest. Indicating that a loop should execute in SIMD
mode takes the form of a #pragma command,

#pragma SIMD_for

which is placed ahead of the loop. As a preprocessing directive, this com-
mand must be alone on the line similar to a #define or #include
command.

The compiler responds to the #pragma by first checking whether the loop
meets the SIMD guidelines. If compliant, the compiler transforms the
loop so that the processing is done in SIMD mode. Among other things,
the transformation involves changing the loop increment to 2, so that the
vector elements are processed in SIMD pairs.

If the loop performs a reduction, partial results are calculated and com-
bined at the end. Also, the compiler takes care of duplicating scalar values
used within the loop. The following loop uses #pragma SIMD_for:

float sum, c, A[N];
…
sum = 0;
#pragma SIMD_for
 for (j=0; j<N; j++) {
 sum += c * A[j];
 }
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-93

C/C++ Compiler Language Extensions
The compiler transforms this loop as follows:

 // declare SIMD temporaries
float t_sum[2], t_c[2];
 // initialize both partial sums
t_sum[0] = t_sum[1] = 0;
 // initialize both parts of scalar constant
t_c[0] = t_c[1] = c;
 // ENTER_SIMD_MODE -- set machine mode
for (j=0; j<N; j+=2) {
 t_sum[0] += t_c[0] * A[j];
 // -- implicit SIMD processing performs:
 // t_sum[1] += t_c[1] * A[j+1];
 }
 // LEAVE_SIMD_MODE
 // combine partial sums
sum = t_sum[0] + t_sum[1];

Constraints on Using SIMD C/C++

There are a number of conditions that limit when SIMD operations may
occur. The compiler attempts to check these conditions and issues warn-
ings or errors when it detects problems or possible problems.

The compiler usually avoids changing a program when the compiler is not
certain that the transformed program produces the same results as the
original. The SIMD transformations are handled a bit differently for two
reasons:

• You provide explicit direction to use SIMD. Therefore, the com-
piler assumes that you are aware of what is needed for SIMD oper-
ation and that you share responsibility for correct operation.

• Some of the SIMD constraints are difficult or impossible to verify
at compile time. Therefore, the compiler is not 100 percent conser-
vative in checking, because if it were, few, if any loops would be
accepted.
2-94 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
The compiler checks the conditions that can be checked. In many cases,
the compiler can verify that a loop is unacceptable and rejects it for SIMD
processing with a warning or error. Rejection occurs when there is an
obvious dependency, obvious alignment problems, or a non-unit stride.

In other cases, the determining values are not available at compile time,
and the compiler cannot be sure whether the loop can be safely trans-
formed. In such cases, the compiler issues a warning and proceeds.

For some constraints—primarily the proper alignment of arrays that are
parameters (arguments) of the function—the compiler assumes that con-
ditions are acceptable and does not issue a warning.

There are two other restrictions on using SIMD_for loops:

• Function calls may not be made from within a SIMD_for loop.

• All data types used within a SIMD_for loop must have single-word
base types. Long doubles, doubles in double-size-64 mode, and
structs should not to be used within a SIMD_for loop.

Impact of Anomaly #40 on SIMD

The SIMD read from internal memory with a Shadow Write FIFO hit
does not always function correctly. This anomaly has been identified in
the Shadow Write FIFOs that exist between the internal memory array of
the ADSP-21160M and core /IOP busses that access the memory. (See
page 7-73 of the ADSP-21160 SHARC DSP Hardware Reference, First
Edition, November, 1999 for more details on shadow register operation).
If performing SIMD reads which cross Long Word Address boundaries
(i.e. odd Normal Word addresses or non-Long Word boundary aligned
Short Word addresses) and the data for the read is in the Shadow Write
FIFO, the read will result in revision 0.0 behavior for the read.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-95

C/C++ Compiler Language Extensions
To avoid the anomaly, SIMD operations must always operate on dou-
ble-word aligned vectors. To accomplish this type of operation the
compiler:

• Allocates all static arrays on an appropriate double-word boundary.

• Ensures that arrays on the stack are double-word aligned by ensur-
ing the stack is aligned on an even word boundary.

• The compiler only generates SIMD operations when it knows it is
operating with double-word-aligned elements. It will be able to do
this when arrays are defined statically or locally, or the arrays are
arguments whose properties can be determined by Inter Procedural
Analysis. A further requirement is that the initial index and incre-
ment are both explicit.

As a result of these precautions, SISD mode will be used when array prop-
erties and indexing are not “visible” to the optimizer.

The compiler generates a warning when it fails to automatically generate
SIMD operation due to lack of information. The user can then add the
#pragma simd_for in such cases where they can be sure that alignment
requirements are satisfied.

Examples Using SIMD C (Problem Cases�Data Increments)

In SIMD mode, an assignment to or from a memory location refers to
memory location [A] for the PEx processing element and memory location
[A+1] for the PEy processing element. The #pragma SIMD_for takes
advantage of these assignments by taking code containing a stride 1 loop
which addresses contiguous memory locations and turning it into a stride
2 loop, addressing every second memory location.

� In a potentially SIMD compatible loop, it is essential that the stride
of a loop through an array is 1, so the compiler uses the correct
memory locations. Any other value for the stride results in incorrect
behavior.
2-96 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
The following matrix multiplication function demonstrates some stride
issues.

� This code is NOT a valid use of the SIMD_for pragma.

float *matmul(void *x_input,
 void *y_input,
 void *output,
 int r,
 int s,
 int t) {
 float *ipx, *ipy, *output_new;
 float tmp = 0;
 int i = 0, j = 0, k = 0;
 ipx = (float *) x_input;
 ipy = (float *) y_input;
 output_new = (float *) output;
 for (i = 0; i < r; i++)
 for (k = 0; k < t; k++) {
 tmp = 0;
 #pragma SIMD_for
 for (j = 0; j < s; j++)
 // The next two lines are wrong in SIMD mode
 tmp += ipx[j + (i * s)] * ipy[k + (j * t)];
 output_new[k + (i * r)] = tmp;
 }
 printf(“SIMD\n”);
 return output_new;
 }

The lines in bold text above read from the memory location
ipy[k+(j*t)]. The loop counter, j, is multiplied to calculate the offset
into the array. In this example, the stride through the array can not be 1,
rather it is t.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-97

C/C++ Compiler Language Extensions
The SIMD and non-SIMD versions of this code address the following
memory locations:

non-SIMD SIMD

ipy[k] ipy[k], ipy[k+1]

ipy[k + t] ipy[k+(2*t)], ipy[k+(2*t)+1]

ipy[k + (2*t)] ipy[k+(4*t)], ipy[k+(4*t)+1]

ipy[k + (3*t)] ipy[k+(6*t)], ipy[k+(6*t)+1]

ipy[k + (4*t)] ipy[k+(8*t)], ipy[k+(8*t)+1]

Each version addresses different memory locations, giving different
results.

SIMD C Loop Counter Rules:

• If the loop counter is multiplied within a loop to calculate an offset,
do not use SIMD.

• If the [inner] loop counter is used to subscript a multi-dimensional
array, it must only be used as the last subscript. Otherwise, do not
use SIMD.

Examples Using SIMD C (Problem Cases�Data Alignment)

To work properly, SIMD calculations must only be used on arrays or
other data that are double-word aligned. The compiler and libraries have
some responsibility in ensuring that arrays meet this condition. All arrays,
unions, and structures are guaranteed to be double-word aligned by the
compiler, and functions such as malloc() only return double-word
aligned memory.

There are some conditions in which you are responsible for determining
whether the code and data are compatible with SIMD execution. This sec-
tion describes some of the pitfalls of which you need to be aware.
2-98 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
Using Two-Dimensional Arrays

The following array,

int xyz[9][9];

would be double-word aligned by the compiler. Each sub-array, however,
would start at an offset of 9 from the previous array, so xyz[1], xyz[3],
and subsequent elements would not be double word aligned. Trying to use
these sub-arrays in SIMD mode creates problems. If the function sum()
contains SIMD code, then the following is incorrect:

for (i = 0; i < 10; i++)
 total += sum(xyz[i]);
 // leads to SIMD problems

SIMD C/C++ Data Alignment Rule:

• Two-dimensional arrays containing an odd number of rows or col-
umns may lead to problems.

Adding To Array Offsets

The following is an example in which an offset is calculated using outer
and inner loop counters. This code is NOT a valid use of the SIMD_for
pragma.

for (k = 0; k < 20; ++k)
 #pragma SIMD_for
 for (i = 0; i < 20-k; ++i)
 output[i] += (input[i] + input[i+k]);
 // leads to SIMD problems

In this case, every second iteration of the outer loop (k=1, k=3, etc.)
results in incorrect code as the expression input[i+k] is a non-dou-
ble-word aligned location.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-99

C/C++ Compiler Language Extensions
Note that this loop could be rewritten as:

for (k = 0; k < 20; ++k) {
 if (k % 2)
 for (i = 0; i < 20-k; ++i)
 output[i] += (input[i] + input[i+k]) ;
 else
 #pragma SIMD_for
 for (i = 0; i < 20-k; ++i)
 output[i] += (input[i] + input[i+k]) ;
 }

Now, the SIMD version is only used when k=0, k=2, and subsequent even
elements. This technique does not offer the full performance benefits of
SIMD, but does offer about a 50% improvement.

Performance When Using SIMD C/C++

When handling multichannel data in SIMD mode, the ADSP-2116x can
accomplish roughly twice as much useful work as ADSP-2106x family
DSPs. This is diluted slightly if data-dependent conditional blocks must
be accommodated. The compiler does not support multichannel data
operations in C or C++ code.

When handling single channel data in SIMD mode, C and C++ programs
using single channel SIMD portions will usually show some performance
improvement, but fall short of the double-performance level for a variety
of reasons.

In measuring the performance improvement in single channel SIMD, it’s
useful to isolate the SIMD portion and verify that it is performing as
intended. The overall program speedup is often bounded by factors out-
side of the SIMD portion.
2-100 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
Any parallel-processing situation requires a small amount of overhead to
coordinate the parallelism, and the ADSP-2116x is no exception. Under-
standing this factor can help you evaluate where SIMD mode is likely to
be most beneficial. Specific items include the following:

• Mode change: The processor must switch into SIMD mode and
back out. Each change takes 2 cycles.

• Initialization of scalars: Non-array values must be duplicated in
order to have correct values for both processing elements. This takes
a few instructions per value. This is a compiler restriction only—
assembly programmers may be able to use the broadcast load facil-
ity.

• Collection of partial results: For reductions such as vector dot-prod-
uct, the two partial results must be combined at the end. This typi-
cally requires a move and a final add or multiply, another 2 or 3
cycles.

All of these are fairly small items and have little effect provided that the
size of the SIMD loop is large.

Note, also, that the size of the inner loop is halved when working in
SIMD mode. Consider the following example, a filter with 40 coefficients.

• Inner loop before SIMD: 40 iterations

• Inner loop with SIMD: 20 iterations

Because the ADSP-2106x family DSPs can do a dot-product with a single
instruction, the loop represents 20 cycles. If the SIMD overhead is 6
cycles, this operation on the ADSP-2116x represents an overhead cost of
30%.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-101

Preprocessing a Program
Actually, the true cost is a bit higher. Most loops require a little prologue
code to achieve full processor efficiency. When the loop size is halved, the
relative impact of the prologue—which remains a constant size—is
increased. The prologue can lead to the loss of a few more percentage
points off the performance.

Preprocessing a Program
The compiler includes a preprocessor that lets you use preprocessor com-
mands within your C or C++ source. Table 2-10 lists these commands and
provides a brief description of each. The preprocessor automatically runs
before the compiler.

Table 2-10. Preprocessor Commands

Command Description

#define Defines a macro or constant.

#elif Sub-divides an #if … #endif pair.

#else Identifies alternative instructions within an #if … #endif pair.

#endif Ends an #if … #endif pair.

#error Reports an error message.

#if Begins an #if … #endif pair.

#ifdef Begins an #ifdef … #endif pair and tests if macro is defined.

#ifndef Begins an #ifndef … #endif pair and tests if macro is not defined.

#include Includes source code from another file.

#line Outputs specified line number before preprocessing.
2-102 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
Preprocessor commands are also useful for modifying the compilation.
Using the #include command, you can include header files (.h) that con-
tain code and/or data. A macro, which you declare with the #define
preprocessor command, can specify simple text substitutions or complex
substitutions with parameters. The preprocessor replaces each occurrence
of the macro reference found throughout the program with the specified
value.

The preprocessor is separate from the compiler and has some features that
may not be used within your C or C++ source file. For more information,
see the VisualDSP++ 2.0 Assembler and Preprocessor Manual for
ADSP-21xxx DSPs.

#undef Removes macro definition.

#warning Reports a warning message.

Converts a macro argument into a string constant.

Concatenates two strings.

Table 2-10. Preprocessor Commands (Cont’d)

Command Description
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-103

Preprocessing a Program
Predefined Macros

The predefined macros that cc21k provides are listed below.

__2106x__

When compiling for the ADSP-21060, ADSP-21061, ADSP-21062, or
the ADSP-21065L, cc21k defines __ADSP2106x__ as 1.

__2116x__

When compiling for the ADSP-21160 or ADSP-21161, cc21k defines
__2116x__ as 1.

__ADSP21000__

cc21k always defines __ADSP21000__ as 1.

ADSP21000

cc21k defines ADSP21000 as 1. The __ADSP21000__ macro is defined unless
you compile with -no-extra-keywords, -pedantic, or -pedantic-errors.

__ADSP21060__

cc21k defines __ADSP21060__ as 1 when you compile with the -21060
command-line switch.

ADSP21060

cc21k defines ADSP21060 as 1 when you compile with the -21060 com-
mand-line switch, but the compiler undefines this macro if you compile
with -pedantic or -pedantic-errors.
2-104 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
__ADSP21061__

cc21k defines __ADSP21061__ as 1 when you compile with the -21061
command-line switch.

ADSP21061

cc21k defines ADSP21061 as 1 when you compile with the -21061 com-
mand-line switch, but the compiler undefines this macro if you compile
with -pedantic or -pedantic-errors.

__ADSP21062__

cc21k defines __ADSP21062__ as 1 when you compile with the -21062
command-line switch.

ADSP21062

cc21k defines ADSP21062 as 1 when you compile with the -21062 com-
mand-line switch, but the compiler undefines this macro if you compile
with -pedantic or -pedantic-errors.

__ADSP21065L__

cc21k defines __ADSP21065L__ as 1 when you compile with the -21065L
command-line switch.

ADSP21065L

cc21k defines ADSP21065L as 1 when you compile with the -21065L com-
mand-line switch, but the compiler undefines this macro if you compile
with -pedantic or -pedantic-errors.

__ADSP21160__

cc21k defines __ADSP21160__ as 1 when you compile with the -21160
command-line switch.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-105

Preprocessing a Program
ADSP21160

cc21k defines ADSP21160 as 1 when you compile with the -21160 com-
mand-line switch, but the compiler undefines this macro if you compile
with -pedantic or -pedantic-errors.

__ADSP21161__

cc21k defines __ADSP21161__ as 1 when you compile with the -21161
command-line switch.

ADSP21161

cc21k defines ADSP21161 as 1 when you compile with the -21161 com-
mand-line switch, but the compiler undefines this macro if you compile
with -pedantic, or -pedantic-errors.

__ANALOG_EXTENSIONS__

cc21k defines __ANALOG_EXTENSIONS__ as 1, and the compiler undefines
this macro if you compile with -pedantic or -pedantic-errors.

__cplusplus

cc21k defines __cplusplus as 1 when you compile in C++ mode.

__DATE__

The preprocessor expands this macro into the preprocessing date as a
string constant. The date string constant takes the form Mmm dd yyyy.
(ANSI standard).
2-106 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
__DOUBLES_ARE_FLOATS__

cc21k defines __DOUBLES_ARE_FLOATS__ as 1 when you compile with the
-double-size-32 command-line switch. Note that -double-size-32 is the
default switch. The compiler undefines this macro if the -double-size-64
switch is used.

__ECC__

cc21k always defines __ECC__ as 1.

__EDG__

cc21k always defines __EDG__ as 1. This signifies that an Edison Design
Group front end is being used.

__EDG_VERSION__

cc21k always defines __EDG_VERSION__ as an integral value representing
the version of the compiler’s front end.

__FILE__

The preprocessor expands this macro into the current input file name as a
string constant. The string matches the name of the file specified on the
cc21k command-line or in a preprocessor #include command. (ANSI
standard).

__LINE__

The preprocessor expands this macro into the current input line number
as a decimal integer constant. (ANSI standard).
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-107

Preprocessing a Program
_NO_LONGLONG

cc21k always defines _NO_LONGLONG as 1.

__NO_BUILTIN

cc21k defines __NO_BUILTIN as 1 when you compile with the -no-builtin
command-line switch.

__SIGNED_CHARS__

cc21k defines __SIGNED_CHARS__ as 1. The macro is defined by default,
but the compiler undefines this macro if you compile with the
-unsigned-char command-line switch.

__STDC__

cc21k always defines __STDC__ as 1, but the compiler undefines this macro
if you compile with -traditional. (ANSI standard).

__STDC_VERSION__

cc21k always defines __STD_VERSION__ as 199409L, but the compiler
undefines this macro if you compile with -traditional. (ANSI standard).

__TIME__

The preprocessor expands this macro into the preprocessing time as a
string constant. The date string constant takes the form hh:mm:ss. (ANSI
standard).
2-108 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
Header Files

A header file contains C or C++ declarations and macro definitions. Use
the #include preprocessor command to access header files for your pro-
gram. Header file names have an .h or no extension. There are two main
categories of header files:

• System header files declare the interfaces to the parts of the operat-
ing system. Include them in your program for the definitions and
declarations you need to access system calls and libraries. Use angle
brackets to indicate a system header file: #include <file>.

• User header files contain declarations for interfaces between the
source files of your program. Use double quotes to indicate a user
header file: #include "file".

Writing Macros

A macro is a name standing for a block of text that the preprocessor sub-
stitutes. Use the #define preprocessor command to create a macro
definition. When the macro definition has arguments, the block of text
the preprocessor substitutes can vary with each new set of arguments.

Compound Statements as Macros. When writing macros, it can be useful
to define a macro that expands into a compound statement. You can
define such a macro so it can be invoked in the same way you would call a
function, making your source code easier to read and maintain. The fol-
lowing two code segments define two versions of the macro SKIP_SPACES:
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-109

Preprocessing a Program
/* SKIP_SPACES, regular macro */
#define SKIP_SPACES ((p), limit) \{
 char *lim = (limit); \
 while (p != lim) { \
 if (*(p)++ != ' ') { \
 (p)—; \
 break; \
 } \
 } \
} \

/* SKIP_SPACES, enclosed macro */
#define SKIP_SPACES (p, limit) \
 do { \
 char *lim = (limit); \
 while ((p) != lim) { \
 if (*(p)++ != ' ') { \
 (p)—; \
 break; \
 } \
 } \
 } while (0)

Enclosing the first definition within the do {…} while (0) pair changes
the macro from expanding to a compound statement to expanding to a
single statement. With the macro expanding to a compound statement,
you sometimes need to omit the semicolon after the macro call in order to
have a legal program. This leads to a need to remember whether a function
or macro is being invoked for each call and whether the macro needs a
trailing semicolon or not. With the do {…} while (0) construct, you can
pretend that the macro is a function and always put the semicolon after it.
For example:

/* SKIP_SPACES, enclosed macro, ends without ‘;’ */
if (*p != 0)
 SKIP_SPACES (p, lim);
else …
2-110 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
This expands to:

if (*p != 0)
 do {
 …
 } while (0); /* semicolon from SKIP_SPACES (…); */
else …

Without the do {…} while (0) construct, the expansion would be:

if (*p != 0)
 {
 …
 }
; /* semicolon from SKIP_SPACES (…); */
else

For more information on macros, see the VisualDSP++ 2.0 Assembler and
Preprocessor Manual for ADSP-21xxx DSPs.

Support for Multiple Heaps
The ADSP-21xxx C/C++ run-time library supports the standard heap
management functions calloc, free, malloc, and realloc. By default,
these functions access the default heap, which is defined in the standard
linker description file and the run-time header.

User written code can define any number of additional heaps, which can
be located in any of the ADSP-21xxx memory blocks. These additional
heaps can be accessed either by the standard calloc, free, malloc, and
realloc functions, or via the Analog Devices extensions heap_calloc,
heap_free, heap_malloc, and heap_realloc.

The primary use of alternate heaps is to allow dynamic memory allocation
from more than one memory block. The ADSP-21xxx architecture allows
two data accesses per cycle (in addition to a code access) if the memory
locations are in different blocks.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-111

Support for Multiple Heaps
Each heap used by a program is described by an entry in a heap descriptor
table. The default heap is always described by the first entry in this table.
User defined heaps are created by allocating a region of memory for the
heap and by placing a descriptor entry for the heap in the heap descriptor
table. See the section “Creating Heap Descriptor Records” on page 2-115
for details.

The default heap is initialized automatically if it is used by the program,
but all user defined heaps must be initialized explicitly (with a call of the
heap_init) function before they are used.

Heap Identifiers
All heaps have two identifiers. The primary heap ID is the index of the
descriptor for that heap in the heap descriptor table. The primary heap ID
of the default heap is always 0, and the primary IDs of user defined heaps
will be 1, 2, 3, and so on.

Each heap also has a user ID. The user ID of a heap is specified in the
heap descriptor for the heap. The user ID of the default heap is always 0,
and user defined heaps must have distinct user IDs other than 0.

The only use for the heap user ID is to find the primary ID for a heap.
The heap_lookup function takes the user ID as an argument and returns
the primary identifier. All functions other than heap_lookup that take a
heap ID argument must be given the primary ID, not the user ID.
2-112 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
Using Alternate Heaps with the Standard Interface
Alternate heaps can be accessed by the standard functions calloc, free,
malloc, and realloc. The run-time library keeps track of a current heap,
which initially is the default heap. The current heap can be changed any
number of times at run time by calling the function heap_switch.

The standard functions calloc and malloc always allocate a new object
from the current heap. If realloc is called with a null pointer, it too will
allocate a new object from the current heap.

Previously allocated objects can be deallocated with free or realloc, or
resized by realloc, even if the current heap is now different from when
the object was originally allocated. When a previously allocated object is
resized with realloc, the returned object will always be in the same heap
as the original object.

� Multithreaded programs (using VDK) cannot use heap_switch to
change the current heap from the default. Such programs can access
alternate heaps through the alternate interface described in the next
section.

Using the Alternate Heap Interface
The C run-time library provides the alternate heap interface functions
heap_calloc, heap_free, heap_malloc, and heap_realloc. These routines
work exactly the same as the corresponding standard functions without
the “heap_” prefix, except that they take an additional argument that spec-
ifies the heap ID. These functions are completely independent of the
current heap setting.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-113

Support for Multiple Heaps
Objects allocated with the alternate interface functions can be freed with
either the free or heap_free (or realloc or heap_realloc) functions. The
heap_free function is a little faster than free since it doesn't have to
search for the proper heap. However, it is essential that the heap_free or
heap_realloc functions be called with the same heap ID that was used to
allocate the object being freed. If it is called with the wrong heap ID, the
object won't be freed or reallocated.

The actual entry point names for the alternate heap interface routines have
an initial underscore, that is, they are _heap_lookup, _heap_switch,
_heap_calloc, _heap_free, _heap_malloc, and _heap_realloc. The
stdlib.h standard header file defines macro equivalents without the lead-
ing underscores.

Re-initializing Heaps
Heaps can be re-initialized at any time by calling heap_init. This effec-
tively invalidates the contents of any objects that have been allocated from
that heap and not yet freed as well as all pointers to such objects. This is a
very quick way to free all the objects currently allocated from the heap.

A heap should not be re-initialized unless it is known that the program
will never again refer to any object currently allocated from that heap.
Also, you should not re-initialize the default heap or any other heap that
has been the current heap, since the run-time library or code generated by
the compiler may have allocated objects from the current heap even in the
absence of an explicit memory allocation call in the user's source code.
2-114 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
Creating Heap Descriptor Records
Every heap requires a heap descriptor, a heap storage area, and heap ini-
tialization. This section shows how to create heap descriptor records,
while the following sections show how to allocate heap storage areas and
how to initialize heaps.

The heap descriptor fields give the starting address, size, and user ID of
the heap. The _heap_descriptor_t type declared in stdlib.h should be
used for declaring a heap descriptor in a C or C++ program. Note that the
size of a heap is measured in chars, the same unit of measure that the
sizeof function uses.

The size of the heap descriptor table is fixed at link time, so the maximum
number of different heaps that can be used at once is fixed when the pro-
gram is built. However, the actual contents of a descriptor in this table are
not referred to until the heap is initialized with a call of heap_init. There-
fore, it is possible to delay specifying a heap's location and size until run
time, as long as a heap descriptor for the heap has been placed in the heap
descriptor table. This allows for techniques, such as, creating a new heap
at run time from a storage area allocated from a different heap, or creating
a heap from memory areas that are used for some other purpose in other
phases of program execution. See Listing 2. on page 2-121 for examples.

The heap descriptor for an alternate heap can be placed in the heap
descriptor table by editing a copy of the run-time header and placing the
descriptor after the default heap descriptor, which immediately follows the
___heaptab_start label. The default heap descriptor must always be first
in the table.

 It is probably more convenient to create the descriptor in C or C++ code
as an instance of the _heap_descriptor_t struct. The segment (or section)
directive is used to place the descriptor in an input section called
“heaptab”, and this causes the linker to place the descriptor in the heap
descriptor table. See Listing 2. on page 2-121 for examples.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-115

Support for Multiple Heaps
Allocating Heap Storage Areas
Heap storage areas do not have any alignment requirements; therefore,
they can be located at any address. The heap_init function changes the
start address and size in the heap descriptor if required to do so to satisfy
alignment needs. Heap storage areas can be allocated either statically (at
link time) or dynamically (at run time).

One way to create a static heap storage area is to imitate the method used
to create the default heap. This procedure requires modifying the linker
description file (LDF) and the run-time header. Briefly, the MEMORY sec-
tion of the LDF declares a memory range, seg_heap, that is dedicated to
the heap and an output section heap that is placed in seg_heap.

Two linker variables, ldf_heap_space and ldf_heap_length, are defined
in the heap output section. These variables give the start address and size
of seg_heap. At run-time startup, the heap descriptor is declared using
ldf_heap_space (in source file seg_init.asm) and ldf_heap_length to
initialize the start and size fields of the descriptor.

It is often more convenient to create heaps in C or C++ source code. Char-
acter arrays can be used for this purpose. An array declared outside a
function, or inside a function using the static storage class, exists through-
out the lifetime of the program. Therefore, such an array can be used as
the storage area for a static heap.

Static heaps can be placed in particular memory blocks by declaring the
storage area either with the dm and pm storage qualifiers or with the seg-
ment (or section) placement directive. The standard linker description file
(LDF) causes variables declared with dm (the default) to be placed in
block 1 and variables declared with pm to be placed in block 2. The direc-
tive segment("seg_dmda") is equivalent to using the qualifier dm, and
segment("seg_pmda") is equivalent to using pm.
2-116 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
More generally, you can modify the standard LDF to allow the heap stor-
age to be placed in any valid memory location (using the segment
placement directive) by following the method used for locating variables
placed in the seg_dmda or seg_pmda sections.

An array declared inside a function, but without the static storage class,
exists only while that function is executing. Such an array can be used as
the storage area for a dynamic heap. Note that this kind of dynamic heap
can only be used while the function in which the heap storage was
declared is still executing.

The storage for a dynamic heap can also be allocated from another heap,
such as, the default heap or a different alternate heap that has already been
initialized. This kind of dynamic heap can be used even after the function
that allocated the heap storage has returned. Once such a heap's storage
area has been deallocated, the heap can no longer be used.

See Listing 2-1 on page 2-121 for examples of static and dynamic storage
areas.

Initializing Heaps
Heaps are usually initialized by a call of heap_init in the main function or
in a function called by main.

Sometimes, however, it is necessary to initialize a heap before the main
function is called by the run-time header (this is also true for the default
heap). In C++, for example, you might have a class whose constructor allo-
cates objects from an alternate heap. If your program has a static instance
of this class, the C++ compiler ensures that the constructor for the object
is called before the main function is called. You can't initialize the heap in
the main function because this would be too late.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-117

Support for Multiple Heaps
This problem can be solved by creating a simple initializer function dedi-
cated to initializing that heap. A pointer to this initializer function is
placed in an initializer table by using the segment("ctor3") placement
directive. Use of the ctor3 section name ensures that the heap's initializer
function is called before any C++ constructors and after any initializers
used by the run-time library.

Example C program
The C program in Listing 2-1 shows how to allocate and initialize alter-
nate heaps. It creates three statically allocated heaps, two of which are in
pm memory. It creates two dynamically allocated heaps, one from an
automatic (stack) buffer and one from a buffer allocated from one of the
statically allocated alternate heaps.

#include <stdio.h>
#include <stdlib.h>

// Define storage for three static heaps

static char heap1[1000]; // heap 1 is in block 1 (dm)
static pm char heap2[500]; // heap 2 is in block 2 (pm)
static segment("data2") char heap3[200];

// heap 3 also in block 2

// heap user IDs

#define UID1 10
#define UID2 20
#define UID3 30
#define UID4 40
2-118 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
static int my_heap_init(int heap_index)
{

int ret = heap_init(heap_index);
if (ret)
printf("*** Failure initializing heap with index %d\n",
heap_index);

 else
 printf("Success initializing heap with index %d\n",
heap_index);
 return ret;
}

// descriptor records for static heaps

segment("heaptab") _heap_descriptor_t heap1_dsc =
 {(dm char*)heap1, sizeof(heap1), UID1};
segment("heaptab") _heap_descriptor_t heap2_dsc =
 {(dm char*)heap2, sizeof(heap2), UID2};
segment("heaptab") _heap_descriptor_t heap3_dsc =
 {(dm char*)heap3, sizeof(heap3), UID3};

// descriptor record for dynamic heap

segment("heaptab") _heap_descriptor_t heap4_dsc ={0, 0, UID4};
static int heap1_stat = -10;

// initializer function for heap 1

static void init_heap1(void)
{
 heap1_stat = my_heap_init(heap_lookup(UID1));
}

static void auto_heap(void);
static void dynamic_heap(void);
static int index1, index2, index3;
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-119

Support for Multiple Heaps
int main()
{
 printf("first statement in main()\n");
 init_heap1();
 index1 = heap_lookup(UID1);
 index2 = heap_lookup(UID2);
 index3 = heap_lookup(UID3);
 if (!heap1_stat && !my_heap_init(index2) &&
!my_heap_init(index3)) {
 printf("main(): Now heaps 1, 2, and 3 can be used\n");
 }
 else {
 printf("main(): *** Problem initializing heaps 1, 2, or
3\n");
 }
 auto_heap();
 dynamic_heap();
 return 0;
}

static void auto_heap(void)
{ // storage for 4 heap is allocated on stack
 char buf[500];
 int index4 = heap_lookup(UID4);
 heap4_dsc.start = buf;
 heap4_dsc.size = sizeof(buf);
 if (!my_heap_init(index4)) {
 printf("auto_heap(): Now heap 4 can be used\n");
 }
 else {
 printf("auto_heap(): *** Problem initializing heap 4\n");
 }
 // Heap 4 disappears when auto_heap() returns
}

static void dynamic_heap(void)
{ // storage for heap 4 is allocated from heap 1
 const int bufsize = 500;
 char *buf = heap_malloc(index1, bufsize);
 int index4 = heap_lookup(UID4);
 heap4_dsc.start = buf;
 heap4_dsc.size = bufsize;
2-120 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
 if (buf && !my_heap_init(index4)) {
 printf("dynamic_heap(): Now heap 4 can be used\n");
 }
 else {
 printf("dynamic_heap(): *** Problem initializing heap
4\n");
 }
 if (buf) heap_free(index1, buf); // Return heap 4 storage to
heap 1
 // Heap 4 cannot be used after this point
}

Listing 2-1. Allocating and Initializing Alternate Heaps

C/C++ Run-Time Model
This section describes the conventions that you must follow as you write
assembly code that can be linked with C or C++ code. The description of
how C or C++ constructs appear in assembly language are also useful for
low-level program analysis and debugging.

This section provides a full description of the ADSP-21xxx run-time
model, including the layout of the stack, data access, and call/entry
sequence.

This model applies to the compiler-generated code. Assembly program-
mers are encouraged to maintain stack conventions.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-121

C/C++ Run-Time Model
C/C++ Run-Time Environment
The C/C++ run-time environment is a set of conventions that C and C++
programs follow to run on ADSP-21xxx DSPs. Assembly routines that you
link to C or C++ routines must follow these conventions.

Figure 2-1 on page 2-123 shows an overview of the run-time environment
issues that you must consider as you write assembly routines that link with
C/C++ routines. These issues include the following:

• Register usage conventions (see the following sections)

“Compiler Registers” on page 2-129

“Miscellaneous Information” on page 2-130

“Call Preserved Registers” on page 2-131

“Scratch Registers” on page 2-132

“Stack Registers” on page 2-133

• Memory usage conventions (see the following sections)

“Memory Usage” on page 2-123

“Using Data Storage Formats” on page 2-143

• Program control conventions (see the following sections)

“Managing the Stack” on page 2-135

“Transferring Function Arguments and Return Value” on
page 2-140

“Using Macros to Manage the Stack” on page 2-167
2-122 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
Figure 2-1. Assembly Language Interfacing Overview

Memory Usage

The cc21k C/C++ run-time environment requires that a specific set of
memory section names be used for placing code in memory. In assembly
language files, these names are used as labels for the .SECTION directive. In
the linker description file, these names are used as labels for the output
section names within the SECTIONS{} command. For information on syn-
tax for the Linker Description File and other information on the linker,
see the VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx
DSPs. Table 2-11 lists the memory section and output section names.

Required
Memory

Compiler
Registers

User
Registers

Stack
Register

Scratch
Registers

Call
Preserved
Registers

Stack
Usage

Argument
Transfer

Function
Address

C/C++
Run-Time

Header

Data
Storage

Interface
Macros

C/C++ Programs

Assembly
Routine
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-123

C/C++ Run-Time Model
Because the compiler and linker must know the processor type to create
code for the correct memory model, you must specify the processor for
which you are developing. If you are using the VisualDSP++ IDDE, you
specify the processor in the Project Options dialog box. If you are run-
ning the compiler from the command line, you specify the processor with
a compiler switch. For more information on processor selection switches,
see “C/C++ Compiler Common Switch Descriptions” on page 2-19.

Table 2-11. Memory .SECTION and SECTION{} Names

Names Usage Description

seg_pmco This section must be in Program Memory, holds code, and is required by
some functions in the C/C++ run-time library. For more information, see
“Program Memory Code Storage”on page 2-125.

seg_dmda This section must be in Data Memory, is the default location for global and
static variables and string literals, and is required by some functions in the
C/C++ run-time library. For more information, see “Data Memory Data
Storage”on page 2-125.

seg_pmda This section must be in PM, holds PM data variables, and is required by
some functions in the C/C++ run-time library. For more information, see
“Program Memory Data Storage”on page 2-125.

seg_stak This section must be in DM, holds the run-time stack, and is required by the
C/C++ run-time environment. For more information, see “Run-Time Stack
Storage”on page 2-126.

seg_heap This section must be in DM, holds the default run-time heap, and is
required by the C/C++ run-time environment. For more information, see
“Run-Time Heap Storage”on page 2-126.
2-124 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
Program Memory Code Storage. The Program Memory code section,
seg_pmco, is where the compiler puts all the program instructions that it
generates when you compile your program. When linking, use your linker
description file to map this section to Program Memory space.

Data Memory Data Storage. The Data Memory data section, seg_dmda, is
where the compiler puts global and static data in Data Memory. When
linking, use your linker description file to map this section to Data Mem-
ory space.

By default, the compiler stores static variables in the Data Memory data
section. The compiler’s dm and pm keywords (memory type qualifiers) let
you override this default. If a memory type qualifier is not specified, the
compiler places static and global variables in Data Memory. For more
information on type qualifiers, see “Dual Memory Support Keywords (pm
dm)” on page 2-68. The following example allocates an array of 10 inte-
gers in the Data Memory data section:

static int data [10];

Program Memory Data Storage. The Program Memory data section,
seg_pmda, is where the compiler puts global and static data in Program
Memory. When linking, use your linker description file to map this sec-
tion to Program Memory space.

seg_init This section must be in PM, holds system initialization data, and is required
for system initialization. For more information, see “Initialization Data Stor-
age”on page 2-127.

seg_rth This section must be in the interrupt table area of PM, holds system initial-
ization code and interrupt service routines, and is required for system initial-
ization. For more information, see “Run-Time Header Storage”on
page 2-128.

Table 2-11. Memory .SECTION and SECTION{} Names (Cont’d)

Names Usage Description
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-125

C/C++ Run-Time Model
By default, the compiler stores static variables in the Data Memory data
section. The compiler's pm keyword (memory type qualifier) lets you over-
ride this default and place variables in the Program Memory data section.
If a memory type qualifier is not specified, the compiler places static and
global variables in Data Memory. For more information on type qualifi-
ers, see “Dual Memory Support Keywords (pm dm)” on page 2-68. The
following example allocates an array of 10 integers in the Program Mem-
ory data section:

static int pm coeffs[10];

Run-Time Stack Storage. The run-time stack section, seg_stak, is where
the compiler puts the run-time stack in Data Memory. When linking, use
your linker description file to map this section to Data Memory space.
Because the run-time environment cannot function without this section,
you must define it, and the section must be in Data Memory space. A typ-
ical size for the run-time stack is 4K 32-bit words of Data Memory.

The run-time stack is a 32-bit wide structure, growing from high memory
to low memory. The compiler uses the run-time stack as the storage area
for local variables and return addresses. During a function call, the calling
function pushes the return address onto the stack. For more information,
see “Managing the Stack” on page 2-135.

Run-Time Heap Storage. The run-time heap section, seg_heap, is where
the compiler puts the run-time heap in Data Memory. When linking, use
your Linker Description File (.ldf) to map the seg_heap section to Data
Memory space. A typical size for the run-time heap is 60K 32-bit words of
Data Memory.

To dynamically allocate and deallocate memory at run-time, the C or C++
run-time library includes five functions: malloc, calloc, realloc and
free. These functions allocate memory from the seg_heap section of
memory by default.
2-126 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
The run-time library also provides support for multiple heaps, which
allow dynamically allocated memory to be located in different blocks. See
“Support for Multiple Heaps” on page 2-111 for more information on the
use of multiple heaps.

� The Linker Description File requires the seg_heap declaration for
every DSP project whether a program dynamically allocates memory
at run-time or not.

Initialization Data Storage. The initialization section, seg_init, is where
the compiler puts the initialization data in Program Memory. When link-
ing, use your linker description file to map this section to Program
Memory space.

The initialization section may be processed by two different utility pro-
grams: mem21k or elfloader.

• If you are producing boot-loadable executable file for your DSP sys-
tem, you should use the elfloader utility to process your execut-
able. The elfloader utility processes your executable file,
producing an ADSP-2106x boot-loadable file which you can use to
boot a target hardware system and initialize its memory.

The boot loader, elfloader, operates on the executable file pro-
duced by the linker. When you run elfloader as part of the compi-
lation process (using the -no-mem switch), the linker (by default)
creates a *.dxe file for processing with elfloader.

When preparing files for the ld21k loader, the system configuration
file’s seg_init section needs only 16 slots/locations of space.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-127

C/C++ Run-Time Model
• If you are producing an executable file that is not going to be boot
loaded into the DSP (almost exclusively an ADSP-21020 issue), you
should use the mem21k utility to process your executable. The mem21k
utility processes your executable file, producing an optimized exe-
cutable file in which all RAM memory initialization is stored in the
seg_init PM ROM section. This optimization has the advantage of
initializing all RAM to its proper value before the call to main() and
reducing the size of an executable file by combining contiguous,
identical initializations into a single block.

The memory initializer, mem21k, operates on the executable file pro-
duced by the linker. When you run mem21k as part of the compila-
tion process, the linker (by default) creates a *.lnk file for
processing with mem21k.

The C run-time header reads the seg_init section generated by
mem21k to determine which memory locations should be initialized
to what values. This process occurs during the
__lib_setup_processor routine that is called from the run-time
header.

Run-Time Header Storage. The run-time header section, seg_rth, is
where the compiler puts the system initialization code and interrupt table
in Program Memory. When linking, use your linker description file to
map this section to the interrupt vector table area of Program Memory
space.

If you do not specify a run-time header file, the compiler uses a default
run-time header from the 21k\lib or 211xx\lib directory. The default
header file is 060_hdr.doj in the 21k\lib directory for the -21060, -21061,
-21062, -21065L switches or 160_hdr.doj in the 211xx\lib directory for
the -21160 and -21161 switch. Note that if the compiler finds a copy of
xxx_hdr.obj in the current directory, the compiler uses the copy instead
of the default from the 21k\lib or 211xx\lib directory.
2-128 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
The source files for many run-time header files (including 060_hdr.asm
and 160_hdr.asm) come with the development tools package. Keep the fol-
lowing points in mind if you prefer to write your own interrupt handlers
in C or C++:

• Note that the library functions signal, raise, interrupt, and their
variants are based on the run-time header used.

• Note that on both the ADSP-2106x and ADSP-2116x, each inter-
rupt is allocated four words.

Compiler Registers

The cc21k C/C++ run-time environment reserves a set of registers for its
own use. Table 2-12 lists these registers and the values the C/C++
run-time environment expects to be in them. Do not modify these regis-
ters, except as noted in the table.

Table 2-12. Compiler Registers

Register Value Modification Rules

m5, m13 0 Do not modify

m6, m14, 1 Do not modify

m7, m15 -1 Do not modify

b6, b7 stack base Do not modify

l6, l7 stack length Do not modify

l0, l1, l2, l3, l4, l5, l8, l9,
l10, l11, l12, l13, l14, l15

0 Modify for temporary use, restore when
done
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-129

C/C++ Run-Time Model
Miscellaneous Information

The following is some miscellaneous information that you might find
helpful in understanding register functionality:

• All of the L registers, except L6 and L7, are required to be zero at any
call/return point.

• When you either make a function call or return to your caller and
have modified any of the L registers, you must reset them to zero.

• Interrupt routines must save and set to zero the L register before
using its corresponding I register for any post-modify instruction.

User Registers

The -reserve command-line switch lets you reserve registers for your
inline assembly code or assembly language routines. If reserving an L regis-
ter, you must reserve the corresponding I register; reserving an L register
without reserving the corresponding I register can result in execution
problems.

You must reserve the same list of registers in all linked files; the whole
project must use the same -reserve option. Table 2-13 lists these regis-
ters. Note that the C run-time library does not use these registers.

Table 2-13. User Registers

Register Value Modification Rule

i0, b0, l0, m0,
i1, b1, l1, m1,
i8, b8, l8, m8,
i9, b9, l9, m9,
mrb, ustat1, ustat2

user defined If not reserved, modify for temporary use,
restore when done

If reserved, usage is not limited
2-130 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
� When you reserve a register, you are asking the compiler to avoid
using the register. If the compiler requires a register you have
reserved, the compiler ignores your reservation request. Reserving
registers can negatively influence the efficiency of compiled C or
C++ code; use this option infrequently.

Call Preserved Registers

The cc21k C/C++ run-time environment specifies a set of registers whose
contents must be saved and restored. Your assembly function must save
these registers during the function’s prologue and restore the registers as
part of the function’s epilogue. These registers must be saved and restored
if they are modified within the assembly function; if a function does not
change a particular register, it does not need to save and restore the regis-
ter. Table 2-14 lists these registers.

Table 2-14. Call Preserved Registers 1

1 If you use a call preserved I register, you must save and zero (clear) the correspond-
ing L register as part of the function prologue. Then, restore the L register as part
of the function epilogue.

b0 b1 b2 b3 b5 b8

b9 b10 b11 b14 b15

i0 i1 i2 i3 i5 i8

i9 i10 i11 i14 i15 mode1

mode2 mrb mrf m0 m1 m2

m3 m8 m9 m10 m11 r3

r5 r6 r7 r9 r10 r11

r13 r14 r15 ustat1 ustat2
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-131

C/C++ Run-Time Model
Many functions in the C/C++ run-time library expect the processor to be
in a specific mode and may not operate correctly if the processor is in a
different mode. If you need to change processor modes, save the old values
in the mode1 and mode2 registers and restore these registers before calling
or returning to calling functions. The C/C++ run-time environment oper-
ates in the following mode:

• Uses default bit order for DAG operations (no bit reversal)

• Uses the primary register set (not background set)

• Uses .PRECISION=32 (32-bit floating-point) and .ROUND_NEAREST
(round-to-nearest value)

• Disables ALU saturation (mode1 register, ALUSAT bit = 0)

• Uses default FIX instruction rounding to nearest (MODE1 register,
TRUNCATE=0)

Scratch Registers

The cc21k C/C++ run-time environment specifies a set of registers whose
contents do not need to be saved and restored. Note that the contents of
these registers are not preserved across function calls. Table 2-15 lists
these registers.

Table 2-15. Scratch Registers

b4 b12 b13 r0 r1 r2 r4 r8 r12

i4 i12 m4 m12 i13
2-132 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
In addition, for ADSP-2116x DSPs the PEy data registers are all scratch
registers. Table 2-16 lists these registers.

Stack Registers

The cc21k C/C++ run-time environment reserves a set of registers for con-
trolling the run-time stack. These registers may be modified for stack
management, but they must be saved and restored. Table 2-17 lists these
registers.

Table 2-16. Additional ADSP-2116x scratch Registers

s0 s1 s2 s3 s4 s5 s6 s7 s8

s9 s10 s11 s12 s13 s14 s15 USTAT2 USTAT4

ASTATy STKy

Table 2-17. Pointer Registers

Register Value Modification Rules

i7 Stack pointer Modify for stack management, restore when done

i6 Frame pointer Modify for stack management, restore when done

i12 Return address Load with function call return address on function
exit
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-133

C/C++ Run-Time Model
Alternate Registers

The C/C++ run-time environment model does not use any of the alternate
registers because these registers are available for use in assembly language
only. To use these registers, several aspects of the C/C++ run-time model
must be understood.

The C/C++ run-time model uses register I6 as the frame pointer and regis-
ter I7 as the stack pointer. Setting the DAG register that contains I6 and
I7 from a background register to an active register directly affects the stack
operation. The C/C++ run-time model does not have an understanding of
background registers. If the background I6 and I7 registers are active and
an interrupt occurs, the C/C++ run-time model still uses I6 and I7 to
update the stack. This results in faulty stack handling.

� The background register set containing DAG registers I6 and I7
should only be used in assembly routines if interrupts are not
enabled.

The super fast interrupt dispatcher uses context switching rather than sav-
ing registers on the run-time stack. To ensure no register conflicts, do not
use the super fast interrupt dispatcher or disable interrupts when using
secondary registers in an assembly routine.
2-134 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
Managing the Stack

The cc21k C/C++ run-time environment uses the run-time stack for stor-
age of automatic variables and return addresses. The stack is managed by a
frame pointer and a stack pointer and grows downward in memory, mov-
ing from higher to lower addresses.

A stack frame is a section of the stack used to hold information about the
current context of the C or C++ program. Information in the frame
includes local variables, compiler temporaries, and parameters for the next
function.

The frame pointer serves as a base for accessing memory in the stack
frame. Routines refer to locals, temporaries, and parameters by their offset
from the frame pointer.

Figure 2-2 on page 2-136 shows an example section of a run-time stack. In
the figure, the currently executing routine, Current(), was called by Pre-
vious(), and Current() in turn calls Next(). The state of the stack is as if
Current() has pushed all the arguments for Next() onto the stack and is
just about to call Next().

� Stack usage for passing any or all of a function’s arguments depends
on the number and types of parameters to the function.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-135

C/C++ Run-Time Model
The prototypes for the functions in Figure 2-2 are as follows:

void Current(int a, int b, int c, int d, int e);
void Next(int v, int w, int x, int y, int z);

Figure 2-2. Example Run-Time Stack

Previous()’s
Frame

Current()’s
Frame

Next()’s
Frame

Second (and last) word of Current()’s
stack parameters; argument e to
Current()

First word of Current()’s stack
parameters; argument d to Current()

Return Address

Frame pointer (i6) saved from
Previous()

Local variables and saved registers
for Current()

Increasing memory
addresses

Stack grows downward
in memory

Last word of Next()’s stack parame-
ters; argument z to Next()

Second-to-last word of Next()’s stack
parameters; argument y to Next()

Empty (will hold stack pointer (i7))
2-136 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
In generating code for a function call, the compiler produces the following
operations to create the called function’s new stack frame:

1. Loads the r2 register with the frame pointer (in the i6 register)

2. Sets the frame pointer, i6 register, equal to the stack pointer (in the
i7 register)

3. Uses the delayed-branch instruction to pass control to the called
function

4. Pushes the frame pointer, r2, onto the run-time stack during the
first branch delay slot

5. Pushes the return address, pc, onto the run-time stack during the
second delay branch slot

For ADSP-2106x and ADSP-2116x DSPs, the following instructions cre-
ate a new stack frame. Note how the two initial register moves are
incorporated into the cjump instruction:

cjump my_function (DB);
/* where my_function is the called function */

dm(i7, m7) = r2;
dm(i7, m7) = pc;

As you write assembly routines, note that the operations to create a stack
frame are the responsibility of the called function, and you can use the
entry or leaf_entry macros to perform these operations. For more infor-
mation on these macros, see “Using Mixed C/C++ and Assembly Support
Macros” on page 2-153.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-137

C/C++ Run-Time Model
In generating code for a function return, the compiler produces the fol-
lowing operations to restore the calling function’s stack frame:

1. Pops the return address off the run-time stack and loads it into the
i12 register

2. Uses the delayed-branch instruction to pass control to the calling
function and jumps to the return address (i12 + 1)

3. Restores the caller’s stack pointer, i7 register, by setting it equal to
the frame pointer, i6 register, during the first branch delay slot

4. Restores the caller’s frame pointer, i6 register, by popping the pre-
viously saved frame pointer off the run-time stack and loading the
value into i6 during the second delay branch slot

For ADSP-2106x DSPs, the following instructions return from the func-
tion and restore the stack and frame pointers. Note that the restoring of
the stack pointer and frame pointer are incorporated into the rframe
instruction:

i12 = dm(-1, i6);
jump (m14, i12) (DB);
nop;
rframe;

As you write assembly routines, note that the operations to restore stack
and frame pointers are the responsibility of the called function, and you
can use the exit or leaf_exit macros to perform these operations. For
more information on these macros, see “Using Mixed C/C++ and Assem-
bly Support Macros” on page 2-153.

In the following code examples (Listing 2-2 and Listing 2-3), observe how
the function calls in the C code translate to stack management tasks in the
compiled (assembly) version of the code. The comments have been added
to the compiled code to indicate the function prologue and function
epilogue.
2-138 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
/* Stack management — C code */

int my_func(int, int);
int arg_a, return_c;

main()
{
 static int arg_b;
 arg_b = 0;
 return_c = my_func(arg_a, arg_b);
}

int my_func(int arg_1, int arg_2)
{
 return (arg_1 + arg_2)/2;
}

Listing 2-2. Stack Management, Example C Code

/* Stack management — C compiled (2106x assembly) code */
.section /pm seg_pmco;
.global _main;
_main:
 .def end_prologue; .val .; .scl 109; .endef;
 r4=dm(_arg_a);
 /* r4, the first argument register, which is arg_a */
 r8=0;
 /* r8, the second argument register, which is arg_b */
 dm(arg_b)=r8;

/* The next three lines are the function call sequence */
 cjump (pc,_my_func) (DB);
 dm(i7,m7)=r2;
 dm(i7,m7)=pc;

 dm(_return_c)=r0;

 /* The next four lines are main’s function epilogue */
 i12=dm(-1,i6);
 jump (m14, i12) (DB);
 nop;
 rframe;
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-139

C/C++ Run-Time Model
.global _my_func;
_my_func:
 .def end_prologue; .val .; .scl 109; .endef;
 r0=(r4+r8)/2;

 /* The next four lines are my_func’s function epilogue */
 i12=dm(-1,i6);
 jump (m14, i12) (DB);
 nop;
 rframe;
.endseg;

Listing 2-3. Stack Management, Example ADSP-2106x Assembly Code

The next two sections, “Transferring Function Arguments and Return
Value” on page 2-140 and “Using Macros to Manage the Stack” on
page 2-167, provide additional detail on function call requirements.

Transferring Function Arguments and Return Value

The C/C++ run-time environment uses a set of registers and the run-time
stack to transfer function parameters to assembly routines. Your assembly
language functions must follow these conventions when they call or when
they are called by C or C++ functions.

Because it is most efficient to use registers for passing parameters, the
run-time environment attempts to pass the first three parameters in a
function call using registers; it then passes any remaining parameters on
the run-time stack.
2-140 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
The convention is to pass the function’s first parameter in r4, the second
parameter in r8, and the third parameter in r12. The following exceptions
apply to this convention:

• If any parameter is larger then a single 32-bit word, then that
parameter and all subsequent parameters are passed on the stack.

• If the function is declared to take a variable number of arguments
(has … in its prototype), then the last named parameter and any sub-
sequent parameters are passed on the stack.

Table 2-18 lists the rules that cc21k uses for passing parameters in regis-
ters to functions and the rules that your assembly code must use for
returns.

Table 2-18. Parameter and Return Value Transfer Registers

Register Parameter Type Passed Or Returned

r4 Pass first 32-bit data type parameter

r8 Pass second 32-bit data type parameter

r12 Pass third 32-bit data type parameter

stack Pass fourth and remaining parameters; see exceptions to this rule on
page 2-141

r0 Return int, long, char, float, short, pointer, and one-word structure
parameters

r0, r1 Return long double and two-word structure parameters. Place MSW in r0 and
LSW in r1

r1 Return the address of results that are longer than two words; r1 contains the
first location in the block of memory containing the results
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-141

C/C++ Run-Time Model
Consider the following function prototype example:

pass(int a, float b, char c, float d);

The first three arguments, a, b, and c are passed in registers r4, r8, and
r12, respectively. The fourth argument, d, is passed on the stack.

This next example illustrates the effects of passing doubles.

count(int w, long double x, char y, float z);

The first argument, w, is passed in r4. Because the second argument, x, is a
multi-word argument, x is passed on the stack. As a result, the remaining
arguments, y and z, are also passed on the stack.

The following illustrates the effects of variable arguments on parameter
passing:

compute(float k, int l, char m,…);

Here, the first two arguments, k and l, are passed in registers r4 and r8.
Because m is the last named argument, m is passed on the stack, as are all
remaining variable arguments.

When arguments are placed on the stack, they are pushed on from right to
left. The right-most argument is at a higher address than the left-most
argument passed on the stack.

The following example shows how to access parameters passed on the
stack:

tab(int a, char b, float c, int d, int e, long double f);

Parameters a, b, and c are passed in registers because they are single-word
parameters. The remaining parameters, d, e, and f, are passed on the
stack.
2-142 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
All parameters passed on the stack are accessed relative to the frame
pointer, register i6. The first parameter passed on the stack, d, is at
address i6 + 1. To access it, you could use this assembly language
statement:

r3=dm(1,i6);

The second parameter passed on the stack, e, is at i6 + 2 and can be
accessed by the statement:

 r3=dm(2,i6);

The third parameter passed on the stack, f, is a long double that has its
most significant word at i6 + 3 and its least significant word at i6 + 4.
The most significant word of f can be accessed by the statement:

 r3=dm(3,i6);

Using Data Storage Formats

The C/C++ run-time environment uses the data formats that appear in the
Table 2-19, Table 2-20, Figure 2-3, and Figure 2-4.

Table 2-19. Data Storage Formats and Data Type Sizes

Applied Type Number Representation

int 32-bit two’s complement

long int 32-bit two’s complement

short int 32-bit two’s complement

unsigned int 32-bit unsigned magnitude

unsigned long int 32-bit unsigned magnitude

char 32-bit two’s complement
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-143

C/C++ Run-Time Model
unsigned char 32-bit unsigned magnitude

float 32-bit IEEE single-precision

double 32-bit IEEE single-precision

or 64-bit IEEE double-precision if you compile with the
-double-size-64 switch

long double 64-bit IEEE double-precision

Table 2-20. Data Storage Formats and Data Storage

Data Big Endian Storage Format

long double Writes 64-bit IEEE double-precision data with the most signif-
icant word closer to address 0x0000, proceeds toward the top
of memory with the rest (see Figure 2-4 for details).

Table 2-19. Data Storage Formats and Data Type Sizes (Cont’d)

Applied Type Number Representation
2-144 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
Figure 2-3. Floating-Point (32-Bit IEEE Single-Precision) Storage

Bits 22 through 0
(Mantissa)

Single word (32-bits)

Bit 31
(Sign Bit)

Bits 30 through 23
(8-bit exponent,
biased by +127)

The single word (32-bit) data storage format equates to:

-1Sign x 1.Mantissa x 2(Exponent - 127)

Where:

Sign Comes from the Sign Bit

Mantissa Represents the fractional part of the Mantissa (23-bits).
The 1. is assumed in this format.

Exponent Represents the 8-bit exponent
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-145

C/C++ Run-Time Model
Figure 2-4. Floating-Point (64-Bit IEEE Double-Precision) Storage

Bits 51 through 0
(Mantissa)

Most significant word (32-bits)
at memory address N

Least significant word (32-bits)
at memory address N+1

Bit 63
(Sign Bit)

Bits 62 through 52
(11-bit exponent,
biased by +1023)

The two word (64-bit) data storage format equates to:

-1Sign x 1.Mantissa x 2(Exponent -1023)

Where:

Sign Comes from the Sign Bit

Mantissa Represents the fractional part of the Mantissa (52-bits).
The 1. is assumed in this format.

Exponent Represents the 11-bit exponent
2-146 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
Using the Run-Time Header

The run-time header is an assembly language procedure that initializes the
processor and sets up processor features to support the C/C++ run-time
environment. The source code for the default run-time header is in the
060_hdr.asm file for ADSP-2106x DSPs and in the 160_hdr.asm file for
ADSP-2116x DSPs. This run-time header performs the following
operations:

• Initializes the C/C++ run-time environment

• Sets up the interrupt table

• Calls your main() routine

C/C++ and Assembly Interface
This section describes how to call assembly language subroutines from
within C or C++ programs and how to call C or C++ functions from
within assembly language programs. Before attempting to do either of
these calls, be sure to familiarize yourself with the information about the
C/C++ run-time model (including details about the stack, data types, and
how arguments are handled) in “C/C++ Run-Time Environment” on
page 2-122. At the end of this reference, a series of examples demonstrate
how to mix C/C++ and assembly code.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-147

C/C++ and Assembly Interface
Calling Assembly Language Subroutines from
C/C++ Programs

Before calling an assembly language subroutine from a C or C++ program,
you should create a prototype to define the arguments for the assembly
language subroutine and the interface from the C or C++ program to the
assembly language subroutine. You can legally use a function without a
prototype in C. However, using prototypes is strongly recommended for
good software engineering. When the prototype is omitted, the compiler
cannot do argument type-checking and assumes that the return value is of
type integer.

The compiler prefaces the name of any external entry point with an
underscore. You should either declare your assembly language subrou-
tine’s name with a leading underscore or define it within an
'extern "asm" {}' format to tell the compiler that it is an assembly lan-
guage subroutine.

The run-time model defines some registers as scratch registers and others
as preserved or dedicated registers. The scratch registers can be used within
the assembly language program without worrying about their previous
contents. If you need more room (or are working with existing code) and
wish to use the preserved registers, you must first save their contents and
then restore those contents before returning. Do not use the dedicated
registers for other than their intended purpose; the compiler, libraries,
interrupt routines, debugger, and interrupt routines all depend on having
a stack available as defined by those registers.

The compiler also assumes that the machine state does not change during
execution of the assembly language subroutine.

� Do not change any machine modes (for example, the machine may
have an integer/fractional mode, or it may use certain registers to
indicate circular buffering when those register values are zero).
2-148 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
If arguments are on the stack, they are addressed via an offset from the
stack pointer or frame pointer.

A good way to explore how arguments are passed between a C/C++ pro-
gram and an assembly language subroutine is to write a dummy function
in C/C++ and compile it with the save temporary files option (the
-save-temps command-line option). The following example includes the
global volatile variable assignments to indicate where the arguments can
be found upon entry to asmfunc.

// Sample file for exploring compiler interface …
 // global variables … assign arguments there just so
 // we can track which registers were used
 // (type of each variable corresponds to one of arguments):

 int global_a;
 float global_b;
 int * global_p;

// the function itself:

int asmfunc(int a, float b, int * p)
{
 // do some assignments so .s file will show where args are:
 global_a = a;
 global_b = b;
 global_p = p;

 // value gets loaded into the return register:
 return 12345;
}

VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-149

C/C++ and Assembly Interface
When compiled with the -save-temps -O0 option set, this produces the
following:

// PROCEDURE: asmfunc
.global _asmfunc;

_asmfunc:
modify(i7,-7);
dm(-8,i6)=r3;
dm(-7,i6)=r6;
r2=i0;
dm(-6,i6)=r2;
dm(-4,i6)=r4;
dm(-3,i6)=r8;
dm(-2,i6)=r12;
r3=r4;
r6=r8;
i0=r12;
dm(_global_a)=r3;
dm(_global_b)=r6;
r2=i0;
dm(_global_p)=r2;
r0=12345;

Calling C/C++ Functions from Assembly Language
Programs

You may want to call C or C++-callable library and other functions from
within an assembly language program. As discussed in “Calling Assembly
Language Subroutines from C/C++ Programs” on page 2-148, you may
wish to create a test function to do this in C or C++, and then use the code
generated by the compiler as a reference when creating your assembly lan-
guage program and the argument setup. Using volatile global variables
may help clarify the essential code in your test function.
2-150 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
The run-time model defines some registers as scratch registers and others
as preserved or dedicated. The contents of the scratch registers may be
changed without warning by the called C/C++ function; if the assembly
language program needs the contents of any of those registers, you must
first save their contents before the call to the C/C++ function and then
restore those contents after returning from the call.

� Do not use the dedicated registers for other than their intended pur-
pose; the compiler, libraries, interrupt routines, debugger, and
interrupt routines all depend on having a stack available as defined
by those registers.

Preserved registers can be used; their contents will not be changed by call-
ing a C/C++ function. The function will always save and restore the
contents of preserved registers if they are going to change.

If arguments are on the stack, they are addressed via an offset from the
stack pointer or frame pointer. You can explore how arguments are passed
between an assembly language program and a function by writing a
dummy function in C or C++ and compiling it with the save temporary
files option (the -save-temps command line option). By examining the
contents of volatile global variables in *.s file, you can determine how the
C/C++ function passes arguments and then duplicate that argument setup
process in the assembly language program.

The stack must be set up correctly before calling a C/C++-callable func-
tion. If you call other functions, maintaining the basic stack model also
facilitates the use of the debugger. The easiest way to do this is to define a
C or C++ main program to initialize the run-time system; hold the stack
until it is needed by the C/C++ function being called from the assembly
language program; and then hold that stack until it is needed to call back
into C/C++, making sure the dedicated registers are correct. You do not
need to set the FP prior to the call; the caller’s FP is never used by the
callee.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-151

C/C++ and Assembly Interface
The following example demonstrates the features described in this section.
Because so many different features are combined into a single example,
this procedure as a whole should not be viewed as an example of good
assembly programming.

// PROCEDURE: memalloc
.global _memalloc;
_memalloc:
r5=0xffff; // Assign a value to preserved reg r5

r8=0xffff; // Assign a value to scratch reg r8

r0=dm(-3,i6); // Read a value from the stack
r4=r0; // Put this value in a parameter register

// Save value of scratch register prior to function call
r7=r8;

// Call the C function malloc()
r2=i6;
i6=i7;
jump _malloc (DB);
dm(i7,m7)=r2;
dm(i7,m7)=pc;

// Check the result of the function call
r0=pass r0;
if eq jump(pc,_error);

// Check that the preserved register did not change over
// the function call
r4=0xffff;
comp(r4,r5);
if ne jump(pc, _error);

// Restore value of scratch register after function call
r8=r7;

i6 = 0x123; // PROGRAMMING ERROR! Do not change
// dedicated registers

rts;
2-152 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
Using Mixed C/C++ and Assembly Support Macros

This section lists, describes, and shows syntax for the C/C++ and assembly
interface support macros in the asm_sprt.h system header file. Use these
macros for interfacing assembly language modules with C or C++ func-
tions. Table 2-21 lists the macros.

� Although the syntax for each macro does not change, the listing of
asm_sprt.h in this section may not be the most recent version. To
see the current version, check the asm_sprt.h file that came with
your software package.

Interface Support Macros, Defined

entry

The entry macro expands into the function prologue for non-leaf func-
tions. This macro should be the first line of any non-leaf assembly routine.
Note that this macro is currently null, but it should be used for future
compatibility.

exit

The exit macro expands into the function epilogue for non-leaf func-
tions. This macro should be the last line of any non-leaf assembly routine.
Exit is responsible for restoring the caller’s stack and frame pointers and
jumping to the return address. Note that this macro is currently null, but
it should be used for future compatibility.

Table 2-21. Interface Support Macros, Summary

entry exit leaf_entry leaf_exit

ccall(x) reads(x) puts gets(x)

alter(x) save_reg restore_reg
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-153

C/C++ and Assembly Interface
leaf_entry

The leaf_entry macro expands into the function prologue for leaf func-
tions. This macro should be the first line of any non-leaf assembly routine.
Note that this macro is currently null, but it should be used for future
compatibility.

leaf_exit

The leaf_exit macro expands into the function epilogue for non-leaf
functions. This macro should be the last line of any leaf assembly routine.
leaf_exit is responsible for restoring the caller’s stack and frame pointers
and jumping to the return address.

ccall(x)

The ccall macro expands into a series of instructions that save the caller’s
stack and frame pointers and then jump to function x().

reads(x)

The reads macro expands into an instruction that reads a value from the
stack. The value is located at an offset x from the frame pointer.

puts=x

The puts macro expands into an instruction that pushes the value in regis-
ter x onto the stack.

gets(x)

The gets macro expands into an instruction that pops a value off of the
stack and puts the value in the indicated register:

register = gets(x);

The value is located at an offset x from the stack pointer.
2-154 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
alter(x)

The alter macro expands into an instruction that adjusts the stack
pointer by adding the immediate value x. With a positive value for x,
alter pops x words from the top of the stack. You could use alter to clear
x number of parameters off the stack after a call.

save_reg

The save_reg macro expands into a series of instructions that push the
register file registers (r0–r15) onto the run-time stack.

restore_reg

The restore_reg macro expands into a series of instructions that pop the
register file registers (r0–r15) off of the run-time stack.

/* asm_sprt.h — C/C++/Assembly Interface Support Macros */
/* asm_sprt.h - $Date: 10/09/97 6:28p $ */

#ifndef __ASM_SPRT_DEFINED
#define __ASM_SPRT_DEFINED

#define entry/* nothing */
#define leaf_entry/* nothing */

#ifdef __ADSP21020__
#define ccall(x) \
 r2=i6; i6=i7; \
 jump (pc, x) (db); \
 dm(i7,m7)=r2; \
 dm(i7,m7)=PC
#define leaf_exit \
 i12=dm(m7,i6);\
 jump (m14,i12) (db); \
 i7=i6; i6=dm(0,I6)
#define exit leaf_exit
#else
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-155

C/C++ and Assembly Interface
#define ccall(x) \
 cjump (x) (DB); \
 dm(i7,m7)=r2; \
 dm(i7,m7)=PC

#define leaf_exit \
 i12=dm(m7,i6); \
 jump (m14,i12) (db); \
 nop; \

RFRAME
#define exit leaf_exit
#endif

#define reads(x)dm(x, i6)
#define putsdm(i7, m7)
#define gets(x)dm(x, i7)
#define alter(x) modify(i7, x)

#define save_reg \
puts=r0;\
puts=r1;\
puts=r2;\
puts=r3;\
puts=r4;\
puts=r5;\
puts=r6;\
puts=r7;\
puts=r8;\
puts=r9;\
puts=r10;\
puts=r11;\
puts=r12;\
puts=r13;\
puts=r14;\
puts=r15

#define restore_reg \
r15=gets(1);\
r14=gets(2);\
r13=gets(3);\
r12=gets(4);\
r11=gets(5);\
r10=gets(6);\
r9 =gets(7);\
2-156 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
r8 =gets(8);\
r7 =gets(9);\
r6 =gets(10);\
r5 =gets(11);\
r4 =gets(12);\
r3 =gets(13);\
r2 =gets(14);\
r1 =gets(15);\
r0 =gets(16);\

alter(16)

#endif

Listing 2-4. asm_sprt.h — C/C++/Assembly Interface Support Macros

Using Mixed C/C++ and Assembly Naming Conventions

It is necessary to be able to use C or C++ symbols (function or variable
names) in assembly routines and use assembly symbols in C or C++ code.
This section describes how to name and use C/C++ and assembly symbols.

To name an assembly symbol that corresponds to a C or C++ symbol, add
an underscore prefix to the C/C++ symbol name when declaring the sym-
bol in assembly. For example, the C/C++ symbol main becomes the
assembly symbol _main.

To use a C function or variable in an assembly routine, declare it as global
in the C program. Import the symbol into the assembly routine by declar-
ing the symbol with the .EXTERN assembler directive.

The external name of a C++ function encodes information about its type
and parameters. Function “signature” enables the overloading of functions
and operators that C++ language supports. To reference a function in a
C++ module, declare it with the extern “C” specifier in order to use the
naming convention of C. Note that C++ data symbols use the same con-
vention as C.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-157

C/C++ and Assembly Interface
To use an assembly function or variable in your C program, declare the
symbol with the .GLOBAL assembler directive in the assembly routine and
import the symbol by declaring the symbol as extern in the C program.

To use an assembly function in your C++ module, declare the symbol with
the .GLOBAL assembler directive in the assembly routine and import the
symbol by declaring the symbol as extern ”C” in the C++ program. For
example, to reference the _funcmult assembly routine from a C++ pro-
gram, you declare it as extern “C” int funcmult(int a, int b) in the
C++ program.

Table 2-22 shows several examples of the C/Assembly interface naming
conventions. Each row shows how assembler code can reference the corre-
sponding C item.

Table 2-22. C Naming Conventions For Symbols

In the C Program In the Assembly Subroutine

int c_var; /*declared global*/ .extern _c_var;

void c_func(){...} .extern _c_func;

extern int asm_var; .global _asm_var;

extern void asm_func(); .global _asm_func;

_asm_func:
2-158 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
Table 2-23 shows several examples of the C++/Assembly interface naming
conventions.Each row shows how assembler code can reference the corre-
sponding C++ item.

Implementing C++ Member Functions in Assembly

If an assembly language implementation is desired for a C++ member
function, the simplest way is to use C++ to provide the proper interface
between C++ and assembly.

In the class definition, write a simple member function to call the assem-
bly-implemented function (subroutine). This call can establish any
interface between C++ and assembly, including passing a pointer to the
class instance. Since the call to the assembly subroutine resides in the class
definition, the compiler inlines the call (inlining adds no overhead to
compiler performance). From an efficiency point of view, the assem-
bly-language function is called directly from the user code.

Table 2-23. C++ Naming Conventions for Symbols

In the C++ Program In the Assembly Subroutine

int c_var; /*declared global*/ .extern _c_var;

extern "C" void c_func(void){...} .extern _c_func;

extern int asm_var; .global _asm_var;

extern "C" void asm_func(void); .global _asm_func;

_asm_func:
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-159

C/C++ and Assembly Interface
As for any C++ function, ensure that a prototype for the assembly-imple-
mented function is included in your program. As discussed in “Using
Mixed C/C++ and Assembly Naming Conventions” on page 2-157, you
declare your assembly language subroutine’s name with the .GLOBAL direc-
tive in the assembly portion and import the symbol by declaring it as
extern "C" in the C++ portion of the code.

Note that using this method you avoid name mangling — you choose
your own identifier for the external function. Access to internal class
information can be done either in the C++ portion or in the assembly por-
tion. If the assembly subroutine needs only limited access to the class
members, it is easier to select those in the C++ code and pass them as
explicit arguments. This way the assembly code does not need to know
how data is allocated within a class instance.

#include <stdio.h>

/* Prototype for external assembly routine: */
/* C linkage does not have name mangling */
extern "C" int cc_array(int);

class CC {
private:

 int av;
public:

CC(){};
CC(int v) : av(v){};
int a() {return av;};
/* Assembly routine call: */
int array() {return cc_array(av);};

};

int main()
{

CC samples(11);
CC points;
points = CC(22);
int j, k;
j = samples.a();
k = points.array(); // Test asm call
2-160 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
printf ("Val is %d\n", j);
printf ("Array is %d\n", k);

return 1;
}

/* In a separate assembly file: */
.section /pm seg_pmco;
.global _cc_array;
_cc_array:

modify(i7,-3);
dm(-4,i6)=r3;
dm(-2,i6)=r4;
r3=r4;
r0=r3+r3;
r3=dm(-4,i6);
i12=dm(m7,i6);
jump(m14,i12)(DB);
rframe;
nop;

Writing C/C++ Callable SIMD Subroutines

You can write assembly subroutines that use the ADSP-2116x DSP's
SIMD mode and call them from your C programs. The routine may use
SIMD mode (PEYEN bit=1) for all code between the function prologue and
epilogue, placing the chip in SISD mode (PEYEN bit =0) before the func-
tion epilogue or returning from the function.

� While it is possible to write subroutines that can be called in SIMD
mode (the chip is in SIMD mode before the call and after the
return), the compiler does not support a SIMD call interface at this
time. For example, trying to call a subroutine from a
#pragma SIMD_for loop prevents the compiler from executing the
loop in SIMD mode because the compiler does not support SIMD
mode calls.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-161

C/C++ and Assembly Interface
Because transfers between memory and data registers are doubled in
SIMD mode (each explicit transfer has a matching implicit transfer), it is
recommended that you access the stack in SISD mode to prevent corrupt-
ing the stack. For more information on SIMD mode memory accesses, see
the Memory chapter in the appropriate ADSP-2116x SHARC DSP Hard-
ware Reference.

If you are using SIMD subroutines, your interrupt handler must provide
additional support. This support in the interrupt service routine entails
saving-restoring the PEYEN bit and placing the DSP in the mode (SISD or
SIMD) that the interrupt service routine needs. Interrupt handlers often
use the MMASK register to expedite these mode changes.

C++ Programming Examples
This section provides the following examples for C++-specific features:

• “Using Fract Support” on page 2-163

• “Using Complex Support” on page 2-163

Note that the cc21k compiler runs in C mode by default. To run the com-
piler in C++ mode, you select the corresponding option on the command
line, or check it in the Project Options dialog box of the VisualDSP++
environment. The following command line, for example:

cc21k -c++ fdot.c -T062.ldf

runs cc21k with:

-c++ Specifies that the following source file is written in ANSI/ISO
standard C++ extended with the Analog Devices keywords.

fdot.c Specifies the source file for your program.

-T 062.ldf Specifies the Linker Description File for the ADSP-21062 DSP system.
2-162 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
Using Fract Support

Listing 2-5 demonstrates the compiler support for the fract type and
associated arithmetic operators, such as + and *. The dot product algo-
rithm is expressed using the standard arithmetic operators. The code
demonstrates how two variable-length arrays are initialized with fractional
literals. For more information about the fractional data type and arith-
metic, see “C++ Fractional Type Support” on page 2-84.

fract fdot (int array_size, fract *x, fract *y)
 {
 int j;
 fract s;
 s = 0;
 for (j=0; j < array_size; j++)
 {
 s += x[j] * y[j];
 }
 return s;
 }
int main(void)
 {
 set_saturate_mode();
 fdot (N,x,y);
 }

Listing 2-5. Dot Product Using Fract Arithmetic Example — C++ Code

Using Complex Support

The Mandelbrot fractal set is defined by the following iteration on com-
plex numbers:

z := z * z + c

The c values belong to the set for which the above iteration does not
diverge to infinity. The canonical set is defined when z starts from zero.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-163

C/C++ and Assembly Interface
Listing 2-6 demonstrates the Mandelbrot generator expressed in a simple
algorithm using the C++ library complex class:

#include <complex>

int iterate (complex<double> c, complex<double> z, int max)
{

int n;

for (n = 0; n<max && abs(z)<2.0; n++)
{

z = z * z + c;
}
return (n == max ? 0 : n);

}

Listing 2-6. Mandelbrot Generator Example — C++ code

Listing 2-7 shows a C version of the inner computational function of the
Mandelbrot generator, which extracts performance and programming
penalties (compared with the C++ version).

int iterate (double creal, double cimag,
double zreal, double zimag, int max)

{
double real, imag;
int n;
real = zreal * zreal;
imag = zimag * zimag;

for (n = 0; n<max && (real+imag)<4.0; n++)
{

zimag = 2.0 * zreal * zimag + cimag;
zreal = real - imag + creal;
real = zreal * zreal;
imag = zimag * zimag;

}
return (n == max ? 0 : n);

}

Listing 2-7. Mandelbrot Generator Example — C code
2-164 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
Mixed C/C++/Assembly Programming Examples
This section shows examples of types of mixed C/C++/assembly program-
ming in order of increasing complexity. The examples in this section are as
follows:

• “Using Inline Assembly (Add)” on page 2-166

• “Using Macros to Manage the Stack” on page 2-167

• “Using Scratch Registers (Dot Product)” on page 2-168

• “Using Void Functions (Delay)” on page 2-170

• “Using the Stack for Arguments and Return (Add 5)” on page 2-171

• “Using Registers for Arguments and Return (Add 2)” on page 2-172

• “Using Non-leaf Routines That Make Calls (RMS)” on page 2-173

• “Using Call Preserved Registers (Pass Array)” on page 2-175

Note that leaf assembly routines are routines that return without making
any calls. Non-leaf assembly routines call other routines before returning
to the caller.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-165

C/C++ and Assembly Interface
Note that you can use cc21k to compile your C or C++ program and
assemble your assembly language modules. This ensures that the assembly
of your modules complies with the C/C++ run-time environment. The
following cc21k command line, for example:

cc21k my_prog.c my_sub1.asm -T 062.ldf -Wremarks

runs cc21k with:

Using Inline Assembly (Add)

The following example shows how to write a simple routine in
ADSP-21xxx family assembly code that properly interfaces to the C/C++
environment. It uses the asm() construct to pass inline assembly code to
the compiler.

int i,j,k,l;
main()
{
 l = add(i,j,k);
}

/* Per the run-time environment, function add() passes arg x in
 r4, arg y in r8, and arg z in r12. Then, func adds args and
 puts return in r0. */

add(int x, int y, int z)
{
 asm("r0=%0+%1; r0=r0+%2"::"d"(x),"d"(y),"d"(z));
}

my_prog.c Selects a C language source file for your program

my_sub1.asm Selects an assembly language module to be assembled and linked
with your program

-T 062.ldf Selects a linker description file describing your DSP system

-Wremarks Selects diagnostic compiler warnings
2-166 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
Using Macros to Manage the Stack

Listing 2-8 and Listing 2-9 show how macros can simplify function calls
between C, C++, and assembly functions. The assembly function uses the
entry, exit, and ccall macros to keep track of return addresses and man-
age the run-time stack. For more information, see “Managing the Stack”
on page 2-135.

/* Subroutine Return Address Example—C code: */

/* assembly and c functions prototyped here */
void asm_func(void);
void c_func(void);

/* c_var defined here as a global */
/* used in .asm file as _c_var */
int c_var=10;

/* asm_var defined in .asm file as _asm_var */
extern int asm_var;

main ()
{
 asm_func(); /* call to assembly function */
}

/* this function gets called from asm file */
void c_func(void)
{
 if (c_var != asm_var)
 exit(1);
 else
 exit(0);
}

Listing 2-8. Subroutine Return Address Example — C Code
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-167

C/C++ and Assembly Interface
/* Subroutine Return Address Example—Assembly code: */
#include <asm_sprt.h>
.section/dm seg_dmda;
.var _asm_var=0;/* asm_var is defined here */
.global _asm_var;/* global for the C function */
.endseg;

.section/pm seg_pmco;

.global _asm_func;/* _asm_func is defined here */

.extern _c_func;/* c_func from the C file */

.extern _c_var;/* c_var from the C file */

_asm_func:
entry;/* entry macro from asm_sprt */

r8=dm(_c_var/* access the global C var */
dm(_asm_var)=r8;/* set _asm_var to _c_var) */

ccall(_c_func);/* call the C function */

exit;/* exit macro from asm_sprt */
.endseg;

Listing 2-9. Subroutine Return Address Example—Assembly Code

Using Scratch Registers (Dot Product)

To write assembly functions that can be called from a C or C++ program,
your assembly code must follow the conventions of the C/C++ run-time
environment and use the conventions for naming functions. The follow-
ing assembly function demonstrates how to comply with these
specifications.

This function computes the dot product of two vectors. The two vectors
and their lengths are passed as arguments. Because the function uses only
scratch registers (as defined by the run-time environment) for intermedi-
ate values and takes advantage of indirect addressing, the function does
not need to save or restore any registers.
2-168 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
/* dot(int n, dm float *x, pm float *y);
Computes the dot product of two floating-point vectors of
length n. One is stored in dm and the other in pm. Length n
must be greater than 2.*/

#include <asm_sprt.h>

.section/pm seg_pmco;
/* By convention, the assembly function name is the C func-
tion name with a leading underscore; "dot()" in C becomes
"_dot" in assembly */

.global _dot;
_dot:

leaf_ entry;

r0=r4-1,i4=r8;

/* Load first vector address into I register, and load r0
with length-1 */

r0=r0-1,i12=r12;
/* Load second vector address into I register and load r0
with length-2 (because the 2 iterations outside feed and
drain the pipe */

f12=f12-f12,f2=dm(i4,m6),f4=pm(i12,m14);
/* Zero the register that will hold the result and start
feeding pipe */

f8=f2*f4, f2=dm(i4,m6),f4=pm(i12,m14);
/* Second data set into pipeline, also do first multiply */

lcntr=r0, do dot_loop until lce;
/* Loop length-2 times, three-stage pipeline: read, mult,
add */

dot_loop:
f8=f2*f4, f12=f8+f12,f2=dm(i4,m6),f4=pm(i12,m14);
f8=f2*f4, f12=f8+f12;
f0=f8+f12;

/* drain the pipe and end with the result in r0, where it’ll
be returned */
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-169

C/C++ and Assembly Interface
leaf_exit;
/* restore the old frame pointer and return */

.endseg;

Using Void Functions (Delay)

The simplest kind of assembly routine is one with no arguments and no
return value, which corresponds to C/C++ functions prototyped as void
my_function(void). Such routines could be used to monitor an external
event or used to perform an operation on a global variable.

It is important when writing such assembly routines to pay close attention
to register usage. If the routine uses any call-preserved or com-
piler-reserved registers (as defined in the run-time environment), the
routine must save the register and restore it before returning. Because the
following example does not need many registers, this routine uses only
scratch registers (also defined in the run-time environment) that do not
need to be saved.

Note that in the example all symbols that need to be accessed from C/C++
contain a leading underscore. Because the assembly routine name, _delay,
and the global variable _del_cycle must both be available to C and C++
programs, they contain a leading underscore in the assembly code.

/* Simple Assembly Routines Example — _delay */
/* void delay (void);
An assembly language subroutine to delay N cycles, where N is
the value of the global variable del_cycle */

 #include <asm_sprt.h>;

.section/pm seg_pmco;

.extern _del_cycle;

.global _delay;
_delay:
 leaf_entry; /* first line of any leaf func */
 R4 = DM (_del_cycle);

/* Here, register r4 is used because it is a scratch register
and doesn’t need to be preserved */
2-170 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
 LCNTR = R4, DO d_loop UNTIL LCE;
 d_loop:
 nop;
 leaf_exit; /* last line of any leaf func */
.endseg;

Using the Stack for Arguments and Return (Add 5)

A more complicated kind of routine is one that has parameters but no
return values. The following example adds together the five integers
passed as parameters to the function.

/* Assembly Routines With Parameters Example — _add5 */
/* void add5 (int a, int b, int c, int d, int e);
An assembly language subroutine that adds 5 numbers */

#include <asm_sprt.h>
.section/pm seg_pmco;
.extern _sum_of_5; /* variable where sum will be stored */
.global _add5;

_add5:
leaf_entry;

/* the calling routine passes the first three parameters in
registers r4, r8, r12 */

r4 = r4 + r8; /* add the first and second parameter */
r4 = r4 + r12; /* adds the third parameter */

/* the calling routine places the remaining parameters
(fourth/fifth) on the run-time stack; these parameters can
be accessed using the reads() macro */

r8 = reads(1); /* put the fourth parameter in r8 */
r4 = r4 + r8; /* adds the fourth parameter */
r8 = reads(2); /* put the fifth parameter in r8 */
r4 = r4 + r8; /* adds the fifth parameter */

dm(_sum_of_5) = r4;
/* place the answer in the global variable */

leaf_exit;
.endseg;
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-171

C/C++ and Assembly Interface
Using Registers for Arguments and Return (Add 2)

There is another class of assembly routines in which the routines have
both parameters and return values. The following example of such a rou-
tine adds two numbers and returns the sum. Note that this routine follows
the run-time environment specification for passing function parameters
(in registers r4 and r8) and passing the return value (in register r0).

/* Routine With Parameters & Return Value —add2_ */
/* int add2 (int a, int b);
An assembly language subroutine that adds two numbers and
returns the sum */

#include <asm_sprt.h>

.section/pm seg_pmco;

.global _add2;
_add2:
leaf_entry;

/* per the run-time environment, the calling routine passes the
first two parameters passed in registers r4 and r8; the return
value goes in register r0 */

r0 = r4 + r8;
/* add the first and second parameter, store in r0*/

leaf_exit;
.endseg;
2-172 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
Using Non-leaf Routines That Make Calls (RMS)

A more complicated example, which calls another routine, computes the
root mean square of two floating-point numbers, as follows:

Although it is straight forward to develop your own function that calcu-
lates a square-root in ADSP-21xxx assembly language, the following
example demonstrates how to call the square root function from the
C/C++ run-time library, sqrtf. In addition to demonstrating a C
run-time library call, this example shows some useful calling macros.

/* Non-Leaf Assembly Routines Example — _rms */
/* float rms(float x, float y);
An assembly language subroutine to return the rms
z = (x^2 + y^2)^(1/2) */

#include <asm_sprt.h>

.section/pm seg_pmco;

.extern _sqrtf;

.global _rms;
_rms:
 entry; /* first line of non-leaf routine */

 f4 = f4 * f4;
 f8 = f8 * f8;
 f4 = f4 + f8;

/* f4 contains argument to be passed to sqrtf function */

 ccall (_sqrtf);
/* use the ccall() macro to make a function call in a C envi-
ronment; f0 contains the result returned by the _sqrtf func-
tion. In turn, _rms returns the result to its caller in f0
(and it is already there) */

 exit; /* last line of non-leaf routine */
.endseg;

z 2x 2y+=
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-173

C/C++ and Assembly Interface
If a called function takes more than three single word parameters, the
remaining parameters must be pushed on the stack and popped off the
stack after the function call. The following function could call the _add5
routine shown in “Using the Stack for Arguments and Return (Add 5)” on
page 2-171. Note that the last parameter must be pushed on the stack
first.

/* Non-Leaf Assembly Routines Example — _calladd5 */
/* int calladd5 (void);
An assembly language subroutine that calls another routine with
more than 3 parameters. This example adds the numbers 1, 2, 3,
4, and 5. */

#include <asm_sprt.h>
.section/pm seg_pmco;
.extern _add5;
.extern _sum_of_5;
.global _calladd5;
_calladd5:

entry;
 r4 = 5;
/* the fifth parameter is stored in r4 for pushing onto stack */
 puts=r4; /* put fifth parameter in stack */
 r4 = 4;

/* the fourth parameter is stored in r4 for pushing onto
stack */

 puts=r4; /* put fourth parameter in stack */
 r4 = 1; /* the first parameter is sent in r4 */
 r8 = 2; /* the second parameter is sent in r8 */
 r12 = 3; /* the third parameter is sent in r12 */

 ccall (_add5);
/* use the ccall macro to make a function call in a C envi-
ronment */

 alter(2);
/* call the alter() macro to remove the two arguments from
the stack */

 r0 = dm(_sum_of_5);
/* _sum_of_5 is where add5 stored its result */

 exit;
.endseg;
2-174 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
Using Call Preserved Registers (Pass Array)

Some functions need to make use of registers that the run-time environ-
ment defines as call preserved registers. These registers, whose contents are
preserved across function calls, are useful for variables whose lifetime
spans a function call. The following example performs an operation on the
elements of a C array using call preserved registers.

/* Non-Leaf Assembly Routines Example — _pass_array */
/* void pass_array(
float function(float),
float *array,
int length);
An assembly language routine that operates on a C array */

#include <asm_sprt.h>
.section/pm seg_pmco;
.global _pass_array;
_pass_array:

entry;
puts = i8;

/* This function uses a call preserved register, i8, because
it could be used by multiple functions, and this way it does
not have to be stored for every function call */

 r0 = i1;
 puts = r0; /* i1 is also call preserved */

i8 = r4;
/* read the first argument, the address of the function to
call */

i1 = r8;
/* read the second argument, the C array containing the data
to be processed */

r0 = r12;
/* read third argument, the number of data points in the
array */

lcntr=r0, do pass_array_loop until lce;
/* loop through data points */
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-175

C/C++ and Assembly Interface
f4=dm(i1,m5);
/* get data point from array, store it in f4 as a parameter
for the function call */

ccall(m13,i8);/* call the function */
pass_array_loop:
 dm(i1,m6)=f0;

/* store the return value back in the array */
 i1 = gets(1);/* restore the value of i1 */
 i8 = gets(2);/* restore the value of i8 */

exit;

.endseg;
2-176 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

Compiler
C/C++ Compiler Glossary
Assembler (easm21k) — Assembles your ADSP-21xxx family assembly
source code or code output from the C/C++ compiler (cc21k) into link-
able object files.

B (Base) registers — Data Address Generator (DAG) B registers (B0-B7 in
DAG1, B8-B15 in DAG2) contain the base address of a circular buffer.

C/C++ Run-time environment (for cc21k C/C++ compiler) — The
C/C++ run-time environment is a set of rules that the cc21k C/C++ Com-
piler uses to operate on the ADSP-21xxx family processors. The
environment defines register use (compiler, user, scratch, and stack regis-
ters), run-time stack operation, and C/C++/assembly program interfacing
requirements.

cc21k, ADSP-21xxx family C/C++ compiler — cc21k is an ANSI com-
pliant C/C++ compiler for the ADSP-21xxx family Digital Signal
Processors.

I (Index) registers — Data Address Generator (DAG) I registers (I0- I7 in
DAG1, I8-I15 in DAG2) contain the actual address used to access memory.

L (Length) registers — Data Address Generator (DAG) L registers (L0-L7
in DAG1, L8-L15 in DAG2) contain–for the corresponding I (index) reg-
ister–either zero for linear addressing or the number of words (length) of a
circular buffer.

Leaf Assembly routines — Leaf assembly routines are routines that return
without making any calls.

Linker — The VisualDSP++ linker links your object files and libraries
into executable DSP programs.

M (Modify) registers — Data Address Generator (DAG) M registers
(M0-M7 in DAG1, M8-M15 in DAG2) contain a value used to post-modify
the I register specified in an indirect memory access operation.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 2-177

C/C++ Compiler Glossary
Macros and the C/C++ preprocessor — Macros are blocks of text substi-
tuted by the C/C++ preprocessor during the process of building your
program. The C/C++ preprocessor is a macro processor. Use the prepro-
cessor to make transformations and text substitutions in your source code.
The C/C++ preprocessor provides header file inclusion, macro expansion,
and conditional compilation for C/C++ and assembly files.

MODE (1 and 2) registers — MODE registers control many of the
ADSP-21xxx DSP’s operational features: addressing, interrupts handling,
rounding, bit-reversing, and others.

MRF and MRB (multiplier results, foreground and background) regis-
ters — MR registers can hold the 80-bit result of a fixed-point
multiply-accumulate operation.

Non-leaf assembly routines — Non-leaf assembly routines call other rou-
tines before returning to the caller.

R (register file) registers — Register file registers (called R0-R15 when
fixed-point and F0-F15 when floating-point) can hold the input or output
of any computational unit in the DSP.

USTAT (1 and 2) registers — USTAT registers hold user defined status
flags.
2-178 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

	Contents
	2 Compiler
	Overview
	Compiler Command-Line Interface
	Running the Compiler
	Table 2-1. Input and Output Files�

	C/C++ Compiler Switches
	C/C++ Compiler Switch Summaries
	Table 2-2. C or C++ Mode Selection Switches�
	Table 2-3. C/C++ Compiler Common Switches�
	Table 2-4. C++ Mode Compiler Switches�

	C/C++ Mode Selection Switch Descriptions
	C/C++ Compiler Common Switch Descriptions
	Table 2-5. Build Tools -flags Options

	C++ Mode Compiler Switch Descriptions

	Data Type Sizes
	Table 2-6. Data Type Sizes for the ADSP-21xxx DSPs
	Integer
	Floating Point

	Optimization Control
	Inlining Control
	Interprocedural Analysis

	C/C++ Compiler Language Extensions
	Table 2-7. Keyword Extensions�
	Table 2-8. Operational Extensions�
	Inline Function Support Keyword (inline)
	Inline Assembly Language Support Keyword (asm)
	Assembly Construct Template
	Assembly Construct Operand Description
	Table 2-9. ASM() Operand Constraints�

	Assembly Constructs With Multiple Instructions
	Assembly Construct Reordering and Optimization
	Restrictions on the Use of the asm Construct
	Assembly Constructs with Input and Output Operands
	Assembly Constructs and Macros

	Dual Memory Support Keywords (pm dm)
	Memory Keywords and Assignments/Type Conversions
	Memory Keywords and Function Declarations/Pointers
	Memory Keywords and Function Arguments
	Memory Keywords and Macros

	Placement Support Keyword (section)
	Boolean Type Support Keywords (bool, true, false)
	Pointer Class Support Keyword (restrict)
	Variable-Length Array Support
	Non-Constant Initializer Support
	Indexed Initializer Support
	Aggregate Constructor Expression Support
	Preprocessor Generated Warnings
	C++ Style Comments
	Compiler intrinsic Functions
	Access to System Registers

	C++ Fractional Type Support
	Format of Fractional Literals
	Conversions Involving Fractional Values
	Fractional Arithmetic Operations
	Mixed Mode Operations

	Saturated Arithmetic
	SIMD Support Annotation (#pragma SIMD_for)
	Using SIMD Mode with Multichannel Data
	Using SIMD Mode with Single Channel Data
	Pitfalls in Using SIMD C/C++
	SIMD_for Syntax
	Constraints on Using SIMD C/C++
	Impact of Anomaly #40 on SIMD
	Examples Using SIMD C (Problem Cases—Data Increments)
	Examples Using SIMD C (Problem Cases—Data Alignment)
	Performance When Using SIMD C/C++

	Preprocessing a Program
	Table 2-10. Preprocessor Commands�
	Predefined Macros
	Header Files
	Writing Macros

	Support for Multiple Heaps
	Heap Identifiers
	Using Alternate Heaps with the Standard Interface
	Using the Alternate Heap Interface
	Re-initializing Heaps
	Creating Heap Descriptor Records
	Allocating Heap Storage Areas
	Initializing Heaps
	Example C program
	Listing 2-1. Allocating and Initializing Alternate Heaps

	C/C++ Run-Time Model
	C/C++ Run-Time Environment
	Figure 2-1. Assembly Language Interfacing Overview
	Memory Usage
	Table 2-11. Memory .SECTION and SECTION{} Names�

	Compiler Registers
	Table 2-12. Compiler Registers�

	User Registers
	Table 2-13. User Registers�

	Call Preserved Registers
	Table 2-14. Call Preserved Registers�

	Scratch Registers
	Table 2-15. Scratch Registers
	Table 2-16. Additional ADSP-2116x scratch Registers

	Stack Registers
	Table 2-17. Pointer Registers�

	Alternate Registers
	Managing the Stack
	Figure 2-2. Example Run-Time Stack
	Listing 2-2. Stack Management, Example C Code
	Listing 2-3. Stack Management, Example ADSP�2106x Assembly Code

	Transferring Function Arguments and Return Value
	Table 2-18. Parameter and Return Value Transfer Registers�

	Using Data Storage Formats
	Table 2-19. Data Storage Formats and Data Type Sizes�
	Table 2-20. Data Storage Formats and Data Storage�
	Figure 2-3. Floating-Point (32-Bit IEEE Single-Precision) Storage
	Figure 2-4. Floating-Point (64-Bit IEEE Double-Precision) Storage

	Using the Run-Time Header

	C/C++ and Assembly Interface
	Calling Assembly Language Subroutines from C/C++ Programs
	Calling C/C++ Functions from Assembly Language Programs
	Using Mixed C/C++ and Assembly Support Macros
	Table 2-21. Interface Support Macros, Summary�

	Interface Support Macros, Defined
	Listing 2-4. asm_sprt.h — C/C++/Assembly Interface Support Macros

	Using Mixed C/C++ and Assembly Naming Conventions
	Table 2-22. C Naming Conventions For Symbols�
	Table 2-23. C++ Naming Conventions for Symbols�

	Implementing C++ Member Functions in Assembly
	Writing C/C++ Callable SIMD Subroutines

	C++ Programming Examples
	Using Fract Support
	Listing 2-5. Dot Product Using Fract Arithmetic Example — C++ Code

	Using Complex Support
	Listing 2-6. Mandelbrot Generator Example — C++ code
	Listing 2-7. Mandelbrot Generator Example — C code

	Mixed C/C++/Assembly Programming Examples
	Using Inline Assembly (Add)
	Using Macros to Manage the Stack
	Listing 2-8. Subroutine Return Address Example — C Code
	Listing 2-9. Subroutine Return Address Example—Assembly Code

	Using Scratch Registers (Dot Product)
	Using Void Functions (Delay)
	Using the Stack for Arguments and Return (Add 5)
	Using Registers for Arguments and Return (Add 2)
	Using Non-leaf Routines That Make Calls (RMS)
	Using Call Preserved Registers (Pass Array)

	C/C++ Compiler Glossary

	Index

