
VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 3-1

Contents/Index Archiver
Contents/Index Archiver

3 ARCHIVER
Figure 3-0.

Listing 3-0.

Table 3-0.

Overview
The VisualDSP++ archiver*, elfar.exe, combines object files† from the
assembler into archive (library) files, which can serve as a reusable resource
for code development. The linker can rapidly search the archive files for
routines (archive members) referred to in other objects and link these rou-
tines into your executable program. You can run the archiver from a
command line, or produce an archive file as the output of a VisualDSP++
project.

This chapter contains the following information on the archiver:

• “Archiver Guide” on page 3-2: introduces the archiver’s functions

• “Archiver Command-Line Reference” on page 3-6: reference infor-
mation on archiver operations

• “Archiver Glossary” on page 3-10: a glossary of archiver related
terms

* Also called “librarian.”
† The archiver is general-purpose function; it can combine (and extract) arbitrary files. This manual

refers to DSP object files because they are relevant to DSP code development.

Archiver Guide

3-2 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

Archiver Guide
The elfar.exe combines and indexes object (or any other) files, produc-
ing a searchable archive file. All software developers using the archiver
should be familiar with the following operations:

• “Creating Archives in VisualDSP++ Environment” on page 3-2

• “Archiver Operations” on page 3-3

• “Making Archived Functions Usable” on page 3-4

• “Archiver Command-Line Reference” on page 3-6

Creating Archives in VisualDSP++ Environment
Within the VisualDSP++ IDDE, you can choose to create an archive file
as your project’s output. You can do it in the Project Options dialog box
that appears when you create a new project, or click Project Options in an
existing project. In the Project Type field, select DSP Archive file.

VisualDSP++ writes its output to <projectname>.DLB. To modify or list
the contents of an archive file, or perform any other operations on it, you
must use the archiver from the command line.

Syntax: elfar [-switch][-i filename] archive_file object_file ..

Refer the VisualDSP++ User’s Guide for ADSP-21xxx DSPs for more infor-
mation. Refer to “Archiver Command-Line Syntax” on page 3-6 for more
information on command-line input.

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 3-3

Archiver

Archiver Operations
The archiver can perform the following operations, as directed by options
on its command line (or from VisualDSP++ IDDE):

• Append one or more object files to an existing archive file.

• Create an archive file from a list of object files.

• Delete file(s) from an archive file.

• Extract file(s) from an archive file.

• List the filename contents of an existing archive file (to stdout).

• Replace file(s) in an existing archive file.

The archiver can only run one of these operations at a time. However, for
action switches (see in “Archiver Command-Line Switches” on page 3-8)
that can take a list of files as arguments, it can input a file containing the
(whitespace-separated) names of object files, which makes long lists easily
manageable.

Filename Conventions
To maintain consistency within your code, it is recommended that you
use the conventions in Table 3-1. (Note that VisualDSP++ always writes
out <projectname>.DLB when it creates an archive.)

Table 3-1. File Name Extension Conventions

Extension File Description

.dlb Archive file

.doj Object file - input to archiver

.txt Archiver -i switch input (list file)

Archiver Guide

3-4 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

Making Archived Functions Usable
In order to use the archiver effectively, you must know how to write
archive files and how to write code that accesses these archives. Archive
usage consists of two tasks, namely:

• Writing archive routines, functions that can be called from other
programs.

• Using archive routines. i.e. accessing archived functions in your
code.

Writing Archive Routines: Creating Entry Points

An archive routine is a routine in your project that can be accessed by
other programs. Each such routine must have a globally visible start label
(entry point). Any code accessing that routine must know the entry point’s
name and declare it as an external variable in the calling code.

To create these entry points, use the following steps:

1. Declare the start label of each routine as a global symbol with the
assembler’s .GLOBAL directive. That is the entry point.

...

.global dIriir;

.var/dm/seg=seg_dmda FAE[2];

.init FAE[2]: 0x1234,0x4321;

.global FAE;
dIriir: CNTR=N-2;
I2 = ^FAE;

2. Assemble and archive the code containing these routines. You can
do so in two ways:

• Direct the VisualDSP++ IDDE to produce an archive. When
you build the project, your object code containing the entry
points is packaged in <projectname>.DLB.

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 3-5

Archiver

Note: You can extract the object (.DOJ) whenever you want, for
example, to incorporate it in another project.

• If you create executable or unlinked object files from the IDDE,
you can archive them afterward from the command line. The
result is the same.

Using Archive Routines

Programs that call an archive routine must define the routine’s start label
as an external label with the assembler’s .EXTERN directive.

When linking the program, you specify the archive file (.DLB) to the linker
with the names of the object files to link. The linker searches the library
file to resolve symbols and links the appropriate routines into the execut-
able file. Any file containing a label referenced by your program is linked
into the executable output file.

The advantage of linking archives over the individual object files is that
the linker can search archives faster, and you do not need to enter all the
file names, just the archive name. In the following example, the archiver
creates the filter.dlb archive, containing the object files: taps.doj,
coeffs.doj, and go_input.doj:

elfar -c filter.dlb taps.doj coeffs.doj go_input.doj

If you then ran the linker with the following command line, the linker
links the object files main.doj, sum.doj, and graph.doj; uses the default
linker description file, adsp-ts001m.ldf; and creates the executable file
(main.dxe):

linker -Dadsp-ts001 main.doj sum.doj graph.doj filter.dlb

Assuming that one or more library routines from filter.dlb are called
from one or more of the object files, the linker searches the archive,
extracts the required routines, and links the routines into the executable.

Archiver Command-Line Reference

3-6 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

Archiver Command-Line Reference
The archiver (elfar.exe) processes object files into an archive file, which
results in faster linking of programs that use these archive objects. The
archiver’s output is an archive file with the file name extension .DLB.

This section provides reference information on the archiver command line
and linking. A list of all switches and a description for each switch appears
in “Archiver Command-Line Switches” on page 3-8.

� When using the archiver within the VisualDSP++ environment, the
archiver can only produce an archiver as the output for a project. To
use other archiver features, you must use the command line version
of the archiver.

Archiver Command-Line Syntax
Use the following syntax for the archiver command line. Table 3-2
describes each switch.

elfar -[a|c|d|e|p|r][-v][-i filename] archive_file object_file...

This command line is subject to the following constraints:

• You can select only one action switch (a, c, d, e, p,r).

• The verbose operation switch -v, must not be in a position where it
can be mistaken for an object file, meaning it cannot follow the
archive_file on append or create.

• The file include switch, -i, must immediately precede the include
file name.

• Use the archive filename first, followed by switches. The -i and -v
are not action switches, and can appear later.

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 3-7

Archiver

• Enclose long file names and file names containing whitespace or
special characters within double quotation marks.

• Append the appropriate file name extension to each file.

• Do not use wildcards. To perform an archive operation on a list of
member files, write the list into a text file and use it as input to the
command line (with the -i switch).

• Specify archive_file to add, remove or replace the
object_file.doj object file.

Note that the archiver’s -i switch lets you input a list of members
from a text file, instead of listing all the members on the command
line. Also note that when you use the archiver’s -p switch, you do
not need to identify any members on the command line.

� Items shown in [] are optional. Items shown in italics are
user-defined and are described with each switch.

The archiver’s command line is case-insensitive. For example, the follow-
ing command line

elfar -v -c my_lib.dlb fft.doj sin.doj cos.doj tan.doj

runs the archiver as follows:

-v — Selects verbose mode for the archiver

-c my_lib.dlb — Creates an archive file named my_lib.dlb

fft.doj sin.doj cos.doj tan.doj — Puts the named object files
in the my_lib.dlb archive file

Table 3-1 on page 3-3 lists the relevant types of files and extensions that
the archiver takes as parameters.

Archiver Command-Line Reference

3-8 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

Archiver File Search
File searches are important in the archiver’s process. The archiver supports
relative and absolute directory names, default directories, and
user-selected directories for file search paths. File searches occur as
follows:

1. Default directory—If you do not include path information in
the file name, the archiver searches for the file in the current
project directory.

2. Specified path—If you include relative or absolute path informa-
tion in a file name, the archiver only searches in that location for
the file.

Archiver Command-Line Switches
Table 3-2 describes each archiver switch and corresponding parame-
ter/attribute. The switches must appear before the archive_file name on
the command line, except that the -i switch appears in place of the
object_file. Items shown in italics are user-defined and are described
with each switch.

Table 3-2. Archiver Command-Line Switches

Switch Description

archive_file The archive (.DLB) that the archiver modifies. This parameter
appears after the switches.

object_file One or more object files (.DOJ), also called member_files, that
the archiver uses when modifying the archive. This parameter appears
after archive_file. You can use the -i switch to input the object
file names as a list.

-a Append one or more object_file(s) to the named
archive_file.

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 3-9

Archiver

-c Create a new archive_file containing object_files on the
command line.

-d Delete one or more object_files from the selected
archive_file.

-i <filename> Use a file (filename), containing member-file names, as an input.
This file lists object_files to add or modify in the selected
archive_file (.DLB).

-p The -p (print archive contents) switch directs the archiver to print to
standard output a list of object_files in the selected
archive_file (.DLB).

-r Replace the named file(s) in the library.

-v The -v (verbose archiver messages) switch directs the archiver to out-
put status information, as the archiver processes your files.

-M -M (produce dependencies) prints dependencies to stdout. Used only
with -c.

-MM -MM (build and produce dependencies) prints dependencies to std-
out and builds an archive. Used only with -c.

Table 3-2. Archiver Command-Line Switches (Cont’d)

Switch Description

Archiver Glossary

3-10 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

Archiver Glossary
Archives—contain one or more members. Archives are searched by the
linker for routines that you call from your programs.

Entry point | Start label—is the label in the archive member that begins
the routine that you call from your program. Entry points are global labels
in the archive member and are external labels in your program.

Members—of an archive are object files that are processed into the archive
by the archiver.

	Contents
	3 Archiver
	Overview
	Archiver Guide
	Creating Archives in VisualDSP++ Environment
	Archiver Operations
	Filename Conventions
	Table 3-1. File Name Extension Conventions�

	Making Archived Functions Usable
	Writing Archive Routines: Creating Entry Points
	Using Archive Routines

	Archiver Command-Line Reference
	Archiver Command-Line Syntax
	Archiver File Search
	Archiver Command-Line Switches
	Table 3-2. Archiver Command-Line Switches�

	Archiver Glossary

