
VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs B-1

Contents/Index Utilities
Contents/Index Utilities

B UTILITIES
Figure B-0.

Listing B-0.

Table B-0.

Overview
Your Analog Devices development software comes with several file conver-
sion utilities, which run from a command line only. Some of these utilities
provide support for legacy code, and others are intended for a group of
users who prefer to use the command-line version of the tools instead of
using them through the VisualDSP++ environment.

This appendix describes the ELF file dumper and Mem21k memory ini-
tializer utilities.

Dumper — ELF File Dumper
The ELF file dumper (elfdump.exe) extracts data from ELF executable
files (.DXE) and provides a text output file that describes the ELF file’s
contents. The ELF file dumper uses the following command line:

C:\Program Files\Analog Devices\VisualDSP++>elfdump

Usage: elfdump {option} {filename}

Table B-1. ELF File Dumper Command-Line Option Switches

Switch Description

-fh Print a file header.

-arsym Print the archive symbol table.

Dumper — ELF File Dumper

B-2 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

-arall Print every archive member.

-ph Print the program header table.

-sh Print the section header table. The default is -sh if no other options are
specified.

-n section Print contents of the named section(s). Section name may use ? and * wild
card characters. Each section’s name and type determine its output format
unless overridden by a modifier (see the filename description).

-i x0[-x1] Print contents of the sections numbered x0 through x1, where x0 and x1
are decimal integers, and x1 defaults to x0 if omitted. Formatting rules as
are for -n.

-all Print everything. Same as -fh -ph -sh -notes -n ‘*’

-ost Omit string table sections.

filename File whose contents are to be printed. It can be a core file, executable, shared
library, or relocatable object file. If the name is in the form A(B), A is
assumed to be an archive and B is an ELF element in the archive. B can use a
pattern like the one accepted by -n. The -n and -i options can have a
modifier letter after the main option character, which forces section contents
to be formatted in the following ways:

a Dump contents in hex and ASCII format, 16 bytes per line.

x Dump contents in hex format, 32 bytes per line.

xN Dump contents in hex format, N bytes per group (default is N=4).

t Dump contents in hex format, N bytes per line, where N is the section’s

table entry size. If N is not in the range 1..32, 32 is used.

i Print contents as list of disassembled machine instructions.

Table B-1. ELF File Dumper Command-Line Option Switches (Cont’d)

Switch Description

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs B-3

Utilities

Using the Archiver and Dumper For Disassembly
The file utilities are each useful in there own way, but can become much
more effective when you combine their capabilities. One interesting appli-
cation of these utilities is to disassemble a library member, converting it to
source code. This application is good to have around when you discover
your source for a particularly useful routine has "disappeared" and is only
available as a library routine.

The following procedure lists the objects in a library, extracts an object,
and converts the object to a listing file. Using the following archiver com-
mand line, list the objects in the library and write the output to a text file:

elfar -p libc.dlb > libc.txt

Assuming the current directory is

C:\Program Files\Analog Devices\VisualDSP++\TS001\lib>

open the text file, scroll through it, and find the object file that you need.
Then, use the following archiver command line to extract the object from
the library:

elfar -e libc.dlb fir.doj

To convert the object file to an assembly listing file with labels (similar to
source, but with line numbers and opcodes), use the following elfdumper
command line:

elfdump -ns * fir.doj > fir.asm

Using disassembly, you get a listing file with symbols. Assemble source
with symbols can be useful if you are familiar with the code and have some
documentation on what the code does. If symbols where stripped during
linking, there are no symbols in the dumped file.

� Using disassembly on a third party's library may violate the license
for the third party's software. Check copyright and license issues
with the code’s owner before using this disassembly technique.

Dumper — ELF File Dumper

B-4 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

Dumping Overlay Archive Files

Use the elfar and elfdump commands to extract and view the contents of the
overlay archive file (*.OVL).

For example,

elfar -p CLONE2.OVL

will show that CLONE2.OVL archive consists of CLONE2.ELF that can be viewed
with elfdump.

To view the CLONE2.ELF file, enter

elfdump -all CLONE2.OVL(CLONE2.elf)

To extract CLONE2.ELF and dump, enter

elfar -e CLONE2.ovl CLONE2.elf - to create CLONE2.elf

elfdump -all CLONE2.elf - to extract CLONE2.elf

or use whatever elfdump options you wish.

These commands are case-sensitive.

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs B-5

Utilities

Mem21k — Memory Initializer
The memory initializer (mem21k.exe) operates on the executable file pro-
duced by the linker. When run by the compiler driver from the command
line (or when selected with the Mem21k radio button in the Load options
dialog box in the VisualDSP++ environment), the linker creates an execut-
able file that becomes the input to the initializer. If the compiler’s -nomem
switch is used to disable the initializer, the initializer does not process the
executable.

The initializer is invoked as follows:

mem21k [-h -v] -o outputfile inputfile

The command options have the following meanings:

• -h – Display usage

• -v – Verbose

• -o – Specify output file name

The initializer program transfers all RAM memory initializations to the
seg_init PM ROM segment. This has two effects. First, all RAM is ini-
tialized to its proper value before the call to main(). This is true for
embedded code that was programmed into ROM, and also for programs
downloaded into RAM in an ADSP-21xxx system.

In addition to memory initialization, the initializer can reduce the overall
size of an executable file by combining contiguous, identical initializations
into a single block. A large array of identically initialized data (for exam-
ple, zeros) are compressed to a single element in the executable after it is
processed by the initializer.

The C run-time header reads the seg_init segment generated by the ini-
tializer to determine which memory locations should be initialized to what
values. This process occurs during the ___lib_setup_processor routine
that is called for the run-time header.

Mem21k — Memory Initializer

B-6 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

There are three segments that the initializer does not attempt to compress,
even if they are defined in the LDF as RAM: the initialization segment
(seg_init), the code segment (seg_pmco), the run-time header segment
(seg_rth). These segments contain the initialization routines and data, so
they cannot be compressed.

The initializer program is normally run automatically by the compiler. If
the compiler does not produce the executable directly, it is up to the user
or the make file to process the executable manually after the linker. If the
initializer is not used, the compressing of RAM segments is not performed
at all.

	Contents
	B Utilities
	Overview
	Dumper — ELF File Dumper
	Table B-1. ELF File Dumper Command-Line Option Switches�
	Using the Archiver and Dumper For Disassembly
	Dumping Overlay Archive Files

	Mem21k — Memory Initializer

