
VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs 3-1

3 PREPROCESSOR
Listing 3-0.

Table 3-0.

Overview
The preprocessor program (pp.exe) evaluates and processes preprocessor
commands in your source files. With these commands, you direct the pre-
processor to define macros and symbolic constants, include header files,
test for errors, and control conditional assembly and compilation.

The preprocessor is run by an assembler and linker at the operating sys-
tem’s command line or within the VisualDSP++ environment. These tools
accept command-line switches for the preprocessor on their command
lines and pass them to the preprocessor. The ADSP-21xxx DSP preproces-
sor can also operate from the command line with its own command-line
switches. A list of preprocessor switches appears in Table 3-3 on
page 3-17.

In the default mode of operations, the preprocessor reads code from an
assembly source file (.ASM); modifies it according to preprocessor com-
mands; and outputs an altered preprocessed assembly file (.IS) using the
name of the source file being processed (the -o switch is on). When the
preprocessor runs without -o, no intermediate file is created, and all the
output is sent to the console display (standard output). The preprocessed
source file is a primary input file for the assembler program; it is purged
when a binary object file (.DOJ) is created.

The compiler also includes a preprocessor that lets you use preprocessor
commands within your C/C++ source. The compiler preprocessor auto-
matically runs before the compiler. This preprocessor is separate from the
assembler and has some features that may not be used within your assem-

Overview

3-2 VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs

bly source files. For more information, see the VisualDSP++ 2.0 C/C++
Compiler & Library Manual for ADSP-21xxx DSPs.

This chapter provides reference information on the preprocessor’s
switches and commands. The reference information available on this top-
ics is as follows:

• “Preprocessor Guide” on page 3-3

This section describes the preprocessor’s options, which are accessi-
ble from the operating system command line or from the
VisualDSP++ environment.

• “Preprocessor Command-Line Interface” on page 3-9

This section describes the preprocessor’s switches, including syntax
and usage examples.

• “Preprocessor Directives/Commands” on page 3-16

This section describes the preprocessor’s directives/commands,
including syntax and usage examples.

VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs 3-3

Preprocessor

Preprocessor Guide
This section contains the preprocessor information you need to know to
build your programs from a command line or from the VisualDSP++ envi-
ronment. Software developers using the preprocessor should be familiar
with the following operations:

• “Setting Preprocessor Options” on page 3-3

• “Using Header Files” on page 3-4

• “Writing Macros” on page 3-5

• “Writing Compound Statements As Macros” on page 3-6

• “Using Predefined Macros” on page 3-7

Setting Preprocessor Options
When developing a DSP project, you may find it useful to modify the pre-
processor’s default options. Because the assembler, compiler, and linker
automatically run the preprocessor as your program is build (unless you
skip the processing entirely), these tools can receive input for the prepro-
cessor program and direct its operation. The way you set the preprocessor
options depends on the environment used to run your DSP development
software:

• From the operating system command line, you select the preproces-
sor’s command-line switches. For more information, see the “Pre-
processor Command-Line Interface” on page 3-9.

• From the VisualDSP++ environment, you select the preprocessor’s
options in the Assemble, Compile, and Link tabs of the Project
Options dialog box, selected via the Project menu. For more infor-
mation on these option settings, see the VisualDSP++ 2.0 User's
Guide for ADSP-21xxx DSPs and online Help.

Preprocessor Guide

3-4 VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs

Using Header Files
A header file (.H) contains declarations and macro definitions. The
#include preprocessor command includes a copy of the header file at the
location of the command. There are two main categories of header files:

• System header files declare the interfaces to the parts of the operat-
ing system. Include them in your program for definitions and dec-
larations that access system calls and libraries. Use angle brackets to
indicate a system header file.

Examples:

 #include <device.h>
 #include <major.h>

System header files are installed in the …21k/include/sys and
…211xx/include/sys folders.

• User header files contain declarations for interfaces between the
source files of your program. Use double quotes to indicate a user
header file.

Examples:

#include "def21060.h”
#include "fft_ovly.h"

User header files are installed in the …21k/include and
…211xx/include folders. This directory also includes run-time
library files.

For syntax information and usage examples on the #include preprocessor
command, see “#include” on page 3-28.

VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs 3-5

Preprocessor

Writing Macros
The preprocessor processes macros in your C, C++, and assembly source
files. Macros are useful for repeating instruction sequences in your source
code.

The term macro defines a macro-identifying symbol and corresponding
definition that the preprocessor uses to substitute the macro reference(s).
Macros allow text replacement, file inclusion, conditional assembly, con-
ditional compilation, and macro definition.

Macro definitions start with #define and end with a carriage return
unless you define them within the do {…} while pair, which allow macros
to end with a semicolon (;). If a macro definition is longer than one line,
place the backslash character (\) at the end of each line except the last.
This character indicates that the macro definition continues on the next
line and allows to break a long line for cosmetic purposes without chang-
ing its meaning. For more syntax information and usage examples for the
#define preprocessor command, see “#define” on page 3-19.

Example:

#define false 0

#define min(a,b) ((a) < (b) ? (a):(b))

#define ccall(x) \
 r2=i6; i6=i7; \
 jump (pc, x) (db); \
 dm(i7,m7)=r2; \
 dm(i7, m7)=PC

Statements within the macro can be instructions, commands, or other
macros. Macro nesting (macros called within another macro) is limited
only by the memory that is available during preprocessing.

A macro can have arguments. When you pass parameters to a macro, the
macro serves as a general-purpose routine that is usable in many different
programs. The block of instructions that the preprocessor substitutes can

Preprocessor Guide

3-6 VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs

vary with each new set of arguments. A macro, however, differs from a
subroutine call. During assembly, each instance of a macro inserts a copy
of the same block of instructions, so multiple copies of that code appear in
different locations in the object code. By comparison, a subroutine
appears only once in the object code, and the block of instructions at that
location are executed for every call.

The preprocessor also supports a C9X extension to preprocessor syntax
that allows creating macro definitions with a variable number of argu-
ments. To define such a definition, you end the formal list with an ellipsis;
for example, #define foo(x,y, …). The error occurs when the ellipsis is
not the last item in the formal list of arguments.

To invoke a macro, place a semicolon (;) after the macro identifying sym-
bol, as shown in the following example:

#define mac mrf=mrf+r2*r5(ssfr) // macro definition
r2=r1-r0; // set parameters
r5=dm(i1,m0);
mac; // macro invocation

Writing Compound Statements As Macros
When writing a macro, it is sometimes useful to define it so you can treat
it as a function call. By creating macros that expand this way, you make
your source code easier to read and maintain. These types of macros con-
tain multiple instructions, which are referred to as compound statements.

To write a compound statement with multiple instructions in the macro
definition, terminate each instruction except the last one with a semico-
lon. Place a carriage return at the end of the last instruction to indicate the
end of the macro.

To define C or C++ macros that do not terminate with a semicolon,
enclose the macro definition within a do … while loop.

VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs 3-7

Preprocessor

The following code segment demonstrates this practice with the macro
SKIP_SPACES:

/* A macro written as a compound statement */
#define SKIP_SPACES (p, limit) \
do {register char *lim = (limit); \
 while (p != lim) { \
 if (*p++ != ' ') { \
 p-; break; }}}\
 while (0)

Enclosing the definition within the do {…} while (0) pair transforms the
preprocessor output from a compound statement to a single statement.
This lets you treat the expanded macro as a function:

if (*p != 0)
else …
 SKIP_SPACES(p, lim); // uses compound macro

For more syntax information and usage examples for the #define prepro-
cessor command, see “#define” on page 3-19.

Using Predefined Macros
In addition to macros you define, some DSP development tools include
predefined macros that you can use in your code.

The assembler preprocessor provide a set of predefined macros that you
can use in your assembly code. The preprocessor automatically replaces
each occurrence of the macro reference found throughout the program
with the specified value. However, predefined macros are not expendable
within comments.

Preprocessor Guide

3-8 VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs

The predefined macros that pp provides are listed and described in
Table 3-1.

Note that the __DATE__, __FILE__, and __TIME__ macros return strings
within the single quotation marks (‘’).

Table 3-1. Predefined Macros

Macro Definition

ADI The preprocessor defines ADI as 1.

__LINE__ The preprocessor defines __LINE__ as 4.

__FILE__ The preprocessor defines __FILE__ as the name and extension of
the file in which the macro is defined, for example, ‘macro.asm’.

__STDC__ The preprocessor defines __STDC__ as 1.

__TIME__ The preprocessor defines __TIME__ as current time in the 24-hour
format ‘hh:mm:ss’, for example, ‘06:54:35’.

__DATE__ The preprocessor defines __DATE__ as current date in the format
‘Mm dd yyyy’, for example, ‘Oct 02 2000’.

VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs 3-9

Preprocessor

Preprocessor Command-Line Interface
Preprocessing is the first step in the process of building (assembling, com-
piling, linking) your programs. The preprocessor reads code from a source
file (.ASM), modifies it according to preprocessor commands, and gener-
ates an altered preprocessed assembly (.IS) or C/C++ (.I) source file. The
preprocessed source file is a primary input file for the assembler or com-
piler program; it is purged when the a binary object file(.DOJ) is created.

Running the Preprocessor
To run the preprocessor from the command line, type the name of the
program followed by arguments in any order:

 pp [-switch1[-switch2 …]] [sourceFile]

where:

• pp — Name of the ADSP-21xxx SHARC DSP preprocessor pro-
gram.

• -switch1,-switch2 — Switches to process.

The preprocessor offers many optional switches to select its opera-
tions and modes. Some preprocessor switches take a file name as a
required parameter.

• sourceFile — Name of the source file to process. The preprocessor
supports relative and absolute path names. The pp.exe preprocessor
outputs a list of command-line switches when runs without this
argument.

� If the sourceFile was incorrectly specified, usually because of a typ-
ing error, or a user does not have access to the file, the preprocessor
fails to open the named file. That is a fatal error and the preproces-
sor will exit without doing any processing.

Preprocessor Command-Line Interface

3-10 VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs

When the preprocessor runs, it modifies your source code by:

• Including system and user-defined header files

• Defining macros and symbolic constants

• Providing conditional assembly and compilation

You specify preprocessing options with preprocessor commands, lines
starting with #. Without any commands, the preprocessor performs the
following three global substitutions:

• Replaces comments with single spaces

• Deletes line continuation characters (\)

• Replaces predefined macro references with corresponding expan-
sions

The following cases are notable exceptions to the described substitutions:

• The preprocessor does not recognize comments or macros within
the file name delimiters of an #include command.

• The preprocessor does not recognize comments or predefined mac-
ros within a character or string constant.

The following command line, for example:

pp -Dfilter_taps=100 -v -o bin\p1.doj p1.asm

runs the preprocessor with:

-Dfilter_taps=100 — Defines the macro filter_taps as equal to 100.

-v — Displays verbose information for each phase of the preprocessing.

-o bin\p1.is — Specifies the name and directory for the intermediate
preprocessed file.

p1.asm — Specifies the assembly source file to preprocess.

VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs 3-11

Preprocessor

Preprocessor Command-Line Switch Summary
Table 3-2 lists the pp.exe option set. Switch descriptions starts on
page 3-12.

Table 3-2. Preprocessor Command-Line Switch Summary

Switch Name Description

-cs! Elide "!" style comments.

-cs/* Elide "/* */" style comments.

-cs// Elide "//" style comments.

-cs{ Elide "{ }" style comments.

-csall Elide comments in all formats.

–Dmacro[=definition] Define macro.

-h[elp] Output a list of assembler switches.

–i|Idirectory Search directory for included files.

-M Make dependencies only, do not assemble.

-MM Make dependencies and assemble.

-Mo filename Specify filename for the make dependencies out-
put file.

-Mt filename Make dependencies for the specified source file.

–o filename Output named object file.

–v[erbose] Display information about each assembly phase.

–version Display version info about the assembler and prepro-
cessor programs.

Preprocessor Command-Line Interface

3-12 VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs

Preprocessor Command-Line Switch Descriptions
A description of each switch appears in the following sections.

-cs!

-cs! switch directs the preprocessor to pass the "!" single-line comment
format.

-cs/*

-cs/* switch directs the preprocessor to pass the "/* */" multi-line com-
ment format.

-cs//

-cs// switch directs the preprocessor to pass the "//" single-linecom-
ment format.

-cs{

-cs {switch directs the preprocessor to pass the "{}" single-line comment
format.

-csall

-csall switch directs the preprocessor to pass comments in all formats.

-Dmacro[=def]

The -D (define macro) switch directs the preprocessor to define a macro.
If you do not include the optional definition string (=def), the preproces-
sor defines the macro as value 1.

Some examples of this switch are as follows:

–Dinput // defines input as 1

VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs 3-13

Preprocessor

–Dsamples=10 // defines samples as 10

–Dpoint="Start" // defines point as the string “Start”

-h[elp]

The -h or -help switch directs the preprocessor to output to standard out-
put the list of command-line switches with a syntax summary.

-i|Idirectory

The -idirectory or -Idirectory (include directory) switch directs the
preprocessor to append the specified directory (or a list of directories sepa-
rated by semicolon) to the search path for included files. These files are:

• header files (.h) included with the #include command

• data initialization files (.dat) specified with the .VAR directive

 Note that no space is allowed between -i|I and the pathname.

The preprocessor searches for included files in the following order:

• Current directory

• include subdirectory of the VisualDSP++ installation directory

• Specified directory (a list of directories). The order of the list defines
the order of multiple searches.

-M

The -M (generate make rule only) switch directs the preprocessor to output
a rule, which is suitable for the make utility, describing the dependencies

Preprocessor Command-Line Interface

3-14 VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs

of the source file. The output, a make dependencies list, is written to
stdout in the standard command-line format:

source_file: dependency_file.ext

where dependency_file.ext may be an assembly source file, a header file
included with the #include preprocessor command, or a data file.

When the -o filename option is used with -M, the preprocessor outputs a
make dependencies list to the named file.

-MM

The -MM (generate make rule and assemble) switch directs the preprocessor
to output a rule, which is suitable for the make utility, describing the
dependencies of the source file. After preprocessing, the assembly of the
source into an object file proceeds normally. The output, a make depen-
dencies list, is written to stdout in the standard command-line format:

source_file.doj: dependency_file.ext

where dependency_file.ext may be an assembly source file, a header file
included with the #include preprocessor command, or a data file.

For example, the source vectAdd.asm includes the “MakeDepend.h” and
inits.dat files. When preprocessing with

pp -MM vectAdd.asm

the preprocessor appends the .DOJ extension to the source file name for
the list of dependencies:

vectAdd.doj: MakeDepend.h
vectAdd.doj: inits.dat

When the -o filename option is used with -MM, the preprocessor outputs
the make dependencies list to stdout.

VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs 3-15

Preprocessor

-Mo filename

The -Mo (output make rule) switch specifies the name of the make depen-
dencies file that the preprocessor generates when you use the -M or -MM
switch. If the named file is not in the current directory, you must provide
the pathname in the double quotation marks (“”).

� The -Mo filename option takes precedence over the -o filename
option.

-Mt filename

The -Mt (output make rule for the named source) switch specifies the
name of the source file for which the preprocessor generates the make rule
when you use the -M or -MM switch. If the named file is not in the current
directory, you must provide the pathname in the double quotation marks
(“”).

-o [filename]

The -o (output) switch directs the preprocessor to use the specified file-
name argument for the preprocessed assembly file. The preprocessor uses
the input file name for the output and appends an .IS extension if you do
not use the switch or omit its argument.

-v[erbose]

The -v or -verbose (verbose) switch directs the preprocessor to output
the version of the preprocessor program and information for each phase of
the preprocessing.

-version

The -version (display version) switch directs the preprocessor to display
the version information for the preprocessor program.

Preprocessor Directives/Commands

3-16 VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs

Preprocessor Directives/Commands
This section provides reference information about the ADSP-21xxx DSP
preprocessor directives, including syntax and usage examples.

Preprocessor directive syntax must conform to the following rules:

• Must be the first nonwhite space character on its line. The excep-
tions to this rule are the string (#) and concatenate (##) preprocessor
commands

• Cannot be more than one line in length unless the backslash char-
acter (\) is inserted

• Can contain comments containing the backslash character (\)

• Cannot come from a macro expansion

When the preprocessor evaluates an expression, the following major con-
ditions must be satisfied:

• No invalid decimal numbers — a decimal number may be invalid if
it contains characters other than the digits '0' - '9'. If the number
was intended to be a hexadecimal number, precede the number with
'0x'. Error example: #if 123abc.

• No invalid hexadecimal numbers — a hexadecimal number may be
invalid if it is incomplete, there are no digits after the '0x', or if it
contains characters other than the digits '0' - '9' and the letters 'a' -
'f'. Error example: #if 0x123abct.

• No invalid octal numbers — an octal number may be invalid if it
contains characters other than the digits '0' - '7'. The leading '0' is
the indicator that a number is an octal number.
Error example: #if 0abc.

• No right operand of "%" can be zero. Error example: #if 3%0.

VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs 3-17

Preprocessor

• No character constant with more than three octal digits can appear
in an expression.

• A character constant must be terminated with an ending “ ‘ “.

• No bad number format may be used in an expression.
Error example: #if 01ux.

• Any expression in an #if directive evaluates to an integer.

Table 3-3 lists the preprocessor directive set. A detailed description of
each directive follows the table.

Table 3-3. Preprocessor Directive Summary

Directive Description

#define (page 3-19) Defines a macro.

#elif (page 3-21)
Sub-divides an #if … #endif pair.

#else (page 3-22) Identifies alternative instructions within an #if … #endif
pair.

#endif (page 3-23) Ends an #if … #endif pair.

#error (page 3-24) Reports an error message.

#if (page 3-25) Begins an #if … #endif pair.

#ifdef (page 3-26) Begins an #ifdef … #endif pair and tests if macro is defined.

#ifndef (page 3-27) Begins an #ifdef … #endif pair and tests if macro is not
defined.

#include (page 3-28) Includes contents of a file.

#line (page 3-29) Outputs specified line number before preprocessing.

Preprocessor Directives/Commands

3-18 VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs

#undef (page 3-30) Removes macro definition.

#warning (page 3-31) Reports a warning message.

(page 3-32) Converts a macro argument into a string constant.

(page 3-33) Concatenates two strings.

? (page 3-34) Generates unique labels for repeated macro expansions.

Table 3-3. Preprocessor Directive Summary (Cont’d)

Directive Description

VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs 3-19

Preprocessor

#define

The #define command has two functions: defining symbolic constants
and defining macros.

When you define a symbolic constant in your source code, the preproces-
sor substitutes each occurrence of the constant with the defined text or
value. Defining this type of macros has the same effect as using the
Find/Replace feature of a text editor, although it does not replace literals
in the double quotation marks (““).

When you define a macro in your source code, the preprocessor replaces
all subsequent occurrences of the macro reference with its definition. For
macro definitions that are longer than one line, use the backslash character
(\) at the end of each line except the last. End the last line with a carriage
return. If you define a macro within the do {…} while pair, place a semico-
lon after the macro definition. You can add arguments to the macro
definition. The arguments are separated by commas symbols that appear
within parentheses.

The preprocessor has five predefined macros, __LINE__, __FILE__,
__DATE__, __TIME__, and __STDC__. When a reserved name is used in an
#define command, an error message is displayed. In addition, the opera-
tor "defined" can not appear in an #define command.

Syntax:

#define macroSymbol replacementText

#define macroSymbol[(arg1,arg2,…)] replacementText

where:

• macroSymbol — Macro identifying symbol.

• (arg1,arg2,…) — Optional list of arguments enclosed in parenthe-
sis and separated by commas. No space is permitted between the
macro name and the left parenthesis.

Preprocessor Directives/Commands

3-20 VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs

• replacementText — Series of instructions or a constant definition
to substitute each occurrence of macroSymbol in your source code.

Examples:

#define BUFFER_SIZE 1020
/* Defines a constant named BUFFER_SIZE and sets its

value to 1020.
*/

#define MIN(X, Y) ((X) < (Y)? (X): (Y))
/* Defines a macro named MIN that selects the minimum of

two numeric arguments.
*/

#define copy(src,dest) \
r0=DM(src); \
PM(dest)=r0

/* Defines a macro named copy with two arguments.
The definition includes two instructions that copy a
word from data memory to program memory.
For example,
copy(0x3f,0xC0);
calls the macro, passing parameters to it.

The preprocessor replaces the macro with the code:
r0=DM(0x3f);
PM(0xC0)=r0

*/

VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs 3-21

Preprocessor

#elif

The #elif command (else if) is used within an #if … #endif pair. The
#elif includes an alternative condition to test when the initial #if condi-
tion evaluates as FALSE. The preprocessor tests each #elif condition
inside the pair and processes instructions that follow the first true #elif.
You can have an unlimited number of #elif commands inside one #if …
#end pair.

Syntax:

#elif condition

where:

• condition — Expression to evaluate as TRUE (non-zero) or FALSE
(zero).

Example:

#if X == 1
…
#elif X == 2
…
… /* The preprocessor executes instructions
… following #elif when x!=1 and x=2. */
#else
…
#endif

Preprocessor Directives/Commands

3-22 VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs

#else

The #else command is used within an #if … #endif pair. It adds an alter-
native instruction to the #if … #endif pair. You can use only one #else
command inside the pair. The preprocessor executes instructions that fol-
low #else after all the preceding conditions are evaluated as FALSE (zero).
If no #else text is specified, and all preceding #if and #elif conditions
are FALSE, the preprocessor does not process any instructions inside the
#if … #endif pair.

Syntax:

#else

Example:

#if X == 1
…
#elif X == 2
…
#else
…
… /* The preprocessor executes instructions

after #else when x!=1 and x!=2. */
#endif

VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs 3-23

Preprocessor

#endif

The #endif command is required to terminate #if … #endif, #ifdef …
#endif, and #ifndef … #endif pairs. Ensure that the number of #if com-
mands matches the number of #endif commands.

Syntax:

#endif

Example:

#if condition
…
…
#endif

/* The preprocessor executes instructions after #if
 when condition evaluates as TRUE. */

Preprocessor Directives/Commands

3-24 VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs

#error

The #error command is used to specify text that the preprocessor outputs
if an error occurs during preprocessing. The preprocessor uses the text fol-
lowing the #error command as the error message.

Syntax:

#error messageText

where:

• messageText — User-defined text. To break a long messageText
without changing its meaning, place the backslash character (\) at
the end of each line except the last.

Example:

#ifndef __ADSP21060__
#error \
 MyError:\
 Expecting an ADSP-21060. \
 Check the Linker Description File!
#endif

VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs 3-25

Preprocessor

#if

The #if command begins an #if … #endif pair. Statements inside an #if
… #endif pair can include other preprocessor commands and conditional
expressions. The preprocessor processes instructions inside the #if …
#endif pair only when condition that follows the #if evaluates as TRUE.
The preprocessor requires that an expression in a #if evaluates to an inte-
ger; otherwise, an error message is displayed. The number of #if
command must equal the number of #endif commands.

Syntax:

#if condition

where:

• condition — Expression to evaluate as TRUE (non-zero) or FALSE
(zero).

Example:

#if x!=100 /* test for TRUE condition */
…
… /* The preprocessor executes instructions

 after #if only when x!=100 */
#endif

� When a character constant (i.e., condition) in an expression uses
numeric escape codes, and more than three octal digits appear in the
constant, an error message is displayed. Correct the expression so it
has a valid character constant (three or less octal digits).

Preprocessor Directives/Commands

3-26 VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs

#ifdef

The #ifdef (if defined) command begins an #ifdef … #endif pair and
commands the preprocessor to test whether macro is defined. The prepro-
cessor considers a macro defined if it has a non-zero value. The number of
#ifdef command must match the number of #endif commands.

Syntax:

#ifdef macroSymbol

where:

• macroSymbol —Macro created with the #define command.

Example:

#ifdef __ADSP21060__
/* tests for ADSP-21060 code */

#endif

VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs 3-27

Preprocessor

#ifndef

The #ifndef command (“if not defined”) begins an #ifndef … #endif pair
and directs the preprocessor to test for an undefined macro. The prepro-
cessor considers a macro undefined if it has no defined value or has a
defined value of zero. The number of #ifndef commands must equal the
number of #endif commands.

Syntax:

#ifndef macroSymbol

where:

• macroSymbol — Macro created with the #define command.

Example:

#ifndef __ADSP21060__
 /* tests for -ADSP-21060 code */
#endif

Preprocessor Directives/Commands

3-28 VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs

#include

The #include command directs the preprocessor to insert the text from a
header file at the command location. There are two types of header files:
system and user. The only difference to the preprocessor between these
two types of files is way the preprocessor searches for them. The searches
differ as follows:

• System Header <fileName> — The preprocessor searches for a sys-
tem header file in the order: (1) the directories you specify and (2)
the standard list of system directories.

• User Header "fileName" — The preprocessor searches for a user
header file in the order: (1) the current directory, then in (2) the
directories you specify, and finally in (3) the standard list of system
directories.

� The preprocessor limits the number of opened nested #include files
to 200. Restructure your program to use fewer than 200 of the
nested include files. Also, make sure there is a terminating delimiter
(>) for the filename argument.

Syntax:

#include <fileName> // include a system header file

#include "fileName" // include a user header file

#include macroFileNameExpansion
/* Include a file named through macro expansion.
 This command directs the preprocessor to expand the
 macro. The preprocessor processes the expanded text,
 which must match either <fileName> or "fileName". */

Example:

#ifdef __ADSP21060__
#include <.\21060\include\stdlib.h>

 /* tests for -ADSP-21060 code */
#endif

VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs 3-29

Preprocessor

#line

The #line command directs the preprocessor to output the specified line
and file name of an included file. Use this command for error tracking
purposes. The text following the line number argument must be in the
form of a filename (surrounded by the double quotation marks).

Syntax:

#line lineNumber “sourceFile”

where:

• lineNumber — Number of the source line that you want to output.

• sourceFile — Name of the source file included in double quota-
tion marks. The preprocessor passes this parameter to the assembler.
sourceFile can include the drive, directory, and file extension as
part of the file name.

Example:

#line 7 “myFile.c”

� The #line command is primarily used by the compiler.

Preprocessor Directives/Commands

3-30 VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs

#undef

The #undef command directs the preprocessor to undefine the macro.

The preprocessor has five predefined macros, __LINE__, __FILE__,
__DATE__, __TIME__, and __STDC__. When a reserved name is used in an
#undef command, an error message is displayed. In addition, the operator
"defined" can not appear in an #undef command.

Syntax:

#undef macroSymbol

where:

• macroSymbol — Macro created with the #define command.

Example:

#undef BUFFER_SIZE /* undefines a macro named BUFFER_SIZE */

VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs 3-31

Preprocessor

#warning

The #warning command is used to specify text that the preprocessor out-
puts if it issues a warning. The preprocessor uses the text following
#warning command as the warning message.

Syntax:

#warning messageText

where:

• messageText — User-defined text. To break a long messageText
without changing its meaning, place the backslash character (\) at
the end of each line except the last.

Example:

#ifndef __ADSP21060__
#warning \
 MyWarning: \
 Expecting an ADSP-21060. \
 Check the Linker Description File!
#endif

Preprocessor Directives/Commands

3-32 VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs

(String)

The # (string) command directs the preprocessor to convert a macro argu-
ment into a string constant. The preprocessor converts an argument into a
string when macro arguments are substituted into the macro definition.

The preprocessor handles white space in string-to-literal conversions
according to the following rules:

• Ignores leading and trailing white spaces

• Converts any white space in the middle of the text to a single space
in the resulting string

Syntax:

#toString

where:

• toString — Constant or macro definition to convert into a literal
string. If the # operator precedes a macro parameter, the preprocessor
includes a converted string into the double quotation marks (“”).

Example:

#define WARN_IF(EXP) \
fprintf (stderr, "Warning: " #EXP "\n")
/* Defines a macro that takes an argument and converts the

argument to a string:

WARN_IF(current < minimum);
Invokes the macro passing the condition.

fprintf (stderr, "Warning: " "current < minimum" "\n");
Note that the #EXP has been changed to current < minimum and
is enclosed in “”

*/

VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs 3-33

Preprocessor

(Concatenate)

The ## (concatenate) command directs the preprocessor to concatenate
two strings. When you define a macro, you request concatenation with ##
in the macro body. The preprocessor concatenates the syntactic tokens on
either side of the concatenation operator.

Syntax:

string1##string2

Example:

/* The example code segment defines a macro that takes the name
of a command as an argument, converts the argument to a string,
and concatenates the string with _command to make the function
name.
*/

#define COMMAND(NAME) {#NAME, NAME##_command}
struct command commands[] =
 {
 COMMAND(quit),
 COMMAND(help),
 };
/* The code above shows the code you input to the preprocessor,
and the code below shows the preprocessor output.
*/

struct command commands[] =
 {
 { "quit", quit_command } ,
 { "help", help_command } ,
 };

Preprocessor Directives/Commands

3-34 VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs

? (Generate a Unique Label)

The "?" operator directs the preprocessor to generate unique labels for
iterated macro expansions. Within the definition body of a macro
(define), you can specify one or more identifiers with a trailing question
mark (?) to ensure that unique label names are generated for each macro
invocation.

The preprocessor affixes " _num " to a label symbol, where num is a uniquely
generated number for every macro expansion. For example:

abcd?===>abcd_1

If a question mark is a part of the symbol that needs to be preserved,
ensure that "?" is delimited from the symbol. For example:

“abcd?” is a generated label, while “abcd ?” is not.

Example:

#define loop(x,y)mylabel?:x =1+1;\
x =2+2;\
ourlabel?:y =3*3;\
y =5*5;\
JUMPJUMP mylabel?;\
JUMP yourlabel?;
loop (bz,kjb)
loop (lt,ss)
loop (yc,jl)

//Generates the following output:
mylabel_1:bz =1+1;bz =2+2;yourlabel_1:kjb =3*3;kjb = 5*5;JUMP
mylabel_1;JUMP yourlabel_1;

mylabel_2:lt =1+1;lt =2+2;yourlabel_2:ss =3*3;ss =5*5;
JUMP mylabel_2;

JUMP yourlabel_2;

VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs 3-35

Preprocessor

mylabel_3:yc =1+1;yc =2+2;yourlabel_3:jl =3*3;jl =5*5;
JUMP mylabel_3;

JUMP yourlabel_3;

Preprocessor Directives/Commands

3-36 VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs

	Contents
	3 Preprocessor
	Overview
	Preprocessor Guide
	Setting Preprocessor Options
	Using Header Files
	Writing Macros
	Writing Compound Statements As Macros
	Using Predefined Macros
	Table 3-1. Predefined Macros

	Preprocessor Command-Line Interface
	Running the Preprocessor
	Preprocessor Command-Line Switch Summary
	Table 3-2. Preprocessor Command-Line Switch Summary�

	Preprocessor Command-Line Switch Descriptions

	Preprocessor Directives/Commands
	Table 3-3. Preprocessor Directive Summary�
	#define
	#elif
	#else
	#endif
	#error
	#if
	#ifdef
	#ifndef
	#include
	#line
	#undef
	#warning
	# (String)
	## (Concatenate)
	? (Generate a Unique Label)

