
3 C/C++ RUN-TIME LIBRARY
Figure 3-0.

Table 3-0.

Listing 3-0.

Listing 3-0.
Overview
The C and C++ run-time libraries are collections of functions, macros,
and class templates that you can call from your source programs. Many
functions are implemented in the ADSP-21xxx family assembly language.
C and C++ programs depend on library functions to perform operations
that are basic to the C and C++ programming environments. These opera-
tions include memory allocations, character and string conversions, and
math calculations. Using the library simplifies your software development
by providing code for a variety of common needs.

The cc21k compiler provides a broad collection of library functions,
including those required by the ANSI standard and additional functions
of value for DSP programming supplied by Analog Devices. In addition to
the standard C library, this release of the compiler software includes the
abridged C++ library, a conforming subset of the standard C++ library.
The abridged C++ library includes the embedded C++ and embedded
standard template libraries.

This chapter describes the standard C/C++ library functions in the current
release of the run-time libraries. Chapter 4, DSP Library for ADSP-2106x
Processors, and Chapter 5, DSP Library for ADSP-2116x Processors,
describe a number of signal processing, matrix, and statistical functions
that assist DSP code development.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-1

Overview
For more information on the algorithms on which many of the C library’s
math functions are based, see Cody, W. J. and W. Waite, Software Manual
for the Elementary Functions, Englewood Cliffs, New Jersey: Prentice Hall,
1980. For more information on the C++ library portion of the ANSI/ISO
Standard for C++, see Plauger, P. J. (Preface), The Draft Standard C++
Library, Englewood Cliffs, New Jersey: Prentice Hall, 1994, (ISBN:
0131170031).

The sections of this chapter present the following information on the
compiler:

• “C and C++ Run-Time Libraries Guide” (starting on page 3-3) con-
tains introductory information about the ANSI/ISO Standard C
and C++ libraries. It also provides information about the
ANSI-standard header files and built-in functions that are included
with this release of the cc21k compiler.

• “C Run-Time Library Reference” (starting on page 3-29) contains
reference information about the C run-time library functions
included with this release of the cc21k compiler.

The C++ library reference information in HTML format is included on
the software distribution CD-ROM. To access the reference files from
VisualDSP++, see the procedure described in “Related Documents” on
page 1-5. Select the C++ Run-Time Library Reference from the list of
documents.

� You can also manually access the HTML files using a web browser.
3-2 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
C and C++ Run-Time Libraries Guide
The C and C++ run-time libraries contain routines that you can call from
your source program. This section describes how to use the libraries and
provides information on the following topics:

• “Calling Library Functions” on page 3-3

• “Linking Library Functions” on page 3-4

• “Working with Library Header Files” on page 3-6

• “Using the Compiler’s Built-In C library Functions” on page 3-19

• “Abridged C++ Library Support” on page 3-21

For information on the C library’s contents, see “C Run-Time Library
Reference” (starting on page 3-29). For information on the Abridged C++
library’s contents, see “Abridged C++ Library Support” (starting on
page 3-21) and on-line Help.

Calling Library Functions
To use a C/C++ library function, call the function by name and give the
appropriate arguments. The name and arguments for each function appear
on the function’s reference page. The reference pages appear in the
“C Run-Time Library Reference” section (starting on page 3-29) and in
the “C++ Run-Time Library” topic of the on-line Help.

Like other functions you use, library functions should be declared. Decla-
rations are supplied in header files. For more information about the
header files see “Working with Library Header Files” (starting on
page 3-6).
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-3

C and C++ Run-Time Libraries Guide
� Function names are C/C++ function names. If you call a C or C++
run-time library function from an assembly program, you must use
the assembly version of the function name (prefix an underscore on
the name). For more information on the naming conventions, see
“C/C++ and Assembly Interface” (starting on page 2-147).

� You can use the archiver, elfar, described in the VisualDSP++ 2.0
Linker and Utilities Manual for ADSP-21xxx DSPs, to build library
archive files of your own functions.

Linking Library Functions
The C/C++ run-time library is organized as four libraries:

• C run-time library — Comprises all the functions that are defined
by the ANSI standard

• C++ run-time library

• DSP run-time library — Contains additional library functions sup-
plied by Analog Devices that provide services commonly required
by DSP applications

• I/O library — Supports a subset of the C standard's I/O function-
ality

Each library has two versions: one set is suitable for running on the
ADSP-2106x DSP and the other is suitable for running on the
ADSP-2116x DSP. Table 3-1 catalogues the names of each of the libraries
and also lists other files that are used while linking a program.
3-4 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
Table 3-1. C and C++ Files and Libraries

Description ADSP-2106x DSP ADSP-2116x DSP

C run-time library functions libc.dlb libc160.dlb (21160 only)
libc161.dlb (21161 only)

Threadsafe C run-time library
functions

libcmt.dlb libc160mt.dlb (21160 only)
libc161mt.dlb (21161 only)

C++ run-time library functions libcpp.dlb libcpp.dlb

Threadsafe C++ run-time
library functions

libcppmt.dlb libcppmt.dlb

C++ run-time library support
functions

libcpprt.dlb libcpprt.dlb

DSP run-time library functions libdsp.dlb libdsp160.dlb

I/O library functions libio.dlb libio.dlb

Threadsafe I/O library
functions

libiomt.dlb libiomt.dlb

Start-up file for C programs —
calls set-up routines and main

060_hdr.doj (21060 only)
061_hdr.doj (21061 only)
065L_hdr.doj (21065L only)

160_hdr.doj (21160 only)
161_hdr.doj (21161 only)

Start-up file for C++ programs
— calls set-up routines and
main

060_cpp_hdr.doj (21060 only)
061_cpp_hdr.doj (21061 only)
065L_cpp_hdr.doj (21065L
only)

160_cpp_hdr.doj (21160 only)
161_cpp_hdr.doj (21161 only)

Start-up file for multi-threaded
C++ applications — calls set-up
routines and main

060_cpp_hdr_mt.doj (21060
only)
061_cpp_hdr_mt.doj (21061
only)
065L_cpp_hdr_mt.doj (21065L
only)

160_cpp_hdr_mt.doj (21160
only)
161_cpp_hdr_mt.doj (21161
only)
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-5

C and C++ Run-Time Libraries Guide
The libraries and start-up files are installed within subdirectories of your
VisualDSP++ installation. The files that are used to build applications for
the ADSP-2106x architecture are installed within the directory 21k\lib
and those used for the ADSP-2116x architecture are installed within the
directory 211xx\lib.

When you call a run-time library function, the call creates a reference that
the linker resolves when linking your program. One way to direct the
linker to the library's location is to use the default Linker Description File
(ADSP-<your_target>.ldf).

If you are not using the default LDF, then either add the appropriate
library/libraries to the LDF used for your project, or use the compiler's -l
switch to specify the library to be added to the link line. For example, the
switches -lc -ldsp will add libc.dlb and libdsp.dlb to the list of librar-
ies to be searched by the linker. For more information on the LDF file, see
the VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs.

Working with Library Header Files
When you use a library object (function, macro, or class template) in your
program, you include the corresponding header file with the #include
preprocessor command. The header file for each library function is identi-
fied in the Synopsis section of the reference page. Header files contain
prototypes. The compiler uses these prototypes to check that each library
object is called with the correct arguments.
3-6 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
 Standard C Library Header Files

The following C standard header files are supplied with this release of the
ADSP-21xxx DSP family compiler. You should use a C standard text to
augment the information supplied in this chapter.

Table 3-2 lists the header files that contain ANSI standard run-time envi-
ronment macros for error handling, standard definitions, limits, and
floating-point variables. These do not contain individual functions; they
consist of macros and type definitions. See the “Standard C Library
Header Files” on page 3-7 for more detailed descriptions.

Ten C standard header files that contain ANSI standard functions are sup-
plied with the present release of the SHARC compiler. Table 3-3 provides
a list of the Standard C Library function header files. See the “Standard C
Library Header Files” on page 3-7 for more detailed descriptions.

Table 3-2. ANSI Standard Run-Time Environment Macros

Header File Description

errno.h Error Handling.

float.h Floating-point implementation parameters.

limits.h Implementation limits.

stddef.h Standard definitions.

Table 3-3. ANSI Standard Run-Time Functions

Header File Description

assert.h Diagnostics.

ctype.h Character handling.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-7

C and C++ Run-Time Libraries Guide
Standard C Library Header File Descriptions

This section provides descriptions of the header files contained in the C
library. The header files are listed in alphabetical order.

assert.h

The assert.h header file contains the assert macro.

ctype.h

The ctype.h header file contains functions for character handling, such as
isalpha, tolower, etc.

errno.h

The errno.h header file provides access to errno and also defines macros
for associated error codes.

locale.h Localization.

math.h Basic math functions.

setjmp.h Non-local jumps.

signal.h Signal handling.

stdarg.h Variable arguments.

stdio.h Input/Output.

stdlib.h Standard library.

string.h String handling.

Table 3-3. ANSI Standard Run-Time Functions (Cont’d)

Header File Description
3-8 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
float.h

The float.h header file contains definitions of size and precision values
for each C floating point data type. The FLT_ROUNDS macro defined in the
header file is set to the C run-time environment definition of the round-
ing mode for float variables which is round-toward-nearest. The
rounding mode for long double variables is truncation.

limits.h

The limits.h header file contains definitions of maximum and minimum
values for each C data type other than floating-point.

locale.h

The locale.h header file contains definitions for expressing numeric,
monetary, time, and other data.

math.h

The math.h header file includes trigonometric, power, logarithmic, expo-
nential, and other miscellaneous functions. The library contains the
functions specified by the C standard along with implementations for
float.

This header file also provides prototypes for a number of additional math
functions provided by Analog Devices, such as favg, fmax, fclip, and
copysign. Refer to Chapter 4, DSP Library for ADSP-2106x Processors,
and Chapter 5, DSP Library for ADSP-2116x Processors, for more infor-
mation about these additional functions.

The math.h header file contains prototypes for single (32-bit), double
(64-bit), and faster single precision routines. For every double mathemati-
cal function, there is a corresponding float function. For example, the
32-bit version of sin is sinf.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-9

C and C++ Run-Time Libraries Guide
If the compiler is treating double as 32 bits, the header file defines
non-suffixed names (e.g. sin) as the 32-bit version (e.g. sinf). This lets
you use the un-suffixed names with arguments of type double, regardless
of whether doubles are 32- or 64-bits. The float functions offer signifi-
cant performance improvement.

The math.h header file also defines the macro HUGE_VAL. HUGE_VAL evalu-
ates to the maximum positive value that the type double can support.

The macros EDOM and ERANGE, defined in errno.h, are used by math.h
functions to indicate domain and range errors.

A domain error occurs when an input argument is outside the domain of
the function. The section “C Run-Time Library Reference” (starting on
page 3-29) lists the specific cases that cause errno to be set to EDOM, and
the associated return values.

A range error occurs when the result of a function cannot be represented
in the return type. If the result overflows, the function returns the value
HUGE_VAL with the appropriate sign. If the result underflows, the function
returns a zero without indicating a range error.

setjmp.h

The setjmp.h header file contains setjmp and longjmp for non-local
jumps.

signal.h

The signal.h header file provides function prototypes for the standard
ANSI signal.h routines and also for several ADSP-21xxx family exten-
sions, such as interrupt() and clear_interrupt().

The signal handling functions process conditions (hardware signals) that
can occur during program execution. They determine the way that your C
program responds to these signals. The functions are designed to process
such signals as external interrupts and timer interrupts.
3-10 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
Interrupt Dispatchers. Four interrupt dispatchers let you disable inter-
rupts and modify the processor’s MODE1 register from an interrupt handler.
The interrupt dispatchers are described below.

For the normal interrupt dispatcher, use the interrupt() or signal()
functions. (The interrupt dispatcher normally uses self-modifying code. If
this is not suitable for your application, then you should use the
interruptcbnsm or signalcbnsm functions instead.)

This dispatcher provides the following services:

• Saves all scratch registers and the loop stack. Do loop and interrupt
nesting is allowed because data is pushed onto the stack. Requires
approximately 125 cycles for interrupt overhead.

• Preserves MODE1 register writes in an interrupt handler after the
interrupt is serviced.

• Freezes the cache. An example, which is found in
21k\src\crt_src\060_hdr.asm, is shown below:

___z3_int_determiner:
 DM(I7,M7)=I13; /* Save I13 (scratch reg) */
 I13=PM(5,I15); /* get disp to jump to */
 JUMP (M13, I13) (DB); /* Jump to dispatcher */
 BIT SET MODE2 0x80000; /* Freeze cache */
 I13=PM(2,I15); /* rd handler addr (base+2) */

The circular buffer dispatcher is supplied for users whose code may gener-
ate interrupts during the execution of circular buffering code and whose
interrupt handlers may be affected by the fact that the L registers are
non-zero. For the circular buffer interrupt dispatcher, use the
interruptcb() or signalcb() functions. (The interrupt dispatcher nor-
mally uses self-modifying code. If this is not suitable for your application,
then you should use the interruptcbnsm or signalcbnsm functions
instead.)
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-11

C and C++ Run-Time Libraries Guide
This dispatcher is the same as the normal interrupt dispatcher, but it pro-
vides the following additional services:

• Before calling the handler, the registers L0-L5 and L8-L15 are saved
and set to zero.

• After executing the handler, the L registers are restored to their orig-
inal values.

• This dispatcher requires an additional 54 cycles to save, zero, and
restore the L registers.

For the fast interrupt dispatcher, use the interruptf() or signalf() func-
tions. (The interrupt dispatcher normally uses self-modifying code. If this
is not suitable for your application, then you should use the
interruptcbnsm or signalcbnsm functions instead.)

This dispatcher provides the following services:

• Does not save the loop stack; DO loop handling is restricted to six
levels (specified in hardware). If the interrupt service routine (ISR)
uses one level of nesting, your code cannot exceed five levels.

• Preserves MODE1 register writes in an interrupt handler after the
interrupt is serviced.

• Interrupt nesting is not restricted (20 levels available). Does not
send the interrupt number type to the ISR as a parameter. Requires
approximately 60 cycles for interrupt overhead.

For the super interrupt dispatcher, use the interrupts() or signals()
functions. (The interrupt dispatcher normally uses self-modifying code. If
this is not suitable for your application, then you should use the
interruptcbnsm or signalcbnsm functions instead.)
3-12 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
This dispatcher provides the following services:

• Does not save the loop stack, therefore do loop handling is restricted
to six levels (specified in hardware). Interrupt nesting is disabled.
This dispatcher does not send the interrupt number type to the ISR
as a parameter.

• Uses the secondary register set. This dispatcher requires approxi-
mately 30 cycles for interrupt overhead.

� the choice of a non self-modifying function has no effect on the
dispatcher used and no effect on the overall interrupt handling
performance.

stdarg.h

The stdarg.h header file contains definitions needed for functions that
accept a variable number of arguments. Callers of such functions must
include a prototype.

stddef.h

The stddef.h header file contains a few common definitions useful for
portable programs, such as size_t.

stdio.h

The stdio.h header file contains a subset of the C standard's I/O func-
tionality. Always include the header file in your source if you use any of its
facilities because the header file contains dual support for type double —
support for when it is 32 bits and support for when it is 64 bits. Failure to
include the header file results in a linker failure as the compiler must see a
correct function prototype in order to generate the correct calling
sequence.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-13

C and C++ Run-Time Libraries Guide
The following facilities are not available in this release:

• Stream positioning functions fgetpos, fseek, fsetpos, ftell, and
rewind

• File handling functions remove, rename, tmpfile, and tmpnam

• printf and scanf functions do not support values of type long long

• printf and scanf functions do not support values of type long
double when type double is the same size as type float

The functions supported by the stdio.h header use a simple interface with
a host environment, which may be a simulator, debugger, or an external
downloader (e.g., ELFDLK for SHARC processor boards). The intent is
to place minimal demands on the host environment while still providing
as much functionality to the DSP as possible.

All I/O operations are channeled through the C function _primIO. The
assembly label has two underscores, __primIO. __primIO accepts no argu-
ments. Instead, it examines the I/O control block at the label _PrimIOCB.
Without external intervention by a host environment, the __primIO rou-
tine simply returns, which indicates failure of the request. Two schemes
for host interception of I/O requests are provided.
3-14 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
The first scheme is to modify control flow into and out of the _primIO
routine. Typically, this would be achieved by a break point mechanism
available to a debugger/simulator. Upon entry to _primIO, the data for the
request will reside in a control block at the label _PrimIOCB. If this scheme
is used, the host should arrange to intercept control when it enters the
_primIO routine, and, after servicing the request, return control to the
calling routine.

The second scheme involves communicating with the DSP process
through a pair of simple semaphores. This scheme is most suitable for an
externally-hosted development board. Under this scheme, the host system
should clear the data word whose label is __lone_SHARC; this will cause
_primIO to assume that a host environment is present and able to commu-
nicate with the DSP process. If _primIO sees that __lone_SHARC is cleared,
then upon entry (i.e., when an I/O request is made) it will set a non-zero
value into the word labeled __Godot. _primIO will then busy-wait until
this word is reset to zero by the host. The non-zero value of __Godot raised
by _primIO is the address of the I/O control block.

Data Packing For Primitive I/O

The DSP implementation is based on a word-addressable machine, with
each word comprising a fixed number of 8-bit bytes. All READ and WRITE
requests specify a move of some number of 8-bit bytes, that is, the relevant
fields count 8-bit bytes, not words. Packing is always little endian, the first
byte of a file read or written is the low-order byte of the first word
transferred.

Data packing is set to four bytes per word for the SHARC. Data packing
can be changed on the DSP side to accommodate other DSP architectures
by modifying the constant BITS_PER_WORD, defined in wordsize.h.

Note that the file name provided in an OPEN request uses the DSP’s
“native” string format, normally one byte per word. Data packing applies
only to READ and WRITE requests.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-15

C and C++ Run-Time Libraries Guide
Data Structure for Primitive I/O

The I/O control block is declared in _primio.h, as follows:

typedef struct
{
 enum
 {
 PRIM_OPEN = 100,
 PRIM_READ,
 PRIM_WRITE,
 PRIM_CLOSE
 } op;

 int fileID;
 int flags;
 unsigned char *buf; /* data buffer, or file name */
 int nDesired; /* number of characters to read */

/* or write */
 int nCompleted; /* number of characters actually */

/* read or written */
 void *more; /* for future use */
}
PrimIOCB_T;

The first field, op, identifies which of the four currently supported opera-
tions is being requested.

The file ID for an open file is a non-negative integer assigned by the
debugger or other “host” mechanism. The fileID values 0, 1, and 2 are
pre-assigned to stdin, stdout, and stderr, respectively. No open request
is required for these file IDs.

The flags field is a bit field containing other information for special
requests. Meaningful bit values for an OPEN operation are:

M_OPENR = 0x0001 /* open for reading */
M_OPENW = 0x0002 /* open for writing */
M_OPENA = 0x0004 /* open for append */
M_TRUNCATE = 0x0008 /* truncate to zero length if file exists */
M_CREATE = 0x0010 /* create the file if necessary */
M_BINARY = 0x0020 /* binary file (vs. text file) */
3-16 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
For a READ operation, the low-order four bits of the flag value contain the
number of bytes packed into each word of the read buffer, and the rest of
the value are reserved for future use.

For a WRITE operation, the low-order four bits of the flag value contain the
number of bytes packed into each word of the write buffer, and the rest of
the value form a bit field, for which only the following bit is currently
defined:

 M_ALIGN_BUFFER = 0x10

If this bit is set for a WRITE request, the WRITE operation is expected to be
aligned on a DSP word boundary by writing padding NULs to the file
before the buffer contents are transferred.

The flags field is currently unused for a CLOSE request.

The buf field contains a pointer to the file name for an open request, or a
pointer to the data buffer for a read or write request.

For a read or write request, nDesired is the number of bytes the program
is requesting to transfer; _primIO is expected to set nCompleted to the
number of bytes actually transferred.

The more field is reserved for future use, and currently is always set to
NULL before calling _primIO.

stdlib.h

The stdlib.h header file offers general utilities specified by the C stan-
dard. These include some integer math functions, such as abs, div, and
rand; general string-to-numeric conversions; memory allocation functions,
such as malloc and free; and termination functions, such as exit. This
library also contains miscellaneous functions such as bsearch and qsort.

This header file also provides prototypes for a number of additional inte-
ger math functions provided by Analog, such as avg, max, and clip.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-17

C and C++ Run-Time Libraries Guide
Table 3-4 provides a summary of the additional library functions defined
by header file.

� Some functions exist as both integer and floating point. The float-
ing-point functions typically have an f prefix. Make sure you use the
correct type.

Table 3-4. Standard Library - Additional Functions

Description Prototype

Average int avg (int a, int b);

long lavg (long a, long b);

Clip int clip (int a, int b);

long lclip (long a, long b);

Maximum int max (int a, int b);

long lmax (long a, long b);

Minimum int min (int a, int b);

long lmin (long a, long b);

Multiple heaps for
dynamic memory
allocation

int heap_init(int heap_index);

int heap_lookup(int user_id);

void *heap_calloc(int heap_index, size_t nelem,
size_t size);

void heap_free(int heap_index, void *ptr);

void *heap_malloc(int heap_index, size_t size);

void *heap_realloc(int heap_index, void *ptr,
size_t size);

int heap_switch(int heap_index);
3-18 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
A number of functions, including abs, avg, max, min, and clip, are imple-
mented via intrinsics (provided the header file has been #include’d) that
map to single-cycle machine instructions.

� If the header file is not included, the library implementation is used
instead — at a considerable loss in efficiency.

string.h

The string.h header file contains string handling functions, including
strcpy and memcpy.

Using the Compiler�s Built-In C library Functions
The C compiler’s intrinsic (built-in) functions are functions that the com-
piler immediately recognizes and replaces with in-line assembly code
instead of a function call. For example, the absolute value function, abs(),
is recognized by the compiler, which subsequently replaces a call to the C
run-time library version with an in-line version. The cc21k compiler con-
tains a number of intrinsic built-in functions for efficient access to various
features of the hardware.

Built-in functions are recognized for cases where the name begins with the
string __builtin, and the declared prototype of the function matches the
prototype that the compiler expects. Built-in functions are declared in sys-
tem header files. Include the appropriate header file in your program to
use these functions. The normal action of the appropriate include file is to
#define the normal name as mapping to the built-in form.

Typically, in-line assembly code is faster than an average library routine,
and it does not incur the calling overhead.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-19

C and C++ Run-Time Libraries Guide
The routines in Table 3-5 are built-in C library functions for the cc21k
compiler:

If you want to use the C run-time library functions of the same name,
compile with the -no-builtin (no built-in functions) compiler switch.

For a certain category of library function, the compiler relaxes the normal
rule whereby pointers that are passed as arguments must address Data
Memory (DM). For functions in this category, any argument that is a
pointer may also address Program Memory (PM). When the compiler rec-
ognizes that certain arguments reference PM, it generates a call to an
appropriate version of the function in the run-time library.

Table 3-5. Compiler Built-in Functions

abs avg clip

copysign1

1 These functions will only be compiled as a built-in
function if double is the same size as float.

copysignf fabs1

fabsf favg1 favgf

fclip1 fclipf fmax1

fmaxf fmin1 fminf

labs lavg lclip

lmax lmin max

min
3-20 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
Table 3-6 contains a list of library functions that may be called with
pointers to Program Memory. Note that this facility is only available pro-
vided that the compiler switch -no-builtin has not been specified.

Abridged C++ Library Support
When in C++ mode, the cc21k compiler can call a large number of func-
tions from the Abridged Library, a conforming subset of C++ library.

The Abridged Library has two major components: Embedded C++ Library
(EC++) and Embedded Standard Template Library (ESTL). The Embed-
ded C++ Library is a conforming implementation of the Embedded C++
Library as specified by the Embedded C++ Technical Committee.

Table 3-6. Dual Memory Capable Functions

atof atoi atol

memchr memcmp memcpy

memmove memset modf

modff setlocale strcat

strchr strcmp strcoll

strcpy strcspn strlen

strncat strncmp strncpy

strpbrk strrchr strspn

strstr strtod strtok

strtol strtoul strxfrm
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-21

C and C++ Run-Time Libraries Guide
This section lists and briefly describes the following components of the
Abridged Library:

• “Embedded C++ Library Header Files” on page 3-22

• “C++ Header Files for C Library Facilities” on page 3-25

• “Embedded Standard Template Library Header Files” on page 3-26

For more information on the Abridged Library, see online Help.

Embedded C++ Library Header Files

complex

The complex header file defines a template that supports the double_complex
and float_complex classes and a set of arithmetic operators.

exception

The exception header file defines the exception and bad_exception
classes and several functions for exception handling.

fract

The fract header file defines the fract data type, which supports frac-
tional arithmetic, assignment, and type-conversion operations. The header
file is fully described under “C++ Fractional Type Support” on page 2-84.
An example that demonstrates its use appears under “C++ Programming
Examples” on page 2-162.

fstream

The fstream header file defines the filebuf, ifstream, and ofstream
classes for external file manipulations.
3-22 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
iomanip

The iomanip header file declares several iostream manipulators. Each
manipulator accepts a single argument.

ios

The ios header file defines several classes and functions for basic iostream
manipulations. Note that most of the iostream header files include ios.h.

iosfwd

The iosfwd header file declares forward references to various iostream
template classes defined in other standard header files.

iostream

The iostream header file declares most of the iostream objects used for the
standard stream manipulations.

istream

The istream header file defines the istream class for iostream extractions.
Note that most of the iostream header files include istream.h.

new

The new header file declares several classes and functions for memory allo-
cations and decollations.

ostream

The ostream header file defines the ostream class for iostream insertions.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-23

C and C++ Run-Time Libraries Guide
sstream

The sstream header file defines the stringbuf, istringstream, and
ostringstream classes for various string object manipulations.

stdexcept

The stdexcept header file defines a variety of classes for exception
reporting.

streambuf

The streambuf header file defines the streambuf classes for basic opera-
tions of the iostream classes. Note that most of the iostream header files
include streambuf.h.

string

The string header file defines the string template and various supporting
classes and functions for string manipulations.

� Objects of the string type should not be confused with the
NULL-terminated C strings.

strstream

The strstream header file defines the strstreambuf, istrstream, and
ostream classes for iostream manipulations on allocated, extended, and
freed character sequences.
3-24 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
C++ Header Files for C Library Facilities

For each C standard library header there is a corresponding standard C++
header. If the name of a C standard library header file is foo.h, then the
name of the equivalent C++ header file will be cfoo. For example, the C++
header file <cstdio> provides the same facilities as the C header file
<stdio.h>. Table 3-7 lists the C++ header files that provide access to the
C library facilities.

Normally, the C standard headers files may be used to define names in the
C++ global namespace while the equivalent C++ header files define names
in the std namespace. However, the std namespace is not supported in this
release of the compiler, and the effect of including one of the C++ header
files listed in Table 3-7 is the same as including the equivalent C standard
library header file.

Table 3-7. C++ Header Files for C Library Facilities

Header Description

<cassert> Enforces assertions during function executions

<cctype> Classifies characters

<cerrno> Tests error codes reported by library functions

<cfloat> Tests floating-point type properties

<climits> Tests integer type properties

<clocale> Adapts to different cultural conventions

<cmath> Provides common mathematical operations

<csetjmp> Executes non-local goto statements

<csignal> Controls various exceptional conditions

<cstdarg> Accesses a various number of arguments
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-25

C and C++ Run-Time Libraries Guide
Embedded Standard Template Library Header Files

Templates and the associated header files are not part of the Embedded
C++ standard, but they are supported by the cc21k compiler in C++
mode. The fifteen Embedded Standard Template Library header files are:

<algorithm>

The <algorithm> header file defines numerous common operations on
sequences.

<deque>

The <deque> header file defines a deque template container.

<functional>

The <functional> header file defines numerous function objects.

<hash_map>

The <hash_map> header file defines two hashed map template containers.

<hash_set>

The <hash_set> header file defines two hashed set template containers.

<cstddef> Defines several useful data types and macros

<cstdio> Performs input and output

<cstdlib> Performs a variety of operations

<cstring> Manipulates several kinds of strings

Table 3-7. C++ Header Files for C Library Facilities (Cont’d)

Header Description
3-26 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
<iterator>

The <iterator> header file defines common iterators and operations on
iterators.

<list>

The <list> header file defines a list template container.

<map>

The <map> header file defines two map template containers.

<memory>

The <memory> header file defines facilities for managing memory.

<numeric>

The <numeric> header file defines several numeric operations on
sequences.

<queue>

The <queue> header file defines two queue template container adapters.

<set>

The <set> header file defines two set template containers.

<stack>

The <stack> header file defines a stack template container adapter.

<utility>

The <utility> header file defines an assortment of utility templates.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-27

C and C++ Run-Time Libraries Guide
<vector>

The <vector> header file defines a vector template container.

The Embedded C++ library also includes several header files for compati-
bility with traditional C++ libraries:

fstream.h

The fstream.h header file defines several iostreams template classes that
manipulate external files.

iomanip.h

The iomanip.h header file declares several iostreams manipulators that
take a single argument.

iostream.h

The iostream.h header file declares the iostreams objects that manipulate
the standard streams.

new.h

The new.h header file declares several functions that allocate and free
storage.
3-28 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
C Run-Time Library Reference
The C run-time library is a collection of functions that you can call from
your C programs. This section lists the functions in alphabetical order.
Note the following items that apply to all the functions in the library.

Notation Conventions. An interval of numbers is indicated by the mini-
mum and maximum, separated by a comma, and enclosed in two square
brackets, two parentheses, or one of each. A square bracket indicates that
the endpoint is included in the set of numbers; a parenthesis indicates that
the endpoint is not included.

Function Benchmarks and Specifications. All functions have been timed
from setup, to invocation, to results storage of returned value. This
includes all register storing, parameter passing, etc. Most functions exe-
cute slightly faster if you pass constants as arguments instead of variables.

Restrictions. When polymorphic functions are used and the function
returns a pointer to program memory, cast the output of the function to
pm. For example:

(char pm *)

Reference Format. Each function in the library has a reference page.
These pages follow the following format:

Name and Purpose of the function

Synopsis—Required header file and functional prototype

Description—Function specification

Error Conditions—How the function indicates an error

Example—Typical function usage

See Also—Related functions
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-29

C Run-Time Library Reference
abort

abnormal program end

Synopsis

#include <stdlib.h>
void abort (void);

Description

The function abort causes an abnormal program termination by raising
the SIGABRT exception. The last action of the default abort handler passes
control to the label ___lib_prog_term which is defined in the run-time
startup file.

Error Conditions

The abort function does not return.

Example

#include <stdlib.h>
extern int errors;

if (errors) /* terminate program if */
 abort(); /* errors are present */

See Also

atexit, exit
3-30 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
abs

absolute value

Synopsis

#include <stdlib.h>
int abs (int j);

Description

The abs function returns the absolute value of its integer argument.

Note: abs(INT_MIN) returns INT_MIN.

Error Conditions

The abs function does not return an error condition.

Example

#include <stdlib.h>
int i;

i = abs (-5); /* i == 5 */

See Also

fabs, fabsf, labs
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-31

C Run-Time Library Reference
acos, acosf

arc cosine

Synopsis

#include <math.h>
double acos (double x);
float acosf (float x);

Description

The acos and acosf functions return the arc cosine of x. The input must
be in the range [-1, 1]. The output, in radians, is in the range [0, π].

The acos and acosf functions return a value that is accurate to 20 bits of
the mantissa. This accuracy corresponds to a maximum relative error of

2-20 over its input range.

Error Conditions

The acos and acosf functions indicate a domain error (set errno to EDOM)
and returns a zero if the input is not in the range [–1, 1].

Example

#include <math.h>
double x;
float y;

y = acos (0.0); /* y = π/2 */
x = acosf (0.0); /* x = π/2 */

See Also

cos, cosf
3-32 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
asin, asinf

arc sine

Synopsis

#include <math.h>
double asin (double x);
float asinf (float x);

Description

The asin and asinf functions return the arc sine of the first argument.
The input must be in the range [1, 1]. The output, in radians, is in the
range

 [- ,]

The asin and asinf functions return a value that is accurate to 20 bits of
the mantissa. This accuracy corresponds to a maximum relative error of

2-20 over its input range.

Error Conditions

The asin and asinf functions indicate a domain error (set errno to EDOM)
and return a zero if the input is not in the range [-1, 1].

Example

#include <math.h>
double y;
float x;

y = asin (1.0); /* y = π/2 */
x = asinf (1.0); /* x = π/2 */

See Also

sin, sinf

π
2
--- π

2

VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-33

C Run-Time Library Reference
atan, atanf

arc tangent

Synopsis

#include <math.h>
double atan (double x);
float atanf (float x);

Description

The atan and atanf functions return the arc tangent of the first argument.

The output, in radians, is in the range [- ,]

The atan and atanf functions return a value that is accurate to 20 bits of
the mantissa. This accuracy corresponds to a maximum relative error of

2-20 over its input range.

Error Conditions

The atan and atanf functions do not return error conditions.

Example

#include <math.h>
double y;
float x;

y = atan (0.0); /* y = 0.0 */
x = atanf (0.0); /* x = 0.0 */

See Also

atan2, atan2f, tan, tanf

π
2
--- π

2

3-34 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
atan2, atan2f

arc tangent of quotient

Synopsis

#include <math.h>
double atan2 (double x, double y);
float atan2f (float x, float y);

Description

The atan2 and atan2f functions compute the arc tangent of the input
value x divided by input value y. The output, in radians, is in the range
[-π, π].

The atan2 and atan2f functions return a value that is accurate to 20 bits
of the mantissa. This accuracy corresponds to a maximum relative error of

2-20 over its input range.

Error Conditions

The atan2 and atan2f functions return a zero and set errno to EDOM if x=0
and y <> 0.

Example

#include <math.h>
double a;
float b;

a = atan2 (0.0, 0.5); /* the error condition: a = 0.0 */
b = atan2f (1.0, 0.0); /* b = π/ 2 ∗/

See Also

atan, atanf, tan, tanf
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-35

C Run-Time Library Reference
atexit

register a function to call at program termination

Synopsis

#include <stdlib.h>
int atexit (void (*func)(void));

Description

The atexit function registers a function to be called at program termina-
tion. Functions are called once for each time they are registered, in the
reverse order of registration. Up to 32 functions can be registered using
atexit.

Error Conditions

The atexit function returns a nonzero value if the function cannot be
registered.

Example

#include <stdlib.h>
extern void goodbye(void);

if (atexit(goodbye))
 exit(1);

See Also

abort, exit
3-36 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
atof

convert string to a double

Synopsis

#include <stdlib.h>
double atof (const char *nptr);

Description

The atof function converts a character string to a double value. The char-
acter string to be converted is pointed to by the input pointer, nptr. The
function clears any leading characters for which isspace would return
true. Conversion begins at the first digit (with an optional preceding sign).
Conversion terminates at the first non-digit (exceptions are “.”, “e”, “E”,
and exponents, including the sign).

� There is no way to determine if a zero is a valid result or an indicator
of an invalid string.

This function requires the use of the compiler’s -double-size-64
switch.

Error Conditions

The atof function returns a zero if no conversion can be made.

Example

#include <stdlib.h>
double x;

x = atof ("5.5"); /* x == 5.5 */

See Also

atoi, atol, strtol, strtoul
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-37

C Run-Time Library Reference
atoi

convert string to integer

Synopsis

#include <stdlib.h>
int atoi (const char *nptr);

Description

The atoi function converts a character string to an integer value. The
character string to be converted is pointed to by the input pointer, nptr.
The function clears any leading characters for which isspace would return
true. Conversion begins at the first digit (with an optional preceding sign)
and terminates at the first non-digit.

Error Conditions

The atoi function returns a zero if no conversion can be made.

Example

#include <stdlib.h>
int i;

i = atoi ("5"); /* i == 5 */

See Also

atof, atol, strtod, strtol, strtoul
3-38 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
atol

convert string to long integer

Synopsis

#include <stdlib.h>
long atol (const char *nptr);

Description

The atol function converts a character string to a long integer value. The
character string to be converted is pointed to by the input pointer, nptr.
The function clears any leading characters for which isspace would return
true. Conversion begins at the first digit (with an optional preceding sign)
and terminates at the first non-digit.

� There is no way to determine if a zero is a valid result or an indicator
of an invalid string.

Error Conditions

The atol function returns a zero if no conversion can be made.

Example

#include <stdlib.h>
long int i;

i = atol ("5"); /* i == 5 */

See Also

atoi, atof, strtod, strtol, strtoul
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-39

C Run-Time Library Reference
avg

returns mean of two values

Synopsis

#include <stdlib.h>
int avg (int x, int y);

Description

This function is an Analog Devices extension to the ANSI standard.

The avg function adds two arguments and divides the result by two. The
avg function is a built-in function which is implemented with an
Rn=(Rx+Ry)/2 instruction.

Error Conditions

The avg function does not return an error code.

Example

#include <stdlib.h>
int i;

i = avg (10, 8); /* returns 9 */

See Also

favg, favgf, lavg
3-40 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
bsearch

perform binary search in a sorted array

Synopsis

#include <stdlib.h>
void *bsearch (const void *key, const void *base,
 size_t nelem, size_t size,
 int (*compare)(const void *, const void *));

Description

The bsearch function executes a binary search operation on a pre-sorted
array, where:

• key is a pointer to the element to search for.

• base points to the start of the array.

• nelem is the number of elements in the array. The type size_t is
defined in stdlib.h as

typedef long unsigned int size_t;

• size is the size of each element of the array.

• *compare points to the function used to compare two elements. It
takes as parameters a pointer to the key and a pointer to an array ele-
ment. The function should return a value less than, equal to, or
greater than zero according to whether the first parameter is less
than, equal to, or greater than the second.

The bsearch function returns a pointer to the first occurrence of key in
the array.

Error Conditions

The bsearch function returns NULL if the key is not found in the array.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-41

C Run-Time Library Reference
Example

#include <stdlib.h>
char *answer;
char base[50][3];

answer = bsearch ("g", base, 50, 3, strcmp);

See Also

qsort
3-42 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
calloc

allocate and initialize memory

Synopsis

#include <stdlib.h>
void *calloc (size_t nmemb, size_t size);

Description

The calloc function dynamically allocates a range of memory and initial-
izes all locations to zero. The number of elements (the first argument)
multiplied by the size of each element (the second argument) is the total
memory allocated. The memory may be deallocated with the free
function.

The object is allocated from the current heap, which is the default heap
unless heap_switch has been called to change the current heap to an
alternate heap.

The type size_t is defined in stdlib.h as

typedef long unsigned int size_t;

Error Conditions

The calloc function returns the NULL pointer if unable to allocate the
requested memory.

Example

#include <stdlib.h>
int *ptr;

ptr = (int *) calloc (10, sizeof (int));
/* ptr points to a zeroed array of length 10 */
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-43

C Run-Time Library Reference
See Also

free, heap_calloc, heap_free, heap_init, heap_lookup, heap_malloc,
heap_realloc, heap_switch, malloc, realloc
3-44 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
ceil, ceilf

ceiling

Synopsis

#include <math.h>
double ceil (double x);
float ceilf (float x);

Description

The ceil function returns the smallest integral value, expressed as double,
that is not less than its argument. The ceilf function returns the smallest
integral value, expressed as float, that is not less than its input.

Error Conditions

The ceil and ceilf functions do not return an error condition.

Example

#include <math.h>
double y;
float x;

y = ceil (1.05); /* y = 2.0 */
x = ceilf (-1.05); /* y = -1.0 */

See Also

floor, floorf
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-45

C Run-Time Library Reference
clear_interrupt

clear a pending signal

Synopsis

#include <signal.h>
int clear_interrupt (int sig);

Description

This function is an Analog Devices extension to the ANSI standard.

The clear_interrupt function clears the signal sig in the IRPTL register.
For the ADSP-2106x processors, the sig argument must be one of the
processor signals shown below in Table 3-8, and for the ADSP-2116x pro-
cessors, the sig argument must be one of the processor signals in
Table 3-9. This function does not work for interrupts that set any status
bits in the STKY register, such as floating-point overflow.

Table 3-8. ADSP-2106x Signals

Sig Value Definition

SIG_SOVF Status stack or Loop stack overflow or PC stack full

SIG_TMZ0 Timer = 0 (high priority option)

SIG_VIRPTI Vector Interrupt

SIG_IRQ2 Interrupt 2

SIG_IRQ1 Interrupt 1

SIG_IRQ0 Interrupt 0

SIG_SPR0I DMA Channel 0 - SPORT0 Receive

SIG_SPR1I DMA Channel 1 - SPORT1 Receive (or Link Buffer 0)
3-46 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
SIG_SPT0I DMA Channel 2 - SPORT0 Transmit

SIG_SPT1I DMA Channel 3 - SPORT1 Transmit (or Link Buffer 1)

1SIG_LP2I DMA Channel 4 - Link Buffer 2

1SIG_LP3I DMA Channel 5 - Link Buffer 3

SIG_EP0I DMA Channel 6 - Ext. Port Buffer 0 (or Link Buffer 4)

SIG_EP1I DMA Channel 7 - Ext. Port Buffer 1 (or Link Buffer 5)

1SIG_EP2I DMA Channel 8 - Ext. Port Buffer 2

1SIG_EP3I DMA Channel 9 - Ext. Port Buffer 3

1SIG_LSRQ Link port service request

SIG_CB7 Circular buffer 7 overflow

SIG_CB15 Circular buffer 15 overflow

SIG_TMZ Timer = 0 (low priority option)

SIG_FIX Fixed point overflow

SIG_FLTO Floating point overflow exception

SIG_FLTU Floating point underflow exception

SIG_FLTI Floating point invalid exception

SIG_USR0 User software interrupt 0

SIG_USR1 User software interrupt 1

Table 3-8. ADSP-2106x Signals (Cont’d)

Sig Value Definition
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-47

C Run-Time Library Reference
SIG_USR2 User software interrupt 2

SIG_USR3 User software interrupt 3

1 Signal is not present on the ADSP-21061 and ADSP-21065L processors.

Table 3-9. ADSP-2116x Signals

Sig Value Definition

SIG_IICDI Illegal input condition detected

SIG_SOVF Status stack or Loop stack overflow or PC stack full

SIG_TMZ0 Timer = 0 (high priority option)

SIG_VIRPTI Vector Interrupt

SIG_IRQ2 Interrupt 2

SIG_IRQ1 Interrupt 1

SIG_IRQ0 Interrupt 0

SIG_SPR0I DMA Channel 0 - SPORT0 Receive

SIG_SPR1I DMA Channel 1 - SPORT1 Receive

SIG_SPT0I DMA Channel 2 - SPORT0 Transmit

SIG_SPT1I DMA Channel 3 - SPORT1 Transmit

SIG_LP0I DMA Channel 4 - Link Buffer 0

Table 3-8. ADSP-2106x Signals (Cont’d)

Sig Value Definition
3-48 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
SIG_LP1I DMA Channel 5 - Link Buffer 1

SIG_LP2I DMA Channel 6 - Link Buffer 2

SIG_LP3I DMA Channel 7 - Link Buffer 3

SIG_LP4I DMA Channel 8 - Link Buffer 4

SIG_LP5I DMA Channel 9 - Link Buffer 5

SIG_EP0I DMA Channel 10 - Ext. Port Buffer 0

SIG_EP1I DMA Channel 11 - Ext. Port Buffer 1

SIG_EP2I DMA Channel 12 - Ext. Port Buffer 2

SIG_EP3I DMA Channel 13 - Ext. Port Buffer 3

SIG_LSRQ Link port service request

SIG_CB7 Circular buffer 7 overflow

SIG_CB15 Circular buffer 15 overflow

SIG_TMZ Timer = 0 (low priority option)

SIG_FIX Fixed point overflow

SIG_FLTO Floating point overflow exception

SIG_FLTU Floating point underflow exception

SIG_FLTI Floating point invalid exception

SIG_USR0 User software interrupt 0

SIG_USR1 User software interrupt 1

Table 3-9. ADSP-2116x Signals (Cont’d)

Sig Value Definition
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-49

C Run-Time Library Reference
Error Conditions

The clear_interrupt function returns a 1 if the interrupt was pending;
otherwise 0 is returned.

Example

#include <signal.h>

clear_interrupt (SIG_IRQ2);
/* clear the interrupt 2 latch */

See Also

interrupt, raise, signal

SIG_USR2 User software interrupt 2

SIG_USR3 User software interrupt 3

Table 3-9. ADSP-2116x Signals (Cont’d)

Sig Value Definition
3-50 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
clip

clip x by y

Synopsis

#include <stdlib.h>
int clip (int value1, int value2);

Description

This function is an Analog Devices extension to the ANSI standard.

The clip function returns its first argument if it is less than the absolute
value of its second argument, otherwise it returns the absolute value of its
second argument if the first is positive, or minus the absolute value if the
first argument is negative. The clip function is a built-in function which
is implemented with an Rn=CLIP Rx BY Ry instruction.

Error Conditions

The clip function does not return an error code.

Example

#include <stdlib.h>
int i;

i = clip (10, 8); /* returns 8 */
i = clip (8, 10); /* returns 8 */
i = clip (-10, 8); /* returns -8 */

See Also

fclip, fclipf
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-51

C Run-Time Library Reference
cos, cosf

cosine

Synopsis

#include <math.h>
double cos (double x);
float cosf (float x);

Description

The cos and cosf functions return the cosine of the first argument. The
input is interpreted as radians; the output is in the range [-1, 1].

The cos and cosf functions return a value that is accurate to 20 bits of the
mantissa. This accuracy corresponds to a maximum relative error of 2-20
over its input range. Although the cos and cosf functions accept input
over the entire floating-point range, the accuracy of the result decreases

significantly for an input greater than π12/2.

Error Conditions

The cos and cosf functions do not return an error condition.

Example

#include <math.h>
double y;
float x;

y = cos (3.14159); /* y = -1.0*/
x = cosf (3.14159); /* x = -1.0*/

See Also

acos, acosf, sin, sinf
3-52 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
cosh, coshf

hyperbolic cosine

Synopsis

#include <math.h>
double cosh (double x);
float coshf (float x);

Description

The cosh and coshf functions return the hyperbolic cosine of their
argument.

The cosh and coshf functions return a value that is accurate to 20 bits of
the mantissa. This accuracy corresponds to a maximum relative error of

2-20 over its input range.

Error Conditions

The cosh and coshf functions return HUGE_VAL and set errno to ERANGE if

the input exceeds 212.

Example

#include <math.h>
double x, y;
float v, w;

y = cosh (x);
v = coshf (w);

See Also

sinh, sinhf
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-53

C Run-Time Library Reference
div

division

Synopsis

#include <stdlib.h>
div_t div (int numer, int denom);

Description

The div function divides numer by denom, both of type int, and returns a
structure of type div_t. The type div_t is defined as

typedef struct {
 int quot;
 int rem;
} div_t;

where quot is the quotient of the division and rem is the remainder, such
that if result is of type div_t,

result.quot * denom + result.rem == numer

Error Conditions

If denom is zero, the behavior of the div function is undefined.

Example

#include <stdlib.h>
div_t result;

result = div (5, 2); /* result.quot = 2, result.rem = 1 */

See Also

ldiv, fmod, fmodf, modf, modff
3-54 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
exit

normal program termination

Synopsis

#include <stdlib.h>
void exit (int status);

Description

The exit function causes normal program termination. The functions
registered by the atexit function are called in reverse order of their regis-
tration and the microprocessor is put into the IDLE state. The status
argument is stored in register R0, and control is passed to the label
___lib_prog_term, which is defined in the run-time startup file.

Error Conditions

The exit function does not return an error condition.

Example

#include <stdlib.h>

exit (EXIT_SUCCESS);

See Also

abort, atexit
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-55

C Run-Time Library Reference
exp, expf

exponential

Synopsis

#include <math.h>
double exp (double x);
float expf (float x);

Description

The exp and expf functions compute the exponential value e to the power
of its argument.

Error Conditions

For underflow errors the exp and expf functions return zero.

Example

#include <math.h>
double y;
float x;

y = exp (1.0); /* y = 2.71828... */
x = expf (1.0); /* x = 2.71828... */

See Also

log, logf, pow, powf
3-56 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
fabs, fabsf

absolute value

Synopsis

#include <math.h>
double fabs (double x);
float fabsf (float x);

Description

The fabs and fabsf functions return the absolute value of the argument.

Error Conditions

The fabs and fabsf functions do not return error conditions.

Example

#include <math.h>
double y;
float x;

y = fabs (-2.3); /* y = 2.3 */
y = fabs (2.3); /* y = 2.3 */
x = fabsf (-5.1); /* x = 5.1 */

See Also

abs, labs
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-57

C Run-Time Library Reference
floor, floorf

floor

Synopsis

#include <math.h>
double floor (double x);
float floorf (float x);

Description

The floor and floorf functions return the largest integral value that is
not greater than their argument.

Error Conditions

The floor and floorf functions do not return error conditions.

Example

#include <math.h>
double y;
float z;

y = floor (1.25); /* y = 1.0*/
y = floor (-1.25); /* y = -2.0*/
z = floorf (10.1); /* z = 10.0*/

See Also

ceil, ceilf
3-58 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
fmod, fmodf

floating-point modulus

Synopsis

#include <math.h>
double fmod (double x, double y);
float fmodf (float x, float y);

Description

The fmod and fmodf functions compute the floating-point remainder that
results from dividing the first argument by the second argument.

The result is less than the second argument and has the same sign as the
first argument. If the second argument is equal to zero, fmod and fmodf
return zero.

Error Conditions

The fmod and fmodf functions do not return an error condition.

Example

#include <math.h>
double y;
float x;

y = fmod (5.0, 2.0); /* y = 1.0 */
x = fmodf (4.0, 2.0); /* x = 0.0 */

See Also

div, ldiv, modf, modff
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-59

C Run-Time Library Reference
free

deallocate memory

Synopsis

#include <stdlib.h>
void free (void *ptr);

Description

The free function deallocates a pointer previously allocated to a range of
memory (by calloc or malloc) to the free memory heap. If the pointer
was not previously allocated by calloc, malloc, realloc, heap_calloc,
heap_malloc, or heap_realloc, the behavior is undefined.

The free function returns the allocated memory to the heap from which it
was allocated.

Error Conditions

The free function does not return an error condition.

Example

#include <stdlib.h>
char *ptr;

ptr = malloc (10); /* Allocate 10 words from heap */
free (ptr); /* Return space to free heap */

See Also

calloc, heap_calloc, heap_free, heap_init, heap_lookup, heap_malloc,
heap_realloc, heap_switch, malloc, realloc
3-60 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
frexp, frexpf

separate fraction and exponent

Synopsis

#include <math.h>
double frexp (double x, int *expptr);
float frexpf (float x, int *expptr);

Description

The frexp and frexpf functions separate a floating-point input into a
normalized fraction and a (base 2) exponent. The functions return a frac-

tion in the interval [, 1) and store a power of 2 in the integer pointed to
by the second argument. If the input is zero, then both the value stored
and the value returned are zero.

Error Conditions

The frexp and frexpf functions do not return an error condition.

Example

#include <math.h>
double y;
float x;
int exponent;

y = frexp (2.0, &exponent); /* y = 0.5, exponent = 2 */
x = frexpf (4.0, &exponent); /* x = 0.5, exponent = 3 */

See Also

modf, modff

1
2

VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-61

C Run-Time Library Reference
getenv

get string definition from operating system

Synopsis

#include <stdlib.h>
char *getenv (const char *name);

Description

The getenv function polls the operating system to see if a string is defined.
There is no default operating system for the ADSP-21xxx, so getenv
always returns NULL.

Error Conditions

The getenv function does not return an error condition.

Example

#include <stdlib.h>
char *ptr;

ptr = getenv ("ADI_DSP"); /* ptr = NULL */

See Also

system
3-62 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
heap_calloc

allocate and initialize memory in a heap

Synopsis

#include <stdlib.h>
void *heap_calloc(int heap_index, size_t nelem, size_t size);

Description

This function is an Analog Devices extension to the ANSI standard.

The function allocates from the heap identified by heap_index, an array
containing nelem elements of size size, and stores zeros in all bytes of the
array. If successful, it returns a pointer to this array; otherwise, it returns a
NULL pointer. You can safely convert the return value to an object
pointer of any type whose size in bytes is not greater than size.The mem-
ory may be deallocated with the free or heap_free function.

For more information on creating multiple run-time heaps, see “Support
for Multiple Heaps” on page 2-111.

Error Conditions

The heap_calloc function returns the NULL pointer if unable to allocate
the requested memory.

Example

#include <stdlib.h>

int main()
{

int index,ok,prev;
char *buf;

/* Obtain the heap index for the user identifier 2 */
index = heap_lookup(2);
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-63

C Run-Time Library Reference
if (index < 0) {
printf("Heap with user id of 2 not found\n");
return 1;

}
/* initialize the heap so that it is ready for use */
ok = heap_init(index);
if (ok != 0) {

printf("Heap failed to initialize, error= %d\n",ok);
return 1;

} else {
printf("Heap initialised successfully\n");

}
/* allocate memory for 128 characters from heap 2 */
buf = (char *)heap_calloc(index,128,sizeof(char));
if (buf != 0) {

free(buf); /* free can be used to release the memory */
} else {

printf("Unable to allocate from heap 2\n");
}
return 0;

}

See Also

calloc, free, heap_free, heap_init, heap_lookup, heap_malloc,
heap_realloc, heap_switch, malloc, realloc
3-64 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
heap_free

return memory to a heap

Synopsis

#include <stdlib.h>
void heap_free(int heap_index, void *ptr);

Description

This function is an Analog Devices extension to the ANSI standard.

If ptr is not a NULL pointer, the function deallocates the object whose
address is ptr; otherwise, it does nothing. The argument heap_index must
be the index of the heap from which the object pointed to by ptr was orig-
inally allocated. If the object was not allocated from the specified heap,
then the behavior is undefined.

The heap_free function is somewhat faster than free, but free must be
used if the heap from which the object was allocated is not known with
certainty.

For more information on creating multiple run-time heaps, see “Support
for Multiple Heaps” on page 2-111.

Error Conditions

The heap_free function does not return an error condition.

Example

#include <stdlib.h>

int main()
{

int index,ok,prev;
char *buf;
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-65

C Run-Time Library Reference
/* Obtain the heap index for the user identifier 2 */
index = heap_lookup(2);
if (index < 0) {

printf("Heap with user id of 2 not found\n");
return 1;

}
/* initialize the heap so that it is ready for use */
ok = heap_init(index);
if (ok != 0) {

printf("Heap failed to initialize, error= %d\n",ok);
return 1;

} else {
printf("Heap initialised successfully\n");

}
/* allocate memory for 128 characters from heap 2 */
buf = (char *)heap_calloc(index,128,sizeof(char));
if (buf != 0) {

heap_free(index,buf); /* return the memory to heap 2 */
} else {

printf("Unable to allocate from heap 2\n");
}
return 0;

}

See Also

calloc, free, heap_calloc, heap_init, heap_lookup, heap_malloc,
heap_realloc, heap_switch, malloc, realloc
3-66 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
heap_init

initialize a heap

Synopsis

#include <stdlib.h>
int heap_init(int heap_index);

Description

This function is an Analog Devices extension to the ANSI standard.

The function initializes or reinitializes a heap. All non-default heaps must
be initialized before they can be used. This function may change the start
or size field of the heap descriptor record for this heap in order to satisfy
alignment requirements. In addition, if the heap is too small to contain
the heap control block and at least one allocatable object, the size field
will be set to 0, which indicates that the heap is not usable.

For more information on creating multiple run-time heaps, see “Support
for Multiple Heaps” on page 2-111.

Error Conditions

The function returns 0 if successful; otherwise, it returns -2 if heap_index
is out of range or -1 if the heap is too small to initialize.

Example

#include <stdlib.h>

int main()
{

int index,ok;
/* Obtain the heap index for the user identifier 1 */
index = heap_lookup(1);
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-67

C Run-Time Library Reference
if (index < 0) {
printf("Heap with user id of 1 not found\n");
return 1;

}
/* initialize the heap so that it is ready for use */
ok = heap_init(index);
if (ok != 0) {

printf("Heap failed to initialize, error= %d\n",ok);
} else {

printf("Heap initialised successfully\n");
}
return 0;

}

See Also

calloc, free, heap_calloc, heap_free, heap_lookup, heap_malloc,
heap_realloc, heap_switch, malloc, realloc
3-68 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
heap_lookup

obtain primary heap identifier

Synopsis

#include <stdlib.h>
int heap_lookup(int user_id);

Description

This function is an Analog Devices extension to the ANSI standard.

The function returns the primary heap identifier of the heap with user
identifier user_id, if there is such a heap; otherwise, -1 is returned. The
primary heap identifier is the index of the heap descriptor record in the
heap descriptor table. The user identifier for a heap is determined by a
field in the heap descriptor record. The default heap always has user
identifier 0.

For more information on multiple run-time heaps, see “Support for Mul-
tiple Heaps” on page 2-111.

Error Conditions

The function returns -1 if the specified user identifier was not found, oth-
erwise it returns the primary head identifier of the specified heap.

Example

#include <stdlib.h>

int main()
{

int index,ok;
/* Obtain the heap index for the user identifier 1 */
index = heap_lookup(1);
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-69

C Run-Time Library Reference
if (index < 0) {
printf("Heap with user id of 1 not found\n");
return 1;

}
/* initialize the heap so that it is ready for use */
ok = heap_init(index);
if (ok != 0) {

printf("Heap failed to initialize, error= %d\n",ok);
} else {

printf("Heap initialised successfully\n");
}
return 0;

}

See Also

calloc, free, heap_calloc, heap_free, heap_init, heap_malloc, heap_realloc,
heap_switch, malloc, realloc
3-70 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
heap_malloc

allocate memory from a heap

Synopsis

#include <stdlib.h>
void *heap_malloc(int heap_index, size_t size);

Description

This function is an Analog Devices extension to the ANSI standard.

The function allocates an object of size size from the heap identified by
heap_index. It returns the address of the object if successful; otherwise, it
returns a NULL pointer. You can safely convert the return value to an
object pointer of any type whose size in bytes is not greater than size.

The block of memory is uninitialized. The memory may be deallocated
with the free or heap_free function.

For more information on creating multiple run-time heaps, see “Support
for Multiple Heaps” on page 2-111.

Error Conditions

The heap_malloc function returns the NULL pointer if unable to allocate
the requested memory.

Example

#include <stdlib.h>

int main()
{

int index,ok,prev;
char *buf;

/* Obtain the heap index for the user identifier 2 */
index = heap_lookup(2);
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-71

C Run-Time Library Reference
if (index < 0) {
printf("Heap with user id of 2 not found\n");
return 1;

}
/* initialize the heap so that it is ready for use */
ok = heap_init(index);
if (ok != 0) {

printf("Heap failed to initialize, error= %d\n",ok);
return 1;

} else {
printf("Heap initialised successfully\n");

}
/* allocate memory for 128 characters from heap 2 */
buf = (char *)heap_malloc(index,128);
if (buf != 0) {

free(buf); /* free can be used to release the memory */
} else {

printf("Unable to allocate from heap 2\n");
}
return 0;

}

See Also

calloc, free, heap_calloc, heap_free, heap_init, heap_lookup, heap_realloc,
heap_switch, malloc, realloc
3-72 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
heap_realloc

change memory allocation from a heap

Synopsis

#include <stdlib.h>
void *heap_realloc(int heap_index, void *ptr, size_t size);

Description

This function is an Analog Devices extension to the ANSI standard.

The function allocates from the heap identified by heap_index an object
of size size, obtaining initial stored values from the object whose address
is ptr. It returns the address of the object if successful; otherwise, it
returns a NULL pointer. You can safely convert the return value to an
object pointer of any type whose size in bytes is not greater than size.

If ptr is not a NULL pointer, it must be the address of an existing object
that you first allocate by calling calloc, malloc, realloc, heap_calloc,
heap_malloc, or heap_realloc. The heap identified by heap_index must
be the same as the heap from which the object was originally allocated; if
it is not the same, the behavior is undefined. If the existing object is not
larger than the newly allocated object, heap_realloc copies the entire
existing object to the initial part of the allocated object. (The values stored
in the remainder of the object are indeterminate.)

Otherwise, the function copies only the initial part of the existing object
that fits in the allocated object. If heap_realloc succeeds in allocating a
new object, it deallocates the existing object. Otherwise, the existing
object is left unchanged.

If ptr is a NULL pointer, the values stored in the newly created object are
indeterminate.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-73

C Run-Time Library Reference
If size is 0 and ptr is not a NULL pointer, the object pointed to by ptr is
deallocated and a NULL pointer is returned. However, if the object was
originally allocated from a different heap from the heap identified by
heap_index, the behavior is undefined.

The heap_realloc function is somewhat faster than realloc for resizing or
deallocating an existing object, but realloc must be used if the heap from
which the object was originally allocated is not known with certainty.

The allocated memory may be deallocated with the free or heap_free
function.

For more information on creating multiple run-time heaps, see “Support
for Multiple Heaps” on page 2-111.

Error Conditions

The heap_realloc function returns the NULL pointer if unable to allo-
cate the requested memory.

Example

#include <stdlib.h>

int main()
{

int index,ok,prev;
char *buf,*upd;

/* Obtain the heap index for the user identifier 2 */
index = heap_lookup(2);
if (index < 0) {

printf("Heap with user id of 2 not found\n");
return 1;

}
/* initialize the heap so that it is ready for use */
ok = heap_init(index);
if (ok != 0) {

printf("Heap failed to initialize, error= %d\n",ok);
return 1;
3-74 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
} else {
printf("Heap initialised successfully\n");

}
/* allocate memory for 128 characters from heap 2 */
buf = (char *)heap_malloc(index,128);
if (buf != 0) {

strcpy(buf,"hello");
/* change allocated size to 256 */
upd = (char *)heap_realloc(index,buf,256);
if (upd != 0) {

printf("reallocated string for %s\n",upd);
heap_free(index,upd); /* return to heap 2 */

} else {
free(buf); /* free can be used to release buf */

}
} else {

printf("Unable to allocate from heap 2\n");
}
return 0;

}

See Also

calloc, free, heap_calloc, heap_free, heap_init, heap_lookup, heap_malloc,
heap_switch, malloc, realloc
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-75

C Run-Time Library Reference
heap_switch

set heap for dynamic memory allocation

Synopsis

#include <stdlib.h>
int heap_switch(int heap_index);

Description

This function is an Analog Devices extension to the ANSI standard.

The function selects the current heap to be the heap identified by
heap_index, which is the index of the heap's heap descriptor record. The
heap index can be determined by using the heap_lookup() function. The
default heap always has heap index 0.

Heaps other than the default heap must have been previously initialized
with heap_init before heap_switch is called. If the call is not successful,
the current heap is not changed.

The standard malloc, calloc, and realloc functions allocate new objects
from the current heap. Thus, a successful call of heap_switch causes these
functions to allocate from the specified heap.

The function returns the index of the previous heap, if the call was suc-
cessful, and a negative number if it was not successful.

For more information on creating multiple run-time heaps, see “Support
for Multiple Heaps” on page 2-111.

� The heap_switch function is not available in multithreaded
environments.
3-76 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
Error Conditions

The function returns the index of the previous heap, if the call was suc-
cessful, unless there was no previous heap; in that case, it returns -1. It
returns -2 if the size of the heap was too small to use. It returns -3 if
heap_index was invalid (beyond the range of the heap descriptor table).

Example

#include <stdlib.h>

int main()
{

int index,ok,prev;
char *buf;

/* Obtain the heap index for the user identifier 2 */
index = heap_lookup(2);
if (index < 0) {

printf("Heap with user id of 2 not found\n");
return 1;

}
/* initialize the heap so that it is ready for use */
ok = heap_init(index);
if (ok != 0) {

printf("Heap failed to initialize, error= %d\n",ok);
return 1;

} else {
printf("Heap initialised successfully\n");

}
prev = heap_switch(index);
if (prev < 0) {

printf("Failed to switch to heap 2, error = %d\n",prev);
return 1;

} else {
buf = malloc(128); /* allocate buf from heap 2 */
/* switch back to the previous heap */
heap_switch(prev);

}
return 0;

}

VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-77

C Run-Time Library Reference
See Also

calloc, free, heap_calloc, heap_free, heap_init, heap_lookup, heap_malloc,
heap_realloc, malloc, realloc
3-78 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
interrupt

define interrupt handling

Synopsis

#include <signal.h>
void (*interrupt (int sig, void(*func)(int))) (int);
void (*interruptnsm (int sig, void(*func)(int))) (int);
void (*interruptf (int sig, void(*func)(int))) (int);
void (*interruptfnsm (int sig, void(*func)(int))) (int);
void (*interrupts (int sig, void(*func)(int))) (int);
void (*interruptsnsm (int sig, void(*func)(int))) (int);
void (*interruptcb (int sig, void(*func)(int))) (int);
void (*interruptcbnsm (int sig, void(*func)(int))) (int);

Description

The interrupt function determines how a signal received during program
execution is handled. The interrupt function executes the function
pointed to by func at every interrupt sig; the signal function executes the
function only once. The func argument must be one of the following that
are listed in Table 3-10. The interrupt function causes the receipt of the
signal number sig to be handled in one of the following ways:

The function pointed to by func is executed each time the interrupt is
received. The interrupt function must be called with the SIG_IGN argu-
ment to disable interrupt handling.

Table 3-10. Interrupt Handling

Func Value Action

SIG_DFL The default action is taken.

SIG_IGN The signal is ignored.

Function address The function pointed to by func is executed.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-79

C Run-Time Library Reference
The differences between the functions interrupt, interruptf,
interrupts, interruptcb, interruptnsm, interruptfnsm, interruptsnsm,
and interruptcbnsm are discussed under “signal.h” on page 3-10.

Error Conditions

The interrupt function returns SIG_ERR and sets errno equal to SIG_ERR
if the requested interrupt is not recognized.

Example

#include <signal.h>

interrupt (SIG_IRQ2, irq2_handler);
/* enable interrupt 2 whose handling routine is pointed to by
irq2_handler */

interrupt (SIG_IRQ2, SIG_IGN);
/* disable interrupt 2 */

See Also

raise, signal
3-80 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
isalnum

detect alphanumeric character

Synopsis

#include <ctype.h>
int isalnum (int c);

Description

The isalnum function determines if the argument is an alphanumeric
character (A-Z, a-z, or 0-9). If the argument is not alphanumeric,
isalnum returns a zero. If the argument is alphanumeric, isalnum returns a
nonzero value.

Error Conditions

The isalnum function does not return any error conditions.

Example

#include <ctype.h>
int ch;

for (ch = 0; ch <= 0x7f; ch++) {
 printf ("%#04x", ch);
 printf ("%3s", isalnum (ch) ? "alphanumeric" : "");
 putchar ('\n');
}

See Also

isalpha, isdigit
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-81

C Run-Time Library Reference
isalpha

detect alphabetic character

Synopsis

#include <ctype.h>
int isalpha (int c);

Description

The isalpha function determines if the argument is an alphabetic charac-
ter (A-Z or a-z). If the argument is not alphabetic, isalpha returns a zero.
If the argument is alphabetic, isalpha returns a nonzero value.

Error Conditions

The isalpha function does not return any error conditions.

Example

#include <ctype.h>
int ch;

for (ch = 0; ch <= 0x7f; ch++) {
 printf ("%#04x", ch);
 printf ("%2s", isalpha (ch) ? "alphabetic" : "");
 putchar ('\n');
}

See Also

isalnum, islower, isupper
3-82 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
iscntrl

detect control character

Synopsis

#include <ctype.h>
int iscntrl (int c);

Description

The iscntrl function determines if the argument is a control character
(0x00-0x1F or 0x7F). If the argument is not a control character, iscntrl
returns a zero. If the argument is a control character, iscntrl returns a
nonzero value.

Error Conditions

The iscntrl function does not return any error conditions.

Example

#include <ctype.h>
int ch;

for (ch = 0; ch <= 0x7f; ch++) {
 printf ("%#04x", ch);
 printf ("%2s", iscntrl (ch) ? "control" : "");
 putchar ('\n');
}

See Also

isalnum, isgraph
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-83

C Run-Time Library Reference
isdigit

detect decimal digit

Synopsis

#include <ctype.h>
int isdigit (int c);

Description

The isdigit function determines if the argument character is a decimal
digit (0-9). If the argument is not a digit, isdigit returns a zero. If the
argument is a digit, isdigit returns a nonzero value.

Error Conditions

The isdigit function does not return any error conditions.

Example

#include <ctype.h>
int ch;

for (ch = 0; ch <= 0x7f; ch++) {
 printf ("%#04x", ch);
 printf ("%2s", isdigit (ch) ? "digit" : "");
 putchar ('\n');
}

See Also

isalnum, isxdigit
3-84 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
isgraph

detect printable character, not including white space

Synopsis

#include <ctype.h>
int isgraph (int c);

Description

The isgraph function determines if the argument is a printable character,
not including space (0x21-0x7e). If the argument is not a printable charac-
ter, isgraph returns a zero. If the argument is a printable character,
isgraph returns a nonzero value.

Error Conditions

The isgraph function does not return any error conditions.

Example

#include <ctype.h>
int ch;

for (ch = 0; ch <= 0x7f; ch++) {
 printf ("%#04x", ch);
 printf ("%2s", isgraph (ch) ? "graph" : "");
 putchar ('\n');
}

See Also

isalnum, iscntrl, isprint
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-85

C Run-Time Library Reference
islower

detect lowercase character

Synopsis

#include <ctype.h>
int islower (int c);

Description

The islower function determines if the argument is a lowercase character
(a-z). If the argument is not lowercase, islower returns a zero. If the argu-
ment is lowercase, islower returns a nonzero value.

Error Conditions

The islower function does not return any error conditions.

Example

#include <ctype.h>
int ch;

for (ch = 0; ch <= 0x7f; ch++) {
 printf ("%#04x", ch);
 printf ("%2s", islower (ch) ? "lowercase" : "");
 putchar ('\n');
}

See Also

isalpha, isupper
3-86 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
isprint

detect printable character

Synopsis

#include <ctype.h>
int isprint (int c);

Description

The isprint function determines if the argument is a printable character
(0x20-0x7E). If the argument is not a printable character, isprint returns
a zero. If the argument is a printable character, isprint returns a nonzero
value.

Error Conditions

The isprint function does not return any error conditions.

Example

#include <ctype.h>
int ch;

for (ch = 0; ch <= 0x7f; ch++) {
 printf ("%#04x", ch);
 printf ("%3s", isprint (ch) ? "printable" : "");
 putchar ('\n');
}

See Also

isgraph, isspace
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-87

C Run-Time Library Reference
ispunct

detect punctuation character

Synopsis

#include <ctype.h>
int ispunct (int c);

Description

The ispunct function determines if the argument is a punctuation charac-
ter. If the argument is not a punctuation character, ispunct returns a zero.
If the argument is a punctuation character, ispunct returns a nonzero
value.

Error Conditions

The ispunct function does not return any error conditions.

Example

#include <ctype.h>
int ch;

for (ch = 0; ch <= 0x7f; ch++) {
 printf ("%#04x", ch);
 printf ("%3s", ispunct (ch) ? "punctuation" : "");
 putchar ('\n');
}

See Also

isalnum
3-88 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
isspace

detect whitespace character

Synopsis

#include <ctype.h>
int isspace (int c);

Description

The isspace function determines if the argument is a blank space charac-
ter (0x09-0x0D or 0x20). This includes space (), form feed (\f), new line
(\n), carriage return (\r), horizontal tab (\t) and vertical tab (\v). If the
argument is not a blank space character, isspace returns a zero. If the
argument is a blank space character, isspace returns a nonzero value.

Error Conditions

The isspace function does not return any error conditions.

Example

#include <ctype.h>
int ch;

for (ch = 0; ch <= 0x7f; ch++) {
 printf ("%#04x", ch);
 printf ("%2s", isspace (ch) ? "space" : "");
 putchar ('\n');
}

See Also

iscntrl, isgraph
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-89

C Run-Time Library Reference
isupper

detect uppercase character

Synopsis

#include <ctype.h>
int isupper (int c);

Description

The isupper function determines if the argument is an uppercase charac-
ter (A-Z). If the argument is not an uppercase character, isupper returns a
zero. If the argument is an uppercase character, isupper returns a nonzero
value.

Error Conditions

The isupper function does not return any error conditions.

Example

#include <ctype.h>
int ch;

for (ch = 0; ch <= 0x7f; ch++) {
 printf ("%#04x", ch);
 printf ("%2s", isupper (ch) ? "uppercase" : "");
 putchar ('\n');
}

See Also

isalpha, islower
3-90 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
isxdigit

detect hexadecimal digit

Synopsis

#include <ctype.h>
int isxdigit (int c);

Description

The isxdigit function determines if the argument character is a hexadec-
imal digit character (A-F, a-f, or 0-9). If the argument is not a
hexadecimal digit, isxdigit returns a zero. If the argument is a hexadeci-
mal digit, isxdigit returns a nonzero value.

Error Conditions

The isxdigit function does not return any error conditions.

Example

#include <ctype.h>
int ch;

for (ch = 0; ch <= 0x7f; ch++) {
 printf ("%#04x", ch);
 printf ("%2s", isxdigit (ch) ? "hexadecimal" : "");
 putchar ('\n');
}

See Also

isalnum, isdigit
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-91

C Run-Time Library Reference
labs

absolute value

Synopsis

#include <stdlib.h>
long int labs (long int j);

Description

The labs function returns the absolute value of its integer argument.

Note: labs (LONG_MIN) == LONG_MIN.

Error Conditions

The labs function does not return an error condition.

Example

#include <stdlib.h>
long int j;

j = labs (-285128); /* j = 285128 */

See Also

abs, fabs, fabsf
3-92 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
lavg

return mean of two values

Synopsis

#include <stdlib.h>
long int lavg (long int value1, long int value2);

Description

This function is an Analog Devices extension to the ANSI standard.

The lavg function adds two arguments and divides the result by two. The
lavg function is a built-in function which is implemented with an
Rn=(Rx+Ry)/2 instruction.

Error Conditions

The lavg function does not return an error code.

Example

#include <stdlib.h>
long int i;

i = lavg (10, 8); /* returns 9 */

See Also

avg, favg, favgf
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-93

C Run-Time Library Reference
lclip

clip x by y

Synopsis

#include <stdlib.h>
long int lclip (long int value1, long int value2);

Description

This function is an Analog Devices extension to the ANSI standard.

The lclip function returns its first argument if it is less than the absolute
value of its second argument, otherwise it returns the absolute value of its
second argument of the first is positive, or minus the absolute value if the
first argument is negative. The lclip function is a built-in function which
is implemented with an Rn=CLIP Rx BY Ry instruction.

Error Conditions

The lclip function does not return an error code.

Example

#include <stdlib.h>
long int i;

i = lclip (10, 8); /* returns 8 */
i = lclip (8, 10); /* returns 8 */
i = lclip (-10, 8); /* returns -8 */

See Also

clip, fclip, fclipf
3-94 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
ldexp, ldexpf

multiply by power of 2

Synopsis

#include <math.h>
double ldexp (double x, int n);
float ldexpf (float x, int n);

Description

The ldexp and ldexpf functions return the value of the floating-point

argument multiplied by 2n. The ldexp and ldexpf functions add the value
of n to the exponent of x.

Error Conditions

If the result overflows, ldexp and ldexpf return HUGE_VAL with the proper
sign and set errno to ERANGE. If the result underflows, a zero is returned.

Example

#include <math.h>
double y;
float x;

y = ldexp (0.5, 2); /* y = 2.0 */
x = ldexpf (1.0, 2); /* x = 4.0 */

See Also

exp, expf, pow, powf
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-95

C Run-Time Library Reference
ldiv

division

Synopsis

#include <stdlib.h>
ldiv_t ldiv (long int numer, long int denom);

Description

The ldiv function divides numer by denom, and returns a structure of type
ldiv_t. The type ldiv_t is defined as:

typedef struct {
 long int quot;
 long int rem;
} ldiv_t;

where quot is the quotient of the division and rem is the remainder, such
that if result is of type ldiv_t:

result.quot * denom + result.rem == numer

Error Conditions

If denom is zero, the behavior of the ldiv function is undefined.

Example

#include <stdlib.h>
ldiv_t result;

result = ldiv (7L, 2L); /* result.quot = 3, result.rem = 1 */

See Also

div, fmod, fmodf
3-96 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
lmax

return larger of two values

Synopsis

#include <stdlib.h>
long int lmax (long int value1, long int value2);

Description

This function is an Analog Devices extension to the ANSI standard.

The lmax function returns the larger of its two arguments. The lmax func-
tion is a built-in function which is implemented with an Rn=MAX(Rx,Ry)
instruction.

Error Conditions

The lmax function does not return an error code.

Example

#include <stdlib.h>
long int i;

i = lmax (10, 8); /* returns 10 */

See Also

fmax, fmaxf, fmin, fminf, lmax, lmin, max, min
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-97

C Run-Time Library Reference
lmin

return the smaller of two values

Synopsis

#include <stdlib.h>
long int lmin (long int value1, long int value2);

Description

This function is an Analog Devices extension to the ANSI standard.

The lmin function returns the smaller of its two arguments. The lmin
function is a built-in function which is implemented with an
Rn=MIN(Rx,Ry) instruction.

Error Conditions

The lmin function does not return an error code.

Example

#include <stdlib.h>
long int i;

i = lmin (10, 8); /* returns 8 */

See Also

fmax, fmaxf, fmin, fminf, lmax, max, min
3-98 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
localeconv

get pointer for formatting to current locale

Synopsis

#include <locale.h>
struct lconv *localeconv (void);

Description

The localeconv function returns a pointer to an object of type struct
lconv. This pointer is used to set the components of the object with values
used in formatting numeric quantities in the current locale.

With the exception of decimal_point, those members of the structure
with type char * may use " " to indicate that a value is not available.
Expected values are strings. Those members with type char may use
CHAR_MAX to indicate that a value is not available. Expected values are
non-negative numbers.

The program may not alter the structure pointed to by the return value
but subsequent calls to localeconv may do so. Also, calls to setlocale
with the category arguments of LC_ALL, LC_MONETARY and LC_NUMERIC
may overwrite the structure.

Table 3-11. Members of the lconv Struct

Member Description

char *currency_symbol Currency symbol applicable to the locale

char *decimal_point Used to format nonmonetary quantities

char *grouping Used to indicate the number of digits in each nonmone-
tary grouping
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-99

C Run-Time Library Reference
char *int_curr_symbol Used as international currency symbol (ISO 4217:1987)
for that particular locale plus the symbol used to separate
the currency symbol from the monetary quantity

char *mon_decimal_point Used for decimal point format monetary quantities

char *mon_grouping Used to indicate the number of digits in each monetary
grouping

char *mon_thousands_sep Used to group monetary quantities prior to the decimal
point

char *negative_sign Used to indicate a negative monetary quantity

char *positive_sign Used to indicate a positive monetary quantity

char *thousands_sep Used to group nonmonetary quantities prior to the deci-
mal point

char frac_digits Number of digits displayed after the decimal point in
monetary quantities in other than international format

char int_frac_digits Number of digits displayed after the decimal point in
international monetary quantities

char p_cs_precedes If set to 1, the currency_symbol precedes the positive
monetary quantity. If set to 0, the currency_symbol
succeeds the positive monetary quantity.

char n_cs_precedes If set to 1, the currency_symbol precedes the negative
monetary quantity. If set to 0, the currency_symbol
succeeds the negative monetary quantity.

char n_sign_posn Indicates the positioning of negative_sign for mone-
tary quantities.

Table 3-11. Members of the lconv Struct (Cont’d)

Member Description
3-100 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
For grouping and non_grouping an element of CHAR_MAX indicates that no
further grouping will be performed, a 0 indicates that the previous ele-
ment should be used to group the remaining digits and any other integer
value is used as the number of digits in the current grouping.

The definitions of the values for p_sign_posn and n_sign_posn are as
follows:

• parentheses surround currency_symbol and quantity

• sign string precedes currency_symbol and quantity

• sign string succeeds currency_symbol and quantity

• sign string immediately precedes currency_symbol

• sign string immediately succeeds currency_symbol

Error Conditions

The localeconv function does not return an error condition.

char n_sep_by_space If set to 1, the currency_symbol is separated from the
negative monetary quantity. If set to 0, the
currency_symbol is not separated from the negative
monetary quantity.

char p_sep_by_space If set to 1, the currency_symbol is separated from the
positive monetary quantity. If set to 0, the
currency_symbol is not separated from the positive
monetary quantity.

Table 3-11. Members of the lconv Struct (Cont’d)

Member Description
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-101

C Run-Time Library Reference
Example

#include <locale.h>
struct lconv *c_locale;

c_locale = localeconv (); /* Only the C locale is */
/* currently supported */

See Also

setlocale
3-102 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
log, logf

natural logarithm

Synopsis

#include <math.h>
double log (double x);
float logf (float x);

Description

The log and logf functions compute the natural (base e) logarithm of
their argument.

The log and logf functions return a value that is accurate to 20 bits of the

mantissa. This accuracy corresponds to a maximum relative error of 2-20
over its input range.

Error Conditions

The log and logf functions return zero and set errno to EDOM if the input
value is zero or negative.

Example

#include <math.h>
double y;
float x;

y = log (1.0); /* y = 0.0 */
x = logf (2.71828); /* x = 1.0 */

See Also

exp, expf, log10, log10f
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-103

C Run-Time Library Reference
log10, log10f

base 10 logarithm

Synopsis

#include <math.h>
double log10 (double x);
float log10f (float x);

Description

The log10 and log10f functions produce the base 10 logarithm of their
argument.

The log10 and log10f functions return a value that is accurate to 20 bits
of the mantissa. This accuracy corresponds to a maximum relative error of

2-20 over its input range.

Error Conditions

The log10 and log10f functions indicate a domain error (set errno to
EDOM) and return zero if the input is zero or negative.

Example

#include <math.h>
double y;
float x;

y = log10 (100.0); /* y = 2.0 */
x = log10f (10.0); /* x = 1.0 */

See Also

log, logf, pow, powf
3-104 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
longjmp

second return from setjmp

Synopsis

#include <setjmp.h>
void longjmp (jmp_buf env, int return_val);

Description

The longjmp function causes the program to execute a second return from
the place where setjmp (env.) was called (in same env buffer).

The longjmp function takes as its arguments a jump buffer that contains
the context at the time of the original setjmp. It also takes an integer,
return_val, which setjmp returns if return_val is nonzero. Otherwise,
setjmp returns a 1.

If env was not initialized through a previous call to setjmp or the function
that called setjmp has since returned, the behavior is undefined. Also,
automatic variables that are local to the original function calling setjmp,
that do not have volatile-qualified type, and that have changed their
value prior to the longjmp call, have indeterminate value.

Error Conditions

The longjmp function does not return an error condition.

Example

#include <setjmp.h>
#include <stdio.h>
#include <errno.h>
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-105

C Run-Time Library Reference
#include <stdlib.h>

jmp_buf env;
int res;

if ((res == setjmp(env)) != 0) {
 printf ("Problem %d reported by func ()", res);
 exit (EXIT_FAILURE);
}
func ();

void func (void)
{
 if (errno != 0) {
 longjmp (env, errno);
 }
}

See Also

setjmp
3-106 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
malloc

allocate memory

Synopsis

#include <stdlib.h>
void *malloc (size_t size);

Description

The malloc function returns a pointer to a block of memory of length
size. The block of memory is uninitialized.

The object is allocated from the current heap, which will be the default
heap unless heap_switch has been called to change the current heap to an
alternate heap.

Error Conditions

The malloc function returns a NULL pointer if it is unable to allocate the
requested memory.

Example

#include <stdlib.h>
int *ptr;

ptr = (int *)malloc (10); /* ptr points to an */
/* array of length 10 */

See Also

calloc, free, heap_calloc, heap_free, heap_init, heap_lookup, heap_malloc,
heap_realloc, heap_switch, realloc
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-107

C Run-Time Library Reference
max

return larger of two values

Synopsis

#include <stdlib.h>
int max (int value1, int value2);

Description

This function is an Analog Devices extension to the ANSI standard.

The max function returns the larger of its two arguments. The max func-
tion is a built-in function which is implemented with an Rn=MAX(Rx,Ry)
instruction.

Error Conditions

The max function does not return an error code.

Example

#include <stdlib.h>
int i;

i = max (10, 8); /* returns 10 */

See Also

fmax, fmaxf, fmin, fminf, lmax, lmin, min
3-108 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
memchr

find first occurrence of character

Synopsis

#include <string.h>
void *memchr (const void *s1, int c, size_t n);

Description

The memchr function compares the range of memory pointed to by s1 with
the input character c and returns a pointer to the first occurrence of c. A
NULL pointer is returned if c does not occur in the first n characters.

Error Conditions

The memchr function does not return an error condition.

Example

#include <string.h>
char *ptr;

ptr = memchr ("TESTING", 'E', 7);
 /* ptr points to the E in TESTING */

See Also

strchr, strrchr
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-109

C Run-Time Library Reference
memcmp

compare objects

Synopsis

#include <string.h>
int memcmp (const void *s1, const void *s2, size_t n);

Description

The memcmp function compares the first n characters of the objects pointed
to by s1 and s2. It returns a positive value if the s1 object is lexically
greater than the s2 object, a negative value if the s2 object is lexically
greater than the s1 object, and a zero if the objects are the same.

Error Conditions

The memcmp function does not return an error condition.

Example

#include <string.h>
char string1 = "ABC";
char string2 = "BCD";
int result;

result = memcmp (string1, string2, 3); /* result < 0 */

See Also

strcmp, strcoll, strncmp
3-110 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
memcpy

copy characters from one object to another

Synopsis

#include <string.h>
void *memcpy (void *s1, const void *s2, size_t n);

Description

The memcpy function copies n characters from the object pointed to by s2
into the object pointed to by s1. The behavior of memcpy is undefined if
the two objects overlap; see memmove.

The memcpy function returns the address of s1.

Error Conditions

The memcpy function does not return an error condition.

Example

#include <string.h>
char *a = "SRC";
char *b = "DEST";

memcpy (b, a, 3); /* *b = "SRC" */

See Also

memmove, strcpy, strncpy
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-111

C Run-Time Library Reference
memmove

copy characters from one object to another

Synopsis

#include <string.h>
void *memmove (void *s1, const void *s2, size_t n);

Description

The memmove function copies n characters from the object pointed to by s2
into the object pointed to by s1. The entire object is copied correctly even
if the objects overlap.

The memmove function returns a pointer to s1.

Error Conditions

The memmove function does not return an error condition.

Example

#include <string.h>
char *ptr, *str = "ABCDE";

ptr = str + 2;
memmove (ptr, str, 5); /* *ptr = "ABCDE" */

See Also

memcpy, strcpy, strncpy
3-112 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
memset

set range of memory to a character

Synopsis

#include <string.h>
void *memset (void *s1, int c, size_t n);

Description

The memset function sets a range of memory to the input character c. The
first n characters of s1 are set to c.

The memset function returns a pointer to s1.

Error Conditions

The memset function does not return an error condition.

Example

#include <string.h>
char string1[50];

memset (string1, '\0', 50); /* set string1 to 0 */

See Also

memcpy, memmove
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-113

C Run-Time Library Reference
min

return smaller of two values

Synopsis

#include <stdlib.h>
int min (int value1, int value2);

Description

This function is an Analog Devices extension to the ANSI standard.

The min function returns the smaller of its two arguments. The min func-
tion is a built-in function which is implemented with an Rn=MIN(Rx,Ry)
instruction.

Error Conditions

The min function does not return an error code.

Example

#include <stdlib.h>
int i;

i = min (10, 8); /* returns 8 */

See Also

fmax, fmaxf, fmin, fminf, lmax, lmin, max
3-114 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
modf, modff

separate integral and fractional parts

Synopsis

#include <math.h>
double modf (double x, double *intptr);
float modff (float x, float *intptr);

Description

The modf and modff functions separate the first argument into integral and
fractional portions. The fractional portion is returned and the integral
portion is stored in the object pointed to by intptr. The integral and frac-
tional portions have the same sign as the input.

Error Conditions

The modf and modff functions do not return error conditions.

Example

#include <math.h>
double y, n;
float m, p;

y = modf (-12.345, &n); /* y = -0.345, n = -12.0 */
m = modff (11.75, &p); /* m = 0.75, p = 11.0 */

See Also

frexp, frexpf
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-115

C Run-Time Library Reference
pow, powf

raise to a power

Synopsis

#include <math.h>
double pow (double x, double y);
float powf (float x, float y);

Description

The pow and powf functions compute the value of the first argument raised
to the power of the second argument.

The pow and powf functions return a value that is accurate to 20 bits of the
mantissa. This accuracy corresponds to a maximum relative error of 2-20
over its input range.

Error Conditions

A domain error occurs if the first argument is negative and the second
argument cannot be represented as an integer. If the first argument is zero,
the second argument is less than or equal to zero and the result cannot be
represented, EDOM is stored in errno and zero is returned.

Example

#include <math.h>
double z;
float x;

z = pow (4.0, 2.0); /* z = 16.0 */
x = powf (4.0, 2.0); /* x = 16.0 */

See Also

ldexp, ldexpf, exp, expf
3-116 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
qsort

quicksort

Synopsis

#include <stdlib.h>
void qsort (void *base, size_t nelem, size_t size,

int (*compar) (const void *, const void *));

Description

The qsort function sorts an array of nelem objects, pointed to by base.
The size of each object is specified by size.

The contents of the array are sorted into ascending order according to a
comparison function pointed to by compar, which is called with two argu-
ments that point to the objects being compared. The function shall return
an integer less than, equal to, or greater than zero if the first argument is
considered to be respectively less than, equal to, or greater than the
second.

• If two elements compare as equal, their order in the sorted array is
unspecified. qsort executes a binary-search operation on a
pre-sorted array.

• base points to the start of the array.

• nelem is the number of elements in the array.

• size is the size of each element of the array.

• compar is a pointer to a function that is called by qsort to compare
two elements of the array. The function should return a value less
than, equal to, or greater than zero, according to whether the first
argument is less than, equal to, or greater than the second.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-117

C Run-Time Library Reference
Example

#include <stdlib.h>
float a[10];

int compare_float (const void *a, const void *b)
{
 float aval = *(float *)a;
 float bval = *(float *)b;
 if (aval < bval)
 return -1;
 else if (aval = = bval)
 return 0;
 else
 return 1;
}
qsort (a, sizeof (a)/sizeof (a[0]), sizeof (a[0]), compare_float);

See Also

bsearch
3-118 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
raise

force a signal

Synopsis

#include <signal.h>
int raise (int sig);
int raisensm(int sig);

Description

This function is an Analog Devices extension to the ANSI standard.

The raise function sends the signal sig to the executing program. The
raise function forces interrupts wherever possible and simulates an inter-
rupt otherwise. The sig argument must be one of the signals listed in
either Table 3-8 on page 3-46 or Table 3-9 on page 3-48.

� The raise function uses self-modifying code. If this is not suitable
for your application, then use the raisensm function instead. The
choice of function has no effect on the dispatcher used and no effect
on the overall interrupt handling performance.

Error Conditions

The raise function returns a zero if successful or a nonzero value if it fails.

Example

#include <signal.h>

raise (SIG_IRQ2); /* invoke the interrupt 2 handler */

See Also

interrupt, signal
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-119

C Run-Time Library Reference
rand

random number generator

Synopsis

#include <stdlib.h>
int rand (void);

Description

The rand function returns a pseudo-random integer value in the range

[0, 232 – 1].

For this function, the measure of randomness is its periodicity, the num-
ber of values it is likely to generate before repeating a pattern. The output
of the pseudo-random number generator has a period on the order

of 232 – 1.

Error Conditions

The rand function does not return an error condition.

Example

#include <stdlib.h>
int i;

i = rand ();

See Also

srand
3-120 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
realloc

change memory allocation

Synopsis

#include <stdlib.h>
void *realloc (void *ptr, size_t size);

Description

The function realloc changes the memory allocation of the object
pointed to by ptr to size. Initial values for the new object are taken from
those in the object pointed to by ptr. If the size of the new object is
greater than the size of the object pointed to by ptr, then the values in the
newly allocated section are undefined. If ptr is a non-NULL pointer that
was not allocated with malloc or calloc, the behavior is undefined. If ptr
is a NULL pointer, realloc imitates malloc. If size is zero and ptr is not
a NULL pointer, realloc imitates free.

If ptr is non-NULL then the object is re-allocated from the heap that the
object was originally allocated from. If ptr is NULL, then the object is
allocated from the current heap, which will be the default heap unless
heap_switch has been called to change the current heap to an alternate
heap.

Error Conditions

If memory cannot be allocated, ptr remains unchanged and realloc
returns a NULL pointer.

Example

 #include <stdlib.h>
 int *ptr;

 ptr = (int *)malloc (10); /* intervening code */
 ptr = (int *)realloc (ptr, 20); /* the size is now 20*/
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-121

C Run-Time Library Reference
See Also

calloc, free, heap_calloc, heap_free, heap_init, heap_lookup, heap_malloc,
heap_realloc, heap_switch, malloc
3-122 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
setjmp

label for external linkage

Synopsis

#include <setjmp.h>
int setjmp (jmp_buf env);

Description

The setjmp function is a label declared with external linkage. The setjmp
label saves the calling environment in the jmp_buf argument.

When setjmp is called, it immediately returns with zero. The call, in
effect, declares the label. If, at some later point, longjmp is called within
the same jmp_buf argument, setjmp will return a non-zero value. The call
to longjmp causes a transfer to the label declared with setjmp.

Error Conditions

The label setjmp does not return an error condition.

Example

See “longjmp” on page 3-105

See Also

longjmp
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-123

C Run-Time Library Reference
setlocale

set the current locale

Synopsis

#include <locale.h>
char *setlocale (int category, const char *locale);

Description

The setlocale function uses the parameters category and locale to
select a current locale. The possible values for the category argument are
those macros defined in locale.h beginning with “LC_”. The only locale
argument supported at this time is the “C” locale. If a NULL pointer is
used for the locale argument, setlocale returns a pointer to a string
which is the current locale for the given category argument. A subsequent
call to setlocale with the same category argument and the string sup-
plied by the previous setlocale call returns the locale to its original
status. The string pointed to may not be altered by the program but may
be overwritten by subsequent setlocale calls.

Error Conditions

The setlocale function does not return an error condition.

Example

#include <locale.h>

setlocale (LC_ALL, "C");
/* sets the locale to the "C" locale */

See Also

localeconv
3-124 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
signal

define signal handling

Synopsis

#include <signal.h>
void (*signal (int sig, void (*func)(int))) (int);
void (*signalnsm (int sig, void (*func)(int))) (int);
void (*signalf (int sig, void (*func)(int))) (int);
void (*signalfnsm (int sig, void (*func)(int))) (int);
void (*signals (int sig, void (*func)(int))) (int);
void (*signalsnsm (int sig, void (*func)(int))) (int);
void (*signalcb (int sig, void (*func)(int))) (int);
void (*signalcbnsm (int sig, void (*func)(int))) (int);

Description

The signal, signalnsm, signalf, signalfnsm, signals, signalsnsm,
signalcb, or signalcbnsm functions determine how a signal that is
received during program execution is handled. The specified signal, sig-
nalnsm, signalf, signalfnsm, signals, signalsnsm, signalcb, or
signalcbnsm function causes the corresponding interrupt, interruptnsm,
interruptf, interruptfnsm, interrupts, interruptsnsm, interruptcb, or
interruptcbnsm dispatcher to be used when handling the interrupt.

The signal function returns the value of the previously installed interrupt
or signal handler action. The sig argument must be one of the values that
are listed in either Table 3-8 on page 3-46 or Table 3-9 on page 3-48. The
signal function causes the receipt of the signal number sig to be handled
in one of the ways listed in Table 3-10 on page 3-79. The function
pointed to by func is executed once when the signal is received. Handling
is then returned to the default state.

The differences between the actions taken by the supplied standard inter-
rupt dispatchers, interrupt, interruptnsm, interruptf, interruptfnsm,
interrupts, interruptsnsm, interruptcb, and interruptcbnsm, are dis-
cussed under “signal.h” on page 3-10.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-125

C Run-Time Library Reference
Error Conditions

The signal function returns SIG_ERR and sets errno to SIG_ERR if it does
not recognize the requested signal.

Example

#include <signal.h>

signal (SIG_IRQ2, irq2_handler); /* enable interrupt 2 */
signal (SIG_IRQ2, SIG_IGN); /* disable interrupt 2 */

See Also

interrupt, raise
3-126 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
sin, sinf

sine

Synopsis

#include <math.h>
double sin (double x);
float sinf (float x);

Description

The sin and sinf functions return the sine of x. The input is interpreted
as radians; the output is in the range [-1, 1].

The sin and sinf functions return a value that is accurate to 20 bits of the
mantissa. This accuracy corresponds to a maximum relative error of 2-20
over its input range. Although the sin and sinf functions accept input
over the entire floating-point range, the accuracy of the result decreases
significantly for inputs greater than π12/2.

Error Conditions

The sin and sinf functions do not return an error condition.

Example

#include <math.h>
double y;
float x;

y = sin (3.14159); /* y = 0.0 */
x = sinf (3.14159); /* x = 0.0 */

See Also

asin, asinf
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-127

C Run-Time Library Reference
sinh, sinhf

hyperbolic sine

Synopsis

#include <math.h>
double sinh (double x);
float sinhf (float x);

Description

The sinh and sinhf functions return the hyperbolic sine of x.

The sinh and sinhf functions return a value that is accurate to 20 bits of
the mantissa. This accuracy corresponds to a maximum relative error of

2-20 over its input range.

Error Conditions

For input values greater than 212, the sinh and sinhf functions return
HUGE_VAL and set errno to ERANGE to indicate overflow.

Example

#include <math.h>
double x, y;
float z, w

y = sinh (x);
z = sinhf (w);

See Also

cosh, coshf
3-128 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
sqrt, sqrtf

square root

Synopsis

#include <math.h>
double sqrt (double x);
float sqrtf (float x);

Description

The sqrt and sqrtf functions return the positive square root of x.

The sqrt and sqrtf functions return a value that is accurate to 20 bits of
the mantissa. This accuracy corresponds to a maximum relative error of
2-20 over its input range.

Error Conditions

The sqrt and sqrtf functions return zero for negative input values and set
errno to EDOM to indicate a domain error.

Example

#include <math.h>
double y;
float x;

y = sqrt (2.0); /* y = 1.414..... */
x = sqrtf (2.0); /* x = 1.414..... */

See Also

rsqrt, rsqrtf
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-129

C Run-Time Library Reference
srand

random number seed

Synopsis

#include <stdlib.h>
void srand (unsigned int seed);

Description

The srand function is used to set the seed value for the rand function. A
particular seed value always produces the same sequence of pseudo-ran-
dom numbers.

Error Conditions

The srand function does not return an error condition.

Example

#include <stdlib.h>

srand (22);

See Also

rand
3-130 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
strcat

concatenate strings

Synopsis

#include <string.h>
char *strcat (char *s1, const char *s2);

Description

The strcat function appends a copy of the NULL-terminated string
pointed to by s2 to the end of the NULL-terminated string pointed to by
s1. It returns a pointer to the new s1 string, which is NULL-terminated.
The behavior of strcat is undefined if the two strings overlap.

Error Conditions

The strcat function does not return an error condition.

Example

#include <string.h>
char string1[50];

string1[0] = 'A';
string1[1] = 'B';
string1[2] = '\0';
strcat (string1, "CD"); /* new string is "ABCD" */

See Also

strncat
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-131

C Run-Time Library Reference
strchr

find first occurrence of character in string

Synopsis

#include <string.h>
char *strchr (const char *s1, int c);

Description

The strchr function returns a pointer to the first location in s1, a
NULL-terminated string, that contains the character c.

Error Conditions

The strchr function returns NULL if c is not part of the string.

Example

#include <string.h>
char *ptr1, *ptr2;

ptr1 = "TESTING";
ptr2 = strchr (ptr1, 'E');
 /* ptr2 points to the E in TESTING */

See Also

memchr, strrchr
3-132 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
strcmp

compare strings

Synopsis

#include <string.h>
int strcmp (const char *s1, const char *s2);

Description

The strcmp function lexicographically compares the NULL-terminated
strings pointed to by s1 and s2. It returns a positive value if the s1 string
is greater than the s2 string, a negative value if the s2 string is greater than
the s1 string, and a zero if the strings are the same.

Error Conditions

The strcmp function does not return an error condition.

Example

#include <string.h>
char string1[50], string2[50];

if (strcmp (string1, string2))
 printf ("%s is different than %s \n", string1, string2);

See Also

memcmp, strncmp
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-133

C Run-Time Library Reference
strcoll

compare strings

Synopsis

#include <string.h>
int strcoll (const char *s1, const char *s2);

Description

The strcoll function compares the string pointed to by s1 with the string
pointed to by s2. The comparison is based on the locale macro,
LC_COLLATE. Because only the C locale is defined in the ADSP-21xxx envi-
ronment, the strcoll function is identical to the strcmp function. The
function returns a positive value if the s1 string is greater than the s2
string, a negative value if the s2 string is greater than the s1 string, and a
zero if the strings are the same.

Error Conditions

The strcoll function does not return an error condition.

Example

#include <string.h>
char string1[50], string2[50];

if (strcoll (string1, string2))
 printf ("%s is different than %s \n", string1, string2);

See Also

strcmp, strncmp
3-134 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
strcpy

copy from one string to another

Synopsis

#include <string.h>
char *strcpy (char *s1, const char *s2);

Description

The strcpy function copies the NULL-terminated string pointed to by s2
into the space pointed to by s1. Memory allocated for s1 must be large
enough to hold s2, plus one space for the NULL character ('\0'). The
behavior of strcpy is undefined if the two objects overlap or if s1 is not
large enough. The strcpy function returns the new s1.

Error Conditions

The strcpy function does not return an error condition.

Example

#include <string.h>
char string1[50];

strcpy (string1, "SOMEFUN");
/* SOMEFUN is copied into string1 */

See Also

memcpy, memmove, strncpy
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-135

C Run-Time Library Reference
strcspn

length of character segment in one string but not the other

Synopsis

#include <string.h>
size_t strcspn (const char *s1, const char *s2);

Description

The function strcspn returns the length of the initial segment of s1 which
consists entirely of characters not in the string pointed to by s2. The
string pointed to by s2 is treated as a set of characters. The order of the
characters in the string is not significant.

Error Conditions

The strcspn function does not return an error condition.

Example

#include <string.h>
char *ptr1, *ptr2;
size_t len;

ptr1 = "Tried and Tested";
ptr2 = "aeiou";
len = strcspn (ptr1, ptr2); /* len = 2 */

See Also

strlen, strspn
3-136 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
strerror

get string containing error message

Synopsis

#include <string.h>
char *strerror (int errnum);

Description

The function strerror returns a pointer to a string containing an error
message by mapping the number in errnum to that string. Only one error
is currently defined in the ADSP-21xxx C environment.

Error Conditions

The strerror function does not return an error condition.

Example

#include <string.h>
char *ptr1;

ptr1 = strerror (1);

See Also

No references to this function.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-137

C Run-Time Library Reference
strlen

string length

Synopsis

#include <string.h>
size_t strlen (const char *s1);

Description

The strlen function returns the length of the NULL-terminated string
pointed to by s1 (not including the NULL).

Error Conditions

The strlen function does not return an error condition.

Example

#include <string.h>
size_t len;

len = strlen ("SOMEFUN"); /* len = 7 */

See Also

strcspn, strspn
3-138 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
strncat

concatenate characters from one string to another

Synopsis

#include <string.h>
char *strncat (char *s1, const char *s2, size_t n);

Description

The strncat function appends a copy of up to n characters in the
NULL-terminated string pointed to by s2 to the end of the NULL-termi-
nated string pointed to by s1. It returns a pointer to the new s1 string.
The behavior of strncat is undefined if the two strings overlap. The new s1
string is terminated with a NULL ('\0').

Error Conditions

The strncat function does not return an error condition.

Example

#include <string.h>
char string1[50], *ptr;

string1[0] = '\0';
strncat (string1, "MOREFUN", 4);
/* string1 equals "MORE" */

See Also

strcat
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-139

C Run-Time Library Reference
strncmp

compare characters in strings

Synopsis

#include <string.h>
int strncmp (const char *s1, const char *s2, size_t n);

Description

The strncmp function lexicographically compares up to n characters of the
NULL-terminated strings pointed to by s1 and s2. It returns a positive
value if the s1 string is greater than the s2 string, a negative value if the s2
string is greater than the s1 string, and a zero if the strings are the same.

Error Conditions

The strncmp function does not return an error condition.

Example

#include <string.h>
char *ptr1;

ptr1 = "TEST1";
if (strncmp (ptr1, "TEST", 4) == 0)
 printf ("%s starts with TEST\n", ptr1);

See Also

memcmp, strcmp
3-140 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
strncpy

copy characters from one string to another

Synopsis

#include <string.h>
char *strncpy (char *s1, const char *s2, size_t n);

Description

The strncpy function copies up to n characters of the NULL-terminated
string pointed to by s2 into the space pointed to by s1. If the last character
copied from s2 is not a NULL, the result will not end with a NULL. The
behavior of strncpy is undefined if the two objects overlap. The strncpy
function returns the new s1.

If the s2 string contains fewer than n characters, the s1 string is padded
with the NULL character until all n characters have been written.

Error Conditions

The strncpy function does not return an error condition.

Example

#include <string.h>
char string1[50];

strncpy (string1, "MOREFUN", 4);
/* MORE is copied into string1 */
string1[4] = '\0'; /* must NULL-terminate string1 */

See Also

memcpy, memmove, strcpy
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-141

C Run-Time Library Reference
strpbrk

find character match in two strings

Synopsis

#include <string.h>
char *strpbrk (const char *s1, const char *s2);

Description

The strpbrk function returns a pointer to the first character in s1 that is
also found in s2. The string pointed to by s2 is treated as a set of charac-
ters. The order of the characters in the string is not significant.

Error Conditions

In the event that no character in s1 matches any in s2, a NULL pointer is
returned.

Example

#include <string.h>
char *ptr1, *ptr2, *ptr3;

ptr1 = "TESTING";
ptr2 = "SHOP"
ptr3 = strpbrk (ptr1, ptr2);
/* ptr3 points to the S in TESTING */

See Also

strcmp, strncmp
3-142 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
strrchr

find last occurrence of character in string

Synopsis

#include <string.h>
char *strrchr (const char *s1, int c);

Description

The strrchr function returns a pointer to the last occurrence of character
c in the NULL-terminated input string s1.

Error Conditions

The strrchr function returns a NULL pointer if c is not found.

Example

#include <string.h>
char *ptr1, *ptr2;

ptr1 = "TESTING”;
ptr2 = strrchr (ptr1, 'T');
/* ptr2 points to the second T of TESTING */

See Also

memchr, strchr
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-143

C Run-Time Library Reference
strspn

length of segment of characters in both strings

Synopsis

#include <string.h>
size_t strspn (const char *s1, const char *s2);

Description

The strspn function returns the length of the initial segment of s1 which
consists entirely of characters in the string pointed to by s2. The string
pointed to by s2 is treated as a set of characters. The order of the charac-
ters in the string is not significant.

Error Conditions

The strspn function does not return an error condition.

Example

#include <string.h>
size_t len;
char *ptr1, *ptr2;

ptr1 = "TESTING";
ptr2 = "ERST";
len = strspn (ptr1, ptr2); /* len = 4 */

See Also

strcspn, strlen
3-144 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
strstr

find string within string

Synopsis

#include <string.h>
char *strstr (const char *s1, const char *s2);

Description

The strstr function returns a pointer to the first occurrence in the string
pointed to by s1 of the characters in the string pointed to by s2. This
excludes the terminating NULL character in s1.

Error Conditions

If the string is not found, strstr returns a NULL pointer. If s2 points to
a string of zero length, s1 is returned.

Example

#include <string.h>
char *ptr1, *ptr2;

ptr1 = "TESTING";
ptr2 = strstr (ptr1, "E");
 /* ptr2 points to the E in TESTING */

See Also

strchr
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-145

C Run-Time Library Reference
strtod

convert string to a double

Synopsis

#include <stdlib.h>
double strtod (const char *nptr, char **endptr);

Description

The strtod function returns the value that was represented by the string
nptr as a double. The strtod function expects nptr to point to a string of
the following form:

[whitespace] [sign] [digits] [.digits] [{d | D | e | E}[sign]digits]

The whitespace may consist of space and tab characters, which are ignored;
sign is either plus (+) or minus (-); and digits are one or more decimal dig-
its. If no digits appear before the radix character (.), at least one must
appear after the radix character. The decimal digits can be followed by an
exponent, which consists of an introductory letter (d, D, e, or E) and an
optionally signed integer. If neither an exponent part nor a radix character
appears, a radix character is assumed to follow the last digit in the string.
The first character that does not fit this form stops the scan.

If endptr is not NULL, a pointer to the character that stopped the scan is
stored at the location pointed to by endptr. If no conversion can be per-
formed, the value of nptr is stored at the location pointed to by endptr.
3-146 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
Error Conditions

The strtod function returns a zero if no conversion can be made and a
pointer to the invalid string is stored in the object pointed to by endptr. If
the correct value results in an overflow, positive or negative (as appropri-
ate) HUGE_VAL is returned. If the correct value results in an underflow, 0 is
returned. ERANGE is stored in errno in the case of either overflow or
underflow.

Example

#include <stdlib.h>

char *rem;
double dd;

dd = strtod ("2345.5E4 abc", &rem);
/* dd=2.3455E+7, rem=" abc" */

See Also

strtoul, atoi, atol
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-147

C Run-Time Library Reference
strtok

convert string to tokens

Synopsis

#include <string.h>
char *strtok (char *s1, const char *s2);

Description

The strtok function returns successive tokens from the string s1, where
each token is delimited by characters from s2.

A call to strtok with s1 not NULL returns a pointer to the first token in
s1, where a token is a consecutive sequence of characters not in s2. s1 is
modified in place to insert a NULL character at the end of the token
returned. If s1 consists entirely of characters from s2, NULL is returned.

Subsequent calls to strtok with s1 equal to NULL will return successive
tokens from the same string. When the string contains no further tokens,
NULL is returned. Each new call to strtok may use a new delimiter
string, even if s1 is NULL, in which case the remainder of the string is
tokenized using the new delimiter characters.

Error Conditions

The strtok function returns a NULL pointer if there are no tokens
remaining in the string.
3-148 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
Example

#include <string.h>
static char str[] = "a phrase to be tested, today";
char *t;

t = strtok (str, " "); /* t points to "a" */
t = strtok (NULL, " "); /* t points to "phrase" */
t = strtok (NULL, ","); /* t points to "to be tested" */
t = strtok (NULL, "."); /* t points to " today" */
t = strtok (NULL, "."); /* t = NULL */

See Also

No references to this function.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-149

C Run-Time Library Reference
strtol

convert string to long integer

Synopsis

#include <stdlib.h>
long int strtol (const char *nptr, char **endptr, int base);

Description

The function strtol returns as a long int the value that was represented
by the string nptr. If endptr is not a NULL pointer, strtol stores a
pointer to the unconverted remainder in *endptr.

The strtol function breaks down the input into three sections: white
space (as determined by isspace), the initial characters, and the unrecog-
nized characters, including a terminating NULL character. The initial
characters may be composed of an optional sign character, 0x or 0X if
base is 16, and those letters and digits which represent an integer with a
radix of base. The letters (a-z or A-Z) are assigned the values 10 to 35, and
their use is permitted only when those values are less than the value of
base.

If base is zero, then the base is taken from the initial characters. A leading
0x indicates base 16; a leading 0 indicates base 8. For any other leading
characters, base 10 is used. If base is between 2 and 36, it is used as a base
for conversion.

Error Conditions

The strtol function returns a zero if no conversion can be made and the
invalid string is stored in the object pointed to by endptr. If the correct
value results in an overflow, positive or negative (as appropriate) LONG_MAX
is returned. If the correct value results in an underflow, LONG_MIN is
returned. ERANGE is stored in errno in the case of either overflow or
underflow.
3-150 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
Example

#include <stdlib.h>
#define base 10

char *rem;
long int i;

i = strtol ("2345.5", &rem, base);
/* i=2345, rem="5" */

See Also

atoi, atol, strtod, strtoul
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-151

C Run-Time Library Reference
strtoul

convert string to unsigned long integer

Synopsis

#include <stdlib.h>
unsigned long int strtoul (const char *nptr, char **endptr, int
base);

Description

The function strtoul returns as an unsigned long int the value repre-
sented by the string nptr. If endptr is not a NULL pointer, strtoul stores
a pointer to the unconverted remainder in *endptr.

The strtoul function breaks down the input into three sections:

• white space (as determined by isspace)

• the initial characters

• unrecognized characters including a terminating NULL character

The initial characters may be composed of an optional sign character (0x
or 0X if base is 16) and those letters and digits which represent an integer
with a radix of base. The letters (a-z or A-Z) are assigned the values 10 to
35, and their use is permitted only when those values are less than the
value of base.

If base is zero, then the base is taken from the initial characters. A leading
0x indicates base 16; a leading 0 indicates base 8. For any other leading
characters, base 10 is used. If base is between 2 and 36, it is used as a base
for conversion.
3-152 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
Error Conditions

The strtoul function returns a zero if no conversion can be made and the
invalid string is stored in the object pointed to by endptr. If the correct
value results in an overflow, ULONG_MAX is returned. ERANGE is stored in
errno in the case of overflow.

Example

#include <stdlib.h>
#define base 10

char *rem;
unsigned long int i;

i = strtoul ("2345.5", &rem, base);
/* i = 2345, rem = "5" */

See Also

atoi, atol, strtod, strtol
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-153

C Run-Time Library Reference
strxfrm

transform string using LC_COLLATE

Synopsis

#include <string.h>
size_t strxfrm (char *s1, const char *s2, size_t n);

Description

The strxfrm function transforms the string pointed to by s2 using the
locale specific category LC_COLLATE. (See setlocale). It places the result in
the array pointed to by s1.

� The transformation is such that if s1 and s2 were transformed and
used as arguments to strcmp, the result would be identical to the
result derived from strcoll using s1 and s2 as arguments. However,
since only C locale is implemented, this function does not perform
any transformations other than the number of characters.

The string stored in the array pointed to by s1 is never more than n char-
acters including the terminating NULL character. strxfrm returns 1. If
this returned value is n or greater, the result stored in the array pointed to
by s1 is indeterminate. s1 can be a NULL pointer if n is zero.

Error Conditions

The strxfrm function does not return an error condition.

Example

#include <string.h>
char string1[50];

strxfrm (string1, "SOMEFUN", 49);
/* SOMEFUN is copied into string1 */
3-154 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
See Also

setlocale, strcmp, strcoll
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-155

C Run-Time Library Reference
system

send string to operating system

Synopsis

#include <stdlib.h>
int system (const char *string);

Description

The system function normally sends a string to the operating system. In
the context of the ADSP-21xxx run-time environment, system always
returns zero.

Error Conditions

The system function does not return an error condition.

Example

#include <stdlib.h>

system ("string"); /* always returns zero */

See Also

getenv
3-156 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
tan, tanf

tangent

Synopsis

#include <math.h>
double tan (double x);
float tanf (float x);

Description

The tan and tanf functions return a value that is accurate to 20 bits of the

mantissa. This accuracy corresponds to a maximum relative error of 2-20
over its input range.

Error Conditions

The tan and tanf functions do not return an error condition.

Example

#include <math.h>
double y;
float x;

y = tan (3.14159/4.0); /* y = 1.0 */
x = tanf (3.14159/4.0); /* x = 1.0 */

See Also

atan, atanf
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-157

C Run-Time Library Reference
tanh, tanhf

hyperbolic tangent

Synopsis

#include <math.h>
double tanh (double x);
float tanhf (float x);

Description

The tanh and tanhf functions return a value that is accurate to 20 bits of
the mantissa. This accuracy corresponds to a maximum relative error of
2-20 over its input range.

Error Conditions

The tanh and tanhf functions do not return an error condition.

Example

#include <math.h>
double x, y;
float z, w;

y = tanh (x);
z = tanhf (w);

See Also

cosh, coshf, sinh, sinhf
3-158 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
tolower

convert from uppercase to lowercase

Synopsis

#include <ctype.h>
int tolower (int c);

Description

The tolower function converts the input character to lowercase if it is
uppercase; otherwise, it returns the character.

Error Conditions

The tolower function does not return an error condition.

Example

#include <ctype.h>
int ch;

for (ch = 0; ch <= 0x7f; ch++) {
 printf ("%#04x", ch);
 if (isupper (ch))
 printf ("tolower=%#04x", tolower (ch));
 putchar ('\n');
}

See Also

islower, isupper
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-159

C Run-Time Library Reference
toupper

convert from lowercase to uppercase

Synopsis

#include <ctype.h>
int toupper (int c);

Description

The toupper function converts the input character to uppercase if it is in
lowercase; otherwise, it returns the character.

Error Conditions

The toupper function does not return an error condition.

Example

#include <ctype.h>
int ch;

for (ch = 0; ch <= 0x7f; ch++) {
 printf ("%#04x", ch);
 if (islower (ch))
 printf ("toupper=%#04x", toupper (ch));
 putchar ('\n');
}

See Also

islower, isupper
3-160 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
va_arg

get next argument in variable-length list of arguments

Synopsis

#include <stdarg.h>
void va_arg (va_list ap, type);

Description

The va_arg macro is used to walk through the variable length list of argu-
ments to a function.

After starting to process a variable-length list of arguments with va_start,
call va_arg with the same va_list variable to extract arguments from the
list. Each call to va_arg returns a new argument from the list.

Substitute a type name corresponding to the type of the next argument for
the type parameter in each call to va_arg. After processing the list, call
va_end.

The header file stdarg.h defines a pointer type called va_list that is used
to access the list of variable arguments.

The function calling va_arg is responsible for determining the number
and types of arguments in the list. It needs this information to determine
how many times to call va_arg and what to pass for the type parameter
each time. There are several common ways for a function to determine
this type of information. The standard C printf function reads its first
argument looking for %-sequences to determine the number and types of
its extra arguments. In the example below, all of the arguments are of the
same type (char*), and a termination value (NULL) is used to indicate the
end of the argument list. Other methods are also possible.

If a call to va_arg is made after all arguments have been processed, or if
va_arg is called with a type parameter that is different from the type of the
next argument in the list, the behavior of va_arg is undefined.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-161

C Run-Time Library Reference
Error Conditions

The va_arg macro does not return an error condition.

Example

#include <stdarg.h>
#include <string.h>
#include <stdlib.h>

char *concat(char *s1, ...)
{
 int len = 0;
 char *result;
 char *s;
 va_list ap;

 va_start (ap, s1);
 s = s1;
 while (s) {
 len + = strlen (s);
 s = va_arg (ap, char *);
 }
 va_end (ap);

 result = malloc (len + 7);
 if (!result)
 return result;
 *result = ' ';
 va_start (ap, s1);
 s = s1;
 while (s) {
 strcat (result, s);
 s = va_arg (ap, char *);
 }
 va_end (ap);
 return result;
 }

See Also

va_start, va_end
3-162 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

C/C++ Run-Time Library
va_end

finish variable-length argument list processing

Synopsis

#include <stdarg.h>
void va_end (va_list ap);

Description

The va_end can only be invoked after the va_start macro. A call to
va_end concludes the processing of a variable-length list of arguments that
was begun by va_start.

Error Conditions

The va_end macro does not return an error condition.

Example

See “va_arg” on page 3-161

See Also

va_arg, va_start
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 3-163

C Run-Time Library Reference
va_start

initialize the variable-length argument list processing

Synopsis

#include <stdarg.h>
void va_start (va_list ap, parmN);

Description

The va_start macro is used in a function declared to take a variable num-
ber of arguments to start processing those variable arguments. The first
argument to va_start should be a variable of type va_list, for use by
va_arg in walking through the arguments. The second argument should
be the last named parameter to the variable argument function. The
va_start macro must be invoked before either the va_arg or va_end
macro can be invoked.

Error Conditions

The va_start macro does not return an error condition.

Example

See “va_arg” on page 3-161

See Also

va_arg, va_end
3-164 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

	Contents
	3 C/C++ Run-Time Library
	Overview
	C and C++ Run-Time Libraries Guide
	Calling Library Functions
	Linking Library Functions
	Table 3-1. C and C++ Files and Libraries�

	Working with Library Header Files
	Standard C Library Header Files
	Table 3-2. ANSI Standard Run-Time Environment Macros�
	Table 3-3. ANSI Standard Run-Time Functions�

	Standard C Library Header File Descriptions
	Table 3-4. Standard Library - Additional Functions�

	Using the Compiler’s Built-In C library Functions
	Table 3-5. Compiler Built-in Functions�
	Table 3-6. Dual Memory Capable Functions�

	Abridged C++ Library Support
	Embedded C++ Library Header Files
	C++ Header Files for C Library Facilities
	Table 3-7. C++ Header Files for C Library Facilities�

	Embedded Standard Template Library Header Files

	C Run-Time Library Reference
	abort
	abs
	acos, acosf
	asin, asinf
	atan, atanf
	atan2, atan2f
	atexit
	atof
	atoi
	atol
	avg
	bsearch
	calloc
	ceil, ceilf
	clear_interrupt
	Table 3-8. ADSP-2106x Signals�
	Table 3-9. ADSP-2116x Signals�

	clip
	cos, cosf
	cosh, coshf
	div
	exit
	exp, expf
	fabs, fabsf
	floor, floorf
	fmod, fmodf
	free
	frexp, frexpf
	getenv
	heap_calloc
	heap_free
	heap_init
	heap_lookup
	heap_malloc
	heap_realloc
	heap_switch
	interrupt
	Table 3-10. Interrupt Handling

	isalnum
	isalpha
	iscntrl
	isdigit
	isgraph
	islower
	isprint
	ispunct
	isspace
	isupper
	isxdigit
	labs
	lavg
	lclip
	ldexp, ldexpf
	ldiv
	lmax
	lmin
	localeconv
	Table 3-11. Members of the lconv Struct�

	log, logf
	log10, log10f
	longjmp
	malloc
	max
	memchr
	memcmp
	memcpy
	memmove
	memset
	min
	modf, modff
	pow, powf
	qsort
	raise
	rand
	realloc
	setjmp
	setlocale
	signal
	sin, sinf
	sinh, sinhf
	sqrt, sqrtf
	srand
	strcat
	strchr
	strcmp
	strcoll
	strcpy
	strcspn
	strerror
	strlen
	strncat
	strncmp
	strncpy
	strpbrk
	strrchr
	strspn
	strstr
	strtod
	strtok
	strtol
	strtoul
	strxfrm
	system
	tan, tanf
	tanh, tanhf
	tolower
	toupper
	va_arg
	va_end
	va_start

	Index

