
VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs 2-1

2 ASSEMBLER
Figure 2-0.

Table 2-0.

Listing 2-0.

Listing 2-0.

Overview
The easm21k assembler runs from an operating system command line or
from the VisualDSP++ environment. The assembler processes assembly
source, data, and header files, and produces an object file. Assembler oper-
ations depend on two types of controls: assembler directives and assembler
switches.

Assembler directives are coded in your assembly source file. The directives
allow you to define variables in your program, set up some hardware fea-
tures, and identify your program’s sections* for placement within DSP
memory. The assembler uses directives for guidance as it translates your
source into object code.

Assembler switches are specified on the operating system’s command line
or in the Assemble tab of the VisualDSP++ environment’s Project
Options dialog box. These switches allow you to control how the assem-
bler processes your programs. Using these switches, you select features,
such as search paths, output file names, and macro preprocessing, among
others.

This chapter provides assembler information that you need to know when
developing and assembling programs for the ADSP-21xxx DSPs.

* The assembler section (or .SECTION) declaration referred to here corresponds to a linker input sec-
tion.

Overview

2-2 VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs

This chapter contains the following information on the assembler:

• “Assembler Guide” on page 2-3

• “Assembler Command-Line Reference” on page 2-16

• “Assembler Syntax Reference” on page 2-27

• “Assembler Glossary” on page 2-68

VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs 2-3

Assembler

Assembler Guide
The guide section describes the process of developing programs in the
ADSP-21xxx DSP assembly language. The discussion covers conventions
you should follow when assembling source programs from the operating
system’s command line.

Software developers using the assembler should be familiar with the fol-
lowing operations:

• “Writing Assembly Programs” on page 2-3

• “Preprocessing a Program” on page 2-11

• “Reading a Listing File” on page 2-12

• “Setting Assembler Options” on page 2-14

For information about the DSP architecture, including the DSP instruc-
tion set that you use when writing assembly programs, see the hardware
and instruction set manuals.

Writing Assembly Programs
Write your assembly language programs using the VisualDSP++ editor or
any editor that produces text files. Do not use a word processor that
embeds special control codes in the text. Append an .ASM extension to
your source files to identify them as the SHARC DSP assembly files.

Assemble your source files, either using the assembler’s command line or
within the VisualDSP++ environment. In the default mode of operation,
the assembler processes an input file through the listed stages to produce a
binary object file (.DOJ) and an optional listing file (.LST).

Assembler Guide

2-4 VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs

Object files serve as input to the linker when you link your executable pro-
gram. These files are in Executable and Linkable Format (ELF), an
industry-standard format for object files. In addition, the assembler can
embed binary information in Debugging Information Format
(DWARF-2) for source level debugging.

Listing files are text files that you can read for information on the results
of the assembly process.

Figure 2-1 on page 2-5 shows a graphical overview of the assembly pro-
cess. The figure shows the preprocessor processing the assembly source
(.ASM) and initialization data (.DAT) files. The assembly source file often
contains preprocessor commands, such as #include, that causes the pre-
processor to include header files (.H) into your source program. The
preprocessor’s only output, an intermediate preprocessed file (.IS), is the
assembler’s primary input.

VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs 2-5

Assembler

A binary object (.DOJ) and an optional listing (.LST) files are final results
of the successful assembly.

Figure 2-1. Assembler Input & Output Files

 (.DAT)
Data initialization file

 (.ASM)
Assembly source file Header file

 (.H)

Preprocessor

(.IS)

 Assembler

Object file
(.DOJ)

Listing file
(.LST)

 Intermediate
 preprocessed file

Assembler Guide

2-6 VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs

Program Content

Statements within an assembly source file are comprised of assembly
instructions, assembler directives, and preprocessor commands. Instruc-
tions assemble to executable code, while directives and commands modify
the assembly process. The syntax of these statement types is as follows:

• Assembly instructions

Instructions follow the DSP’s instruction set syntax documented in
the DSP Instruction Set manuals. Each instruction begins with a
keyword and ends with a semicolon (;). To mark the location of an
instruction, place an address label at the beginning of an instruction
line or on the preceding line. End the label with a colon (:) before
beginning the instruction. You can refer to this memory location in
your program using the label instead of an absolute address.
Although there is no length restriction when defining labels, it is
convenient to limit them to the length of a screen line, typically
eighty characters.

Labels are sensitive to case. So, easm21k treats “outer” and “Outer”
as unique labels.

Examples:
outer: DM(I1,M1)=F8;
start: r0=source;

• Assembler directives

Directives begin with a period (.) and end with a semicolon (;). The
period must be the first character on the line containing the direc-
tive. The assembler does not differentiate between directives in low-
ercase or uppercase characters.

Note that this manual prints directives in uppercase to distinguish
them from other assembly statements.

VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs 2-7

Assembler

Examples:
.PRECISION 40;
.ROUND_ZERO;

For a description of the ADSP-21xxx DSP directive set, see “Assem-
bler Directives” on page 2-36.

• Preprocessor commands

Preprocessor commands begin with a pound sign (#) and end with
a carriage return. The pound sign must be the first character on the
line containing the command. If the command is longer than one
line, use a backslash (\) and a carriage return to continue the com-
mand on the next line. Do not put any characters between the back-
slash and the carriage return. Unlike other assembly statements,
preprocessor commands are case-sensitive and must be lowercase.
For a list of these commands, see “Preprocessing a Program” on page
2-11.

Examples:
#include "const.h"
#define PI 3.14159

Figure 2-2 on page 2-9 contains an example assembly source file.

Program Structure

An assembly source file must describe how code and data are mapped into
the memory on your target DSP. There are two types of memory: data
memory, which typically contains data and memory-mapped ports, and
program memory, which typically contains code (and can also store data).
The way you structure your code and data into memory should follow
from the memory architecture of the target DSP.

The mapping of code and data is accomplished using the .SECTION direc-
tive (formerly .SEGMENT and .ENDSEG). The .SECTION directive defines
groupings of instructions and data that are set as contiguous memory

Assembler Guide

2-8 VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs

addresses in the DSP. Each .SECTION name corresponds to an input sec-
tion names in the Linker Description File (.LDF).

Some suggested section names that you could use in your assembly source
appear in Table 2-1. Using these predefined names in your sources makes
it easier to take advantage of the default Linker Description File included
in your DSP system. For more information on the LDF, see the
VisualDSP++ 2.0 Linker & Utilities Manual for ADSP-21xxx DSPs.

You may create sections in a program by grouping elements to meet hard-
ware constraints. To group code that reside in off-chip memory, declare a
section for that code and place that section in the selected memory with
the linker. Figure 2-2 on page 2-9 shows how a program divides into sec-
tions that match the program and data memory segmentation of a DSP
system.

Table 2-1. Suggested Section Names

.SECTION Name Description

seg_pmco A section in Program Memory that holds code.

seg_dmda A section in Data Memory that holds data.

seg_pmda A section in Program Memory that holds data.

seg_init A section in Program Memory that holds system initialization
data.

seg_rth A section in Program Memory that holds system initialization
code and interrupt service routines.

seg_stak A section in Data Memory that holds run-time stack. Required
by the C run-time environment.

seg_heap A section in Data Memory that holds run-time heap. Required
by the C run-time environment.

VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs 2-9

Assembler

Figure 2-2. Example Assembly Source File

The sample assembly program divides into sections; each section begins
with a .SECTION directive and ends with the occurrence of the next
.SECTION directive or end-of-file.

#include "const.h"
#define PI 3.14159

.PRECISION=40;

.ROUND_ZERO;

.SECTION/DM seg_dmda;

.VAR fxd[10] = 1,2,3,4,5,6,7,8,9,0xA;

.VAR flt[5] = PI,PI/2,1.0,2.0,2.0/3.0;

.VAR rad;
 /* instructions */

.SECTION/PM seg_port;

.PORT clk_in;

.PORT tick;
 /* instructions */

.SECTION/PM seg_pmco;
 /* instructions */
#ifdef some_variable
 /* instructions */
#endif
 /* instructions */

Preprocessor
commands

Assembler
directives

Data section

Port section

Code section

Preprocessor
commands
for conditional
assembly

Assembler Guide

2-10 VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs

The source program contains the following sections:

• Data Section — seg_dmda. Variables and buffers are declared and
can be initialized.

• Port Section — seg_port. I/O ports mapped to program memory;
each port has a unique name to identify it for reading and writing.

• Program Section — seg_pmco. Data, instructions, and possibly
other types of statements are in this section, including statements
that are needed for conditional assembly.

Looking at Figure 2-2, notice that an assembly source file often begins
with one or more statements, such as #include to include other files in
your source code or #define to define macros. The .PRECISION and
.ROUND directives tell the assembler to store floating-point data with 40-bit
precision and to round a floating-point value to a closer-to-zero value if it
does not fit in the 40-bit format.

Program Interfacing Requirements

At some point, you may want to interface your assembly program with a C
or C++ program. The C/C++ compiler supports two methods for mixing
C/C++ and assembly language: embedding of assembly code in C or C++
programs and linking C and assembly routines.

To embed (inline) assembly code in your C or C++ program, use the
asm() extension. To link together programs that contain C/C++ and
assembly routines, use assembly interface macros. These macros facilitate
the assembly of mixed routines. For more information about these meth-
ods, see the VisualDSP++ 2.0 C/C++ Compiler & Library Manual for
ADSP-21xxx DSPs.

VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs 2-11

Assembler

Preprocessing a Program
The assembler includes a preprocessor that allows you to use C-style pre-
processor commands in your assembly source files. Table 3-3 on
page 3-17 lists preprocessor commands and provides a brief description of
each command. The preprocessor automatically runs before the assembler
unless you use the assembler’s -sp (skip preprocessor) switch.

Preprocessor commands are useful for modifying assembly code. For
example, you can use the #include command to fill memory, load config-
uration registers, and set up DSP parameters. You can use the #define
command to define constants and aliases for frequently used instruction
sequences. The preprocessor replaces each occurrence of the macro refer-
ence with a corresponding value or a series of instructions. For example,
the macro PI in Figure 2-2 on page 2-9 is replaced with the characters
3.14159 during preprocessing.

Note that the listing files keep any comments.

For information on the ADSP-21xxx DSPs’ preprocessor command set,
see “Preprocessor Directives/Commands” on page 3-16.

Assembler Guide

2-12 VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs

Reading a Listing File
A listing file (.LST) is an optional output text file that lists the results of
the assembly process. A sample listing file appears in Listing 2-1. The
source file, DFT.ASM, is available in the
…/21k/Examples/DASM_Examples/DFT directory.

Each listing file provides the following information:

• Address — The first column contains the offset from the .SECTION’s
base address.

• Opcode — The second column contains the hexadecimal opcode
that the assembler generates for the line of assembly source.

• Line — The third column contains the line number in the assembly
source file.

• Assembly Source — The fourth column contains the line of assem-
bly source from the file including any comments.

Listing 2-1. Listing File Example

Page 1 dft.asm
ADI EASM21k (2.1.2.0) 05 Sep 2001 14:02:21

offset opcode line
====== ====== ====
 1 /*
 2 DFT.ASM ADSP-2106x Discrete Fourier
 Transform
 3 This routine performs an N point real DFT
 according to the following equation:
 4
 5 N-1
 6 real(k)+j*imag(k) = SUM input(n)[C - j*S];
 k=0 to N-1
 7 n=0
 8
 9 where: C=cos(2*pi*k*n/N), S=sin(2*pi*k*n/N),
 j=sqrt(-1)
 10 */

VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs 2-13

Assembler

 11
 12 #include "def21060.h" /* Memory Mapped
 IOP register definitions */
 13 #define N 64 /* Constant for number of
 points in input */
 14
 15 .SEGMENT/DM dm_data; /* Declare
 variables in data memory */
 0 4180000000 16 .VAR input[N]= "test64.dat";
 16
 40 0000000000 17 .VAR real[N];
 80 0000000000 18 .VAR imag[N];
 19 .ENDSEG;
 20
 21 .SEGMENT/PM pm_data; /* Declare
 variables in program memory */
 0 000000000000 22 .VAR sine[N]= "sin64.dat"; /* Cosine is
 derived using a shifted */
 22
 23 .ENDSEG; /* pointer to this circular buffer.*/
 24
 25 .SEGMENT/PM pm_rsti; /* The reset vector
 resides in this space */
 0 000000000000 26 NOP;
 1 0f7100108421 27 USTAT2= 0x108421; /* 1st instr. to be
 executed after reset */
 2 117100000002 28 DM(WAIT)=USTAT2; /* Set external memory
 waitstates to 0 */
 3 063e00000000 29 JUMP start;
 30
 31 .ENDSEG;
 32
 33 .SEGMENT/PM pm_code; /* Example setup for
 DFT routine */
 0 34 start: M1=1;
 0 0f2100000001 34
 1 0f2900000001 35 M9=1;
 2 0f4000000000 36 B0=input;
 3 0f3000000040 37 L0=@input; /* Input buffer is
 circular */
 4 0f1100000080 38 I1=imag;
 5 0f3100000000 39 L1=0;
 6 06be0400000a 40 CALL dft (DB); /* Example delayed call
 instruction */
 7 0f1200000040 41 I2=real; /* In delay field of call */
 8 0f3200000000 42 L2=0; /* '' */
 9 43 end: IDLE;
 9 008000000000 43

Assembler Guide

2-14 VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs

 44
 45 /* DFT Subroutine */
 a 46 dft: B8=sine; /* Sine pointer */
 a 0f4800000000 46
 b 0f3800000040 47 L8=@sine;
 c 0f4900000000 48 B9=sine; /* Derive cosine from sine by */
 d 0f1900000010 49 I9=sine+N/4; /* shifting pointer
 over 2pi/4 */
 e 0f3900000040 50 L9=@sine; /* and using a
 circular buffer.*/
 f 0f1a00000000 51 I10=0; /* I10 is used to increment the */
 10 0f3a00000000 52 L10=0; /* frequency of sine lookup.*/
 11 0f0f00000000 53 F15=0; /* Zero to clear accumulators */
 12 0c004000001c 54 LCNTR=N, DO outer UNTIL LCE;
 13 71af940a18f0 55 F8=PASS F15, M8=I10 /* Update frequency */
 14 2040428a19f0 56 F9=PASS F15, F0=DM(I0,M1), F5=PM(I9,M8);
 15 503f02130c05 57 F12=F0*F5, F4=PM(I8,M8);
 16 0c003f000018 58 LCNTR=N-1, DO inner UNTIL LCE;
 17 204042d8d904 59 F13=F0*F4, F9=F9+F12, F0=DM(I0,M1),
 F5=PM(I9,M8);
 18 60 inner: F12=F0*F5, F8=F8-F13, F4=PM(I8,M8);
 18 503f0259c811 60
 19 013e0058d904 61 F13=F0*F4, F9=F9+F12;
 1a 547e8488288d 62 F8=F8-F13, DM(I2,M1)=F9; /* Write real
 result */
 1b 047e88000000 63 MODIFY(I10,M9); /* Increment frequency */
 1c 64 outer: DM(I1,M1)=F8; /* Write imaginary
 result */
 1c 527e84000000 64
 1d 0a3e00000000 65 RTS;
 66 .ENDSEG;
 67

Setting Assembler Options
When developing a DSP project, you may find it useful to modify the
assembler’s default options. The way you set the assembler options
depends on the environment used to run your DSP development software:

• From the operating system command line, you select the assembler’s
command-line switches. For more information on these switches,
see the “Assembler Command-Line Interface” on page 2-16.

VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs 2-15

Assembler

• From the VisualDSP++ environment, you choose the assembler’s
options on the Assemble tab in the Project Options dialog box
selected via the Project menu. For more information on how to set
these project options, see the VisualDSP++ User's Guide for
ADSP-21xxx DSPs and online Help. For example:

Assembler Command-Line Reference

2-16 VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs

Assembler Command-Line Reference
The ADSP-21xxx SHARC DSP assembler (easm21k) processes data from
assembly source (.ASM), data (.DAT), header (.H), and preprocessed (.IS)
files and generates object files in Executable and Linkable Format (ELF),
an industry-standard format for binary object files. The assembler’s pri-
mary output file has a .DOJ extension. The assembler’s secondary outputs
are an optional listing (.LST) file and information in binary Debugging
Information Format (DWARF-2), which is embedded in the object file.
By linking together separately assembled object files, the linker produces
executable programs (.DXE).

You can archive the output of an assembly process into a library file
(.DLB), which can then be linked with other objects into an executable.
Because the archive process performs a partial link, placing frequently
used objects in a library reduces the time required for subsequent links.
For more information on the archiver, see the Linker & Utilities Manual for
ADSP-21xxx DSPs.

This section provides reference information on the assembler’s com-
mand-line switches and their use. The ADSP-21xxx DSP assembler
switches are accessible either from the operating system’s command line or
via the VisualDSP++ project environment.

Assembler Command-Line Interface
This section describe the easm21k assembler command-line interface and
switch (option) set.

Switches control certain aspects of the assembly process, including library
searching, listing, and preprocessing. Because the assembler automatically
runs the preprocessor as your program is assembled (unless you use the -sp
switch), the assembler’s command line can receive input for the preproces-
sor program and direct its operation. For more information on the
preprocessor, see “Preprocessor” on page 3-1.

VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs 2-17

Assembler

Running the Assembler

To run the assembler from the command line, type the name of the assem-
bler program followed by arguments in any order:

easm21k [-switch1 [-switch2 …]] sourceFile

where:

• easm21k — Name of the assembler program for the ADSP-21xxx
DSPs.

• -switch1,-switch2 — The switches to process.

The assembler offers many optional switches that select operations
and modes for the assembler and preprocessor. Some assembler
switches take a file name as a required parameter.

• sourceFile — Name of the source file to assemble.

� The assembler outputs an error message when run without argu-
ments.

The assembler supports relative and absolute path names. When you pro-
vide an input or output file name as a parameter, use the following
guidelines for naming files:

• Include the drive letter and path string if the file is not in the current
directory.

• Enclose long file names in double quotation marks, for example,
"long file name".

• Append the appropriate file name extension to each file.

The assembler uses each file’s extension to determine what operations to
perform. Table 2-2 on page 2-18 lists the valid file extensions that the
assembler accepts.

Assembler Command-Line Reference

2-18 VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs

The assembler handles file name extensions as follows:

• Files with an .ASM or no extension are treated as assembly source
files to be assembled.

• Files with an .H extension named in an #include command are
treated as header files to be preprocessed.

• Files with a .DAT extension named with an -I switch are treated as
data initialization files to be searched.

• File name typed in lower or uppercase defines the same file.

Table 2-2 summarizes file extension conventions that the assembler
follows.

The following command line, for example:

easm21k -l p1Listing.lst -Dfilter_taps=100 -v -o bin\p1.doj p1.asm

runs the assembler with:

Table 2-2. File Name Extension Conventions

Extension Description

.asm Assembly source file.

�Note that the assembler treats all files with unrecognized
 extensions as assembly source files with an .asm extension.

.is Preprocessed assembly source file.

.h Header file.

.lst Listing file.

.doj Assembled object file.

.dat Data initialization file.

VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs 2-19

Assembler

-l p1Listing.lst — Directs the assembler to output the listing file.

-Dfilter_taps=100 — Defines the macro filter_taps as equal to 100.

-v — Displays verbose information on each phase of the assembly.

-o bin\p1.doj — Specifies the name and directory for the object
output.

p1.asm — Specifies the assembly source file to assemble.

Assembler Command-Line Switch Summary

This section describes the easm21K command-line switches (options) in
ASCII collation order. A summary of the assembler switches appears in
Table 2-3, and a brief description for each switch starts on page 2-21.

Table 2-3. Assembler Command-Line Switch Summary

Switch Name Description

-21[020|060|061|062|065L|160|161] Generate code for ADSP-21xxx processors.
If omitted, defaults to -21060.

–Dmacro[=definition] Define macro.

–g Generate debug information (DWARF-2
format).

-h[elp] Output a list of assembler switches.

–i directory Search directory for included files.

-l filename Produces a listing file named <filename>.
Nested source files are not included in the
listing.

-li filename Produces a listing file named <filename>.
Nested source files are included in the list-
ing.

Assembler Command-Line Reference

2-20 VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs

-M Make dependencies only, does not assem-
ble.

-MM Make dependencies and assemble.

-Mo filename Specify filename for the make depen-
dencies output file.

-Mt filename Make dependencies for the specified source
file.

–o filename Output named object file.

–pp Run preprocessor only.

–r Remove preprocessor information from a
listing file.

–sp Skip reprocessing.

–v[erbose] Display information about each assembly
phase.

–version Display version info about the assembler
and preprocessor programs.

–w Remove all assembler-generated warnings.

Table 2-3. Assembler Command-Line Switch Summary (Cont’d)

VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs 2-21

Assembler

Assembler Command-Line Switch Descriptions

A description of each switch includes information about case-sensitivity,
equivalent switches, switches overridden/contradicted by the one
described, and naming and spacing constraints on parameters.

-21[020|060|061|062|065L|160|161]

The -21[060|065L|061|062|160|161] switch directs the assembler to gen-
erate code suitable for one of the following processors: ADSP-21020,
ADSP-21060, ADSP-21061, ADSP-21062, ADSP-21065L,
ADSP-21160, or ADSP-21161.

-Dmacro[=def]

The -D (define macro) switch directs the assembler to define a macro. If
you do not include the optional definition string (=def), the assembler
defines the macro as value 1.

Some examples of this switch are as follows:

–Dinput // defines input as 1

–Dsamples=10 // defines samples as 10

–Dpoint="Start" // defines point as the string “Start”

-g

The -g (generate debug information) switch directs the assembler to gen-
erate line number and symbol information in DWARF-2 binary format,
allowing you to debug the assembly source files.

-h[elp]

The -h or -help switch directs the assembler to output to standard output
a list of command line-switches with a syntax summary.

Assembler Command-Line Reference

2-22 VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs

-i directory

The -i directory or -I directory (include directory) switch directs the
assembler to append the specified directory or a list of directories sepa-
rated by semicolons (;) to the search path for included files. These files
are:

• header files (.h) included with the #include command

• data initialization files (.dat) specified with the .VAR directive

The assembler passes this information to the preprocessor; the preproces-
sor searches for included files in the following order:

• current project (.dpj) directory

• \include subdirectory of the VisualDSP installation directory

• specified directory (a list of directories). The order of the list defines
the order of multiple searches.

-l filename

The -l (listing) switch directs the assembler to generate the named listing
file. Each listing file shows the relationship between your source code and
the instruction opcodes that the assembler produces. If you omit the file-
name, the assembler outputs an error message. For more information about
listing files, see “Reading a Listing File” on page 2-12.

�
Current directory is your *.dpj project directory, not the
directory of the assembler program. Usage of full path names
for the -I switch on the command line (omitting the disk par-
tition) is recommended. For example,

easem21k -I “\bin\inlclude\buffer1.dat”

VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs 2-23

Assembler

-M

The -M (generate make rule only) assembler switch directs the preproces-
sor to output a rule, which is suitable for the make utility, describing the
dependencies of the source file. After preprocessing, the assembler stops
without assembling the source into an object file. The output, an assembly
make dependencies list, is written to stdout in the standard
command-line format:

source_file.doj: dependency_file.ext

where dependency_file.ext may be an assembly source file, a header file
included with the #include preprocessor command, or a data file.

When the -o filename option is used with -M, the assembler outputs the
make dependencies list to the named file.

-MM

The -MM (generate make rule and assemble) assembler switch directs the
preprocessor to output a rule, which is suitable for the make utility,
describing the dependencies of the source file. After preprocessing, the
assembly of the source into an object file proceeds normally. The output,
an assembly make dependencies list, is written to stdout in the standard
command-line format:

source_file.doj: dependency_file.ext

where dependency_file.ext may be an assembly source file, a header file
included with the #include preprocessor command, or a data file.

For example, the source vectAdd.asm includes the “MakeDepend.h” and
inits.dat files. When assembling with

easm21k -MM vectAdd.asm

Assembler Command-Line Reference

2-24 VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs

the assembler appends the .DOJ extension to the source file name for the
list of dependencies:

vectAdd.doj: MakeDepend.h
vectAdd.doj: inits.dat

When the -o filename option is used with -MM, the assembler outputs the
make dependencies list to stdout.

-Mo filename

The -Mo (output make rule) assembler switch specifies the name of the
make dependencies file, which the assembler generates when you use the
-M or -MM switch. If the named file is not in the current directory, you
must provide the path name in the double quotation marks (“”).

-Mt filename

The -Mt (output make rule for the named source) assembler switch speci-
fies the name of the source file for which the assembler generates the make
rule when you use the -M or -MM switch. If the named file is not in the cur-
rent directory, you must provide the path name in the double quotation
marks (“”).

-o [filename]

The -o (output) switch directs the assembler to use the specified filename
argument for the object file. If you omit the switch or its argument, the
assembler uses the input file name for the output and appends a .DOJ
extension.

You also can use this switch to specify filename for the preprocessed
assembly file (.IS) — the only file that the preprocessor outputs when the
-pp switch is selected.

�
The -Mo filename option takes precedence over the -o file-
name option.

VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs 2-25

Assembler

Some examples of this switch are as follows:

easm21k -pp -o test1.is test.asm
// specify filename for the preprocessed file

easm21k -o “C:\bin\prog3.doj” prog3.asm
// specify directory for the object file

-pp

The -pp (proceed with preprocessing only) switch directs the assembler to
run the preprocessor, but stop without assembling the source into an
object file.

By default, the preprocessor generates an intermediate preprocessed
assembly file using the name of the source program and attaching an .IS
extension to it. When assembling with the -pp switch, the .IS file is the
final result of the assembly.

-r

The -r (remove preprocessor output) switch directs the assembler to
remove lines that contain the preprocessor output information from the
listing file.

-sp

The -sp (skip preprocessing) switch directs the assembler to assemble the
source into an object file without running the preprocessor. When the
assembly skips preprocessing entirely (the -sp switch), no preprocessed
assembly file (.IS) is created.

-v[erbose]

The -v or -verbose (verbose) switch directs the assembler to display both
version and command-line information for each phase of assembly.

Assembler Command-Line Reference

2-26 VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs

-version

The -version (display version) switch directs the assembler to display ver-
sion information for the assembler and preprocessor programs.

-w

The -w (disable all warnings) switch directs the assembler not to display
warning messages generated during the assembly.

VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs 2-27

Assembler

Assembler Syntax Reference
When you develop source program in assembly language, you include pre-
processor commands and assembler directives to control the program’s
processing and assembly. You must follow the assembler rules and conven-
tions of syntax to define symbols (identifiers), expressions, and use
different numeric and comment formats.

Software developers who write assembly programs should be familiar with
the following topics:

• “Assembler Keywords & Symbols” on page 2-27

• “Assembler Expressions” on page 2-31

• “Assembler Operators” on page 2-32

• “Comment Conventions” on page 2-36

• “Assembler Directives” on page 2-36

Assembler Keywords & Symbols
The assembler supports a set of predefined keywords that includes register
and bit-field names, assembly instructions, and assembler directives.

Listing 2-2 lists the assembler keywords. Although the keywords in this
listing appear in uppercase, the keywords are case insensitive in the assem-
bler’s syntax. For example, the assembler does not differentiate between
“if” and “IF”.

Assembler Syntax Reference

2-28 VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs

Listing 2-2. Assembler Keywords

ABS EX L9 PC SUF
AC EXP L10 PCSTK SUFR
ACT EXP2 L11 PCSTKP SUI
ADDRESS EXTERN L12 PM SUIR
ALIGN F0 L13 PMADR SV
AND F1 L14 PMBANK1 SZ
ASHIFT F2 L15 PMDAE TAG
ASTAT F3 LA PMDAS TCOUNT
AV F4 LADDR MPWAIT TF
B0 F5 LCE POP TGL
B1 F6 LCNTR PORT TPERIOD
B2 F7 LE POVLO TRUE
B3 F8 LEFTMARGIN POVL1 TRUNC
B4 F9 LEFTO PRECISION TST
B5 F10 LEFTZ PREVIOUS TYPE
B6 F11 LENGTH PSA1E UF
B7 F12 LINE PSA1S UI
B8 F13 LN PSA2E UNPACK
B9 F14 LOAD PSA2S UNTIL
B10 F15 LOG2 PSA3E UR
B11 FADDR LOGB PSA3S USF
B12 FDEP LOOP PSA4E USFR
B13 FEXT LR PSA4S USI
B14 FILE LSHIFT PUSH USIR
B15 FIX LT PX USTAT1
BB FLAGO_IN M0 PX1 USTAT2
BCLR FLAG1_IN M1 PX2 UUF
BF FLAG2_IN M2 RO UUFR
BIT FLAG3_IN M3 RI UUI
BITREV FLOAT M4 R2 UUIR
BM FLUSH M5 R3 VAL
BSET FMERG M6 R4 VAR
BTGL FOREVER M7 R5 WITH
BTST FPACK M8 R6 XOR
BY FRACTIONAL M9 R7 SIZE
CA FTA M10 R8
CACHE FTB M11 R9
CALL FTC M12 R10
CH FUNPACK M13 R11
CI GCC_COMPILED M14 R12
CJUMP GE M15 R13

VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs 2-29

Assembler

CL GLOBAL MANT R14
CLIP GT MAX R15
CLR I0 MIN READ
COMP I1 MOD RECIPS
COPYSIGN I2 MODE1 RFRAME
COS I3 MODE2 RND
CURLCNTR I4 MODIFY ROT
DADDR I5 MROB ROUND_MINUS
DB I6 MROF ROUND_NEAREST
DEC I7 MR1B ROUND_PLUS
DEF I8 MR1F ROUND_ZERO
DIM I9 MR2B RS
DM I10 MR2F RSQRTS
DMA1E I11 MRB RTI
DMAIS I12 MRF RTS
DMA2E I13 MS SAT
DMA2S I14 MV SCALB
DMADR I15 MBM SCL
DMBANK1 IDLEI15 NE SE
DMBANK2 IDLE16 NEWPAGE SECTION
DMBANK3 IF NOFO SEGMENT
DMWAIT IMASK NOFZ SET
DO IMASKP NOP SF
DOVL INC NOPSPECIAL SI
EB IRPTL NOT SIN
ECE JUMP NU SIZE
EF L0 OR SQR
ELSE L1 P20 SR
EMUCLK L2 P24 SSF
EMUCLK2 L3 P32 SSFR
EMUIDLE L4 PASS SSI
EMUN L5 P40 SSIR
ENDEF L6 PACK ST
ENDSEG L7 PAGE STEP
EOS L8 PAGELENGTH STKY
EQ L9 PAGEWIDTH STS
WEAK

� Although the keywords in this list appear in uppercase, the key-
words are case-insensitive in the assembler’s syntax. For example, the
assembler does not differentiate between “DM” and “dm”.

Assembler Syntax Reference

2-30 VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs

You extend this set of keywords with symbols that declare sections, vari-
ables, constants, and address labels. When defining symbols in assembly
source code, follow these conventions:

• Define symbols that are unique within the file in which they are
declared.

If you use a symbol in more than one file, use the .GLOBAL directive
to export the symbol from the file in which it is defined. Then use
the .EXTERN directive to import the symbol into the other files.

• Begin symbols with alphabetic characters.

Symbols can use the alphabetic characters (A—Z and a—z), digits (0—
9), and special characters $ and _ (dollar sign and underscore).

Symbols are case-sensitive, so input_addr and INPUT_ADDR define
unique variables.

• Do not use a reserved keyword to define a symbol.

The ADSP-21xxx DSPs assembler’s reserved keywords are shown in
Listing 2-2.

• Match source and LDF sections’ symbols.

Ensure that .SECTIONs’ name symbols do not conflict with the
linker’s keywords in the Linker Description File (.LDF). The linker
uses sections’ name symbols to place code in DSP memory. For
more details, see the VisualDSP++ Linker & Utilities Manual for
ADSP-21xxx DSPs.

Ensure that .SECTIONs’ name symbols do not begin with the
“.rela.” string reserved by the assembler to form relocatable sec-
tions.

VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs 2-31

Assembler

• Use a colon (:) to terminate address label symbols.

Address label symbols may appear at the beginning of an instruction
line or stand alone on the preceding line.

The following disassociated lines of code demonstrate symbol usage:

.VAR xoperand; // xoperand is a data variable

.VAR input_array[10]; // input_array is a data buffer

 sub_routine_1: // sub_routine_1 is a label

.SECTION/PM seg_pmco; // seg_pmco is a pm section name

Assembler Expressions
The assembler can evaluate simple expressions in source code. The assem-
bler supports two types of expressions:

• Constant expressions

A constant expression is acceptable wherever a numeric value is
expected in an assembly instruction or in a preprocessor command
syntax. Constant expressions contain an arithmetic or logical oper-
ation on two or more numeric constants, for example:

2.9e-5 + 1.29

(128 - 48) / 3

0x55 & 0x0f

• Address expressions

Address expressions contain a symbol + or - an integer constant,
for example:

data - 8

data_buffer + 15

strtup + 2

Assembler Syntax Reference

2-32 VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs

Symbols in this type of expression are data variables, data buffers, and
program labels. Adding or subtracting an integer from a symbol defines
an offset from the address the symbol represents.

Assembler Operators
Table 2-4 lists the assembler’s numeric and bitwise operators used in con-
stant expressions and address expressions. These operators are listed in the
order they are processed while the assembler evaluates your expressions.
Note that assembler limits operators in address expressions to addition
and subtraction.

Table 2-4. Operator Precedence Chart

Operator Description

(expression) expression in parenthesis evaluates first

~

-

Ones complement

Unary minus

*

/

%

Multiply

Divide

Modulus

+

-

Addition

Subtraction

<<

>>

Shift left

Shift right

VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs 2-33

Assembler

The assembler also supports special “length of” and “page of” operators.
Table 2-5 lists and describes these operators used in constant and address
expressions.

<

<=

>

>=

Less than.

Less than or equal

Greater than

Greater than or equal

==

!=

Equal

Not equal

& Bitwise AND

| Bitwise inclusive OR

^ Bitwise exclusive OR

&& Logical AND

|| Logical OR

Table 2-5. Special Assembler Operators

Operator Description

symbol Address pointer to symbol.

LENGTH(symbol) Length of symbol in words.

PAGE(symbol) Most significant 8 address bits associated with symbol.

Table 2-4. Operator Precedence Chart (Cont’d)

Operator Description

Assembler Syntax Reference

2-34 VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs

The “length of” and “page of” expressions can be used with external sym-
bols — apply these special operators to symbols that are defined in other
sections as .GLOBAL symbols.

The following code determines the base address and length of the circular
buffer real_data. The buffer’s length value (contained in L5) determines
when addressing wraps around to the top of the buffer.

.SECTION/DM seg_dmda; // data segment

.VAR real_data[n]; // n=number of input samples
…

.SECTION/PM seg_pmco; // code segment
B5=real_data; // buffer base address
 // I5 loads automatically
L5=length(real_data); // buffer’s length
M6=1; // post-modify I5 by 1
LCNTR=length(real_data), DO loop UNTIL LCE;

// loop counter=buffer’s length
F0=DM(I5,M6); // get next sample
…

loop: …

� Although the ADSP-21xxx assembler accepts the source code writ-
ten with the legacy @ operator, we recommend to use LENGTH() in
place of @.

VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs 2-35

Assembler

Numeric Formats
The assembler supports binary, octal, decimal, and hexadecimal numeric
formats (bases) within expressions and assembly instructions.

Table 2-6 describes the conventions of notation the assembler uses to dis-
tinguish between numeric formats.

� If any operand in an expression is a floating-point value, the assem-
bler stores the value of the expression in floating-point format.

Table 2-6. Numeric Formats

Convention Description

0xnumber
H#number
h#number

A “0x”, “H#”, or “h#” prefix indicates a hexadecimal number.

B#number
b#number

A “B#” or “b#” prefix indicates a binary number.

D#number
d#number
number

A “#D”, “#d”, or no prefix indicates a decimal number.

O#number
o#number

A “#O” or “#o” prefix indicates an octal number.

Assembler Syntax Reference

2-36 VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs

Comment Conventions
The assembler supports C- and C++-style formats for inserting comments
in assembly code. Table 2-7 lists and describes assembler comment for-
mats. Note that the assembler does not allow nested comments.

Assembler Directives
Directives in an assembly source file control the assembly process. Unlike
instructions, directives do not produce opcodes during assembly. Use the
following general syntax for the assembler directives:

.directive [/qualifier|arguments];

Each assembler directive starts with a period (.) and ends with a semico-
lon (;). Some directives take qualifiers and arguments. A directive’s
qualifier immediately follows the directive and is separated by a slash (/);
arguments follow qualifiers. Comments may follow the directive’s termi-
nating semicolon.

Assembler directives can be uppercase or lowercase. Using uppercase dis-
tinguishes directives from other symbols in your source code.

Table 2-7. Comment Conventions

Convention Description

/* comment */ A “/* */” string encloses a multiple-line comment.

// comment A pair of slashes “//” begin a single-line comment.

VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs 2-37

Assembler

The ADSP-21xxx assembler supports directives listed in Table 2-8. A
description of each directive appears in the following sections.

Table 2-8. Assembler Directives

Directive Description

.ALIGN (see page 2-39) Specifies a word alignment requirement.

.ENDSEG (see page 2-59) Marks the end of a section. This correspond to the
legacy directive .SEGMENT.

.EXTERN (see page 2-42) Allows reference to a global symbol.

.FILE (see page 2-43) Overrides filename given on the command line.
Used by C compiler.

.GLOBAL (see page 2-44) Changes a symbol’s scope from local to global.

.LEFTMARGIN (see page 2-45) Defines the width of the left margin of a listing.

.LIST (see page 2-46) Starts listing of source lines. Default is ON.

.LIST_DATFILE (see page 2-47) Starts listing of data initialization files. Default is
OFF.

.LIST_DEFTAB (see page 2-48) Sets the default tab width for listings. Default is 4.

.LIST_LOCTAB (see page 2-49) Sets the local tab width for listings. Default is 0 (set
to LIST_DEFTAB).

.LIST_WRAPDATA (see page 2-50) Starts wrapping opcodes that don't fit listing column.

.NEWPAGE (see page 2-51) Inserts a page break in a listing. Default is OFF.

.NOLIST (see page 2-46) Stops listing of source lines.

.NOLIST_DATFILE (see page 2-47) Stops listing of data initialization files.

.NOLIST_WRAPDATA (see page 2-50) Stops wrapping opcodes that don't fit listing column.

Assembler Syntax Reference

2-38 VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs

.PAGELENGTH (see page 2-52) Defines the length of a listing.

.PAGEWIDTH (see page 2-53) Defines the width of a listing.

.PORT (see page 2-54) Legacy directive. Declares a memory-mapped I/O
port.

.PRECISION (see page 2-55) Defines the number of significant bits in a float-
ing-point value.

.PREVIOUS (see page 2-56) Reverts to a previously described .SECTION.

.ROUND_NEAREST (see page 2-57) Specifies the Round-to-Nearest mode.

.ROUND_MINUS (see page 2-57) Specifies the Round-to-Negative Infinity mode.

.ROUND_PLUS (see page 2-57) Specifies the Round-to-Positive Infinity mode.

.ROUND_ZERO (see page 2-57) Specifies the Round-to-Zero mode.

.SECTION (see page 2-59) Marks the beginning of a section.

.SEGMENT (see page 2-61) Legacy directive. Replaced with the .SECTION
directive.

.TYPE (see page 2-62) Changes the default data type of a symbol. Used by C
compiler.

.VAR (see page 2-63) Defines and initializes data objects.

Table 2-8. Assembler Directives (Cont’d)

Directive Description

VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs 2-39

Assembler

.ALIGN, Specify an Address Alignment

The .ALIGN directive forces the address alignment of an instruction or
data item within the .SECTION it is used.

The .ALIGN directive uses the following syntax:

.ALIGN expression;

where:

• expression evaluates to an integer. The expression specifies the
word alignment requirement; its value must be a power of 2. When
aligning a data item or instruction, the assembler adjusts the address
of the current location counter to the next address so it can be evenly
divided by the value of expression, or aligned. The expression set
to 0 or 1 signifies no address alignment requirement.

Example:
…
.ALIGN 1; // no alignment requirement
…
.SECTION/DM seg_dmda;
.ALIGN 2;
.VAR single;

/* aligns the data item in DM on the word boundary,
at the location with the address value that can be
evenly divided by 2 */

.ALIGN 4;

.VAR samples1[100]=”data1.dat”;
/* aligns the first data item in DM on the double-
word boundary, at the location with the address
value that can be evenly divided by 4; advances
other data items consequently */

� In the absence of the .ALIGN directive, the default address align-
ment is set to 1, i.e. single-word alignment.

Assembler Syntax Reference

2-40 VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs

INPUT_SECTION_ALIGN() Linker Instruction

The INPUT_SECTION_ALIGN(#number) instruction is used by the linker in
the Linker Description File to align the input sections (instructions or
data) specified within an output section.

The INPUT_SECTION_ALIGN() operator uses the following syntax:

INPUT_SECTION_ALIGN(address_boundary_expession)

INPUT_SECTIONS(filename(input section name)

address_boundary_expession aligns the input section to the next word
boundary. The expression must be a power of 2. Legal values for this
expression depend on the word size of the segment that receive the output
section being aligned.

The following example shows how to align input sections using the Linker
Description File:

SECTIONS
{
dxe_pmco
{ {

INPUT_SECTION_ALIGN(4)

INPUT_SECTIONS(a.doj(seg_pmco))
INPUT_SECTIONS(b.doj(seg_pmco))
INPUT_SECTIONS(c.doj(seg_pmco))

INPUT_SECTION_ALIGN(1)
// end of alignment directive for input sections

// The following sections will not be aligned
INPUT_SECTIONS(d.doj(seg_pmco))
INPUT_SECTIONS(e.doj(seg_pmco))

} >mem_pmco
}

VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs 2-41

Assembler

Here the input sections specified after INPUT_SECTION_ALIGN(4) but
before the INPUT_SECTION_ALIGN(1) instructions are aligned. However,
the input sections from d.doj and e.doj are not aligned as the
INPUT_SECTION_ALIGN(1) instruction indicates the end of the alignment
directive.

The INPUT_SECTION_ALIGN() operator is valid only within the scope of an
output section the Linker Description File. This command gives you the
flexibility to align the input sections as needed.

Refer to the VisualDSP++ Linker & Utilities Manual for ADSP-21xxx
DSPs for more information.

Assembler Syntax Reference

2-42 VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs

.EXTERN, Refer to a Globally Available Symbol

The .EXTERN directive imports symbols that have been declared as .GLOBAL
in other files. For information on the .GLOBAL directive, see page 2-44.

The .EXTERN directive uses the following syntax:

.EXTERN symbolName1[, symbolName2, …];

where:

• symbolName is the name of a global symbol to import. A single
.EXTERN directive can reference any number of separated by commas
symbols on one line.

Example:

.EXTERN coeffs; // This code declares “coeffs” as external,
// meaning that it was declared as .GLOBAL in
// another file and it is referenced in this
// file.

VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs 2-43

Assembler

.FILE, Override the Name of an Object File

The .FILE directive overrides the name of an object file specified with the
-o filename command-line switch. This directive may appear in the
C/C++ compiler-generated assembly source file (.S). The .FILE directive
is used to ensure that the debugger has the correct file name for a symbol
table. This directive is added in connection with overlay linking to enable
overriding of the filename given on the command line.

This directive uses the following syntax:

.FILE “filename.ext”;

where:

• filename is the name the assembler applies to the object file. The
argument is enclosed in double quotes.

Example:

.FILE “vect.c”; // the argument may be a *.c file

.SECTION/DM seg_dmda;
 …
 …

Assembler Syntax Reference

2-44 VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs

.GLOBAL, Make a Symbol Globally Available

The .GLOBAL directive changes the scope of a symbol from local to global,
making the symbol available for reference in object files that are linked
with the current one.

By default, a symbol is valid only in the file in which it is declared. Local
symbols in different files can have the same name, and the assembler con-
siders them to be independent entities. Global symbols are recognizable in
other files and refer to the same address and value. You change the scope
of a symbol with the .GLOBAL directive. Once the symbol is declared glo-
bal, other files may refer to it with .EXTERN. For more information on the
.EXTERN directive, see page 2-42.

The .GLOBAL directive uses the following syntax:

.GLOBAL symbolName1[, symbolName2,…];

where:

• symbolName is the name of a global symbol. A single .GLOBAL direc-
tive may define the global scope of any number of symbols, sepa-
rated by commas, on one line.

Example:

.VAR coeffs[10]; // declares a buffer

.VAR taps=100; // declares a variable

.GLOBAL coeffs, taps; // makes the buffer and the variable
// visible in other files

VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs 2-45

Assembler

LEFTMARGIN, Set the Margin Width of a Listing File

The .LEFTMARGIN directive sets the margin width of the listing page. It
specifies the number of empty spaces at the left margin of the listing file
(.LST), which the assembler produces when you use the -l switch. In the
absence of the .LEFTMARGIN directive, the printer advances 5 empty spaces
for the left margin.

The .LEFTMARGIN directive uses the following syntax:

.LEFTMARGIN expression;

where:

• expression evaluates to an integer from 1 to 72. The expression
value cannot exceed 72, the maximum number of columns per
printed page. To change the default setting for the entire listing,
place the .LEFTMARGIN directive at the beginning of your assembly
source file.

Example:

.LEFTMARGIN 9; /* the listing line begins at column 10. */

� You can set the margin width only once per source file. If the
assembler encounters multiple occurrences of the .LEFTMARGIN
directive, it ignores all of them except the last.

Assembler Syntax Reference

2-46 VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs

.LIST/.NOLIST, Listing Source Lines and Opcodes

The.LIST/.NOLIST directives (ON by default) turn the listing of source
lines and opcodes on and off.

If .NOLIST is in effect, no lines in the current source, or any nested source,
will be listed until a .LIST directive is encountered in the same source, at
the same nesting level. The .NOLIST directive operates on the next source
line, so that the line containing ".NOLIST" will appear in the listing (and
thus account for the missing lines).

The .LIST/.NOLIST directives use the following syntax:

.LIST;

.NOLIST;

These directives can appear multiple times anywhere in a source file, and
their effect depends on their location in the source file.

VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs 2-47

Assembler

.LIST_DATFILE/.NOLIST_DATFILE, Listing Data Initialization Files

The .LIST_DATFILE/.NOLIST_DATFILE directives turn the listing of data
initialization files on or off. Default setting is OFF.

Nested source files inherit the current setting of this directive pair, but a
change to the setting made in a nested source file will not affect the parent
source file.

The .LIST_DATFILE/.NOLIST_DATFILE directives use the following syntax:

.LIST_DATFILE;

.NOLIST_DATFILE;

These directives can appear multiple times anywhere in a source file, and
their effect depends on their location in the source file. They are used in
assembly source files, and not in data initialization files.

Assembler Syntax Reference

2-48 VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs

.LIST_DEFTAB, Set the Default Tab Width for Listings

Tab characters in source files are expanded to blanks in listing files under
the control two internal assembler parameters that set the tab expansion
width. The default tab width is normally in control, but it can be overrid-
den if the local tab width is explicitly set with a directive.

The .LIST_DEFTAB directive sets the default tab width, and the
.LIST_LOCTAB directive sets the local tab width (see page 2-49).

Both the default tab width and the local tab width can be changed any
number of times via the .LIST_DEFTAB and .LIST_LOCTAB directives. The
default tab width is inherited by nested source files, but the local tab
width only affects the current source file.

The .LIST_DEFTAB directive uses the following syntax:

 .LIST_DEFTAB expression;

where:

• expression evaluates to an integer greater than or equal to 0. A
value of 0 sets the default tab width to the default tab width.

In the absence of a .LIST_DEFTAB directive, the default tab width defaults
to 4.

Example:
 // Tabs here are expanded to the default of 4 columns
 .LIST_DEFTAB 8;
 // Tabs here are expanded to 8 columns
 .LIST_LOCTAB 2;
 // Tabs here are expanded to 2 columns
 // But tabs in "include_1.h" will be expanded to 8 columns
 #include "include_1.h"
 .LIST_DEFTAB 4;
 // Tabs here are still expanded to 2 columns
 // But tabs in "include_2.h" will be expanded to 4 columns
 #include "include_2.h"

VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs 2-49

Assembler

.LIST_LOCTAB, Set the Local Tab Width for Listings

Tab characters in source files are expanded to blanks in listing files under
the control of two internal assembler parameters that set the tab expansion
width. The default tab width is normally in control, but it can be overrid-
den if the local tab width is explicitly set with a directive.

The .LIST_LOCTAB directive sets the local tab width, and the .LIST_DEFTAB
directive sets the default tab width (see page 2-48).

Both the default tab width and the local tab width can be changed any
number of times via the .LIST_DEFTAB and .LIST_LOCTAB directives. The
default tab width is inherited by nested source files, but the local tab
width only affects the current source file.

The .LIST_LOCTAB directive uses the following syntax:

.LIST_LOCTAB expression;

where:

• expression evaluates to an integer greater than or equal to 0.
A value of 0 sets the local tab width to the current setting of the
default tab width.

In the absence of a .LIST_LOCTAB directive, the local tab width defaults to
the current setting for the default tab width.

Example: See the .LIST_DEFTAB example on page 2-48.

Assembler Syntax Reference

2-50 VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs

.LIST_WRAPDATA/.NOLIST_WRAPDATA

The .LIST_WRAPDATA/.NOLIST_WRAPDATA directives control the listing of
opcodes that are too big to fit in the opcode column. These directives are
off by default.

This directive pair actually applies to any opcode that won't fit, but in
practice such a value will almost always be data (alignment directives can
also result in large opcodes).

• If .LIST_WRAPDATA is in effect, the opcode value is wrapped so that
it fits in the opcode column (resulting in multiple listing lines).

• If.NOLIST_WRAPDATA is in effect, the printout has only as much as
fits in the opcode column. Nested source files inherit the current
setting of this directive pair, but a change to the setting made in a
nested source file will not affect the parent source file.

The .LIST_WRAPDATA/.NOLIST_WRAPDATA directives use the following
syntax:

.LIST_WRAPDATA;

.NOLIST_WRAPDATA;

These directives can appear multiple times anywhere in a source file, and
their effect depends on their location in the source file.

VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs 2-51

Assembler

.NEWPAGE, Insert a Page Break in a Listing File

The .NEWPAGE directive inserts a page break in the printed listing file,
which the assembler produces when you use the -l switch. The assembler
inserts a page break at the location of the .NEWPAGE directive.

The .NEWPAGE directive uses the following syntax:

.NEWPAGE;

This directive may appear anywhere in your source file. In the absence of
the .NEWPAGE directive, a page is ejected after listing 66 lines.

Assembler Syntax Reference

2-52 VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs

.PAGELENGTH, Set the Page Length of a Listing File

The .PAGELENGTH directive controls the page length of the listing file
(.LST), which the assembler produces when you use the -l switch.

The .PAGELENGTH directive uses the following syntax:

.PAGELENGTH expression;

where:

• expression evaluates to an integer from 1 to 66. It specifies the
number of text lines per printed page. In the absence of the .PAGE-
LENGTH directive, the listing file prints 66 lines per page. To format
the entire listing, place the .PAGELENGTH directive at the beginning
of your assembly source file.

Example:

.PAGELENGTH 50; // starts a new page
 // after printing 50 lines

� You can set the page length only once per source file. If the
assembler encounters multiple occurrences of the .PAGELENGTH

directive, it ignores all of them except the last.

VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs 2-53

Assembler

.PAGEWIDTH, Set the Page Width for a Listing File

The .PAGEWIDTH directive sets the page width of the listing file (.LST),
which the assembler produces when you use the -l switch.

The .PAGEWIDTH directive uses the following syntax:

.PAGEWIDTH expression;

where:

• expression evaluates to an integer from 1 to 72. It specifies the
maximum number of characters per row in the printed output. In
the absence of the .PAGEWIDTH directive, a new line begins after 72
characters are printed on the preceding line. To change the default
number of characters per line in the entire listing, place the .PAGE-
WIDTH directive at the beginning of your assembly source file.

Example:

.PAGEWIDTH 36; // starts a new line after 36
 // characters are printed on one line

� You can set the page width only once per source file. If the
assembler encounters multiple occurrences of the .PAGEWIDTH

directive, it ignores all of them except the last.

Assembler Syntax Reference

2-54 VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs

.PORT, Legacy Directive

The .PORT legacy directive assigns port name symbols to I/O ports. Port
name symbols are global symbols; they correspond to memory-mapped
I/O ports defined in the Linker Description File (.LDF).

The .PORT directive uses the following syntax:

.PORT portName;

where:

• portName is a globally available port symbol.

Example:

.PORT p1; // declares I/O port p1

.PORT p2; // declares I/O port p2

To declare a port using the ADSP-21xxx assembler syntax, use the .VAR
directive (for port-identifying symbols) and the Linker Description File
(for corresponding I/O sections). The linker resolves port symbols in the
LDF. For more information on the LDF, see the Linker & Utilities Man-
ual for ADSP-21xxx DSPs.

VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs 2-55

Assembler

PRECISION, Select Floating-Point Precision

The .PRECISION directive controls how the assembler interprets float-
ing-point numeric values in constant declarations and variable
initializations. Note that you configure the floating-point precision of the
target DSP system by setting up control registers with instructions that
specific to the processor core.

Use one of the following options:

.PRECISION [=] 32;

.PRECISION [=] 40;

where:

• The precision of 32 or 40 specifies the number of significant bits for
floating-point data. The equal sign (=) following the .PRECISION
keyword is optional.

Example:

.PRECISION=32; /* Selects standard IEEE 32-bit
single-precision format; this is the default
setting */

.PRECISION 40; /* Selects standard IEEE 40-bit format with

extended mantissa */

� .PRECISION applies only to floating-point data. Precision of
fixed-point data is determined by the number of digits speci-
fied.

Assembler Syntax Reference

2-56 VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs

.PREVIOUS, Revert to Previously Defined Section

The .PREVIOUS directive instructs the assembler to set the current section
in program memory or data memory to the section that has been described
directly before the current one.

This directive uses the following syntax:

.PREVIOUS;

Example:

.SECTION/PM sec_one;
 … // data & instructions

.SECTION/DM sec_two;
 … // data

.PREVIOUS;
… // data & instructions

directs the assembler to revert back to sec_one and has the same effect as:

.SECTION/PM sec_one;
 … // data & instructions

.SECTION/DM sec_two;
 … // data

.SECTION/PM sec_one;
… // data & instructions

VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs 2-57

Assembler

.ROUND, Select Floating-Point Rounding

The .ROUND_ directive controls how the assembler interprets literal float-
ing-point numeric data after .PRECISION is defined. The .PRECISION
directive determines the number of bits to be truncated to match the
number of significant bits.

The .ROUND_ directive determines how the assembler handles float-
ing-point values in constant declarations and variable initializations. You
configure floating-point rounding modes of the DSP system by setting up
control registers with the instructions specific to the target processor. The
.ROUND_ directive uses the following syntax:

.ROUND_mode;

where:

• The mode string specifies the rounding scheme used to fit a value in
the destination format. Use one of the following IEEE standard
modes:

.ROUND_NEAREST;

.ROUND_PLUS;

.ROUND_MINUS;

.ROUND_ZERO;

In the following examples, the numbers with four decimal places are
reduced to three decimal places and are rounded accordingly:

.ROUND_NEAREST;
/* Selects Round-to-Nearest scheme; this is the default

setting.
A 5 is added to the digit that follows the third
decimal digit (the least significant bit - LSB). The
result is truncated after the third decimal digit (LSB).

1.2581 rounds to 1.258
8.5996 rounds to 8.600

Assembler Syntax Reference

2-58 VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs

-5.3298 rounds to -5.329
-6.4974 rounds to -6.496

*/
.ROUND_ZERO;

/* Selects Round-to-Zero. The closer to zero value is
taken.
The number is truncated after the third decimal digit
(LSB).

1.2581 rounds to 1.258
8.5996 rounds to 8.599
-5.3298 rounds to -5.329
-6.4974 rounds to -6.497

 */

.ROUND_PLUS;
/* Selects Round-to-Positive Infinity. The number rounds

to the next larger.
For positive numbers, a 1 is added to the third decimal
digit (the least significant bit). Then the result is
truncated after the LSB.
For negative numbers, the mantissa is truncated after
the third decimal digit (LSB).

1.2581 rounds to 1.259
8.5996 rounds to 8.600
-5.3298 rounds to -5.329
-6.4974 rounds to -6.497

*/

.ROUND_MINUS;
/* Selects Round-to-Negative Infinity. The value

rounds to the next smaller.
For negative numbers, a 1 is subtracted from the
third decimal digit (the least significant bit).
Then the result is truncated after the LSB.
For positive numbers, the mantissa is truncated
after the third decimal digit (LSB).

1.2581 rounds to 1.258
8.5996 rounds to 8.599
-5.3298 rounds to -5.330
-6.4974 rounds to -6.498

*/

VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs 2-59

Assembler

.SECTION, Declare a Memory Section

The .SECTION directive marks the beginning of a program memory section
or data memory section, which is an array of contiguous locations in your
target DSP program memory or data memory. Statements between
.SECTION and the following .SECTION directive or the end-of-file specify
the contents of the section.

This directive uses the following syntax:

.SECTION/type sectionName [sectionType];

where:

• The /type keyword maps a section into the DSP memory. This
mapping should follow from the chip’s memory architecture.The
type must match the memory type of the input section of the same
name used by the LDF to place the section. One of the following
types is required for each .SECTION directive:

• The section name symbol, sectionName, must contain eight or fewer
characters and is case-sensitive. Section names must match the cor-
responding input section names used by the Linker Description File

Table 2-9. Memory and Section Types

Memory/Section Type Description

PM Memory that contains instructions and possibly data.

DM Memory that contains data.

RAM Random access memory.

ROM Read only memory.

Assembler Syntax Reference

2-60 VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs

to place the section. You can take advantage of the default LDF
included in .\21k\ldf subdirectory of the VisualDSP++ installa-
tion directory, or you can write your own LDF.

The assembler generates relocatable sections for the linker to fill in
the addresses of symbols at link time. The ADSP-21xxx assembler
implicitly pre-fix the name of the section with the “.rela.” string
to form a relocatable section. For example, for the sections named
rela.seg_dmda and rela.seg_pmco, the relocation section are
.rela.rela.seg_dmda and .rela.rela.seg_pmco respectively. To
avoid such an ambiguity, ensure that your sections’ names do not
begin with “.rela.”.

• The sectionType parameter is an optional ELF symbol type STT_*.
Valid sectionTypes are described in the ELF.h header file, which is
available from third-party companies.

Example:

/* Data section and program section declared below correspond
 to the default LDF’s input sections. */

.SECTION/DM seg_dmda; // data section
…

.SECTION/PM seg_pmco; // program section
…

���� If you select an invalid qualifier or disregard it entirely, the
assembler exits with an error message.

VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs 2-61

Assembler

.SEGMENT & .ENDSEG, Legacy Directives

Previous releases of the ADSP-210xx DSP development software used the
.SEGMENT and .ENDSEG directives to define the beginning and end of a sec-
tion of contiguous memory addresses. Although these directives have been
replaced with the .SECTION directive, the source code written with .SEG-
MENT/.ENDSEG legacy directives is accepted by the ADSP-21xxx DSP
assembler.

Assembler Syntax Reference

2-62 VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs

.TYPE, Change Default Symbol Type

The .TYPE directive enables the compiler to change the default symbol
type of an object. This directive may appear in the compiler-generated
assembly source file (.S).

This directive uses the following syntax:

.TYPE symbolName, symbolType;

where:

• symbolName is the name of the object, which symbol type the com-
piler has changed.

• symbolType is the ELF symbol type STT_*. The valid ELF symbol
types are listed in the ELF.h header file. By default, a label in a code
section has the STT_FUNC symbol type and a label in a data section
has the STT_OBJECT symbol type.

Example:

.SECTION/PM seg_pmco;
_main:
 .TYPE _main, STT_FUNC;
 // a label in PM section has STT_FUNC type

VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs 2-63

Assembler

.VAR, Declare a Data Variable or Buffer

The .VAR directive declares and optionally initializes variables and data
buffers. A variable uses a single memory location, and a data buffer uses an
array of sequential memory locations.

When declaring or initializing variables, be aware of the following:

• A .VAR directive is valid only if it appears within a section.The
assembler associates the variable with the memory type of the sec-
tion in which the .VAR appears.

• Referring to variables and buffers in code before declaring them,
leads to syntax errors.

• A single .VAR directive can declare any number of variables or buff-
ers, separated by commas, on one line.

• The size of a variable’s initialization value or the size of a buffer’s
largest initialization value defines the word size for the variable or
buffer. The available word sizes are 32-, 40-, and 48-bits. These
word sizes equate respectively to 10-, 12-, and 14-digit hexadecimal
constant strings.

• The .VAR directive can list initial values in the directive statement or
read them from an external file.

• The number of initial values can not exceed the number of variables
or buffer locations that you declare.

• The .VAR directive may declare an implicit-size buffer. The number
of initialization elements defines length of the implicit-size buffer.

Assembler Syntax Reference

2-64 VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs

The .VAR directive takes one of the following forms:

.VAR varName1[,varName2,…];

.VAR varName1,varName2,… = initExpression1, initExpression2,…;

.VAR bufferName[] = initExpression1, initExpression2,…;

.VAR bufferName[] = "fileName";

.VAR bufferName[length] = "fileName";

.VAR bufferName1[length] [, bufferName2[length],…];

.VAR bufferName[length] = initExpression1, initExpression2,…;

where:

• The user-defined varName and bufferName symbols identify variables
and buffers.

• The fileName parameter indicates that the elements of a buffer get
their initial values from the fileName data file (.DAT). If the initial-
ization file is in the current directory of your operating system, only
the filename need be given inside brackets. Otherwise, you specify
the directory and the name of the initialization file with the -I
switch.

• The ellipsis (…) represents a comma-delimited list of parameters.

• The optional [length] parameter defines the length of the associ-
ated buffer in words. The number of initialization elements defines
length of an implicit-size buffer.

• The initExpressions parameters set initial values for variables and
buffer elements.

VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs 2-65

Assembler

The following lines of code demonstrate some .VAR directives:

.VAR samples[] = 10, 11, 12, 13, 14;
// declare and initialize an implicit-length buffer

.VAR twiddles[] = "phase.dat";
// declare an implicit-length buffer and load the
// buffer with the contents of the phase.dat file

.VAR Ins, Outs, Remains;
// declare three uninitialized variables

.VAR samples[100]= "inits.dat";
// declare a 100-location buffer and initialize it
// with the contents of the inits.dat file;
// data file is in current directory

.VAR taps=100;
// declare a variable and initialize the variable
// to 100

.VAR myPMdata = 0x157001;
// declare a variable in program memory

Initializing from files is useful for loading buffers with data, such as filter
coefficients or FFT phase rotation factors that are generated by other pro-
grams. The assembler determines how the values are stored in memory
when it reads the data files.

.VAR and ASCII String Initialization Support

The assembler supports ASCII string initialization. This allows the full use
of the ASCII character set, including digits, and special characters.

String initialization takes one of the following forms:

.VAR symbolString[length] = ‘initString’, 0;

.VAR symbolString[] = ‘initString’, 0;

Note that the number of initialization characters defines length of a string
(implicit-size initialization).

Assembler Syntax Reference

2-66 VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs

Example:

.var x[13] = ‘Hello world!’, 0;

.var x[] = ‘Hello world!’, 0;

The assembler also accepts ASCII characters within comments.

VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs 2-67

Assembler

.WEAK, Support a Weak Symbol Definition and Reference

The .WEAK directive supports weak binding for a symbol defined as WEAK .
You use this directive where the symbol is defined, replacing .GLOBAL , and
instead of .EXTERN to make a weak reference.

This directive uses the following syntax:

.WEAK symbol;

where:

• symbol is the user-defined symbol

When reading in object files, the linker does not resolve a reference to a
.WEAK symbol, leaving it undefined (defined as 0). If in a later step the
linker reads in a definition for a global-bound symbol of the same name
(GLOBAL symbol;), the linker updates the weak entry to a defined address
in memory.

When linking library files, the linker does not resolve weak references,
instead all unresolved relocations are defined as 0.

Assembler Glossary

2-68 VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx DSPs

Assembler Glossary
Assembler directives — tell the assembler how to process your source
code and set up DSP features. Directives let you structure your program
into logical section(s) that mirror the memory layout of your target DSP
system.

Instruction set — is the set of assembly instructions that work on a spe-
cific DSP family. The easm21k assembler supports the ADSP-21xxx
instruction set, including the ADSP-21160 extensions.

Linker Description File — controls how the linker processes the assem-
bler’s output object files into executable programs. For more information,
see the VisualDSP++ 2.0 Linker and Utilities Manual for the ADSP-21xxx
DSPs.

Preprocessor commands — directs the preprocessor to include files, per-
form macro substitutions, and control conditional assembly. For more
information, see “Preprocessor Directives/Commands” on page 3-16.

	Contents
	2 Assembler
	Overview
	Assembler Guide
	Writing Assembly Programs
	Figure 2-1. Assembler Input & Output Files
	Program Content
	Program Structure
	Table 2-1. Suggested Section Names�
	Figure 2-2. Example Assembly Source File

	Program Interfacing Requirements

	Preprocessing a Program
	Reading a Listing File
	Setting Assembler Options

	Assembler Command-Line Reference
	Assembler Command-Line Interface
	Running the Assembler
	Table 2-2. File Name Extension Conventions

	Assembler Command-Line Switch Summary
	Table 2-3. Assembler Command-Line Switch Summary (Cont’d)

	Assembler Command-Line Switch Descriptions

	Assembler Syntax Reference
	Assembler Keywords & Symbols
	Assembler Expressions
	Assembler Operators
	Table 2-4. Operator Precedence Chart (Cont’d)
	Table 2-5. Special Assembler Operators�

	Numeric Formats
	Table 2-6. Numeric Formats�

	Comment Conventions
	Table 2-7. Comment Conventions�

	Assembler Directives
	Table 2-8. Assembler Directives (Cont’d)
	.ALIGN, Specify an Address Alignment
	.EXTERN, Refer to a Globally Available Symbol
	.FILE, Override the Name of an Object File
	.GLOBAL, Make a Symbol Globally Available
	LEFTMARGIN, Set the Margin Width of a Listing File
	.LIST/.NOLIST, Listing Source Lines and Opcodes
	.LIST_DATFILE/.NOLIST_DATFILE, Listing Data Initialization Files
	.LIST_DEFTAB, Set the Default Tab Width for Listings
	.LIST_LOCTAB, Set the Local Tab Width for Listings
	.LIST_WRAPDATA/.NOLIST_WRAPDATA
	.NEWPAGE, Insert a Page Break in a Listing File
	.PAGELENGTH, Set the Page Length of a Listing File
	.PAGEWIDTH, Set the Page Width for a Listing File
	.PORT, Legacy Directive
	PRECISION, Select Floating-Point Precision
	.PREVIOUS, Revert to Previously Defined Section
	.ROUND, Select Floating-Point Rounding
	.SECTION, Declare a Memory Section
	Table 2-9. Memory and Section Types

	.SEGMENT & .ENDSEG, Legacy Directives
	.TYPE, Change Default Symbol Type
	.VAR, Declare a Data Variable or Buffer
	.WEAK, Support a Weak Symbol Definition and Reference

	Assembler Glossary

