
VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs A-1

Contents/Index File Formats
Contents/Index File Formats

A FILE FORMATS
Figure A-0.

Listing A-0.

Table A-0.

Overview
The development tools support many file formats, in some cases several
for each development tool. This appendix describes the formats of files
that you prepare as input for the tools and points out features of files,
which are produced by the tools.

The three types of file formats that you can learn about in this appendix
are as follows:

• “Source Files” on page A-2

• “Build (Processed) Files” on page A-7

• “Debugger Files” on page A-15

Most of the development tools use industry standard file formats. Sources
that describe these formats appear in “Format References” on page A-17.

Source Files

A-2 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

Source Files
Source files are files that you prepare as input for the development tools.
This section describes the following types of input file formats:

• “C/C++ Source Files” on page A-2

• “Assembly Source Files (.ASM)” on page A-3

• “Assembly Initialization Data Files (.DAT)” on page A-3

• “Header Files (.H)” on page A-5

• “Linker Description Files (.LDF)” on page A-6

• “Linker Command-Line Files (.TXT)” on page A-6

C/C++ Source Files
These are text files containing C/C++ code, compiler directives, possibly a
mixture of assembler code and directives, and (typically) preprocessor
commands.

Several “dialects” of C code are supported: pure (portable) ANSI C, and at
least two subtypes* of ANSI C with ADI extensions. These extensions
include memory type designations for certain data objects, and segment
directives, used by the linker to structure and place executable files.

For information on using the C compiler and associated tools, as well as a
definition of ADI extensions to ANSI C, see the C/C++ Compiler &
Library Manual for ADSP-21xxx DSPs.

For information on specifying the C dialect and general C code handling
within VisualDSP++, see the VisualDSP++ User’s Guide for ADSP-21xxx
DSPs.

* With and without builtin function support; a minimal differentiator. There are others.

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs A-3

File Formats

Assembly Source Files (.ASM)
Assembly source files are text files containing assembly instructions,
assembler directives, and (optionally) preprocessor commands. For infor-
mation on assembly instructions, see the Instruction Set Reference manual
for the corresponding DSP.

The DSP’s instruction set is supplemented with assembler directives. Pre-
processor commands control macro processing and conditional assembly
or compilation. For information on the assembler and preprocessor, see
the VisualDSP++ Assembler and Preprocessor Manual for ADSP-21xxx
DSPs.

Assembly Initialization Data Files (.DAT)
These are text files containing fixed-point or floating-point data. These
files can provide the initialization data for an assembler .VAR directive or
serve in other tool operations. When a .VAR directive uses a .DAT file for
initialization data, the assembler reads the data file and initializes the
buffer in the output object file (.DOJ). Data files have one data value per
line and may have any number of lines.

Floating-point values in data files consist of a decimal mantissa value with
a decimal point and a decimal integer exponent value. The exponent is
separated from the mantissa with an upper or lower case “e.” The mantissa
and exponent can be signed. The following are all valid floating-point
values:

1.2345e12
567.8e–3
–7.1234

The assembler converts these decimal representations to floating-point
format, either standard IEEE 32-bit single precision or 40-bit extended
precision. The source code file in which a .VAR initialization occurs speci-
fies the format (32-bit or 40-bit) for floating-point numbers using the

Source Files

A-4 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

.PRECISION directives. If a floating-point number in an initialization file
does not fit in the specified format, the assembler rounds the number. The
rounding mode is also specified in the source code file with a .ROUND
directive. For information, see the VisualDSP++ Assembler and Preproces-
sor Manual for ADSP-21xxx DSPs.

Fixed-point values (integers) in data files may be signed, and they may be
decimal-, hexadecimal-, octal-, or binary-base values. The assembler uses
the prefix-conventions in Table A-1 for identifying a fixed-point value’s
numeric base.

For all numeric bases, the assembler uses 32-, 40-, or 48-bit words for data
storage; 48-bit data is for PM only. The largest word in the buffer deter-
mines the size for all words in the buffer. If you have some 32-bit data in a
40-bit wide buffer, the assembler loads the 32-bit value into the most sig-
nificant 32 bits of the 40-bit memory location and zero-fills the lower
eight bits. Similarly, the assembler loads 32- or 40-bit data into the most
significant bits in a 48-bit wide buffer.

Table A-1. Fixed-Point Values in Data Files

Convention Description

0xnumber
H#number
h#number

An “0x”, “H#”, or “h#” prefix indicates a hexadecimal num-
ber.

B#number
b#number

A “B#” or “b#” prefix indicates a binary number.

D#number
d#number
number

A “#D”, “#d”, or no prefix indicates a decimal number.

O#number
o#number

An “#O” or “#o” prefix indicates an octal number.

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs A-5

File Formats

Table A-2 shows some data storage examples.

Header Files (.H)
Header files are text files that contain macros or other preprocessor com-
mands that the preprocessor substitutes into source files. For information
on macros or other preprocessor commands, see the VisualDSP++ Assem-
bler and Preprocessor Manual for ADSP-21xxx DSPs.

Table A-2. Data Storage Examples

Decimal
data
in .DAT

Hexadecimal
data in
.DAT or
32-bit DM

Hexadecimal
data in .DAT
or 40-bit DM

Hexadecimal
data in .DAT
or 48-bit PM

7 0x00000007 0x0000000700 0x000000070000

255 0x000000FF 0x000000FF00 0x000000FF0000

32768 0x00008000 0x0000800000 0x000080000000

10855845 0x00A5A5A5 0x00A5A5A500 0x00A5A5A50000

305419896 0x12345678 0x1234567800 0x123456780000

N/E1

1 N/E = not expressible

N/E 0x1122334455 0x112233445500

N/E N/E 0x0012345678 0x001234567800

N/E N/E N/E 0x000012345678

Source Files

A-6 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

Linker Description Files (.LDF)
The linker’s .LDF files are ASCII text files that contain commands for the
linker in the linker’s scripting language. For information on this scripting
language see “Linker Description File Reference” on page 2-38.

Linker Command-Line Files (.TXT)
The linker’s command-line files are ASCII text files that contain com-
mand line input for the linker. For more information on the linker’s
command line, see “Linker Command-Line Reference” in Chapter 2
Linker.

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs A-7

File Formats

Build (Processed) Files
Build files are files that the development tools produce when building
your VisualDSP++ project. This section describes the following types of
build file formats:

• “Assembler Object Files (.DOJ)” on page A-7

• “Archiver Archive Files (.DLB)” on page A-8

• “Linker Executable Files (.DXE, .SM, .OVL, .DLO)” on page A-8

• “Linker Memory Map Files (.MAP)” on page A-8

• “Loader Hex Format Files (.LDR)” on page A-9

• “Loader ASCII Format Files (.LDR)” on page A-10

• “Loader Include Format Files (.LDR)” on page A-10

• “Loader Binary Format Files (.LDR)” on page A-11

• “Splitter Motorola S-Record Format Files (.S_#)” on page A-11

• “Splitter Hex Format Files (.H_#)” on page A-13

• “Splitter Byte-Stacked Format Files (.STK)” on page A-13

Assembler Object Files (.DOJ)
The assembler’s output object files are in binary, Executable and Linkable
File (ELF) format. Object files contain relocatable code and debugging
information for your program’s segments. The linker processes your object
files into an executable file. For information on the ELF and COFF for-
mats that may be used for object files, see “Format References” on page
A-17.

Build (Processed) Files

A-8 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

Archiver Archive Files (.DLB)
The archiver’s output archive files are in binary, Executable-Linkable-File
(ELF) format. Archive files contain one or more object files, called Archive
Elements. The linker searches through archive files for any archive ele-
ments that your code uses. For information on the ELF format that is used
for executable files, refer to “Format References” on page A-17.

Note that the archiver automatically converts input objects from COFF to
ELF format.

Linker Executable Files (.DXE, .SM, .OVL, .DLO)
The linker’s output executable files are binary, Executable-Linkable-File
(ELF) format. Executable files contain your program’s code and debug-
ging information. The linker may fully or partially resolve addresses in
executable files depending on the options given on the linker’s command
line and in your linker description file. For information on the ELF for-
mat that is used for executable files, see the Tools Interface Standards
Committee texts that are cited in “Format References” on page A-17.

Note that the linker automatically converts input objects from COFF to
ELF format.

Linker Memory Map Files (.MAP)
The linker’s memory map files are ASCII text files that contain memory
and symbol information for your executable file(s). The map contains a
summary of memory that you define with MEMORY{} commands in your
linker description file and provides a listing of the absolute addresses of all
symbols.

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs A-9

File Formats

Loader Hex Format Files (.LDR)
The loader’s output Hex-format files are in ASCII, Intel Hex-32 format.
Hex files from the loader support 8-bit wide PROMs. The files are used
with an industry-standard PROM programmer to program memory
devices for your hardware system. One file contains data for the whole
series of memory chips to be programmed.

The following example shows how the Intel Hex-32 format appears in the
loader’s output file. Each line in the Intel Hex-32 file contains either a
data record, an extended linear address record or the end of file record:

:020000040010E9 extended linear address record
:0A0004003C40343434261422260850 data record
:00000401FB end of file record

The extended linear address record is used because a data record has only a
4-character (16-bit) address field, but the ADSP-210xx processors require
32 bits to address data memory and 24 bits to address program memory.
The extended linear address record specifies address bits 16-31 for the
data records that follow it. Data records are organized into the following
fields:

:0A0004003C40343434261422260850 example record

: start character
 0A byte count of this record
 0004 address of first data byte
 00 record type
3C first data byte
08 last data byte
50 checksum

Build (Processed) Files

A-10 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

Extended linear address records have the following fields:

:02000000340850
: start character
 02 byte count (always 02)
 0000 address (always 0000)
 00 record type
 3408 offset address
 50 checksum

The end of file record looks like this:

:00000001FF
: start character
 00 byte count (zero for this record)
 0000 address of first byte
 01 record type
 FF checksum

Loader ASCII Format Files (.LDR)
The loader’s ASCII-format file is similar to an assembler initialization data
file (.DAT). The data order is one 16-bit hexadecimal value per line, pro-
viding lower-, middle-, then upper-16-bits of each 48-bit instruction. Use
files of this format in the same manner as data files. For information on
this format, see “Assembly Initialization Data Files (.DAT)” on page A-3.

Loader Include Format Files (.LDR)
The loader’s include-format file is an ASCII text file that consists of 48-bit
instructions one per line with each instruction presented as three 16-bit
hexadecimal numbers. The data order is lower-, middle-, then

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs A-11

File Formats

upper-16-bits of each 48-bit instruction. A few example lines from an
Include format file appear as follows:

0x005c, 0x0002, 0x0620,
0x0045, 0x0000, 0x1103,
0x00c2, 0x0002, 0x06be

This file format lets you include the loader file in a C program. To include
this file in a C program, use the following code:

const unsigned loader_file[] =
{
#include "foo.ldr"
};
const unsigned loader_file_count = sizeof loader_file / sizeof
loader_file[0];

loader_file_count reflects the actual number of elements in the array,
and can be used for processing the data.

Loader Binary Format Files (.LDR)
The loader’s binary-format file supports a variety of PROM and micro-
controller storage options and uses less space than the other loader file
formats. The binary file contains 48-bit instructions in big-endian format
(most significant bit first).

Splitter Motorola S-Record Format Files (.S_#)
Motorola S Record format is similar to the Intel standard. The PROM
splitter supports three file formats which differ only in the width of the
address field: S1 (16 bits), S2 (24 bits) or S3 (32 bits).

Each S Record file starts with a header record and ends with a termination
record. In between are data records, one per line. Here are some examples:

Build (Processed) Files

A-12 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

S00600004844521B header record
S10D00043C4034343426142226084C data record (S1)
S903000DEF termination record (S1)

A header record has the following fields:

S00600004844521B
S0 start character (always S0)
 06 byte count of this record
 0000 address of the first data byte
 484452 identifies records that follow
 1B checksum

The S1 data record has the following format:

S10D00043C4034343426142226084C
S1 start character
 0D byte count of this record
 0004 address of first data byte
 3C first data byte
 08 last data byte

 4C checksum

The S2 data record has the same format, except that the start character is
S2 and the address field is six characters wide. The S3 data record is the
same as the S1 data record except that the start character is S3 and the
address field is eight characters wide.

Termination records have an address field that is 16-bits, 24-bits or
32-bits wide, whichever matches the format of the preceding records. The
S1 termination record has the following format:

S903000DEF
S9 start character
 03 byte count of this record
 000D address
 EF checksum

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs A-13

File Formats

The S2 termination record has the same format, except that the start char-
acter is S8 and the address field is six characters wide. The S3 termination
record is the same as the S1 format except that the start character is S7 and
the address field is eight characters wide.

Splitter Hex Format Files (.H_#)
The splitter’s output Hex-format files are in ASCII, Intel Hex-32 format.
Hex files from the loader support a variety of PROM devices. For an
example of how the Hex format appears for an 8-bit wide PROM, see
“Loader Hex Format Files (.LDR)” on page A-9. Note that the splitter
prepares a set of PROM files with each PROM holding some portion of
each instruction or data. This configuration differs from the loader.

Splitter Byte-Stacked Format Files (.STK)
The byte-stacked format output by the PROM splitter is intended not for
PROMs, but for applications such as microcontroller transfer of data.

The byte-stacked format consists of a series of one-line headers, each fol-
lowed by a block (one or more lines) of data. The last line in the file is a
special header that signals the end of the file.

Lines consist of ASCII text representing hexadecimal digits. Each two
characters therefore represent one byte; for example F3 represents a byte
whose decimal value is 243.

Build (Processed) Files

A-14 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

The header record format is shown below:

20008000000000080000001E
20 Width (in bits) of address and length

fields
 00 Reserved
 80 PROM splitter flags

(80=PM, 00=DM)
 00 User-defined flags, loaded using -u

switch
 00000008 Start address of data block
 0000001E Number of bytes that follow (until next

header record or termination record);
must be nonzero.

In this example, the start address and block length fields are 32 bits wide.
The file contains program memory data (the MSB is the only flag cur-
rently used in the PROM splitter flags field). No user flags are set. The
address of the first location in the block is 0x08. The block contains 30
bytes, or 5 program memory code words.

A block of data records follows its header record, five bytes per line for
data memory, six for program memory. For example:

Program Memory Segment (Code or Data):

3C4034343426
142226083C15

Data Memory Segment:

3C40343434
2614222608

The bytes are ordered left to right, most significant to least.

The termination record has the same format as the header record, except
that the rightness field (number of records) is all zeros.

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs A-15

File Formats

Debugger Files
Debugger files provide input to the debugger to define support for simula-
tion or emulation of your program. The debugger supports all the
executable file types produced by the linker (.DXE, .SM, .OVL, .DLO). To
simulate I/O, the debugger supports the data file formats (.DAT) from the
assembler, the loadable file formats from the loader (.LDR), and the
PROM formats from the splitter (.S_#, .H_#, .STK)

The standard hexadecimal format for a SPORT data file is a single integer
value per line. Hex numbers do not require the 0x prefix to indicate hexa-
decimal. A value can have any number of digits but are read into the
SPORT register, as follows:

• Hexadecimal number is converted to binary

• Number of binary bits read in matches the word size set for the
SPORT register, which starts reading from the LSB. The SPORT
register then fills with zeros values that are shorter than the word
size or, conversely, truncates any bits beyond the word size on the
MSB end

Example: a SPORT register is set for 20-bit words and the data file con-
tains hex numbers. The simulator converts these hex numbers to binary,
then fills/truncates to match the SPORT word size. In Table A-3, the
number A5A5 is filled and the number 123456 is truncated

Table A-3. SPORT Data File Example

Hex
Number

Binary Number Truncated/Filled

A5A5A 1010 0101 1010 0101 1010 1010 0101 1010 0101 1010

FFFF1 1111 1111 1111 1111 0001 1111 1111 1111 1111 0001

A5A5 1010 0101 1010 0101 0000 1010 0101 1010 0101

Debugger Files

A-16 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

5A5A5 0101 1010 0101 1010 0101 0101 1010 0101 1010 0101

11111 0001 0001 0001 0001 0001 0001 0001 0001 0001 0001

123456 0001 0010 0011 0100 0101
0110

0010 0011 0100 0101 0110

Table A-3. SPORT Data File Example

Hex
Number

Binary Number Truncated/Filled

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs A-17

File Formats

Format References
The following texts define industry standard file formats that are sup-
ported by VisualDSP++:

• Gircys, G. R. (1988) Understanding and Using COFF, O’Reilly &
Associates, Newton, MA

• (1993) Executable and Linkable Format (ELF) V1.1 from the
Portable Formats Specification V1.1, Tools Interface Standards
Committee, available from
http://developer.intel.com/vtune/tis.htm

• (1993) Debugging Information Format (DWARF) V1.1 from the
Portable Formats Specification V1.1, UNIX International, Inc.,
available from http://developer.intel.com/vtune/tis.htm

Format References

A-18 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

	Contents
	A File Formats
	Overview
	Source Files
	C/C++ Source Files
	Assembly Source Files (.ASM)
	Assembly Initialization Data Files (.DAT)
	Table A-1. Fixed-Point Values in Data Files�
	Table A-2. Data Storage Examples

	Header Files (.H)
	Linker Description Files (.LDF)
	Linker Command-Line Files (.TXT)

	Build (Processed) Files
	Assembler Object Files (.DOJ)
	Archiver Archive Files (.DLB)
	Linker Executable Files (.DXE, .SM, .OVL, .DLO)
	Linker Memory Map Files (.MAP)
	Loader Hex Format Files (.LDR)
	Loader ASCII Format Files (.LDR)
	Loader Include Format Files (.LDR)
	Loader Binary Format Files (.LDR)
	Splitter Motorola S-Record Format Files (.S_#)
	Splitter Hex Format Files (.H_#)
	Splitter Byte-Stacked Format Files (.STK)

	Debugger Files
	Table A-3. SPORT Data File Example

	Format References

