
B TCL SCRIPTING
In This Appendix
This appendix contains the following topics:

• �Overview� on page B-1

• �How to View Tcl Output and Issue Tcl Commands� on page B-2

• �Types of Tcl Commands and Examples� on page B-5

• �Tcl Command Reference� on page B-17

• �Additional Tcl Resources� on page B-64

Overview
VisualDSP++ includes an interpreter for the Tool Command Language
(Tcl) scripting language. This well-documented C-like language,
developed by UC Berkely researchers, provides an excellent means of
scripting repeated sequences of debugging operations. You can use this
powerful language to develop comprehensive test applications of DSP
systems.

Analog Devices has enhanced Tcl version 8.3 with several procedures to
access key debugging features. Use the power of the Tcl language with
Analog Devices’ extensions to script your work in VisualDSP++.
VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs B-1

How to View Tcl Output and Issue Tcl Commands
How to View Tcl Output and Issue Tcl
Commands

You can view the output of Tcl commands in the Output window's
Console tab. Tcl output is logged to VisualDSP_log.txt, which by
default, is located in the directory:

C:\your ADI DSP tools installation directory\Data\

View this file to analyze the Tcl output.

You can issue Tcl commands as follows:

• From the command line

• From a menu

• From the Output window

• From an Editor window

• Through a user tool

Issue a simple command by typing it on the Console tab page of the
Output window. For extensive scripting, use one of the other methods.

Issuing Commands from the Command Line
Load a script from a DOS command window by typing:

idde -f filename

Optionally, add -s and the session name to specify a previously created
session. When no session name is specified, the last session is used.

� If the script encounters an error during execution, VisualDSP++
automatically exits.
B-2 VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs

Tcl Scripting
Issuing Commands from the Output Window
Load a script from the Output window’s Console tab by typing the
command:

source filename

Note: Similar to C/C++, Tcl uses a backslash (\) as its escape character.
When you specify paths in the Windows environment, you must escape
the escape character. For example:

source c:\\my_dir\\my_subdir\\my_file.tcl

Note: You can also use forward slashes to delimit directories in a path; for
example:

source c:/my_dir/my_subdir/my_file.tcl

Command execution is deferred until a line is typed without a trailing
backslash. This feature permits the entry of an entire block of code (or
entire Tcl procedures) for the Tcl interpreter to evaluate at once.

Issuing Commands from a Menu
You can quickly issue Tcl scripts of frequent use. From the File menu,
choose Recent Tcl Scripts, and then select the Tcl script.
VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs B-3

How to View Tcl Output and Issue Tcl Commands
Issuing Commands from an Editor Window
From an open Editor window that contains a Tcl script, right-click and
choose Source Tcl Script.

Figure B-1. Selecting Source Tcl Script

Issuing Commands through a User Tool
Click a toolbar user tool or choose a user tool from the Tools menu.
B-4 VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs

Tcl Scripting
Types of Tcl Commands and Examples
This section provides the following information:

• �Target Query and Manipulation Commands� on page B-5

• �GUI Manipulation Commands� on page B-8

• �Project Build and Maintenance Commands� on page B-9

• �Tcl Script Example� on page B-10

• �Example Regression Test� on page B-11

Target Query and Manipulation Commands
Use these Tcl commands to query the target and manipulate values.

Table B-1. Target Query and Manipulation Command Summary

Command Description

�dspsetbreak� on
page B-55

Sets (inserts) a breakpoint

�dspcancelbreak� on
page B-19

Cancels (deletes) a breakpoint

�dspgetbreak� on
page B-26

Returns information about the breakpoint

�dspeval� on
page B-24

Evaluates an expression

�dspgetmemblock� on
page B-28

Fetches a block of memory
VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs B-5

Types of Tcl Commands and Examples
Command Description

�dspgetmeminfo� on
page B-30

Gets information about types of memory. This
information is used by other commands.

�dspgetprocessors� on
page B-31

Gets the names of the processors in a
multiprocessor debug session

�dspgetstate� on
page B-31

Gets the current state of a processor

�dspreset� on
page B-51

Gets the C-language software stack for a processor

�dsphalt� on
page B-33

Requests a halt of the processor

�dspload� on
page B-34

Loads a file to the target

�dsplookupline� on
page B-35

Looks up the start and end address corresponding
to a line in a file

�dsplookupsymbol� on
page B-36

Looks up the address of a symbol identified by a
label

�dspplotrotate� on
page B-38

Rotates a waterfall plot by azimuth and elevation

�dspplotwin� on
page B-39

Configures and displays a plot in a Plot window

�dspreset� on
page B-51

Sends a reset message to the target

Table B-1. Target Query and Manipulation Command Summary
B-6 VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs

Tcl Scripting
Command Description

�dsprestart� on
page B-52

Sends a restart message to the target

�dsprun� on page B-53 Sends a run message to the target

�dspset� on page B-54 Evaluates an expression and assigns the value to
another expression

�dspsetmemblock� on
page B-57

Sets a block of memory

�dspsetswstack� on
page B-59

Changes the debug focus

�dspstepasm� on
page B-60

Steps the target a single disassembly step

�dspstepin� on
page B-61

Steps the target a single source language step

�dspstepout� on
page B-62

Steps the target out of the current subroutine in a
source language

�dspstepover� on
page B-63

Steps the target a single source language step, and
skips over any subroutine calls

�dspwaitforhalt� on
page B-64

Delays further execution until the target halts

Table B-1. Target Query and Manipulation Command Summary
VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs B-7

Types of Tcl Commands and Examples
GUI Manipulation Commands
These Graphic User Interface (GUI) manipulation commands create
windows and menu items without using the GUI.

Table B-2. GUI Manipulation Command Summary

Command Description

�dspaddmenuitem� on
page B-17

Adds a menu item (command) to the menu bar

�dspcheckmenuitem�
on page B-20

Queries or sets the “checked” attribute for a menu
item

�dspclickmenuitem�
on page B-21

Simulates a mouse click of a menu item

�dspdeletemenuitem�
on page B-22

Deletes a menu item

�dspenablemenuitem�
on page B-23

Queries or sets the “enabled” attribute of a menu
item

�dspmemorywin� on
page B-37

Displays a Memory window

�dspregisterwin� on
page B-50

Creates a custom register window
B-8 VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs

Tcl Scripting
Project Build and Maintenance Commands
Use these Tcl commands to operate at the project level.

Table B-3. Project Build and Maintenance Command Summary

Command Description

�dspprojectload� on
page B-47

Loads the project into VisualDSP++

�dspprojectbuild� on
page B-44

Builds the currently loaded project configuration

�dspprojectinfo� on
page B-46

Returns information about the currently loaded
project

�dspprojectaddfile� on
page B-42

Adds a file to the current project

�dspprojectaddfolder�
on page B-43

Adds a folder to the current project

�dspprojectremove-
file� on page B-48

Removes a file from the current project

�dspprojectremove-
folder� on page B-49

Removes a folder from the current project

�dspsetbreak� on
page B-55

Closes the currently loaded project
VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs B-9

Types of Tcl Commands and Examples
Tcl Script Example
The following example shows how to create and run a Tcl script that
prints to the Output window’s Console tab.

This Tcl procedure, named step_and_print, single-steps through your
assembly code a specified number of times. When you run the script, you
must supply the number of steps (the count).

To create the Tcl script:

1. Use a text editor to type the following code.

proc step_and_print { count } {
 for { set i 0 } { $i < $count } { incr i } {
 dspstepasm –wait
 puts [format "PC is at address 0x%x\n" [dspeval \$pc]]
 }
}

2. Save to C:\Temp\test.tcl.

To run the new Tcl script:

1. From the Output window’s Console tab, type the Tcl source
command followed by the path and file name of the new Tcl script.

>source C:\\Temp\\test.tcl

Note: Use double backslash characters.

2. Press Enter to load the Tcl script.

3. In the Console tab, call the function and supply the step count, for
example:

step_and_print 10

4. Press Enter to run the function. The program counter single-steps
ten times (the step count in this example) and halts.

{bmct tcl_2.bmp}
B-10 VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs

Tcl Scripting
Note: Output resulting from commands entered in the Output window’s
Console tab is saved to VisualDSP_log.txt.

Example Regression Test
Use Tcl with Analog Devices' extensions to build sophisticated behaviors.
Below is the implementation of a regression test used by Analog Devices
software developers to test the VisualDSP++’s debugging capability. This
particular test ensures that function parameters evaluate correctly.

Note: At one time, this test was performed manually with the GUI, taking
several minutes. It is now tested with a Tcl script and takes seconds, a
considerable productivity booster.

Two procedures are defined to help implement this test. The goto_line
procedure runs the program to a certain line number. The assert
procedure trips an error if a given expression evaluates to zero (false).

Tcl Example � Performing a Regression Test
proc assert { e } {
 if { 0 == $e } {
 error "Assertion Failed!"
 }
}

proc goto_line { file line } {

 # Lookup the address corresponding to {file, line} pair.
 # The return value from dsplookupline is a list of start
 # and end address (we use lindex to extract the car of
 # the list).

 dspsetbreak [lindex [dsplookupline $file $line] 0] \
 -temporary
 dsprun
 dspwaitforhalt
}

dspload argtest.dxe

goto_line main.c 126
VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs B-11

Types of Tcl Commands and Examples
assert [expr 0x56 == [dspeval "cNum"]]
assert [expr 0x7890 == [dspeval "sNum"]]
assert [expr 0x1234 == [dspeval "iNum"]]
assert [expr 0xdeaddead == [dspeval "lNum"]]
assert [expr 1.234 == [dspeval "fNum" float]]
assert [expr 5.678 == [dspeval "dNum" float]]

goto_line main.c 58

assert [expr 0x56 == [dspeval "cNum"]]
assert [expr 0x7890 == [dspeval "sNum"]]
assert [expr 0x1234 == [dspeval "iNum"]]
assert [expr 0xdeaddead == [dspeval "lNum"]]
assert [expr 1.234 == [dspeval "fNum" float]]
assert [expr 5.678 == [dspeval "dNum" float]]

assert [expr 0x56 == [dspeval "g_cNum"]]
assert [expr 0x7890 == [dspeval "g_sNum"]]
assert [expr 0x1234 == [dspeval "g_iNum"]]
assert [expr 0xdeaddead == [dspeval "g_lNum"]]
assert [expr 1.234 == [dspeval "g_fNum" float]]
assert [expr 5.678 == [dspeval "g_dNum" float]]

assert [expr 0x56 == [dspeval "c"]]
assert [expr 0x7890 == [dspeval "s"]]
assert [expr 0x1234 == [dspeval "i"]]
assert [expr 0xdeaddead == [dspeval "l"]]
assert [expr 1.234 == [dspeval "f" float]]
assert [expr 5.678 == [dspeval "d" float]]

goto_line main.c 142

assert [expr 0xdeaf == [dspeval "iNum"]]

dsprun
dspwaitforhalt

exit
B-12 VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs

Tcl Scripting
For reference, the source code for main.c is presented here.

Note: ScareCompiler() is an auxiliary stub function used to
(intentionally) suppress compiler optimizations.

#include <stdio.h>

extern void ScareCompiler(void *pv);

char g_cNum;
short g_sNum;
int g_iNum;
long g_lNum;
float g_fNum;
double g_dNum;

int LotsOfArgs(char c, short s, int i, long l, float f, double
d)

{
 char cNum;
 short sNum;
 int iNum;
 long lNum;
 float fNum;
 double dNum;

 cNum = c;
 sNum = s;
 iNum = i;
 lNum = l;
 fNum = f;
 dNum = d;

 ScareCompiler((void*)&cNum);
 ScareCompiler((void*)&sNum);
 ScareCompiler((void*)&iNum);
 ScareCompiler((void*)&lNum);
 ScareCompiler((void*)&fNum);
 ScareCompiler((void*)&dNum);

 g_cNum = cNum;
 g_sNum = sNum;
 g_iNum = iNum;
 g_lNum = lNum;
 g_fNum = fNum;
 g_dNum = dNum;
VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs B-13

Types of Tcl Commands and Examples
 ScareCompiler((void*)&g_cNum);
 ScareCompiler((void*)&g_sNum);
 ScareCompiler((void*)&g_iNum);
 ScareCompiler((void*)&g_lNum);
 ScareCompiler((void*)&g_fNum);
 ScareCompiler((void*)&g_dNum);

 /***
Set a break here verify that the locals, arguments and globals
look ok. They should have the same values as the locals in
main().
 Examples:
 g_cNum, cNum, & c should all equal 0x56
 g_sNum, sNum, & s should all equal 0x7890
 **/

 if(cNum != 0x56)
 printf("As If!\n");
 if(sNum != 0x7890)
 printf("As If!\n");
 if(iNum != 0x1234)
 printf("As If!\n");
 if(lNum != 0xdeaddead)
 printf("As If!\n");
 if(fNum != 1.234)
 printf("As If!\n");
 if(dNum != 5.678)
 printf("As If!\n");
 if(cNum && sNum && iNum && lNum && fNum && dNum)
 return (0xdeaf);
 else
 return (0xbad);
}

/**

 TestArg test program

 This tests the debugger and the debug information
 generated by the compiler for the basic types. It tests

 that the information is ok regardless of whether the

 variable is a local or an argument to a function.

 To use this file:

 1. Load the argtest executable

 2. Load the argtest layout file
B-14 VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs

Tcl Scripting
 3. Deposit break points at the specified locations

 4. Enter the following into the expressions window

 g_cNum

 g_sNum

 g_iNum

 g_lNum

 g_fNum

 g_dNum

 5. Run evaluating correctness based on the comments in

 the code.

**/

void main(void)
{
 char cNum;
 short sNum;
 int iNum;
 long lNum;
 float fNum;
 double dNum;

 cNum = 0x56;
 sNum = 0x7890;
 iNum = 0x1234;
 lNum = 0xdeaddead;
 fNum = 1.234;
 dNum = 5.678;

 ScareCompiler((void*)&cNum);
 ScareCompiler((void*)&sNum);
 ScareCompiler((void*)&iNum);
 ScareCompiler((void*)&lNum);
 ScareCompiler((void*)&fNum);
 ScareCompiler((void*)&dNum);
VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs B-15

Types of Tcl Commands and Examples
 /*************************************
 Set a break here
 verify that the locals look exactly
 as they were initialized. The ScareCompiler
 function does nothing to the variables.
 **/

 if(cNum > 0x56)
 printf("No way!\n");
 if(sNum > 0x7890)
 printf("No way!\n");
 if(iNum > 0x1234)
 printf("No way!\n");
 if(lNum > 0xdeaddead)
 printf("No way!\n");
 if(fNum > 1.234)
 printf("No way!\n");
 if(dNum > 5.678)
 printf("No way!\n");

 /* This should return 0xdeaf */
 iNum = LotsOfArgs(cNum, sNum, iNum, lNum, fNum, dNum);
 // Set a break here check that iNum is 0xdeaf
 if(iNum == 0xbad)
 printf("That's just wrong\n");
 else
 printf("No problems\n");
}

B-16 VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs

Tcl Scripting
Tcl Command Reference
This section describes all Tcl commands with their syntax and arguments.

Syntax Statements
Optional Tcl command parameters in syntax statements are indicated
with question-mark characters (?). For example, in the following syntax
statement, -all is optional:

dspprojectbuild projconfig ?-all?

Tcl Commands
The Tcl commands are described below in alphabetical order.

dspaddmenuitem

Syntax:
dspaddmenuitem menuItem callback
 ?-head? ?-info value? ?-help value?

Purpose:

Adds a menu item to the menu bar

Returns: A cookie, representing the identifier for the menu item. The
cookie is used in calls to:

dspcheckmenuitem, dspenablemenuitem, and dspdeletemenuitem

The cookie is passed to the callback function, allowing a single callback
function to service multiple menu items.
VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs B-17

Tcl Command Reference
Arguments:
menuItem

Specifies the path to the menu item in the format:

MENU:SUBMENU:SUBMEMU:ITEM

callback

Specifies the Tcl procedure called when the menu item is clicked.
This function must be of the form:

proc function_name { id } { body }

The id parameter to this callback function is the cookie for the
menu item (see “Returns” above).

-head

Specifies that the menu item is to be pre-pended to the menu.
Otherwise, the menu item is appended to the menu.

-info value

Specifies an information string to be displayed in the application’s
status bar when the menu item has focus

-help value

Specifies a callback to a help function. This callback has the same
format as the function callback described above.

Example:

The following script creates a menu item that outputs a message when you
choose the menu item:

proc callback { id } {
 puts [format "Menu ID %d clicked.\n" $id]
}

set id [dspaddmenuitem "Custom:Menu #1" callback \
 -info "Demo menu item"]
puts [format "Menu ID %d installed.\n" $id]
B-18 VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs

Tcl Scripting
dspcancelbreak

Syntax:
dspcancelbreak ?-processor value? id

Purpose:

Cancels (deletes) the breakpoint identified by id

Returns: id

Arguments:
-processor value

Relevant only in a multiprocessor debug session and ignored
during a single-processor debug session

value specifies the processor to which the command is directed.
Omitting this argument steers the command toward the currently
focused processor.

id

An identifier from a previous call to �dspsetbreak� on page B-55

You can also determine a breakpoint’s identifier by using
�dspgetbreak� on page B-26.

Example:
Cancel all breakpoints
foreach bp [dspgetbreak] { dspcancelbreak [lindex $bp 0] }
VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs B-19

Tcl Command Reference
dspcheckmenuitem

Syntax:
dspcheckmenuitem id ?value?

Purpose:

Queries or sets the checked attribute of the menu item identified by id

Returns: The string “checked” or “unchecked”

Arguments:
id

Obtained from a previous call to dspaddmenuitem

value

Specifies the new value for this attribute. Valid values are checked
and unchecked.

If value is not specified, the value of the attribute is not altered.
B-20 VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs

Tcl Scripting
dspclickmenuitem
dspclickmenuitem menuItem

Purpose:

Simulates a mouse click on a menu item

Returns: 1 if successful, 0 otherwise (that is, when the menu item does
not exist)

Arguments:
menuItem

Specifies the menu item to click in the format:

MENU:SUBMEU:SUBMENU:ITEM

Example:

This command refreshes the window:

> dspclickmenuitem Window:Refresh
VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs B-21

Tcl Command Reference
dspdeletemenuitem

Syntax:
dspdeletemenuitem id

Purpose:

Deletes the menu item specified by id

Returns: Nothing

Arguments:
id

Obtained from a previous call to dspaddmenuitem (see
�dspaddmenuitem� on page B-17)
B-22 VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs

Tcl Scripting
dspenablemenuitem

Syntax:
dspenablemenuitem id ?value?

Purpose:

Queries or sets the enabled attribute of the menu item identified by id

Returns: The string enabled, disabled, or grayed

Arguments:
id

Obtained from a previous call to dspaddmenuitem (see
�dspaddmenuitem� on page B-17)

value

Specifies the new value for this attribute. Valid values are enabled,
disabled, or grayed.

If value is not specified, the value of the attribute is not altered.
VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs B-23

Tcl Command Reference
dspeval

Syntax:
dspeval ?-processor value? expr ?format?

Purpose:

Evaluates an expression specified by expr. Valid forms of expressions are
the expressions that can be accepted by the Expressions window.

Arguments:
-processor value

Relevant only in a multiprocessor debug session and ignored
during a single-processor debug session

value specifies the processor to which the command is directed.
Omitting this argument steers the command toward the currently
focused processor.

expr

The expression to be evaluated

format

Specifies the format used to format the output. Valid values are
hexadecimal (default), integer, unsigned integer, float, and
octal.

Escape Character:

When using the dollar sign ($) character in an expression, escape this
character with a backslash (\).

Note: The $ is the variable signifier in Tcl.
B-24 VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs

Tcl Scripting
Examples:

The following example returns the value of the expression or an error
message if a problem was encountered:

> dspeval "\$PC"

The following example evaluates a C expression:

> dspeval "&my_array[5]"

The following example fetches the opcode at the PC:

> dspeval "\$PM (\$PC)"
VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs B-25

Tcl Command Reference
dspgetbreak

Syntax:
dspgetbreak ?-processor value? ?id?

Purpose:

Returns a list containing information about the breakpoint identified by
id

The list consists of these elements:

• The id of the breakpoint

• The software overlay or hardware page in which the breakpoint is
located (-1, if none)

• Τhe address of the breakpoint

• The source file of the breakpoint ("", if unknown)

• The line number of the breakpoint (zero if unknown)

• "temporary" or "permanent"

• “enabled" or "disabled"

• "placed" or "unplaced"

• The skip count

• The test expression ("", if unknown)

Note: If id is omitted, a list of all breakpoint information is returned.
B-26 VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs

Tcl Scripting
Arguments:
-processor value

Relevant only in a multiprocessor debug session and ignored
during a single-processor debug session

value specifies the processor to which the command is directed.
Omitting this argument steers the command toward the currently
focused processor.

id

A value previously returned by �dspsetbreak� on page B-55
VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs B-27

Tcl Command Reference
dspgetmemblock

Syntax:
dspgetmemblock ?-processor value?
 memory
 start
 count
 ?-stride value?
 ?-format value?

Purpose:

Fetches a block of memory and returns a list comprised of the memory
fetched. Each element of the list represents the value of a single address.

Arguments:
-processor value

Relevant only in a multiprocessor debug session and ignored
during a single-processor debug session

value specifies the processor to which the command is directed.
Omitting this argument steers the command toward the currently
focused processor.

memory

Specifies the memory from which to fetch the block. One of the
strings outputted by �dspgetmeminfo� on page B-30

start

Specifies the first address to fetch in the block

count

Specifies the total number of addresses to fetch
B-28 VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs

Tcl Scripting
-stride value

Specifies the distance between memory locations. If value is
omitted, 1 is used.

-format value

Specifies the format used for the output

Valid values are hexadecimal (default), integer, unsigned
integer, float, and octal.

Values vary from target to target.

Example:
> set pm [lindex [lindex [dspgetmeminfo] 0] 0]
 Program(PM) Memory
> dspgetmemblock $pm 0x20004 3 –format "Assembly"
 {nop;} {jump __lib_start;} {nop;}
VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs B-29

Tcl Command Reference
dspgetmeminfo

Syntax:
dspgetmeminfo ?-processor value?

Purpose:

Returns information about the types of memory within the target and
returns a list of memories. Each element of the list is itself a list comprised
of two elements:

• An ASCII string representing the canonical name of the memory

• The width of the memory in bits

The returned information is used by other commands to identify a
particular memory by its name.

Arguments:
-processor value

Relevant only in a multiprocessor debug session and ignored
during a single-processor debug session

value specifies the processor to which the command is directed.
Omitting this argument steers the command toward the currently
focused processor.

Example:

The ADSP-21xxx simulator's output:

> dspgetmeminfo

{ "PM" 24 } { "DM" 16 } { "IOM" 16 }
B-30 VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs

Tcl Scripting
dspgetprocessors

Syntax:
dspgetprocessors

Purpose:

Returns the names of the processors in a multiprocessor debug session. For
a single-processor session, an empty list is returned.

These names are used in the -processor argument of other Tcl
commands.

dspgetstate

Syntax:
dspgetstate ?-processor value?

Purpose:

This Tcl command returns the current state of a processor.

Returns: One of the following strings: reset, running, stepping,
halted, loaded, or unknown

Arguments:

-processor value

Relevant only in a multiprocessor debug session and ignored
during a single-processor debug session

value specifies the processor to which the command is directed.
Omitting this argument steers the command toward the currently
focused processor.
VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs B-31

Tcl Command Reference
dspgetswstack

Syntax:
dspgetswstack ?-processor value?

Purpose:

Returns the C-language software stack for a processor

� Do not confuse this stack with the internal hardware stack found on
some targets.

Returns: A list of frames. Each frame is a list comprised of a name
(C function) and a cookie value. The cookie value changes the debug
focus to a different frame (see �dspsetswstack� on page B-59). If a frame
currently has the debug focus, a third item in the list is the string focus.
One frame only may have focus at a given time.

If the stack cannot be found or identified because the program is in an
assembly language module (or no debug information is present), a null list
is returned.

Arguments:
-processor value

Relevant only in a multiprocessor debug session and ignored
during a single-processor debug session

value specifies the processor to which the command is directed.
Omitting this argument steers the command toward the currently
focused processor.
B-32 VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs

Tcl Scripting
dsphalt

Syntax:
dsphalt ?-processor value? ?-wait?

Purpose:

Sends a message to the target to request a halt

Note: This command does not guarantee that the target will halt, only
that a message is sent.

Returns: 1

Arguments:
-processor value

Relevant only in a multiprocessor debug session and ignored
during a single-processor debug session

value specifies the processor to which the command is directed.
Omitting this argument steers the command toward the currently
focused processor.

-wait

Prevents further execution of a Tcl script until the target has halted
VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs B-33

Tcl Command Reference
dspload

Syntax:
dspload ?-processor value? fileName ?-symbols? ?-wait?

Purpose:

Loads a file to the target

Returns: 1 if successful, an error message otherwise

Arguments:
-processor value

Relevant only in a multiprocessor debug session and ignored
during a single-processor debug session

value specifies the processor to which the command is directed.
Omitting this argument steers the command toward the currently
focused processor.

fileName

Specifies the file to be loaded to the target

-symbols

Indicates that symbolic debugging information only be loaded
from the file. The target itself is not loaded with the binary’s
image. Use this option to debug a ROM target.

-wait

Prevents further execution of a Tcl script until the target has halted
B-34 VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs

Tcl Scripting
dsplookupline

Syntax:
dsplookupline ?-processor value? file line

Purpose:

Looks up the start and end address corresponding to file line

Returns: A list comprising two elements, representing the start and end
addresses. If line number information cannot be determined, an error is
returned.

Arguments:

-processor value

Relevant only in a multiprocessor debug session and ignored
during a single-processor debug session

value specifies the processor to which the command is directed.
Omitting this argument steers the command toward the currently
focused processor.

file

Specifies the name of the file

line

Specifies the line in the file

Example:

Set a breakpoint at a line.

> dspsetbreak [lindex [dsplookupline foo.c 100] 0]

Note: This example uses Tcl's lindex command to access the first
element in the two-element list.
VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs B-35

Tcl Command Reference
dsplookupsymbol

Syntax:

dsplookupsymbol ?-processor value? ?-memory value? label

Purpose:

Looks up the address of a symbol

Returns: The label’s address

Arguments:
-processor value

Relevant only in a multiprocessor debug session and ignored
during a single-processor debug session

value specifies the processor to which the command is directed.
Omitting this argument steers the command toward the currently
focused processor.

-memory value

Specifies the memory in which the look up is to be performed.
The form of this argument is one of the strings returned by the
dspgetmeminfo command (see �dspgetmeminfo� on page B-30).

label

Specifies the symbol
B-36 VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs

Tcl Scripting
dspmemorywin

Syntax:
dspmemorywin memory addr
 ?-rect { left top right bottom }?
 ?-title name? ?-track expr?

Purpose:

Opens a Memory window for the memory identified by memory at the
address specified by addr

Returns: 1

Arguments:
memory

One of the strings returned by dspgetmeminfo (see
�dspgetmeminfo� on page B-30)

addr

Specifies the address

-rect { left top right bottom }

Specifies the coordinates of the rectangle enclosing the window.
This list has four integer values. If the rectangle size is not
specified, the MS-Windows system library sets the size.

-title name

Assigns the specified name to the window

-track expr

Focuses the window onto a specific activity. The expression expr is
evaluated at every processor halt, and the window moves to the
address based on the evaluation of the expression. Use this option
to follow pointer movement.
VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs B-37

Tcl Command Reference
dspplotrotate

Syntax:
dspplotrotate title az el

Purpose:

Rotates a waterfall plot. You choose the degree of azimuth rotation and
elevation rotation.

Returns: If the command fails, an error message in the Output window

Arguments:
title

This title must match a title of a previously defined waterfall plot.

az

The azimuth rotation angle (from 0 to 360 degrees)

el

The elevation viewpoint (from -90 to +90 degrees)
B-38 VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs

Tcl Scripting
dspplotwin

Syntax:
dspplotwin memtype addr count
 ?-stride value?
 ?-datatype value?
 ?-plottype value?
 ?-title value?
 ?-setname value?
 ?-xmemtype value?
 ?-xaddr value?
 ?-xstride value?
 ?-xdatatype value?
 ?-columncount value?
 ?-add?

Purpose:

Creates and displays a plot in a Plot window

Returns: If the command fails, an error message in the Output window

Arguments:
memtype

The Y-axis or Z-axis memory type, such as $dm or $pm. This value
depends on the plot type.

addr

The Y-axis or Z-axis address. This value depends on the plot type.

count

The Y-axis or Z-axis row count. This value depends on the plot
type.
VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs B-39

Tcl Command Reference
-stride value

The Y-axis or Z-axis stride. This depends value on the plot type.

-datatype value

The Y-axis or Z-axis data type, such as float. This value depends
on the plot type.

-plottype value

Specifies the desired plot type. Choose: line, xy, constellation,
eyediagram, waterfall, or image.

-title value

The plot's title. Surround the text with double-quote characters
(").

-setname value

The name of this data set. Surround the text with double-quote
characters (").

-xmemtype value

The X-axis memory type, such as $dm. This value depends on the
plot type.

-xaddr value

The X-axis address. This value depends on the plot type.

-xstride value

The X-axis stride. This value depends on the plot type.

-xdatatype value

The X-axis data type, such as float. This value depends on the
plot type.

-columncount value

The Z-axis column count
B-40 VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs

Tcl Scripting
-add

Specifies that you are adding data to a previously defined plot

Examples:
The following commands configure and display various plots:

Eye Diagram Plot

dspplotwin
 $dm eyedata 100
 -datatype float
 -plottype eyediagram
 -title "Eye Diagram"
 -setname "Input"

Constellation Plot

dspplotwin
 $dm ydata 100
 -datatype float
 -plottype constellation
 -xmemtype $dm
 -xaddr xdata
 -xdatatype float
 -title "Constellation Plot"
 -setname "Input"

Waterfall Plot

dspplotwin
 $dm zdata 64
 -datatype float
 -plottype waterfall
 -title "Waterfall Plot"
 -setname "Input"
 -columncount 20
VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs B-41

Tcl Command Reference
dspprojectaddfile

Syntax:
dspprojectaddfile ?-folder name? filename

Purpose:

Adds the file’s filename to the currently loaded project

Arguments:
-folder name

Specifies the folder in which to place the file

If the folder does not exist, it is created.

If no folder is specified, the file is inserted at the root of the
project file hierarchy.

filename

Specifies the name of the file to be added

Returns: An error condition when:

• No project is loaded

• filename does not exist

• filename is already in the project
B-42 VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs

Tcl Scripting
dspprojectaddfolder

Syntax:
dspprojectaddfolder ?-ext extensions? foldername

Purpose:

Adds the folder’s foldername (for example, folder1 or folder1/folder2)
to the currently loaded project

Arguments:
-ext extensions

Specifies extensions for the folder

Foldername

Specifies the name of the folder

A parent folders specified in the path name that does not currently
exist is created.

Returns: An error condition when no project is loaded

An attempt to add a folder currently in the project results in success.
VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs B-43

Tcl Command Reference
dspprojectbuild

Syntax:
dspprojectbuild projconfig ?-all?

Purpose:

Builds the configuration projconfig of the currently loaded project

Arguments:
projconfig

Identifies the project configuration

-all

Performs a Rebuild All. If not specified, an increment build is
preformed

Returns: If successful, the text output by the build process

Returns an error condition when:

• projconfig does not exist

• No project is loaded

• The build fails for any reason
B-44 VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs

Tcl Scripting
dspprojectclose

Syntax:
dspprojectclose ?-save? ?filename?

Purpose:

Closes the currently loaded project

Arguments:
-save

Specifies that changes to the project be saved

If the flag is omitted, the project is closed without saving.

filename

Specifies the filename to save to (Save As)

If the filename is not specified, the project is saved to the location
from which it was loaded.

Returns: An error condition when:

• No project is loaded

• The project cannot be saved (for example, when the project file is
read-only)

• filename is specified and -save is not
VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs B-45

Tcl Command Reference
dspprojectinfo

Syntax:
dspprojectinfo

Purpose:

Returns information about the currently loaded project

The return value is a list comprising two members:

• A list of the project’s configurations

• A list of the project’s input files. Each element of the list is a list
containing the filename and project folder. Project folders use a file
hierarchy-like syntax, with “/” to indicate the root of the project’s
file hierarchy.

Returns: An error condition when no project is loaded

Example:
% dspprojectinfo
{debug release} {{“C:/ProjectA/ProjectA.c” “/”} \
{“C:/ProjectA/ProjectA.h” “/Include Files”}}

In this example, the returned information indicates that the project has
two configurations (debug and release) and comprises two input files.
B-46 VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs

Tcl Scripting
dspprojectload

Syntax:
dspprojectload projectname

Purpose:

Loads the project’s projectname into VisualDSP++

Returns: An error condition when:

• projectname does not exist

• Another project is already loaded into VisualDSP++
VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs B-47

Tcl Command Reference
dspprojectremovefile

Syntax:
dspprojectremovefile filename

Purpose:

Removes the file filename from the currently loaded project

Returns: An error condition when:

• No project is loaded

• filename is not included in the project
B-48 VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs

Tcl Scripting
dspprojectremovefolder

Syntax:
dspprojectremovefolder foldername

Purpose:

Removes the folder’s foldername from the currently loaded project

Returns: An error condition when:

• No project is loaded

• foldername is not included in the project
VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs B-49

Tcl Command Reference
dspregisterwin

Syntax:
dspregisterwin { { name x y ?type? } }
 ?-title name?
 ?-format value?
 ?-rect { left top right bottom }?

Purpose:

Creates and displays a custom register window

Returns: 1

Arguments:
{ { name x y [type] } }

A list of registers. Each element of this list is itself a list, containing
information for a single register, including: the ASCII name of the
register, the X and Y coordinates that position the register in the
window (measured in characters), and (optionally) the type of the
register.

Valid values for type are normal (default), nodata, nolabel, and
private.

-title name

Assigns a title to the register window

-format value

Specifies the base format for which the X and Y position were
calculated (default value is hexadecimal)

-rect { left top right bottom }

A list comprising four integers. If the rectangle size is not specified,
the MS-Windows system library picks the size.
B-50 VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs

Tcl Scripting
dspreset

Syntax:
dspreset ?-processor value? ?-wait?

Purpose:

Sends a message to the target to reset

Note: Only the program’s image is reloaded. Memory that is not
overwritten by the program’s image is not changed.

Returns: 1

Arguments:
-processor value

Relevant only in a multiprocessor debug session and ignored
during a single-processor debug session

value specifies the processor to which the command is directed.
Omitting this argument steers the command toward the currently
focused processor.

-wait

Prevents further execution of a Tcl script until the target has halted
VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs B-51

Tcl Command Reference
dsprestart

Syntax:
dsprestart ?-processor value? ?-wait?

Purpose:

Sends a message to the target to restart

Returns: 1

Arguments:
-processor value

Relevant only in a multiprocessor debug session and ignored
during a single-processor debug session

value specifies the processor to which the command is directed.
Omitting this argument steers the command toward the currently
focused processor.

-wait

Prevents further execution of a Tcl script until the target has halted
B-52 VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs

Tcl Scripting
dsprun

Syntax:
dsprun ?-processor value? ?-wait?

Purpose:

Sends a message to the target to run

Returns: 1

Arguments:
-processor value

Relevant only in a multiprocessor debug session and ignored
during a single-processor debug session

value specifies the processor to which the command is directed.
Omitting this argument steers the command toward the currently
focused processor.

-wait

Prevents further execution of a Tcl script until the target has halted
VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs B-53

Tcl Command Reference
dspset

Syntax:
dspset ?-processor value? left_expr right_expr

Purpose:

Evaluates right_expr and assigns its value to left_expr

Only rudimentary checking is performed. Modifiers like const are
ignored.

Returns: right_expr

Arguments:
-processor value

Relevant only in a multiprocessor debug session and ignored
during a single-processor debug session

value specifies the processor to which the command is directed.
Omitting this argument steers the command toward the currently
focused processor.

left_expr

Specifies the expression to be assigned a value. This expression
must be an lvalue.

right_expr

Specifies the expression to be evaluated

Example:

The following command sets the value of R0 to the address of a C
variable:

> dspset \$R0 "&my_variable"
B-54 VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs

Tcl Scripting
dspsetbreak

Syntax:
dspsetbreak ?-processor value?
 address
 ?-expression value?
 ?-count value?
 ?-temporary?
 ?-disabled?

Purpose:

Sets (inserts) a breakpoint on the target at the address specified by address

This command returns a non-zero value representing the identifier of the
breakpoint. This value can be used in subsequent calls to dspcancelbreak
and dspgetbreak.

Note: This functionality was available by means of the dspbreakpoint
command in earlier software releases.

Returns: If successful, a non-zero value that represents the identifier of
the breakpoint. Otherwise, 0. The returned value can be stored and used
in subsequent calls to:

�dspcancelbreak� on page B-19 and �dspgetbreak� on page B-26

Arguments:
-processor value

Relevant only in a multiprocessor debug session and ignored
during a single-processor debug session

value specifies the processor to which the command is directed.
Omitting this argument steers the command toward the currently
focused processor.
VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs B-55

Tcl Command Reference
address

The address to which a breakpoint is specified

-expression value

Specifies a condition that must be evaluated to TRUE to halt
execution of the debug target at the breakpoint address

If expression and count are omitted, execution of the debug target
stops at the breakpoint.

Valid expressions are anything that the Expressions window
accepts.

-count value

Delays the setting of the breakpoint

value specifies the number of halts that pass before setting the
breakpoint

-temporary

Cancels the breakpoint at the next halt (implements features like
run-to-cursor)

-disabled

Disables the breakpoint

Example:

The following command sets a temporary breakpoint at main():

dspsetbreak [dsplookupsymbol main] -temporary
B-56 VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs

Tcl Scripting
dspsetmemblock

Syntax:
dspsetmemblock ?-processor value? memory start count
?-stride value? ?-format value? { fill ... }

Purpose:

Sets a block of memory

Returns: 1

Arguments:
-processor value

Relevant only in a multiprocessor debug session and ignored
during a single-processor debug session

value specifies the processor to which the command is directed.
Omitting this argument steers the command toward the currently
focused processor.

memory

Specifies the memory to set the block in and is one of the strings
outputted by dspgetmeminfo (see �dspgetmeminfo� on
page B-30)

start

Specifies the first address to set in the block

count

Specifies the total number of addresses to set

If the length of fill is less than count, the fill values wrap to
provide values for all count addresses.
VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs B-57

Tcl Command Reference
-stride value

Specifies the distance between memory locations. If value is not
specified, 1 is used.

-format value

Specifies the format used to format the data

Valid values are hexadecimal (default), integer, unsigned
integer, float, and octal.

Values vary from target to target.

fill

This list specifies the value(s) with which to fill memory.
If the length of fill is less than the count, the fill values wrap to
provide values for all count addresses.

Example:

This example fills ten addresses in data memory with a dummy fill value
(as Microsoft Visual C++ does in malloc()):

> set dm [lindex [lindex [dspgetmeminfo] 1] 0]
Data(DM) Memory
> dspsetmemblock $dm 0x30000 10 0xcdcdcdcd
1

B-58 VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs

Tcl Scripting
dspsetswstack

Syntax:
dspsetswstack ?-processor value? cookie

Purpose:

Changes the debug focus to the frame identified by cookie

Returns: 1

Arguments:
-processor value

Relevant only in a multiprocessor debug session and ignored
during a single-processor debug session

value specifies the processor to which the command is directed.
Omitting this argument steers the command toward the currently
focused processor.

cookie

Specifies the frame

This value is determined by calling dspgetswstack (see �dspreset�
on page B-51).

Example:

Notice the movement of focus:

>dspgetswstack
{“foo()” 0x2fff5 focus} {“main(int, char**)” 0x2ffff}
>dspsetswstack 0x2ffff
1
>dspgetswstack
{"foo()" 0x2fff5} {“main(int, char**)” 0x2ffff focus}
VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs B-59

Tcl Command Reference
dspstepasm

Syntax:
dspstepasm ?-processor value? ?-wait?

Purpose:

Steps the target a single disassembly step

Returns: 1

Arguments:
-processor value

Relevant only in a multiprocessor debug session and ignored
during a single-processor debug session

value specifies the processor to which the command is directed.
Omitting this argument steers the command toward the currently
focused processor.

-wait

Prevents further execution of a Tcl script until the target has halted
B-60 VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs

Tcl Scripting
dspstepin

Syntax:
dspstepin ?-processor value? ?-wait?

Purpose:

Steps the target a single source language step

Returns: 1 on success, 0 when source stepping is not enabled at PC

Arguments:
-processor value

Relevant only in a multiprocessor debug session and ignored
during a single-processor debug session

value specifies the processor to which the command is directed.
Omitting this argument steers the command toward the currently
focused processor.

-wait

Prevents further execution of a Tcl script until the target has
halted
VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs B-61

Tcl Command Reference
dspstepout

Syntax:
dspstepout ?-processor value? ?-wait?

Purpose:

Steps the target out of the current subroutine in a source language

Returns: 1 if successful, 0 otherwise (that is, source stepping is not
enabled at the PC)

Arguments:
-processor value

Relevant only in a multiprocessor debug session and ignored
during a single-processor debug session

value specifies the processor to which the command is directed.
Omitting this argument steers the command toward the currently
focused processor.

-wait

Prevents further execution of a Tcl script until the target has halted
B-62 VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs

Tcl Scripting
dspstepover

Syntax:
dspstepover ?-processor value? ?-wait?

Purpose:

Steps the target a single source language step, but skips over subroutine
calls

Returns: 1 if successful, 0 otherwise (that is, source stepping is not
enabled at the PC)

Arguments:
-processor value

Relevant only in a multiprocessor debug session and ignored
during a single-processor debug session

value specifies the processor to which the command is directed.
Omitting this argument steers the command toward the currently
focused processor.

-wait

Indicates that the script should execute and halt the target, which
places the target in a known state
VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs B-63

Additional Tcl Resources
dspwaitforhalt

Syntax:
dspwaitforhalt

Purpose:

Delays further execution of Tcl commands until the target has halted

Returns: 1

Additional Tcl Resources
The following resources can help you use Tcl to enhance your debug
sessions:

• www.scriptics.com is a resource for Tcl programmers

• Practical Programming in Tcl & Tk, by Brent B. Welch (ISBN
0136168302)
B-64 VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs

	Contents
	B Tcl Scripting
	In This Appendix
	Overview
	How to View Tcl Output and Issue Tcl Commands
	Issuing Commands from the Command Line
	Issuing Commands from the Output Window
	Issuing Commands from a Menu
	Issuing Commands from an Editor Window
	Figure B-1. Selecting Source Tcl Script

	Issuing Commands through a User Tool

	Types of Tcl Commands and Examples
	Target Query and Manipulation Commands
	GUI Manipulation Commands
	Project Build and Maintenance Commands
	Tcl Script Example
	Example Regression Test

	Tcl Command Reference
	Syntax Statements
	Tcl Commands
	dspaddmenuitem
	Syntax:
	Purpose:
	Arguments:
	Example:

	dspcancelbreak
	Syntax:
	Purpose:
	Arguments:
	Example:

	dspcheckmenuitem
	Syntax:
	Purpose:
	Arguments:

	dspclickmenuitem
	Purpose:
	Arguments:
	Example:

	dspdeletemenuitem
	Syntax:
	Purpose:
	Arguments:

	dspenablemenuitem
	Syntax:
	Purpose:
	Arguments:

	dspeval
	Syntax:
	Purpose:
	Arguments:
	Escape Character:
	Examples:

	dspgetbreak
	Syntax:
	Purpose:
	Arguments:

	dspgetmemblock
	Syntax:
	Purpose:
	Arguments:
	Example:

	dspgetmeminfo
	Syntax:
	Purpose:
	Arguments:
	Example:

	dspgetprocessors
	Syntax:
	Purpose:

	dspgetstate
	Syntax:
	Purpose:
	Arguments:

	dspgetswstack
	Syntax:
	Purpose:
	Arguments:

	dsphalt
	Syntax:
	Purpose:
	Arguments:

	dspload
	Syntax:
	Purpose:
	Arguments:

	dsplookupline
	Syntax:
	Purpose:
	Arguments:
	Example:

	dsplookupsymbol
	Syntax:
	Purpose:
	Arguments:

	dspmemorywin
	Syntax:
	Purpose:
	Arguments:

	dspplotrotate
	Syntax:
	Purpose:
	Arguments:

	dspplotwin
	Syntax:
	Purpose:
	Arguments:
	Examples:

	dspprojectaddfile
	Syntax:
	Purpose:
	Arguments:

	dspprojectaddfolder
	Syntax:
	Purpose:
	Arguments:

	dspprojectbuild
	Syntax:
	Purpose:

	dspprojectclose
	Syntax:
	Purpose:
	Arguments:

	dspprojectinfo
	Syntax:
	Purpose:
	Example:

	dspprojectload
	Syntax:
	Purpose:

	dspprojectremovefile
	Syntax:
	Purpose:

	dspprojectremovefolder
	Syntax:
	Purpose:

	dspregisterwin
	Syntax:
	Purpose:
	Arguments:

	dspreset
	Syntax:
	Purpose:
	Arguments:

	dsprestart
	Syntax:
	Purpose:
	Arguments:

	dsprun
	Syntax:
	Purpose:
	Arguments:

	dspset
	Syntax:
	Purpose:
	Arguments:
	Example:

	dspsetbreak
	Syntax:
	Purpose:
	Arguments:
	Example:

	dspsetmemblock
	Syntax:
	Purpose:
	Arguments:
	Example:

	dspsetswstack
	Syntax:
	Purpose:
	Arguments:
	Example:

	dspstepasm
	Syntax:
	Purpose:
	Arguments:

	dspstepin
	Syntax:
	Purpose:
	Arguments:

	dspstepout
	Syntax:
	Purpose:
	Arguments:

	dspstepover
	Syntax:
	Purpose:
	Arguments:

	dspwaitforhalt
	Syntax:
	Purpose:

	Additional Tcl Resources

