
4 DSP LIBRARY FOR
ADSP-2106X PROCESSORS

Figure 4-0.
Table 4-0.
Listing 4-0.
Listing 4-0.
Overview
The run-time library for ADSP-2106x processors contains a collection of
functions that provide services commonly required by DSP applications;
these functions are in addition to the C/C++ run-time library functions
that are described in Chapter 3. The services provided by the DSP library
functions include support for interrupt handling, signal processing, and
access to hardware registers. All these services are Analog Devices exten-
sions to ANSI standard C.

For more information on the algorithms on which many of the C library's
math functions are based, see Cody, W. J. and W. Waite, Software Manual
for the Elementary Functions, Englewood Cliffs, New Jersey: Prentice Hall,
1980.

The sections of this chapter present the following information on the
compiler:

• “DSP Run-Time Library Guide” (starting on page 4-2) contains
introductory information about the ADI special header files and
built-in functions that are included with this release of the cc21k
compiler.

• “DSP Run-Time Library Reference” (starting on page 4-13) con-
tains the complete reference information for each DSP run-time
library function included with this release of the cc21k compiler.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 4-1

DSP Run-Time Library Guide
The C++ library reference information in HTML format is included on
the software distribution CD-ROM. To access the reference files from
VisualDSP++, see the procedure described in “Related Documents” on
page 1-5. Select the C++ Run-Time Library Reference from the list of
documents.

� You can also manually access the HTML files using a web browser.

DSP Run-Time Library Guide
The DSP run-time library contains routines that you can call from your
source program. This section describes how to use the library and provides
information on the following topics:

• “Linking DSP Library Functions” on page 4-3

• “Working With Library Source Code” on page 4-3

• “DSP Header Files” on page 4-4

• “Built-In DSP Functions” on page 4-11

For information on the contents of the DSP library, see “DSP Run-Time
Library Reference” on page 4-13 and on-line Help.
4-2 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

DSP Library for ADSP-2106x Processors
Linking DSP Library Functions
When your C code calls a DSP run-time library function, the call creates a
reference that the linker resolves when linking your program. One way to
direct the linker to the location of the DSP library is to use the default
Linker Description File (ADSP-21<your_target>.ldf). The default Linker
Description File will automatically direct the linker to the library
libdsp.dlb in the 21k\lib subdirectory of your VisualDSP installation. If
not using the default LDF file, then either add libdsp.dlb to the LDF
used for your project, or alternatively use the compiler's -ldsp switch to
specify that libdsp.dlb is to be added to the link line.

Working With Library Source Code
The source code for the functions and macros in the DSP run-time library
is provided with your VisualDSP software. By default, the installation
program copies the source code to a subdirectory of the directory where
the run-time libraries are kept, named ...\21k\lib\src. The directory
contains the source for the C run-time library, for the DSP run-time
library, and for the I/O run-time library, as well as the source for the main
program start-up functions. If you do not intend to modify any of the
run-time library functions, you can delete this directory and its contents
to conserve disk space.

The source code is provided so you can customize any particular function
for your own needs. To modify these files, you need proficiency in
ADSP-21xxx assembly language and an understanding of the run-time
environment, as explained in “C/C++ Run-Time Model” (starting on
page 2-121). Before you make any modifications to the source code, copy
the source code to a file with a different filename and rename the function
itself. Test the function before you use it in your system to verify that it is
functionally correct. Note that Analog Devices supports the run-time
library functions only as provided.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 4-3

DSP Run-Time Library Guide
DSP Header Files
The following DSP header files are supplied with this release of the cc21k
compiler.

21060.h — ADSP-2106x DSP Functions

The 21060.h header file includes the ADSP-2106x processor-specific func-
tions of the DSP library, such as poll_flag_in(), timer_set(), and
idle(). The timer_set(), timer_on(), and timer_off() functions are
also available as in-line functions.

21065l.h — ADSP-21065L DSP Functions

The 21065l.h header file includes the ADSP-21065L processor-specific
functions of the DSP library, such as poll_flag_in() and idle(). The
header file also includes support for the two programmable timers in the
form of in-line functions.

asm_sprt.h — Mixed C/Assembly Support

The asm_sprt.h header file consists of the ADSP-21xxx family assembly
language macros, not C functions. They are used in your assembly rou-
tines that interface with C functions. For more information on this header
file, see “Using Mixed C/C++ and Assembly Support Macros” on
page 2-153.

comm.h — A-law and µ-law Companders

The comm.h header file includes the voice-band compression and expan-
sion communication functions of the DSP library.
4-4 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

DSP Library for ADSP-2106x Processors
complex.h — Basic Complex Arithmetic Functions

The complex.h header file contains the type definition and some basic
functions for complex_float variables.

The following structure is used to represent complex numbers in rectangu-
lar coordinates:

typedef struct {
 float re;
 float im;
} complex_float ;

def21060.h — ADSP-21060 Bit Definitions

The def21060.h header file includes macro definitions to enable usage of
symbolic names for the system register bits for the ADSP-21060 proces-
sors. It also contains macro definitions for the IOP register addresses and
bit fields.

def21061.h — ADSP-21061 Bit Definitions

The def21061.h header file includes macro definitions to enable usage of
symbolic names for the system register bits for the ADSP-21061 proces-
sors. It also contains macro definitions for the IOP register addresses and
bit fields.

def21062.h — ADSP-21062 Bit Definitions

The def21062.h header file includes macro definitions to enable usage of
symbolic names for the system register bits for the ADSP-21062 proces-
sors. It also contains macro definitions for the IOP register addresses and
bit fields.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 4-5

DSP Run-Time Library Guide
def21065l.h — ADSP-21065L Bit Definitions

The def21065l.h header file includes macro definitions to enable usage of
symbolic names for the system register bits for the ADSP-21065L proces-
sors. It also contains macro definitions for the IOP register addresses and
bit fields.

dma.h — DMA Support Functions

The dma.h header file provides definitions and setup, status, enable and
disable functions for DMA operations.

filters.h — DSP Filters

The filters.h header file includes the digital signal processing filter func-
tions of the DSP library.

macros.h — Circular Buffers

The macro.h header file consists of ADSP-21xxx family assembly language
macros, not C functions. Some are used to manipulate the circular buffer
features of the ADSP-21xxx family processors.

math.h — Math Functions

The standard math functions defined in math.h have been augmented by
implementations for the float data type and some additional functions
that are Analog Devices extensions to the ANSI standard. Table 4-1 pro-
vides a summary of the additional library functions defined by the math.h
header file.
4-6 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

DSP Library for ADSP-2106x Processors
� The following functions are only available if double is the same size
as float:

copysign

favg

fclip

fmax

fmin

Table 4-1. Math Library - Additional Functions

Description Prototype

sign copy double copysign (double x, double y);

float copysignf (float x, float y);

cotangent double cot (double x);

float cotf (float x);

average double favg (double x, double y);

float favgf (float x, float y);

clip double fclip (double x, double y);

float fclipf (float x, float y);

maximum double fmax (double x, double y);

float fmaxf (float x, float y);

minimum double fmin (double x, double y);

float fminf (float x, float y);

reciprocal of square root double rsqrt (double x, double y);

float rsqrtf (float x, float y);
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 4-7

DSP Run-Time Library Guide
matrix.h — Matrix Functions

The matrix.h header file contains functions for operating on real matri-
ces; specifically it defines functions for adding and subtracting two
matrices and for multiplying a matrix by either a scalar or a matrix.

saturate.h — Saturation Mode Arithmetic

The saturate.h header file defines the interface for the saturated arith-
metic operations. See “Saturated Arithmetic” on page 2-87 for further
information.

sport.h — Serial Port Support Functions

The sport.h header file provides definitions and setup, enable, and dis-
able functions for the SHARC serial ports.

stats.h — Statistical Functions

The stats.h header file includes various statistics functions of the DSP
library, such as mean() and autocorr().

sysreg.h — Register Access

The sysreg.h header file defines a set of built-in functions that provide
efficient access to the SHARC system registers from C. The supported
functions are fully described in the section “Access to System Registers” in
Chapter 2 Compiler.
4-8 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

DSP Library for ADSP-2106x Processors
trans.h — Fast Fourier Transforms

The trans.h header file includes the Fast Fourier Transform functions of
the DSP library. Note that cfftN stands for the entire family of Fast Fou-
rier Transform functions cfft65536, cfft32768, etc.

The cfftN functions compute the fast Fourier transform (FFT) of their
N-point complex input signal. The ifftN functions compute the inverse
fast Fourier transform of their N-point complex input signal. The input to
each of these functions is two float arrays (real and imaginary) of N ele-
ments. The routines output two N-element arrays.

� If you only wish to input the real part of a signal, ensure that the
imaginary input array is filled with zeros before calling the function.

The functions first bit-reverse the input arrays and then process them with
an optimized block-floating-point FFT (or IFFT) routine.

The rfftN functions work like cfftN functions, except they operate on
input arrays of real data only. This is equivalent to a cfftN whose imagi-
nary input component is set to zero.

window.h — Window Generators

The window.h header file contains various functions to generate windows
based on various methodologies. The functions, defined in the window.h
header file, are listed in Table 4-2.

For all window functions, a stride parameter a can be used to space the
window values. The window length parameter n equates to the number of
elements in the window. Therefore, for a “stride a” of 2 and a “length n”
of 10, an array of length 20 is required, where every second entry is
untouched.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 4-9

DSP Run-Time Library Guide
Table 4-2. Window Generator Functions

Description Prototype

generate bartlett window void gen_bartlett

 (float w[], int a, int n)

generate blackman window void gen_blackman

 (float w[], int a, int n)

generate gaussian window void gen_gaussian

 (float w[], float alpha, int a, int n)

generate hamming window void gen_hamming

 (float w[], int a, int n)

generate hanning window void gen_hanning

 (float w[], int a, int n)

generate harris window void gen_harris

 (float w[], int a, int n)

generate kaiser window void gen_kaiser

 (float w[], float beta, int a, int n)

generate rectangular window void gen_rectangular

 (float w[], int a, int n)

generate triangle window void gen_triangle

 (float w[], int a, int n)
4-10 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

DSP Library for ADSP-2106x Processors
Built-In DSP Functions
The C/C++ compiler supports built-in functions (also known as intrinsic
functions) that enable efficient use of hardware resources. Knowledge of
these functions is built into the compiler. Your program uses them via
normal function call syntax. The compiler notices the invocation and
replaces a call to a DSP library function with one or more machine
instructions, just as it does for normal operators like “+” and “*”.

Built-in functions are declared in system header files and have names
which begin with double underscores, __builtin.

� Identifiers beginning with “__” are reserved by the C standard, so
these names do not conflict with user defined identifiers.

These functions are specific to individual architectures. The built-in DSP
library functions supported at this time on the ADSP-2106x architectures
are listed in Table 4-3. Refer to “Using the Compiler’s Built-In C library
Functions” on page 3-18 for further information on this topic.

� Use the -no-builtin compiler switch to disable this feature.

Table 4-3. Built-in DSP Functions

copysign1

1 These functions will only be compiled as a built-in
function if double is the same size as float.

copysignf

favg1 favgf

fmax1 fmaxf

fmin1 fminf
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 4-11

DSP Run-Time Library Guide
The compiler also supports a set of built-in functions for which no line
machine instructions are substituted. This set of built-in functions is char-
acterized by defining one or more pointers in their argument list.

For this set of built-in functions, the compiler relaxes the normal rule
whereby any pointer that is passed to a library function must address Data
Memory (DM). The compiler recognizes when certain pointers address
Program Memory (PM) and will generate a call to an appropriate version
of the run-time library function. The following is a list of library functions
that may be called with pointers that address Program Memory:

matadd

matmul

matscalmult

matsub

� Use the -no-builtin compiler switch to disable this feature.
4-12 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

DSP Library for ADSP-2106x Processors
DSP Run-Time Library Reference
The DSP run-time library is a collection of functions that you can call
from your C programs. This section lists the functions in alphabetical
order. Note the following items that apply to all the functions in the
library.

Notation Conventions. An interval of numbers is indicated by the mini-
mum and maximum, separated by a comma, and enclosed in two square
brackets, two parentheses, or one of each. A square bracket indicates that
the endpoint is included in the set of numbers; a parenthesis indicates that
the endpoint is not included.

Function Benchmarks and Specifications. All functions have been timed
from setup, to invocation, to results storage of returned value. This
includes all register storing, parameter passing, etc. Most functions exe-
cute slightly faster if you pass constants as arguments instead of variables.

Restrictions. When polymorphic functions are used and the function
returns a pointer to program memory, cast the output of the function to
pm. For example:

(char pm *)

Reference Format. Each function in the library has a reference page.
These pages follow the following format:

Name and Purpose of the function

Synopsis—Required header file and functional prototype

Description—Function specification

Error Conditions—Method function uses to indicate an error

Example—Typical function usage

See Also—Related functions
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 4-13

DSP Run-Time Library Reference
a_compress

A-law compression

Synopsis

#include <comm.h>
int a_compress (int x);

Description

The a_compress function takes a linear 13-bit signed speech sample and
compresses it according to CCITT recommendation G.711. The value
returned is an 8-bit sample that can be sent directly to an A-law codec.

Error Conditions

The a_compress function does not return an error condition.

Example

#include <comm.h>
int sample, compress;

compress = a_compress (sample);

See Also

a_expand, mu_compress
4-14 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

DSP Library for ADSP-2106x Processors
a_expand

A-law expansion

Synopsis

#include <comm.h>
int a_expand (int compress_x);

Description

The a_expand function takes an 8-bit compressed speech sample and
expands it according to CCITT recommendation G.711 (A-law defini-
tion). The value returned is a linear 13-bit signed sample.

Error Conditions

The a_expand function does not return an error condition.

Example

#include <comm.h>
int compressed_sample, expanded;

expanded = a_expand (compressed_sample);

See Also

a_compress, mu_expand
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 4-15

DSP Run-Time Library Reference
autocoh

autocoherence

Synopsis

#include <stats.h>
float *autocoh (float dm out[],

 const float dm in[],
 int samples,
 int lags);

Description

The autocoh function computes the autocoherence of the floating-point
input, in[]. The autocoherence of an input signal is its autocorrelation
minus its mean. The function returns a pointer to the output array, out[]
of length lags.

Error Conditions

The autocoh function does not return an error condition.

Example

#include <stats.h>
#define SAMPLES 1024

float excitation[SAMPLES], response[16];
int lags = 16;

autocoh (response, excitation, SAMPLES, lags);

See Also

autocorr, crosscoh, crosscorr
4-16 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

DSP Library for ADSP-2106x Processors
autocorr

autocorrelation

Synopsis

#include <stats.h>
float *autocorr (float dm out[],

 const float dm in[],
 int samples,
 int lags);

Description

The autocorr function performs an autocorrelation of a signal. Autocorre-
lation is the cross-correlation of a signal with a copy of itself. It provides
information about the time variation of the signal. The signal to be auto-
correlated is given by the in[] input array. The number of samples of the
autocorrelation sequence to be produced is given by lags. The length of
the input sequence is given by samples. This function returns a pointer to
the out[] output data array of length lags.

The autocorr function is used in digital signal processing applications
such as speech analysis.

Error Conditions

The autocorr function does not return an error condition.

Example

#include <stats.h>
float r[10], s[160];

autocorr (r, s, 160, 10);
 /* compute first 10 autocorr coefficients of array s */

See Also

autocoh, crosscoh, crosscorr
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 4-17

DSP Run-Time Library Reference
biquad

biquad filter section

Synopsis

#include <filters.h>
float biquad (float sample,

const float pm coeffs[],
float dm state[],
int sections);

Description

The biquad function implements a biquad filter. The function produces
the filtered response of its input data. The parameter sections specifies
the number of biquad sections.

The coeffs array must be five (5) times the number of sections in length
and it also must be located in program memory (PM). The definition is:

float pm coeffs[5*sections];

The state array holds two (2) delay elements per section. It also has one
extra location that holds an internal pointer. The total length must be
2*sections + 1. The definition is:

float dm state[2*sections + 1];

The state array is not accessed by the user, except that it should be initial-
ized to all zeros before the first call to biquad. The first location of state is
an address. Setting the address to zero tells the function that it is being
called for the first time.

Error Conditions

The biquad function does not return an error condition.
4-18 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

DSP Library for ADSP-2106x Processors
Example

#include <filters.h>
#define TAPS 9

float sample, output, state[2*TAPS+1];
float pm coeffs[5*TAPS];
int i;

for (i = 0; i < 2*TAPS+1; i++)
state[i] = 0; /* initialize state array */

output = biquad (sample, coeffs, state, TAPS);

N = the number of biquad sections.

The coeffs array holds 5 coefficients for each section and therefore should
be 5 * N in length. The delay array holds 2 delayed elements for each sec-
tion, and should be 2 * N + 1 in length.

coeffs[A+4]coeffs[A+4] coeffs[A+1]

coeffs[A+3] coeffs[A]

coeffs[A+1]

coeffs[A+3] coeffs[A]

sample

coeffs[4]

coeffs[3]

coeffs[1]

coeffs[0]

coeffs[9] coeffs[6]

coeffs[8] coeffs[5]

First Section Second Section

N-1th Section

A=5*(N-2)

Nth Section

A=5*(N-1)
coeffs[A+2] coeffs[A+2]

output

z-1 z-1

z-1z-1

z-1 z-1

z-1 z-1
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 4-19

DSP Run-Time Library Reference
The algorithm shown here is adapted from Oppenheim, Alan V. and
Ronald Schafer, Digital Signal Processing, Englewood Cliffs, New Jersey:
Prentice Hall, 1975.

See Also

fir, iir
4-20 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

DSP Library for ADSP-2106x Processors
cabsf

complex absolute value

Synopsis

#include <complex.h>
float cabsf (complex_float z);

Description

The cabsf function returns the floating-point absolute value of its com-
plex input.

The absolute value of a complex number is evaluated with the following
formula:

where x is the complex_float input and y is the float output.

Error Conditions

The cabsf function does not return an error condition.

Example

#include <complex.h>
complex_float cnum;
float answer;

cnum.re = 12.0;
cnum.im = 5.0;

answer = cabsf (cnum); /* answer = 13.0 */

See Also

fabs, fabsf, labs

y Re x)()2 Im x()()2+()(=
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 4-21

DSP Run-Time Library Reference
cexpf

complex exponential

Synopsis

#include <complex.h>
complex_float cexpf (complex_float z);

Description

The cexpf function computes the complex exponential value e to the
power of the first argument.

The exponential of a complex value is evaluated with the following
formula:

Re(y) = expf (Re(x)) * cosf (Im(x));

Im(y) = expf (Re(x)) * sinf (Im(x));

where x is the complex_float input and y is the complex_float output.

Error Conditions

For underflow errors the cexpf function returns zero.

Example

#include <complex.h>
complex_float cnum;
complex_float answer;

cnum.re = 1.0;
cnum.im = 0.0;

answer = cexpf (cnum); /* answer = (2.7182 + 0i) */

See Also

pow, powf, log, logf
4-22 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

DSP Library for ADSP-2106x Processors
cfftN

N-point complex input fast Fourier transform

Synopsis

#include <trans.h>
float *cfft65536 (const float dm real_input[],

const float dm imag_input[],
float dm real_output[], float dm imag_output[]);

float *cfft32768 (const float dm real_input[],
const float dm imag_input[],
float dm real_output[], float dm imag_output[]);

float *cfft16384 (const float dm real_input[],
const float dm imag_input[],
float dm real_output[], float dm imag_output[]);

float *cfft8192 (const float dm real_input[],
const float dm imag_input[],
float dm real_output[], float dm imag_output[]);

float *cfft4096 (const float dm real_input[],
const float dm imag_input[],
float dm real_output[], float dm imag_output[]);

float *cfft2048 (const float dm real_input[],
const float dm imag_input[],
float dm real_output[], float dm imag_output[]);

float *cfft1024 (const float dm real_input[],
const float dm imag_input[],
float dm real_output[], float dm imag_output[]);

float *cfft512 (const float dm real_input[],
const float dm imag_input[],
float dm real_output[], float dm imag_output[]);

float *cfft256 (const float dm real_input[],
const float dm imag_input[],
float dm real_output[], float dm imag_output[]);
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 4-23

DSP Run-Time Library Reference
float *cfft128 (const float dm real_input[],
const float dm imag_input[],
float dm real_output[], float dm imag_output[]);

float *cfft64 (const float dm real_input[],
const float dm imag_input[],
float dm real_output[], float dm imag_output[]);

float *cfft32 (const float dm real_input[],
const float dm imag_input[],
float dm real_output[], float dm imag_output[]);

float *cfft16 (const float dm real_input[],
const float dm imag_input[],
float dm real_output[], float dm imag_output[]);

float *cfft8 (const float dm real_input[],
const float dm imag_input[],
float dm real_output[], float dm imag_output[]);

Description

Each of these 14 cfftN functions computes the N-point radix-2 fast Fou-
rier transform (CFFT) of its floating point input (where N is 8, 16, 32,
64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768 or 65536).

There are fourteen distinct functions in this set. They all perform the same
function with the same type and number of arguments. The only differ-
ence between them is the size of the arrays they operate on. Call a
particular function by substituting the number of points for N, as in

cfft8 (r_inp, i_inp, r_outp, i_outp);

The input to cfftN is a floating-point array of N points. If there are fewer
than N actual data points, you must pad the array with zeros to make N
samples. Better results occur with less zero padding, however. The input
data should be windowed (if necessary) before calling the function because
no preprocessing is performed on the data.

cfftN() returns a pointer to the real_output array.
4-24 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

DSP Library for ADSP-2106x Processors
Error Conditions

The cfftN functions do not return any error conditions.

Example

#include <trans.h>
#define N 2048

float real_input[N], imag_input[N];
float real_output[N], imag_output[N];

/* Real input array is filled from a converter or other source
*/

cfft2048 (real_input, imag_input, real_output, imag_output);
 /* Arrays are filled with FFT data */

See Also

ifftN, rfftN
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 4-25

DSP Run-Time Library Reference
copysign, copysignf

copy the sign of the floating-point operand (IEEE arithmetic function)

Synopsis

#include <math.h>
double copysign (double x, double y);
float copysignf (float x, float y);

Description

The copysign and copysignf functions copy the sign of the second argu-
ment y to the first argument x without changing either its exponent or
mantissa. The copysignf function is a built-in function which is imple-
mented with an Fn=Fx COPYSIGN Fy instruction.

Error Conditions

This function does not return an error code.

Example

#include <math.h>
double x;
float y;

x = copysign (0.5, -10.0); /* x = -0.5 */
y = copysignf (-10.0, 0.5f); /* y = 10.0 */

See Also

No references to this function.

� The double precision function copysign is only available under
-double-size-32 and actually calls the single precision function
copysignf.
4-26 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

DSP Library for ADSP-2106x Processors
cot, cotf

cotangent

Synopsis

#include <math.h>
double cot (double x);
float cotf (float x);

Description

The cot and cotf functions return the cotangent of their argument. The
input is interpreted as radians.

The cot and cotf functions return a value that is accurate to 20 bits of the

mantissa. This accuracy corresponds to a maximum relative error of 2-20
over its input range.

Error Conditions

The cot and cotf functions do not return an error condition.

Example

#include <math.h>
double x, y;
float v, w;

y = cot (x);
v = cotf (w);

See Also

tan, tanf
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 4-27

DSP Run-Time Library Reference
crosscoh

cross-coherence

Synopsis

#include <stats.h>
float *crosscoh (float dm out[],

const float dm x[],
const float dm y[],
int samples,
int lags);

Description

The crosscoh function computes the cross-coherence of two floating
point inputs, x[] and y[]. The cross-coherence is the cross-correlation
minus the product of the mean of x and the mean of y. The length of the
input arrays is given by samples. This function returns a pointer to the
output data array, out[], of length lags.

Error Conditions

The crosscoh function does not return an error condition.

Example

#include <stats.h>
#define SAMPLES 1024

float excitation[SAMPLES], response[16], y[SAMPLES];
int lags = 16;

crosscoh (response, excitation, y, SAMPLES, lags);

See Also

autocoh, autocorr, crosscorr
4-28 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

DSP Library for ADSP-2106x Processors
crosscorr

cross-correlation

Synopsis

#include <stats.h>
float *crosscorr (float dm out[],

const float dm x[],
const float dm y[],
int samples,
int lags);

Description

The crosscorr function performs a cross-correlation between two signals.
The cross-correlation is the sum of the scalar products of the signals in
which the signals are displaced in time with respect to one another. The
signals to be correlated are given by input x[] and y[] arrays. The length
of the input arrays is given by samples. This function returns a pointer to
the output data array, out[], of length lags.

The crosscorr function is used in digital signal processing applications
such as speech analysis.

Error Conditions

The crosscorr function does not return an error condition.

Example

#include <stats.h>
float r[10], s[160];
float p[160];

crosscorr (r, s, p, 160, 10);

See Also

autocoh, crosscoh, autocorr
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 4-29

DSP Run-Time Library Reference
favg, favgf

return mean of two values

Synopsis

#include <math.h>
double favg (double x, double y);
float favgf (float x, float y);

Description

The favg and favgf functions return the mean of its two arguments. The
favgf function is a built-in function which is implemented with an
Fn=(Fx+Fy)/2 instruction.

Error Conditions

The favg and favgf functions do not return an error code.

Example

#include <math.h>
float x;

x = favgf (10.0f, 8.0f); /* returns 9.0f */

See Also

avg, lavg

� The double-precision function favg is only available under
-double-size-32 and actually calls the single precision function
favgf.
4-30 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

DSP Library for ADSP-2106x Processors
fclip, fclipf

clip x by y

Synopsis

#include <math.h>
double fclip (double x, double y);
float fclipf (float x, float y);

Description

The fclip and fclipf functions return the first argument if it is less than
the absolute value of the second argument, otherwise it returns the abso-
lute value of the second argument if the first is positive, or minus the
absolute value if the first argument is negative. The fclipf function is a
built-in function which is implemented with an Fn=CLIP Fx BY Fy
instruction.

Error Conditions

The fclip and fclipf functions do not return an error code.

Example

#include <math.h>
float y;

y = fclipf (5.1f, 8.0f); /* returns 5.1f */

See Also

clip, lclip

� The double precision function fclip is only available under
-double-size-32 and actually calls the single precision function
fclipf.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 4-31

DSP Run-Time Library Reference
fir

finite impulse response (FIR) filter

Synopsis

#include <filters.h>
float fir (float sample,

const float pm coeffs[],
float dm state[],
int taps);

Description

The fir function implements a finite impulse response (FIR) filter
defined by the coefficients and delay line that are supplied in the call of
fir. The function produces the filtered response of its input data. This
FIR filter is structured as a sum of products. The characteristics of the fil-
ter (passband, stop band, etc.) are dependent on the coefficient values and
the number of taps supplied by the calling program.

The floating-point input to the filter is sample. The integer taps indicates
the length of the filter, which is also the length of the array coeffs. The
coeffs array holds one FIR filter coefficient per element. The coefficients
are stored in reverse order; for example, a_coeffs[0] holds the taps -1
(the last coefficient). The coeffs array must be located in program mem-
ory data space so that the single-cycle dual-memory fetch of the processor
can be used.

The state array contains a pointer to the delay line as its first element,
followed by the delay line values. The length of the state array is there-
fore 1 greater than the number of taps. Each filter has its own state array,
which should not be modified by the calling program, only by the fir
function. The state array should be initialized to zeros before the fir
function is called for the first time.
4-32 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

DSP Library for ADSP-2106x Processors
 Error Conditions

 The fir function does not return an error condition.

 Example

#include <filters.h>
float y;
float pm coeffs[10]; /* coeffs array must be */

/* initialized and in */
/* PM memory */

float state[11];
int i;

for (i = 0; i < 11; i++)
 state[i] = 0; /* initialize state array */

y = fir (0.775, coeffs, state, 10);
/* y holds the filtered output */

See Also

biquad, iir
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 4-33

DSP Run-Time Library Reference
fmax, fmaxf

return larger of two values

Synopsis

#include <math.h>
double fmax (double x, double y);
float fmaxf (float x, float y);

Description

The fmax and fmaxf functions return the larger of its two arguments. The
fmaxf function is a built-in function which is implemented with an
Fn=MAX(Fx,Fy) instruction.

Error Conditions

The fmax and fmaxf functions do not return an error code.

Example

#include <math.h>
float y;

y = fmaxf (5.1f, 8.0f); /* returns 8.0f */

See Also

fmin, fminf, lmax, lmin, max, min

� The double precision function fmax is only available under
-double-size-32 and actually calls the single precision function
fmaxf.
4-34 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

DSP Library for ADSP-2106x Processors
fmin, fminf

return smaller of two values

Synopsis

#include <math.h>
double fmin (double x, double y);
float fminf (float x, float y);

Description

The fmin and fminf functions return the smaller of their two arguments.
The fminf function is a built-in function which is implemented with an
Fn=MIN(Fx,Fy) instruction.

Error Conditions

The fmin and fminf functions do not return an error code.

Example

#include <math.h>
float y;

y = fminf (5.1f, 8.0f); /* returns 5.1f */

See Also

fmax, fmaxf, lmax, lmin, max, min

� The double precision function fmin is only available under
-double-size-32 and actually calls the single precision function
fminf.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 4-35

DSP Run-Time Library Reference
gen_bartlett

generate bartlett window

Synopsis

#include <window.h>
void gen_bartlett(
float w[], /* Window vector */
int a, /* Address stride in samples for window vector */
int N /* Length of window vector */);

Description

This function generates a vector containing the Bartlett window. The
length is specified by parameter N. This window is similar to the Triangle
window but has the following properties that differ from the Triangle
window:

• The Bartlett window always returns a window with two zeros on
either end of the sequence. Therefore, for odd n, the center section
of a N+2 Bartlett window equals a N Triangle window.

• For even n, the Bartlett window is the convolution of two rectangu-
lar sequences. There is no standard definition for the Triangle win-
dow for even n; the slopes of the Triangle window are slightly
steeper than those of the Bartlett window.

The algorithm used is

where n = {0, 1, 2, ..., N-1}

The domain supported by the function is a > 0; N > 0

w n
n N

N[] = −
− −

−1

1
2
1

2

4-36 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

DSP Library for ADSP-2106x Processors
Error Conditions

The gen_bartlett function does not return an error condition.

See Also

gen_blackman, gen_gaussian, gen_hamming, gen_hanning, gen_harris,
gen_kaiser, gen_rectangular, gen_triangle
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 4-37

DSP Run-Time Library Reference
gen_blackman

generate blackman window

Synopsis

#include <window.h>
void gen_blackman(
float w[], /* Window vector */
int a, /* Address stride in samples for window vector */
int N /* Length of window vector */);

Description

This function generates a vector containing the Blackman window. The
length is specified by parameter N.

The algorithm used is

where n = {0, 1, 2, ..., N-1}

The domain supported by the function is a > 0; N > 0

Error Conditions

The gen_blackman function does not return an error condition.

See Also

gen_bartlett, gen_gaussian, gen_hamming, gen_hanning, gen_harris,
gen_kaiser, gen_rectangular, gen_triangle

w n n
N

n
N

[] . . cos . cos= −
−







 +

−






0 42 05 2

1
0 08 4

1
π π
4-38 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

DSP Library for ADSP-2106x Processors
gen_gaussian

generate gaussian window

Synopsis

#include <window.h>
void gen_gaussian(
float w[], /* Window vector */
float alpha, /* Gaussian alpha parameter */
int a, /* Address stride in samples for window vector */
int N /* Length of window vector */);

Description

This function generates a vector containing the Gaussian window. The
length is specified by parameter N.

The algorithm used is

where n = {0, 1, 2, ..., N-1} and a is an input parameter

The domain supported by the function is a > 0; N > 0; � > 0.0

Error Conditions

The gen_gaussian function does not return an error condition.

See Also

gen_bartlett, gen_blackman, gen_hamming, gen_hanning, gen_harris,
gen_kaiser, gen_rectangular, gen_triangle

w n
n N

N() exp
/ /
/

= −
− −




















1
2

2 1 2
2

2

α

VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 4-39

DSP Run-Time Library Reference
gen_hamming

generate hamming window

Synopsis

#include <window.h>
void gen_hamming(
float w[], /* Window vector */
int a, /* Address stride in samples for window vector */
int N /* Length of window vector */);

Description

This function generates a vector containing the Hamming window. The
length is specified by parameter N.

The algorithm used is

where n = {0, 1, 2, ..., N-1}

The domain supported by the function is a > 0; N > 0

Error Conditions

The gen_hamming function does not return an error condition.

See Also

gen_bartlett, gen_blackman, gen_gaussian, gen_hanning, gen_harris,
gen_kaiser, gen_rectangular, gen_triangle

w n n
N

[] . . cos= −
−







054 0 46 2

1
π

4-40 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

DSP Library for ADSP-2106x Processors
gen_hanning

generate hanning window

Synopsis

#include <window.h>
void gen_hanning(
float w[], /* Window vector */
int a, /* Address stride in samples for window vector */
int N /* Length of window vector */);

Description

This function generates a vector containing the Hanning window. The
length is specified by parameter N. This window is also known as the
Cosine window.

The algorithm used is

where n = {1, 1, 2, ..., N+1}

The domain supported by the function is a > 0; N > 0

Error Conditions

The gen_hanning function does not return an error condition.

See Also

gen_bartlett, gen_blackman, gen_gaussian, gen_hamming, gen_harris,
gen_kaiser, gen_rectangular, gen_triangle

w n n
N

[] . . cos= −
+







05 05 2

1
π

VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 4-41

DSP Run-Time Library Reference
gen_harris

generate harris window

Synopsis

#include <window.h>
void gen_harris(
float w[], /* Window vector */
int a, /* Address stride in samples for window vector */
int N /* Length of window vector */);

Description

This function generates a vector containing the Harris window. The
length is specified by parameter N. This window is also known as the
Blackman-Harris window.

The algorithm used is

where n = {0, 1, 2, ..., N-1}

The domain supported by the function is a > 0; N > 0

Error Conditions

The gen_harris function does not return an error condition.

See Also

gen_bartlett, gen_blackman, gen_gaussian, gen_hamming, gen_hanning,
gen_kaiser, gen_rectangular, gen_triangle

w n n
N

n
N

n
N

[] . . * cos . * cos . *cos= −
−









 +

−








 +

−








0 35875 0 48829 2

1
014128 4

1
0 01168 6

1
π π π
4-42 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

DSP Library for ADSP-2106x Processors
gen_kaiser

generate kaiser window

Synopsis

#include <window.h>
void gen_kaiser(
float w[], /* Window vector */
float beta, /* Kaiser beta parameter */
int a, /* Address stride in samples for window vector */
int N /* Length of window vector */);

Description

This function generates a vector containing the Kaiser window.
The length is specified by parameter N. The β value is specified by
parameter b.

The algorithm used is

where n = {0, 1, 2, ..., N-1}, a = (N - 1) / 2, and I0(β) represents the
zeroth-order modified Bessel function of the first kind.

The domain supported by the function is a > 0; N > 0;

Error Conditions

The gen_kaiser function does not return an error condition.

()w n

I n

I
[]

/

=

− −






























0

2 1 2

0

1β α
α

β

VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 4-43

DSP Run-Time Library Reference
See Also

gen_bartlett, gen_blackman, gen_gaussian, gen_hamming, gen_hanning,
gen_harris, gen_rectangular, gen_triangle
4-44 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

DSP Library for ADSP-2106x Processors
gen_rectangular

generate rectangular window

Synopsis

#include <window.h>
void gen_rectangular(
float w[],/* Window vector */
int a, /* Address stride in samples for window vector */
int N /* Length of window vector */);

Description

This function generates a vector containing the Rectangular window. The
length is specified by parameter N.

The algorithm used is

w[n] = 1 where n = {0, 1, 2, ..., N-1}

The domain supported by the function is a > 0; N > 0

Error Conditions

The gen_rectangular function does not return an error condition.

See Also

gen_bartlett, gen_blackman, gen_gaussian, gen_hamming, gen_hanning,
gen_harris, gen_kaiser, gen_triangle
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 4-45

DSP Run-Time Library Reference
gen_triangle

 generate triangle window

Synopsis

#include <window.h>
void gen_triangle(
float w[], /* Window vector */
int a, /* Address stride in samples for window vector */
int N /* Length of window vector */);

Description

This function generates a vector containing the Triangle window. The
length is specified by parameter N. Refer to the Bartlett window regarding
the relationship between it and the Triangle window.

For even n the following equation applies:

where n = {0, 1, 2, ..., N-1}

 For odd n the following equation applies:

where n = {0, 1, 2, ..., N-1}

The domain supported by the function is a > 0; N > 0

w n

n
N

n N

N n
N

n N
[] =

+ <

− − >









2 1 2

2 2 1 2

w n

n
N

n N

N n
N

n N
[] =

+
+

<

−
+

>









2 2
1

2

2 2
1

2

4-46 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

DSP Library for ADSP-2106x Processors
Error Conditions

The gen_triangle function does not return an error condition.

See Also

gen_bartlett, gen_blackman, gen_gaussian, gen_hamming, gen_hanning,
gen_harris, gen_kaiser, gen_rectangular
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 4-47

DSP Run-Time Library Reference
histogram

histogram

Synopsis

#include <stats.h>
int *histogram(int dm out[],

const int dm in[],
int out_len,
int samples,
int bin_size);

Description

The histogram function computes a scaled-integer histogram of its input
array. The bin_size parameter is used to adjust the width of each individ-
ual bin in the output array. For example, a bin_size of 5 indicates that
the first location of the output array holds the number of occurrences of a
0, 1, 2, 3, or 4.

The output array is first zeroed by the function, and then each sample in
the input array is multiplied by 1/bin_size and truncated. The appropri-
ate bin in the output array is incremented. This function returns a pointer
to the output array.

All values within the input array must be within range. In order to achieve
maximum performance, out of bounds checking is not performed by this
function.

Error Conditions

The histogram function does not return an error condition.
4-48 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

DSP Library for ADSP-2106x Processors
Example

#include <stats.h>
#define SAMPLES 1024

int length = 2048;
int excitation[SAMPLES], response[2048];

histogram (response, excitation, length, SAMPLES, 5);

See Also

mean, var
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 4-49

DSP Run-Time Library Reference
idle

execute ADSP-21xxx IDLE instruction

Synopsis

#include <21060.h>
void idle (void);

Description

The idle function invokes the ADSP-21xxx idle instruction once and
returns. The idle instruction causes the processor to stop and respond
only to interrupts. For a complete description of the idle instruction,
please refer to the ADSP-2106x SHARC User's Manual.

� In previous releases of the VisualDSP++ software (prior to release
2.1), the idle function repeatedly executed the idle instruction.
This function has been changed to give you more control over the
amount of time spent in the idle state.

Error Conditions

The idle function does not return an error condition.

Example

#include <21060.h>

idle ();

See Also

interrupt, interruptf, interrupts, interuptcb, signal
4-50 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

DSP Library for ADSP-2106x Processors
ifftN

N-point inverse complex input fast Fourier transform (IFFT)

Synopsis

#include <trans.h>
float *ifft65536 (const float dm real_input[],

const float dm imag_input[],
float dm real_output[], float dm imag_output[]);

float *ifft32768 (const float dm real_input[],
const float dm imag_input[],
float dm real_output[], float dm imag_output[]);

float *ifft16384 (const float dm real_input[],
const float dm imag_input[],
float dm real_output[], float dm imag_output[]);

float *ifft8192 (const float dm real_input[],
const float dm imag_input[],
float dm real_output[], float dm imag_output[]);

float *ifft4096 (const float dm real_input[],
const float dm imag_input[],
float dm real_output[], float dm imag_output[]);

float *ifft2048 (const float dm real_input[],
const float dm imag_input[],
float dm real_output[], float dm imag_output[]);

float *ifft1024 (const float dm real_input[],
const float dm imag_input[],
float dm real_output[], float dm imag_output[]);

float *ifft512 (const float dm real_input[],
const float dm imag_input[],
float dm real_output[], float dm imag_output[]);

float *ifft256 (const float dm real_input[],
const float dm imag_input[],
float dm real_output[], float dm imag_output[]);
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 4-51

DSP Run-Time Library Reference
float *ifft128 (const float dm real_input[],
const float dm imag_input[],
float dm real_output[], float dm imag_output[]);

float *ifft64 (const float dm real_input[],
const float dm imag_input[],
float dm real_output[], float dm imag_output[]);

float *ifft32 (const float dm real_input[],
const float dm imag_input[],
float dm real_output[], float dm imag_output[]);

float *ifft16 (const float dm real_input[],
const float dm imag_input[],
float dm real_output[], float dm imag_output[]);

float *ifft8 (const float dm real_input[],
const float dm imag_input[],
float dm real_output[], float dm imag_output[]);

Description

Each of these 14 ifftN functions computes the N-point radix-2 inverse
fast Fourier transform (IFFT) of its floating-point input (where N is 8, 16,
32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768 or 65536).

There are 14 distinct functions in this set. They all perform the same
function with the same type and number of arguments. The only differ-
ence between them is the size of the arrays on which they operate. To call
a particular function, substitute the number of points for N; for example,

ifft8 (r_inp, i_inp, r_outp, i_outp);

The input to ifftN is a floating-point array of N points. If there are fewer
than N actual data points, you must pad the array with zeros to make N
samples. Better results occur with less zero padding, however.

The input data should be windowed (if necessary) before calling the func-
tion because no preprocessing is performed on the data. The functions
return a pointer to the real_output array.
4-52 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

DSP Library for ADSP-2106x Processors
Error Conditions

The ifftN functions do not return error conditions.

Example

#include <trans.h>
#define N 2048

float real_input[N], imag_input[N];
float real_output[N], imag_output[N];

/* Real input arrays filled from a previous xfft2048() or other
source */

ifft2048 (real_input, imag_input, real_output, imag_output);
 /* Arrays are filled with FFT data */

See Also

cfftN, rfftN
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 4-53

DSP Run-Time Library Reference
iir

infinite impulse response (IIR) filter

Synopsis

#include <filters.h>
float iir (float sample,

const float pm a_coeffs[],
const float pm b_coeffs[],
float dm state[],
int taps);

Description

The iir function implements an infinite impulse response (IIR) filter
defined by the coefficients and delay line that are supplied in the call of
iir. The function produces the filtered response of its input data. The IIR
filter implemented in this function is based on the Oppenheim and Scha-
fer Direct Form II. The characteristics of the filter are dependent on the
coefficient values supplied by the calling program.

The floating-point input to the filter is sample. The integer taps indicates
the length of the filter, which is the length of the arrays a_coeffs and
b_coeffs. The a_coeffs and b_coeffs arrays hold one IIR filter coeffi-
cient per element. The coefficients are stored in reverse order; so that
a_coeffs[0] holds the taps the last coefficient, and a_coeffs [taps - 1]
contains the first coefficient. The coeffs arrays must be located in pro-
gram memory data space so that the single-cycle dual-memory fetch of the
processor can be used.

The iir function stores a pointer to the delay line in the state array, in
addition to the delay line values. The length of the state array is therefore
1 greater than the number of taps. Each filter has its own state array,
which should not be modified by the calling program, only by the iir
function. The state array should be initialized to zeros before the iir
function is called for the first time.
4-54 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

DSP Library for ADSP-2106x Processors
The flow graph (below) corresponds to the iir() routine as part of the
DSP Run-Time Library.

Error Conditions

The iir function does not return an error condition.

sample

b_coeffs [TAPS-1]

output

b_coeffs [TAPS-2]

b_coeffs [TAPS-3]

b_coeffs [0]

a_coeffs [TAPS-1]

a_coeffs [TAPS-2]

a_coeffs [TAPS-3]

a_coeffs [0]

-1
z

-1
z

-1
z

-1
z

The b_coeffs array should equal TAPS+1

The a_coeffs array should equal TAPS
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 4-55

DSP Run-Time Library Reference
Example

#include <filters.h>
#define TAPS 10

float pm a_coeffs[TAPS], b_coeffs[TAPS];
float in_sample, output, state[TAPS+1];
int i;

for (i = 0; i < TAPS+1; i++)
 state[i] = 0; /* initialize state array */

output = iir (in_sample, a_coeffs, b_coeffs, state, TAPS);

See Also

biquad, fir
4-56 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

DSP Library for ADSP-2106x Processors
matadd

matrix addition

Synopsis

#include <matrix.h>
float *matadd (float output[][],

const float x_input[][],
const float y_input[][],
int r,
int s);

Description

The matadd function performs a matrix addition of the input matrices
x_input[][] and y_input[][], returning the result in output[][]. The
matadd function returns a pointer to the output matrix. The dimensions of
these matrices are x_input[r][s], y_input[r][s], and output[r][s].

Error Conditions

The matadd function does not return an error condition.

Example

#include <matrix.h>

float x[10][20], y[10][20];
float z[10][20];

matadd (z, x, y, 10, 20);

See Also

matsub
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 4-57

DSP Run-Time Library Reference
matmul

matrix multiplication

Synopsis

#include <matrix.h>
float *matmul (float z[][],

const float x[][],
const float y[][],
int r,
int s,
int t);

Description

The matmul function performs a matrix multiplication of the input matri-
ces x[][] and y[][], returning a pointer to the z[][] output matrix. The
dimensions of these matrices are x[r][s], y[s][t], and z[r][t]. The
matrix multiplication is defined by the following equation: (for i=0 to r-1,
for j=0 to t-1):

Error Conditions

The matmul function does not return an error condition.

Example

#include <matrix.h>

float x[10][5], y[5][10];
float z[10][10];

matmul (z, x, y, 10, 5, 10);

z i[] j[] x i[] k[] ∗ y k[] j[]
k 0=

s 1–

∑=
4-58 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

DSP Library for ADSP-2106x Processors
See Also

matscalmult
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 4-59

DSP Run-Time Library Reference
matscalmult

multiply matrix by scalar

Synopsis

#include <matrix.h>
float *matscalmult (float output[][],

const float input[][],
float scalar,
int r,
int s);

Description

The matscalmult function performs a scaled multiplication of the
input[][] matrix, returning the result in output[][]. The input[][]
matrix is multiplied by the input value scalar. The matscalmult function
returns a pointer to the output matrix. The dimensions of these matrices
are input[r][s], and output[r][s].

Error Conditions

The matscalmult function does not return an error condition.

Example

#include <matrix.h>
float x[10][5], z[10][5];

matscalmult (z, x, 0.5, 10, 5);
 /* multiplies the matrix x by 0.5 */

See Also

matmul
4-60 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

DSP Library for ADSP-2106x Processors
matsub

matrix subtraction

Synopsis

#include <matrix.h>
float *matsub (float output[][],

const float x_input[][],
const float y_input[][],
int r,
int s);

Description

The matsub function subtracts the elements of the input matrix
y_input[][] from the input matrix x_input[][], returning the result in
output[][]. The matsub function returns a pointer to the output matrix.
The dimensions of these matrices are x_input[r][s], y_input[r][s], and
output[r][s].

Error Conditions

The matsub function does not return an error condition.

Example

#include <matrix.h>

float x[10][5], y[10][5];
float z[10][5];

matsub (z, x, y, 10, 5);

See Also

matadd
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 4-61

DSP Run-Time Library Reference
mean

mean of an array of floating point numbers

Synopsis

#include <stats.h>
float mean (const float dm in[], int length);

Description

The mean function returns the mean of its floating point input array.

Error Conditions

The mean function does not return an error condition.

Example

#include <stats.h>
float result, input[256];

result = mean (input, 256);

See Also

var
4-62 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

DSP Library for ADSP-2106x Processors
mu_compress

µ-law compression

Synopsis

#include <comm.h>
int mu_compress (int x);

Description

The mu_compress function takes a linear 14-bit signed speech sample and
compresses it according to CCITT recommendation G.711. The value
returned is an 8-bit sample that can be sent directly to a µ-law codec.

Error Conditions

The mu_compress function does not return an error condition.

Example

#include <comm.h>
int linear, compressed;

compressed = mu_compress (linear);

See Also

mu_expand, a_compress
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 4-63

DSP Run-Time Library Reference
mu_expand

µ-law expansion

Synopsis

#include <comm.h>
int mu_expand (int x);

Description

The mu_expand function takes an 8-bit compressed speech sample and
expands it according to CCITT recommendation G.711 (µ-law defini-
tion). The value returned is a linear 14-bit signed sample.

Error Conditions

The mu_expand function does not return an error condition.

Example

#include <comm.h>
int compressed_sample, expanded;

expanded = mu_expand (compressed_sample);

See Also

mu_compress, a_expand
4-64 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

DSP Library for ADSP-2106x Processors
poll_flag_in

test input flag

Synopsis

#include <21060.h>
int poll_flag_in (int flag, int mode);

Description

The poll_flag_in function tests the specified flag (0, 1, 2, 3) for the spec-
ified transition (0=low to high, 1=high to low, 2=flag high, 3=flag low,
4=any transition, 5=read flag). The function returns a zero after the speci-
fied transition has occurred in modes 0-3. In mode 4 it returns the state of
the flag after the transition. In mode 5 it returns the value of the flag with-
out waiting.

This function assumes that the flag direction in the MODE2 register is
already set as an input (the default state at reset).

Table 4-4. poll_flag_in Macros and Values

Flag Macro Value Mode Macro Value

READ_FLAG0 0 FLAG_IN_LO_TO_HI 0

READ_FLAG1 1 FLAG_IN_HI_TO_LOW 1

READ_FLAG2 2 FLAG_IN_HI 2

READ_FLAG3 3 FLAG_IN_LOW 3

READ_FLAG3 3 FLAG_IN_TRANSITION 4

READ_FLAG3 3 RETURN_FLAG_STATE 5
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 4-65

DSP Run-Time Library Reference
Error Conditions

The poll_flag_in function returns a negative value for an invalid flag or
transition mode.

Example

#include <21060.h>

poll_flag_in (0, 3);
 /* return zero after transition has occurred */

See Also

interrupt, interruptf, interrupts, interuptcb, set_flag
4-66 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

DSP Library for ADSP-2106x Processors
rfftN

N-point real input fast Fourier transform

Synopsis

#include <trans.h>
float *rfft65536 (const float dm real_input[],

 float dm real_output[], float dm imag_output[]);

float *rfft32768 (const float dm real_input[],
 float dm real_output[], float dm imag_output[]);

float *rfft16384 (const float dm real_input[],
 float dm real_output[], float dm imag_output[]);

float *rfft8192 (const float dm real_input[],
 float dm real_output[], float dm imag_output[]);

float *rfft4096 (const float dm real_input[],
 float dm real_output[], float dm imag_output[]);

float *rfft2048 (const float dm real_input[],
 float dm real_output[], float dm imag_output[]);

float *rfft1024 (const float dm real_input[],
 float dm real_output[], float dm imag_output[]);

float *rfft256 (const float dm real_input[],
 float dm real_output[], float dm imag_output[]);

float *rfft128 (const float dm real_input[],
 float dm real_output[], float dm imag_output[]);

float *rfft64 (const float dm real_input[],
 float dm real_output[], float dm imag_output[]);

float *rfft32 (const float dm real_input[],
 float dm real_output[], float dm imag_output[]);
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 4-67

DSP Run-Time Library Reference
float *rfft16 (const float dm real_input[],
 float dm real_output[], float dm imag_output[]);

float *rfft8 (const float dm real_input[],
 float dm real_output[], float dm imag_output[]);

Description

Each of these 14 rfftN functions are similar to the cfftN functions, except
that they only take real inputs. They compute the N-point radix-2 fast
Fourier transform (RFFT) of their floating point input (where N is 8, 16,
32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768 or 65536).

There are fourteen distinct functions in this set. They all perform the same
function with same type and number of arguments. Their only difference
is the size of the arrays on which they operate.

Call a particular function by substituting the number of points for N, as
in the following example:

rfft8 (r_inp, r_outp, i_outp);

The input to rfftN is a floating-point array of N points. If there are fewer
than N actual data points, you must pad the array with zeros to make N
samples. However, better results occur with less zero padding. The input
data should be windowed (if necessary) before calling the function because
no preprocessing is performed on the data.

The rfftN functions return a pointer to the real_output array.

Error Conditions

The rfftN functions do not return any error conditions.
4-68 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

DSP Library for ADSP-2106x Processors
Example

#include <trans.h>
#define N 2048

float real_input[N];
float real_output[N], imag_output[N];

/* Real input array fills from a converter or other source */

rfft2048 (real_input, real_output, imag_output);
 /* Arrays are filled with FFT data */

See Also

cfftN, ifftN
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 4-69

DSP Run-Time Library Reference
rms

root mean square

Synopsis

#include <stats.h>
float rms (const float dm in[], int length);

Description

The rms function returns the square root of the mean of the square of its
floating-point input array.

Error Conditions

The rms function does not return an error condition.

Example

#include <stats.h>
float input[256], results;

results = rms (input, 256);

See Also

mean, var
4-70 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

DSP Library for ADSP-2106x Processors
rsqrt, rsqrtf

reciprocal square root

Synopsis

#include <math.h>
double rsqrt (double x);
float rsqrtf (float x);

Description

The rsqrt and rsqrtf functions return the reciprocal positive square root
of their argument.

The rsqrt and rsqrtf functions return a value that is accurate to 20 bits
of the mantissa. This accuracy corresponds to a maximum relative error of

2-20 over its input range.

Error Conditions

The rsqrt and rsqrtf functions return zero for a negative input.

Example

#include <math.h>
double y;

y = rsqrt (2.0); /* y = 0.707 */

See Also

sqrt, sqrtf
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 4-71

DSP Run-Time Library Reference
set_flag

set ADSP-21xxx flags

Synopsis

#include <21060.h>
int set_flag (int flag, int mode);

Description

This function is used to set the ADSP-21xxx flags to the desired output
value.

The function accepts as input a flag number [0-3] and a mode. The mode
can be specified as a macro (defined in 21060.h) or a value [0-3].

In addition to setting the flag to the specified value, the function also sets
the MODE2 register to specify that the flag is used for output, not input.

If the TST_FLAG macro (or a 3) is specified as the mode, the current value
(0 or 1) of the flag is returned as the result of the function.

The set_flag function returns a zero upon success (except as noted in the
previous paragraph).

Table 4-5. Flag Function Macros and Values

Flag Macro Value Mode Macro Value

SET_FLAG0 0 SET_FLAG 0

SET_FLAG1 1 CLR_FLAG 1

SET_FLAG2 2 TGL_FLAG 2

SET_FLAG3 3 TST_FLAG 3
4-72 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

DSP Library for ADSP-2106x Processors
Error Conditions

The set_flag function returns a non-zero for an error.

Example

#include <21060.h>

set_flag (SET_FLAG0, CLR_FLAG);
set_flag (SET_FLAG0, SET_FLAG);

See Also

poll_flag_in
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 4-73

DSP Run-Time Library Reference
set_semaphore

set bus lock semaphore

Synopsis

#include <21060.h>
int set_semaphore (void dm *semaphore, int set_value, int timeout);

Description

The set_semaphore function is used to control bus lock in multiprocessor
ADSP-21xxx SHARC systems.

A -1 is returned if the bus is locked and the bus lock timeout exceeded.

A 0 is returned if the bus is not locked and a semaphore set.

Error Conditions

The set_semaphore function does not return an error condition.

See Also

No references to this function.
4-74 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

DSP Library for ADSP-2106x Processors
timer_off

disable ADSP-21xxx timer

Synopsis

#include <21060.h>
unsigned int timer_off (void);

Description

The timer_off function disables the ADSP-21xxx timer and returns the
current value of the TCOUNT register.

Error Conditions

The timer_off function does not return an error condition.

Example

#include <21060.h>
unsigned int hold_tcount;

hold_tcount = timer_off ();
/* hold_tcount contains value of TCOUNT */
/* register AFTER timer has stopped */

See Also

timer_on, timer_set

� The timer_off function is not available for the 21065L chip. Refer
to timer0_off, timer1_off to disable the ADSP-21065L programma-
ble timers.

� The function is supplied only as an in-lined procedure; that is, the
compiler substitutes the appropriate statements for any reference to
the procedure. Therefore, any source that references timer_off
must include the 21060.h header file.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 4-75

DSP Run-Time Library Reference
timer0_off, timer1_off

disable ADSP-21065L timers

Synopsis

#include <21065l.h>
unsigned int timer0_off (void);
unsigned int timer1_off (void);

Description

The timer0_off and timer1_off functions disable the ADSP-21065L pro-
grammable timers and return the current value of the TCOUNT0 and
TCOUNT1 registers respectively.

Error Conditions

The timer0_off and timer1_off functions do not return an error
condition.

Example

#include <21065l.h>
unsigned int hold_tcount;

hold_tcount = timer0_off ();
/* hold_tcount contains value of TCOUNT0 */
/* register AFTER timer 0 has stopped */

See Also

timer0_on, timer1_on, timer0_set, timer1_set

� The functions are supplied only as in-lined procedures; that is, the
compiler substitutes the appropriate statements for any reference to
the procedures. Therefore, any source that references either
timer0_off or timer1_off must include the 21065l.h header file.
4-76 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

DSP Library for ADSP-2106x Processors
timer_on

enable ADSP-21xxx timer

Synopsis

#include <21060.h>
unsigned int timer_on (void);

Description

The timer_on function enables the ADSP-21xxx timer and returns the
current value of the TCOUNT register.

Error Conditions

The timer_on function does not return an error condition.

Example

#include <21060.h>
unsigned int hold_tcount;

hold_tcount = timer_on ();
 /* hold_tcount contains value of TCOUNT */
 /* register when timer starts */

See Also

timer_off, timer_set

� The timer_on function is not available for the 21065L chip. Refer
to timer0_on, timer1_on to enable the ADSP-21065L programma-
ble timers.

� The function is supplied only as an in-lined procedure; that is, the
compiler substitutes the appropriate statements for any reference to
the procedure. Therefore, any source that references timer_on must
include the 21060.h header file.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 4-77

DSP Run-Time Library Reference
timer0_on, timer1_on

enable ADSP-21065L timers

Synopsis

#include <21065l.h>
unsigned int timer0_on (void);
unsigned int timer1_on (void);

Description

The timer0_on and timer1_on functions enable the ADSP-21065L pro-
grammable timers and return the current value of the TCOUNT0 and
TCOUNT1 registers respectively.

Error Conditions

The timer0_on and timer1_on functions do not return an error condition.

Example

#include <21065l.h>
unsigned int hold_tcount;

hold_tcount = timer0_on ();
/* hold_tcount contains value of TCOUNT0 */
/* register when timer 0 starts */

See Also

timer0_off, timer1_off, timer0_set, timer1_set

� The functions are supplied only as in-lined procedures; that is, the
compiler substitutes the appropriate statements for any reference to
the procedures. Therefore, any source that references either
timer0_on or timer1_on must include the 21065l.h header file.
4-78 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

DSP Library for ADSP-2106x Processors
timer_set

initialize ADSP-21xxx timer

Synopsis

#include <21060.h>
int timer_set (unsigned int tperiod,

unsigned int tcount);

Description

The timer_set function sets the ADSP-21xxx timer registers TPERIOD and
TCOUNT. The function returns a 1 if the timer is enabled, or a zero if the
timer is disabled.

� Each interrupt call takes approximately 50 cycles on entrance and
50 cycles on return. If TPERIOD and TCOUNT are set too low, you may
incur an initializing overhead that could create an infinite loop.

Error Conditions

The timer_set function does not return an error condition.

Example

#include <21060.h>

if (timer_set (1000, 1000) != 1)
 timer_on (); /* enable timer */

See Also

timer_on, timer_off

� The timer_set function is not available for the 21065L chip. Refer
to timer0_set, timer1_set to initialize the ADSP-21065L program-
mable timers.
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 4-79

DSP Run-Time Library Reference
� The function is supplied only as an in-lined procedure; that is, the
compiler substitutes the appropriate statements for any reference to
the procedure. Therefore, any source that references timer_set
must include the 21060.h header file.
4-80 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

DSP Library for ADSP-2106x Processors
timer0_set, timer1_set

initialize ADSP-21065L timers

Synopsis

#include <21065l.h>
int timer0_set (unsigned int tperiod,

 unsigned int tcount,
 unsigned int tscale);

int timer1_set (unsigned int tperiod,
 unsigned int tcount,
 unsigned int tscale);

Description

The timer0_set and timer1_set functions set the ADSP-21065L timer
registers TPERIOD0, TCOUNT0, TPWIDTH0 and TPERIOD1, TCOUNT1, TPWIDTH1
respectively. The functions return a 1 if the corresponding timer is
enabled, or a zero if the timer is disabled.

� Each interrupt call takes approximately 50 cycles on entrance and
50 cycles on return. If TPERIOD and TCOUNT are set too low, you may
incur an initializing overhead that could create an infinite loop.

Error Conditions

The timer0_set and timer1_set functions do not return an error
condition.

Example

#include <21065l.h>
unsigned int hold_tcount;

if (timer0_set (200, 1, 150) != 1)
 timer0_on (); /* enable timer 0 */
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 4-81

DSP Run-Time Library Reference
See Also

timer0_off, timer1_off, timer0_on, timer1_on

� The functions are supplied only as in-lined procedures; that is, the
compiler substitutes the appropriate statements for any reference to
the procedures. Therefore, any source that references either
timer0_set or timer1_set must include the 21065l.h header file.
4-82 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

DSP Library for ADSP-2106x Processors
var

variance

Synopsis

#include <stats.h>
float var (const float dm in[], int length);

Description

The var function returns the variance of its floating-point input array.

Error Conditions

The var function does not return an error condition.

Example

#include <stats.h>
float input[256], result;

result = var (input, 256);

See Also

mean
VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs 4-83

DSP Run-Time Library Reference
zero_cross

count zero crossings

Synopsis

#include <stats.h>
int zero_cross (const float dm in[], int length);

Description

The zero_cross function returns the number of times that a signal repre-
sented in the input array crosses over the zero line. If all input values are
zero, the function returns a zero.

Error Conditions

The zero_cross function does not return an error condition.

Example

#include <stats.h>
float input[256];
int results;

results = zero_cross (input, 256);

See Also

No references to this function.
4-84 VisualDSP++ 2.0 C/C++ Compiler and Library Manual for ADSP-21xxx DSPs

	Contents
	4 DSP Library for ADSP-2106x Processors
	Overview
	DSP Run-Time Library Guide
	Linking DSP Library Functions
	Working With Library Source Code
	DSP Header Files
	Table 4-1. Math Library - Additional Functions�
	Table 4-2. Window Generator Functions�

	Built-In DSP Functions
	Table 4-3. Built-in DSP Functions

	DSP Run-Time Library Reference
	a_compress
	a_expand
	autocoh
	autocorr
	biquad
	cabsf
	cexpf
	cfftN
	copysign, copysignf
	cot, cotf
	crosscoh
	crosscorr
	favg, favgf
	fclip, fclipf
	fir
	fmax, fmaxf
	fmin, fminf
	gen_bartlett
	gen_blackman
	gen_gaussian
	gen_hamming
	gen_hanning
	gen_harris
	gen_kaiser
	gen_rectangular
	gen_triangle
	histogram
	idle
	ifftN
	iir
	matadd
	matmul
	matscalmult
	matsub
	mean
	mu_compress
	mu_expand
	poll_flag_in
	Table 4-4. poll_flag_in Macros and Values

	rfftN
	rms
	rsqrt, rsqrtf
	set_flag
	Table 4-5. Flag Function Macros and Values

	set_semaphore
	timer_off
	timer0_off, timer1_off
	timer_on
	timer0_on, timer1_on
	timer_set
	timer0_set, timer1_set
	var
	zero_cross

	Index

