
VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 2-1

2 LINKER
Figure 2-0.

Table 2-0.

Listing 2-0.

Overview
You can use the VisualDSP++ linker, linker.exe, to maximize DSP per-
formance by controlling the location of frequently used code and data.

The linker consumes library and object files and produces executable
(.DXE) files, shared memory (.SM) files, and overlay (.OVL) files, which can
be loaded onto the target. It can also produce map files and other output,
containing information to be used by the VisualDSP++ 2.0 debugger. All
information to be used by the VisualDSP++ debugger is provided in the
.DXE file.

You can supply a linker description file which defines the target memory
and the desired mapping of code and data into that memory, or the linker
can use a default mapping for the selected DSP chip. The linker generates
a memory image file containing a single executable program which may be
loaded into a simulator or emulator for testing.

You specify linker options via VisualDSP++ Integrated Development and
Debugging Environment (IDDE) in the Project Options dialog box or via
DOS command-line inputs.

� Most code examples in this manual are written for the
ADSP-21062 DSP.

Overview

2-2 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

This chapter contains the following information on the linker:

• “Mapping Files To Memory with an LDF” on page 2-3 — intro-
duces the Linker Description File, describing its inputs and outputs,
and how it enables your code to run in your target environment

• “Linker Guide” on page 2-13—describes how to use the linker for
producing executable files

• “Linker Command-Line Reference” on page 2-25—lists linker
command line switches and syntax

• “Linker Description File Reference” on page 2-38—describes
linker description file syntax and programming techniques

• “LDF Programming Examples” on page 2-84—provides a series of
LDF programming examples for different types of systems

• “Linker Glossary” on page 2-122—provides definitions of linker
related terms

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 2-3

Linker

Mapping Files To Memory with an LDF
Whether you link a C/C++ function or an assembly routine, the mecha-
nism is the same --- you use the Linker Description File (LDF) to direct
linking operation by mapping code or data to specific memory segments.
This section explains the overall function of the LDF.

Each DSP project must locate its code and data in the DSP’s memory
(internal or external) to execute. The LDF specifies the linking process.

You can write your own LDF, using information in this chapter, or mod-
ify an existing LDF, which is often the easier alternative if you are not
dealing with large changes in your system’s hardware or software. See
“Default LDF and Object Code Placement” for a discussion of what hap-
pens if there is no LDF in your project.

The LDF consists of Commands, specifying the relevant components of
the code and the target system. You place the information needed to link
your code in the text of these commands. Several simple examples are
shown later in this section. For an introduction to the LDF commands,
and the ways to construct an LDF, refer to “Linker Guide” on page 2-13.

Linking Process Overview
Using commands in LDF, the linker reads the Input Sections in object
files and places them in Output Sections in the executable file, using the
commands in the LDF. The LDF defines the DSPs memory and indicates
where within that memory the linker has to place the Input Sections.

Default LDF and Object Code Placement

If you neither write nor import an LDF into your project, VisualDSP++
uses a default LDF to link your code. This file is packaged with your DSP
tool kit distribution in a subdirectory specific to your target processor’s
family.

Mapping Files To Memory with an LDF

2-4 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

One default LDF is provided for each target architecture supported by
your VisualDSP++ installation. The default LDF reflects your target envi-
ronment’s memory structure, as specified by your project’s options, and
locates the program (and data) portions of your object code according to
the -Dprocessor command-line switch (-proc switch), where processor is
your target architecture.

For more information on LDF syntax, see “Command-Line Syntax” on
page 2-25. For sample LDFs and related source files, see the samples
included with your VisualDSP++ software.

The Linking Process and the LDF

Figure 2-1 on page 2-5 shows how the LDF combines information, direct-
ing the linker to place program sections in an executable according to the
memory available in the DSP system.

For more information on this process, see “Linker Guide” on page 2-13.
For information on other LDF commands and syntax, see “Linker
Description File Reference” on page 2-38.

The linker maps your program code (and data) within the system memory
and processor(s). The linker uses the target system’s memory map and seg-
ments defined in your source file to create an executable program.

The linking process operates as follows:

• Source code specifies one or more Input Sections as destinations for
its compiled/assembled object(s).

• The compiler and assembler produce object code, with labels direct-
ing which portions are allocated to which input sections. Each Input
Section may contain multiple code items, but a code item may
appear in one Input Section only.

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 2-5

Linker

• The linker maps each Input Section from the object code to an Out-
put Section, as directed by the LDF. More than one Input Section
can be placed in an Output Section.

Figure 2-1. The LDF File and Linking Process

� The linker may output warning messages and error messages. Be
sure to resolve errors to enable the linker to produce valid output.

LINKER
DESCRIPTION

(.LDF)

C SOURCE
(.C)

EXECUTABLE
PROGRAM

(.DXE)

TARGET
SYSTEM

ASSEMBLY
SOURCE
(.ASM)

C++ SOURCE
(.CPP .CXX)

Mapping Files To Memory with an LDF

2-6 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

• The linker maps each Output Section to a Memory Segment, which
is a contiguous range of memory on the target, as specified by the
LDF. Memory Segments have uniform width. Contiguous addresses
on different-width hardware must be in different segments. More
than one Output Section may map to a single Memory Segment.

Listing 2-1 shows an example LDF (formatted for easy reading). Note that
the LDF file includes two commands (MEMORY and SECTIONS) that combine
program and system information.

Listing 2-1. Example Linker Description File

ARCHITECTURE(ADSP-21062) /* see Note 1 on page 2-7 */
SEARCH_DIR($ADI_DSP\21k\lib) /* see Note 2 on page 2-7 */
$OBJECT1 = main.doj, $COMMAND_LINE_OBJECTS;
 /* see Note 3 on page 2-7 */
MEMORY{ /* see Note 4 on page 2-8 */
 mem_isr{
 TYPE(PM RAM) START(0x00008000) END(0x000080ff) WIDTH(48)}
 mem_pmco{
 TYPE(PM RAM) START(0x00008100) END(0x000087ff) WIDTH(48)}
 mem_pmda{
 TYPE(PM RAM) START(0x00009000) END(0x00009fff) WIDTH(32)}
 mem_dmda{
 TYPE(DM RAM) START(0x0000c000) END(0x0000dfff) WIDTH(32)}
}
PROCESSOR p0{
 OUTPUT($COMMAND_LINE_OUTPUT_FILE)
 /* see Note 5 on page 2-9 */
 SECTIONS{ /* see Note 6 on page 2-9 */
 dxe_isr{ INPUT_SECTIONS ($OBJECT1 (isr_tbl)) }
 > mem_isr
 dxe_pmco{ INPUT_SECTIONS ($OBJECT1 (seg_pmco)) }
 > mem_pmco
 dxe_pmda{ INPUT_SECTIONS (main.doj (seg_pmda)) }
 > mem_pmda
 dxe_dmda{ INPUT_SECTIONS (main.doj (seg_dmda)) }
 > mem_dmda
 } /*End sections command for processor po */
} /* End processor command

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 2-7

Linker

As noted at the beginning of this chapter, you can run the linker from the
VisualDSP++ IDDE or from the command line (though not all IDDE
options have command-line equivalents). In the following discussion, the
salient commands for connecting your program to the target DSP are
MEMORY and SECTIONS.

Notes on Example 1

These notes describe the features of the LDF in Listing 2-1:

1. ARCHITECTURE(x) names the target architecture. It thereby specifies
possible memory widths and address ranges, the register set, and
other structural information for use by the debugger, linker, loader,
splitter and utility software. The target architecture must be sup-
ported in VisualDSP++.

2. SEARCH_DIR specifies path name(s) to search for libraries and object
files. This example shows one search directory, the single argument
to the SEARCH_DIR command. (For more information, refer to
page 2-50.)

The linker can support a sequence of search directories presented as
an argument list (dir1, dir2, ...). When searching for an object
or library file, the linker follows this sequence and stops at the first
match.

3. $OBJECTS expands to a comma-delimited list of object files to be
linked together. The LDF supports string macros, making it easier
to read; you can substitute short macros for long text strings.

$ADI_DSP expands to the home directory for VisualDSP++.

You can also define macros in the LDF. The string macro feature is
independent of preprocessor macro support (#defines), also avail-
able in the LDF.

Mapping Files To Memory with an LDF

2-8 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

To prepend foo.doj to the string $OBJECTS, rewrite the line defin-
ing $OBJECTS as:

 $OBJECTS=foo.doj, $COMMAND_LINE_OBJECTS;

$COMMAND_LINE_OBJECTS (refer to page 2-47) is another LDF
command-line macro, which expands to a list of all the input
object file names on the linker’s command line.

� The link order is determined by the order of the objects. In the
default case, when you use default LDFs that ship with the
VisualDSP++ tools, all the sections commands use the $OBJECTS
macro.

The $OBJECTS macro includes the $COMMAND_LINE_OBJECTS macro
that corresponds to the objects specified on the linker command
line, in the order specified. The IDDE currently lists the objects in
alphabetical order. However, you may customize the LDF to link
objects in any order. Rather than use the $OBJECTS macro as the
defaults do, each INPUT_SECTIONS command could have one or more
object names. You can also build your own object list macros in the
LDF for use in the INPUT_SECTIONS commands.

4. The MEMORY command (on page 2-54) defines the target system’s
physical memory. Its argument list partitions memory into Mem-
ory Segments and assigns labels to each, specifying start and end
addresses, memory width, and memory type (program, data, ...). It
thereby connects your program to the target system.

Memory Segments must have distinct names; however, the mem-
ory names occupy different namespaces from Input Section and
Output Section names. Therefore, a memory segment and an out-
put section may have the same name.

5. The OUTPUT() command (on page 2-73) directs the linker to pro-
duce an executable (.DXE) file, specifying the filename. In this
listing, the argument to the OUTPUT command is the

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 2-9

Linker

$COMMAND_LINE_OUTPUT_FILE macro (on page 2-47). Therefore, the
linker names the executable according to the text following its -o
switch.

 linker ... -o outputFilename

6. SECTIONS (on page page 2-74) defines the placement of code and
data in physical memory. Based on the three parameters that
appear on each line for this command, the linker takes Input Sec-
tions as inputs, places them in Output Sections, and maps Output
Sections to the Memory Segments declared in the MEMORY
command.

The INPUT_SECTIONS statement specifies the object file that the
linker uses to resolve the mapping. The line:

dxe_isr{INPUT_SECTIONS ($OBJECT1 (isr_tbl))} > mem_isr

directs the linker to take the isr_tbl Input Section, place it in the
dxe_isr Output Section, and map it to the mem_isr Memory
Segment.

Inputs—C, C++ & Assembly Sources
The first step toward understanding the LDF is to understand the makeup
of files involved in building a DSP executable. The process starts with
source files, which contain code written in either C, C++ or Assembly.
The first step towards producing an executable is to compile or assemble
these sources into object files. The VisualDSP++ development software
gives object files a .DOJ extension.

The object files produced by the compiler and assembler consist of various
sections, referred to as Input Sections. Each type of Input Sections contains
a particular type of compiled/assembled source code. For example, an
Input Section may contain program opcodes (48-bits wide) or data such as

Mapping Files To Memory with an LDF

2-10 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

variables (16-, 32-, or 40-bits wide). Some Input Sections also can contain
debug information.

Each Input Section in the LDF has a unique name which corresponds to a
name that you specify in the source code. Depending on whether the
source is C, C++ or assembly, there are different conventions for naming
an Input Section.

Input Section Directives in Assembly Code

A section directive must precede code or data in an assembly source file.

In an assembly source, the code that goes into a particular Input Section
appears directly after a .SECTION <name> directive in the source file. An
example of this is as follows:

.section /dm asmdata /* declares section asmdata */

.var my_buffer[3]; /* declares a data buffer in smdata */

.section /pm asmcode /* declares section asmcode */
r0 = 0x1234; /* code in section asmcode */
r1 = 0x4567;
r2 = r1 + r2;

In this example, the Input Section asmdata contains the array my_buffer,
and Input Section asmcode contains code generated for the three lines of
assembly instructions.

Input Section Directives in C/C++ Source Files

In a C/C++ source file, you can use the optional section (name) C lan-
guage extension to define Input Sections. Because this code uses the
section("name") extension, as the compiler processes the source, the com-
piler stores the code generated from func1 in its own separate Input
Section of the .DOJ file named extern. Also during compilation, the
compiler puts the variable temp in the Input Section ext_data.

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 2-11

Linker

A fragmentary example follows:

section("ext_data") int temp;

section("extern") void func1(void) {
 int x = 1;
}
void func2(void) {
 int i = 0;
}

Note that the section ("name") extension is optional. As shown in the
example, the func2 function does not use section ("name") syntax. If
your code does not specify an Input Section name, the compiler uses a
default name. The default compiler section names are seg_pmco (for code),
seg_dmda (for DM data), and seg_pmda (for PM data); additional section
names are defined in LDF files for use by the linker. In this case, the com-
piler puts the code from func2 in an Input Section for program code,
which has the default Input Section name seg_pmco. For more informa-
tion on LDF sections, refer to “Specifying the Memory Map” on
page 2-16.

For more information about compiler sections, see the VisualDSP++
C/C++ Compiler & Library Manual for ADSP-21xxx DSPs.

� It is important to identify the difference between Input Section
names and executable file names, because both types of names
appear in the LDF.

Mapping Files To Memory with an LDF

2-12 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

Outputs—DSP Executables
After you have compiled or assembled source files into object files, use the
linker to combine the object files, creating an executable file. By default,
the development software gives executable files a .DXE extension.

Like object files, the executable is partitioned into Sections with their own
names. These output sections are defined by the ELF (Executable and
Linking Format) file format that the development software uses for execut-
able files.

Input Section and Output Section names occupy different namespaces.
Therefore, they are independent and may be replicated in an LDF.

The linker uses the Input Sections’ contents to make executable files. The
linker uses Input Section names as the labels to find the Input Sections
within object files.

� It is important to understand the function of the .DXE executable
file. It is neither loaded into the DSP nor burned into an EPROM.
The .DXE contains the raw code and data from the object files, along
with additional information, used by utilities (such as the debugger)
to locate code in the target (DSP, simulator, ICE, ...).

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 2-13

Linker

Linker Guide
The linker (linker.exe) processes your object, library, and linker descrip-
tion files, producing one or more output files. Linker operations depend
on two types of controls: linker options and linker commands.

Linker options let you control how the linker processes your object and
library files, specifying features such as search directories, map file output,
and symbol removal among others. These options come from linker com-
mand-line switches or, when used within the VisualDSP++ environment,
from settings in the Link tab of the Project Options dialog box.

Linker commands, in your project’s linker description file (LDF), define
the memory map of your DSP system and the placement of your pro-
gram’s sections within DSP memory.

� The VisualDSP++ environment treats the LDF as a source file in the
project’s file display, but this file acts only as command input to the
linker.

Linker Operations
All software developers using the linker should be familiar with the follow-
ing operations:

• “Describing the Link Target” on page 2-14

• “Representing Memory Architecture” on page 2-14

• “Placing Code on the Target” on page 2-20

• “Specifying Linker Options” on page 2-23

• “Linker Error and Warning Messages” on page 2-23

Linker Guide

2-14 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

Describing the Link Target
Before specifying your DSP system’s memory and program placement
with linker commands, you must analyze the target DSP system and
describe it in terms that the linker can process.

You then produce an LDF for your project. The LDF describes the
following:

• Your DSP system’s physical memory map

• Your program’s placement within your DSP system’s memory map

� If you do not include an LDF, the linker uses a default linker
description file that matches the -DPROCESSOR switch (or -proc
processor switch) on the linker’s command line.

Representing Memory Architecture

You use the MEMORY command to represent the memory architecture of
your DSP system. The linker uses this information to place your execut-
able file in the system’s memory. The steps for writing a linker MEMORY
command are as follows:

1. List the ways that your program uses memory in your system. Typ-
ical uses for Memory Segments include interrupt tables,
initialization data, PM code, PM data, DM data, heap space, and
stack space. Refer to “Specifying the Memory Map” on page 2-16.

2. List the types of memory in your system and the address ranges of
each type of memory and word width. For ADSP-21xxx DSPs,
memory can be qualified as either PM or DM; and either RAM or ROM.

3. Construct a MEMORY{} command that combines the information in
these two lists to declare the Memory Segments in your system.
Use Listing 2-2 as code example.

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 2-15

Linker

The example in Figure 2-2 is showing an example SHARC system that
uses a C program; the information that follows is describing the above
steps.

ADSP-21062
BOOT PROM

MAFE CONNECTOR

EZ-KIT Lite ON-BOARD
SWITCHES & LEDS

SHARCPAC MODULE
CONNECTOR

SHARCNET LINK
CONNECTOR

JTAG EMULATOR
CONNECTOR

ISA BUS INTERFACE
LINK

PORTS

SPORTS

FLAGS & IRQS

SHARC
BUS

Figure 2-2. Example System for Linker Description

Linker Guide

2-16 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

Specifying the Memory Map

Refer to your processor documentation for a description of the DSP core
that lists the widths of the address and data buses. Your program must
conform to the constraints imposed by the processor’s path widths and
addressing capabilities. The MEMORY{} command defines the memory
architecture of your DSP system. This information lets the linker place
your executable file in the system’s memory.

The three steps involved in allocating memory for such a project are dem-
onstrated below.

1. Memory usage — Input section names are generated by the com-
piler or are specified in the DSP source code. The LDF defines the
memory section names and the output section names are defined in
the LDF. The memory names are defined in the MEMORY command;
the output section names are defined in the SECTIONS command.

The default LDF handles all the sections that might be generated
by the compiler (the column "Input Section" in Table 2-1). The
produced .dxe file has appropriate "Output Section(s)" for which
material (the corresponding "input section(s)") was found in the
inputs. Although the memory labels are used primarily within the
LDF, the output section labels can be important to downstream
tools. For example, you can invoke elfdump to dump the contents
of the "seg_pmda" section of an executable file.

Table 2-1 shows correspondences used in the ADSP-21xxx default
LDF.

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 2-17

Linker

Table 2-1. ADSP-21062 Memory vs. Sections Usage

Input Section Output Section Memory

seg_pmco dxe_pmco mem_pmco (Program Memory code)

seg_dmda dxe_dmda mem_dmda (Data Memory data)

seg_pmda dxe_pmda mem_pmda (Program Memory data)

heap dxe_heap mem_heap (heap space)

stackseg dxe_stak mem_stak (stack space)

sec_rth dxe_rth mem_rth (interrupt table/run-time
header)

seg_init seg_init mem_init (initialization data)

seg_pmco dxe_pmco mem_ovly (overlay)

Linker Guide

2-18 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

2. Memory characteristics — As a memory example, the
ADSP-21062 DSP has internal memory addresses from 0x0 to
0x7ffff, and the characteristics of this memory appear in
Table 2-2.

Table 2-2. Example ADSP-21062 Memory

Block Memory Range Word Size

0x00000–0x000ff IOP Registers

0x00100–0x1ffff Reserved

Block 0 0x20000–0x27fff (normal word) 32- or 48-bit

Block 1 0x28000–0x2ffff (normal word) 32- or 48-bit

Block 1 alias 0x30000–0x37fff (normal word) 32- or 48-bit

Block 1 alias 0x38000–0x3ffff (normal word) 32- or 48-bit

Block 0 0x40000–0x4ffff (short word) 16-bit

Block 1 0x50000–0x5ffff (short word) 16-bit

Block 1 alias 0x60000–0x6ffff (short word) 16-bit

Block 1 alias 0x70000–0x7ffff (short word) 16-bit

0x404000–0x404001 (MAFE ports) 32-bit

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 2-19

Linker

3. Linker MEMORY{} Command — referring to steps 1 and 2, you spec-
ify the SHARC EZ-KIT Lite’s memory with the MEMORY{}
command in Listing 2-2.

Listing 2-2. Linker MEMORY{} Command Example

 /* start 21062_memory.h file that is referred to in
 the “LDF Programming Examples” on page 2-84 */

/* This MEMORY{} command declares:
 -- 256 words of run-time header in memory block 0
 -- 256 words of initialization code in memory block 0
 -- 18K words of C code space in memory block 0
 -- 1.5K words of C PM data space in memory block 0
 -- 16K words of C DM data space in memory block 1
 -- 8K words of C heap space in memory block 1
 -- 8K words of C stack space in memory block 1 */

 mem_rth {
 TYPE(PM RAM) START(0x20000) END(0x200ff) WIDTH(48)}
 mem_init {
 TYPE(PM RAM) START(0x20100) END(0x201ff) WIDTH(48)}
 mem_pmco {
 TYPE(PM RAM) START(0x20200) END(0x249ff) WIDTH(48)}
 mem_pmda {
 TYPE(PM RAM) START(0x24a00) END(0x24fff) WIDTH(40)}
 mem_dmda {
 TYPE(DM RAM) START(0x2a000) END(0x2bfff) WIDTH(32)}
 mem_heap {
 TYPE(DM RAM) START(0x2c000) END(0x2dfff) WIDTH(32)}
 mem_stak {
 TYPE(DM RAM) START(0x2e000) END(0x2ffff) WIDTH(32)}
 mafeadrs {
 TYPE(DM RAM) START(0x404000) END(0x404000) WIDTH(32)}
 mafeadrs {
 TYPE(DM RAM) START(0x404001) END(0x404001) WIDTH(32)}
// end 21062_memory.h file

Linker Guide

2-20 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

Placing Code on the Target
As defined by the MEMORY command, the SECTIONS command places your
program’s Input Sections in the memory of a DSP system. Each Input
Section is declared as such in your assembly code.

You must embed SECTIONS commands within the linker’s PROCESSOR{} or
SHARED_MEMORY{} commands. These commands inform the linker to place
the code in memory allocated to that processor, shared among multiple
processors.

To write a linker SECTIONS{} command, per system architecture in
Figure 2-2 on page 2-15 and Listing 2-2:

1. List each of the assembly code .SECTION directives in your DSP
program, identifying their memory types (PM or DM) and noting
when location is critical to their operation. These .SECTION por-
tions include interrupt tables, data buffers, and on-chip code or
data.

2. Compare this list with the segments you defined in the MEMORY
command, identifying the Memory Segment in which each
.SECTION must be placed.

3. Combine the information from these two lists to write one or more
linker SECTIONS command(s). Combining the information from
steps 1 and 2, you could specify how to place code for the system
with the SECTIONS{} command in Listing 2-3.

4. Use Program sections in the C/C++ compiler to produces code that
uses memory in predefined ways, with predefined section labels.

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 2-21

Linker

Listing 2-3. Linker SECTIONS{} Command Example

 /* start 21062_sections.h file that is referred to in
 the “LDF Programming Examples” on page 2-84 */

// SECTIONS {

// begin output sections
 dxe_rth { // run-time header & interrupt table
 INPUT_SECTIONS($OBJS(seg_rth) $LIBS(seg_rth))
 } >mem_rth
 dxe_init { // initialization data
 INPUT_SECTIONS($OBJS(seg_init) $LIBS(seg_init))
 } >mem_init
 dxe_pmco { // PM code
 INPUT_SECTIONS($OBJS(seg_pmco) $LIBS(seg_pmco))
 } >mem_pmco
 dxe_pmda { // PM data
 INPUT_SECTIONS($OBJS(seg_pmda) $LIBS(seg_pmda))
 } >mem_pmda
 dxe_dmda { // DM data
 INPUT_SECTIONS($OBJS(seg_dmda) $LIBS(seg_dmda))
 } >mem_dmda
 stackseg {
 // Declare the stack space and length
 //
 // The linker will generate the following symbols
 // “ldf_stack_space “
 // “ldf_stack_length”
 // These symbols will be entered into the DXE’s symbol
 // table.
 // These symbol definitions are required since there are
 // references to them in seg_init.asm (where the stack
 // and heap variables are initialized)

 ldf_stack_space = .;
 ldf_stack_length = 0x2000;
 } > seg_stak
 heap {
 // Declare the heap space and length
 //
 // The linker will generate the following symbols
 // “ldf_heap_space”

Linker Guide

2-22 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

 // “ldf_heap_length”
 // “ldf_heap_end”
 //
 // These symbols will also be entered into the DXE’s
 // symbol table.
 // These symbol definitions are required since there are
 // references to then in seg_init.asm (where the stack
 // and heap variables are initialized)

 ldf_heap_space = .;
 ldf_heap_end = ldf_heap_space + 0x2000;
 ldf_heap_length = ldf_heap_end - ldf_heap_space;
 } > seg_heap

} // end sections

Using Linker Features
The two previous sections, “Describing the Link Target” on page 2-14
and “Placing Code on the Target” on page 2-20, provide an overview of
how to link executables for single processor systems. The linker’s advanced
features support linking executables for systems with multiprocessor mem-
ory, shared memory, and overlay memory.

To write simple, maintainable linker description files, use the linker’s pre-
defined macros for file searches, input, and output. For more information,
see “LDF Macros” on page 2-46.

For more information on these topics, see the following sections:

• For information on multiprocessor memory, see the command syn-
tax for “MPMEMORY{}” on page 2-56 and the example in “Link-
ing for Multi-Processor and Shared Memory” on page 2-88.

• For information on shared memory, see the command syntax for
“SHARED_MEMORY{}” on page 2-81 and the example in “Link-
ing for Multi-Processor and Shared Memory” on page 2-88

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 2-23

Linker

• For information on overlay memory, see the command syntax for
“SECTIONS{}” on page 2-75 and “PLIT{}” on page 2-69. Exam-
ples of overlay linking appear in “Linking for Overlay Memory” on
page 2-95 and “Using a Procedure Linkage Table” on page 2-98.

Specifying Linker Options
When developing within the VisualDSP++ environment, you can specify
default tool settings for your project files. You may find it useful to mod-
ify the linker’s default option settings in the VisualDSP++ IDDE. You
can do this via the Link tab of the Project Options dialog box.

For more information, see the VisualDSP++ User’s Guide for ADSP-21xxx
DSPs or VisualDSP++ online help.

The linker also has command-line switches that correspond to the Link
dialog box options. For more information on the linker command-line
operation, see “Linker Command-Line Reference” on page 2-25.

Linker Error and Warning Messages
The linker writes link warnings and errors to standard output in the com-
mand-line version of the linker (or the VisualDSP++ Output window).
Linker warning and error messages describe problems that the linker
encountered when processing the linker description file.

A linker warning message indicates a processing error which does not keep
the linker from producing a valid output file.

The linker issues an error message when it encounters an error that kept
the linker from producing a valid output file. Typically, these messages
include the linker description file name, line number containing the error,

Linker Guide

2-24 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

and a brief description of the error condition. The following is an example
error message:

[Error Li2005] my_file.ldf:177 Expected token was not found.:
Expected ‘Eof’ Before ‘3’

This error indicates that the linker expected end-of-file but encountered
the character 3 on line 177 in my_file.ldf.

When developing within the VisualDSP++ environment, the Output win-
dow displays project build status and error messages. In most cases, you
can double-click on a message or error number and VisualDSP++ displays
the line in the source file that contains the error. However, some build
errors — such as a bad or missing cross-reference to an object or execut-
able file — do not correlate directly to source files. For more information,
see the VisualDSP++ User's Guide for ADSP-21xxx DSPs.

�
Errors relating to missing cross-references often stem from omis-
sions in the LDF. For example, if a Memory Segment from the
objects is not placed by the LDF, there will be a cross-reference error
in every object that refers to labels in the missing section. You can
solve this problem by reviewing the LDF and correcting it to specify
all sections that need placement.

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 2-25

Linker

Linker Command-Line Reference
This section provides reference information on linker command-line
switches. A description of each switch appears in Table 2-4 on page 2-30.

You can load the results of the link into the VisualDSP++ debugger for
simulation, testing, and profiling.

� When you use the linker within the VisualDSP++ 2.0 IDDE, the
settings in the Link tab correspond to linker command-line
switches. The VisualDSP++ IDDE calls the linker with those set-
tings when you link your code. For more information, see the
VisualDSP++ 2.0 User’s Guide for ADSP-21xxx DSPs.

Command-Line Syntax
You can use one of the following normalized formats:

linker -Darchitecture -switch [-switch …] object [object …]

linker -proc processorID -switch [-switch …] object [object …]

linker -T target.ldf -switch [-switch …] object [object …]

The linker (the command itself) and either -Darchitecture or -T<ldf
name> must be provided for the link to proceed. The LDF specified fol-
lowing the -T switch must contain an ARCHITECTURE() command if the
command line does not have -Darchitecture. The command line must
also have at least one object (an object filename).

Other switches are optional, and some commands are mutually exclusive.
For example,

linker -DADSP-21062 p0.doj p1.doj -T target.ldf -t -o program.dxe

� Analog Devices suggest that you use -proc processorID instead of
-Darchitecture on the command line to make the target processor
selection. See Table 2-4 on page 2-30 for more information.

Linker Command-Line Reference

2-26 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

Object Files in the Linker Command Line
The command line must list at least one object file to be linked. These
files may be of several different types.

• The standard object file is produced by the assembler and has a .DOJ
extension.

• The command line may list archives (libraries) each of one or more
files, with a .DLB extension. Examples include C run-time and math
libraries delivered with VisualDSP++. Developers may create
archives of common or specialized objects. Special libraries may be
obtained from DSP algorithm vendors.

• It may also be an executable (.DXE) file to be linked against*.

� Object file names are not case-sensitive, but linker switches are case
sensitive. For example, linker -t is not the same as linker -T.

An object file name has the following characteristics:

• It can include the drive, directory path, filename, and file extension

• Its path may be absolute or relative to the directory where the linker
is invoked

• It should enclose long file names within straight-quotes

If the file exists before the link starts, the linker opens it and verifies its
type before processing the file. If the file is created during the link, the
linker uses the file’s extension to determine the type of file to create.
Table 2-3 on page 2-29 lists valid extensions and matching linker
operations.

* “Link Against” is described on page 2-49, under $COMMAND_LINE_LINK_AGAINST

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 2-27

Linker

Switch Format in the Linker Command Line

The linker has many optional switches that can be used to select the oper-
ations and modes for the compiler and other tools. The standard linker
switch syntax is as follows:

-switch [argument] — name of the switch to be processed, plus its
parameters (if any). Different switches require (or prohibit) white
space between the switch and its parameter.

As noted above, the linker command line (except for file names) is case-
sensitive. For example, the command line

 linker p0.doj p1.doj p2.doj -T target.ldf -t -o program.dxe

calls the linker as shown below. Note the difference between the -T and -t
switches:

• p0.doj, p1.doj and p2.doj — Links object files together into an
executable

• -T target.ldf — Uses the LDF listed to specify executable pro-
gram placement

• -t — Turns on trace information, echoing each link object’s name
to stdout as it is processed

• -o program.dxe — Names the linked, executable output file

Linker Command-Line Reference

2-28 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

File Names on the Linker Command Line

Many linker switches take a file name as an optional parameter. Table 2-3
lists the extensions that the linker expects on file name arguments. The
linker supports relative and absolute path names when searching for
default or user-selected directories.

File searches occur as follows:

1. Specified path — If you include relative or absolute path informa-
tion on the command line, the linker searches in that location for
the file.

2. User selected directories — If you do not include path information
on the command line and the file is not in the default directory,
the linker searches for the file in the search directories that you
specify with the -L (path) command-line switch and SEARCH_DIR
commands in the LDF. The linker searches these directories in the
order that they appear on the command line or in the LDF.

3. Default directory — If you do not include path information in the
LDF named by the -T switch, the linker searches for the LDF in
the current working directory. If you use a default LDF by omit-
ting any LDF information in the command line and instead
specifying -Darchitecture, the linker searches in the proces-
sor-specific ldf directory; for example, ...\$ADI_DSP\21062\ldf.

For more information on file search, see “LDF Macros” on page 2-46.

When you provide an input or output file name as a
command-line parameter, use the following guidelines:

• Use a space to delimit file names in a list of input files

• Enclose long file names within straight quotes; for example, "long
file name"

• Include the appropriate file name extension with each file name

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 2-29

Linker

The linker opens existing files and verifies their type before processing.
When the linker creates a file, it uses the file extension to determine the
type of file to create. COFF format files from previous software tools
releases are supported and the linker performs the appropriate file conver-
sion before linking.

The linker follows the conventions for file name extensions that appear in
Table 2-3.

Table 2-3. File Name Extension Conventions

Extension File Description

.dlb Library (archive) file

.doj Object file

.dxe Executable file

.ldf Linker description file

.ovl Overlay file

.sm Shared memory file

Linker Command-Line Reference

2-30 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

Linker Command-Line Switches
This section describes the linker command-line switches. A list of all
switches appears in Table 2-4, and a description of each switch appears
starting on page 2-32.

A brief description of each switch includes information on case sensitivity,
equivalent switches, switches overridden/contradicted by the one
described, and naming and spacing constraints on parameters:

• Switches may be used in any order on the command line. Items
shown in [] are optional; items in italics are user-defined and are
described with each switch.

• Path names may be relative or absolute.

• File names containing white space or colons must be enclosed
within double quotation marks, though relative path names, such as
..\..\foo.dxe, do not.

Table 2-4. Linker Switch Summary

Switch Name Description

objects on page 2-32 Specifies object files involved in the linking; process files
that are not parameters to a switch.

@ file on page 2-33 Directs the linker to use the specified file as input on the
command line.

-Darchitecture on page 2-33 Specifies the target architecture (processor).

-e on page 2-35 Directs the linker to eliminate unused symbols from the
executable.

-es secName on page 2-35 Names sections (secName list) to which elimination
algorithm is being applied.

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 2-31

Linker

-ev on page 2-35 Eliminate unused symbols from the executable verbosely,
displaying all objects that were eliminated.

-h|-help on page 2-35 Outputs the list of command-line switches and exits.

-i path on page 2-35 Includes search directory for preprocessor include files.

-ip on page 2-35 Fills in fragmented memory with individual data objects
that fit. Also requires objects to have been assembled

using the assembler’s -ip switch.
NOT supported for SHARC DSPs in this release.

-keep symName on page 2-36 Retains unused symbols.

-L path on page 2-33 Adds the path name to search libraries for objects.

-M on page 2-34 Produces dependencies.

-MM on page 2-34 Builds and produces dependencies.

-Map filename on page 2-34 Outputs a map of link symbol information to a file.

-MDmacro[=def] on page 2-34 Defines and assigns value def to preprocessor macro.

-o filename on page 2-36 Outputs the named executable file.

-pp on page 2-36 Stops after preprocessing.

-proc ProcessorID Directs the linker to select a target processor.

-S on page 2-34 Omits debugging symbol information from the output
file.

-s on page 2-36 Strips symbol information from the output file.

-sp on page 2-36 Skips preprocessing.

Table 2-4. Linker Switch Summary (Cont’d)

Switch Name Description

Linker Command-Line Reference

2-32 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

objects

When naming or specifying the files (or objects) that are not parameters
to a switch, the linker uses a file’s type to determine how to handle it. The
linker obtains a file’s type as follows:

• Existing files are opened and examined to determine their type; their
names can be anything.

• Files created during the link are named with the appropriate exten-
sion and formatted accordingly. A map file is formatted as text and
given the extension .map, while an executable is written in the ELF
format and given the extension .dxe.

The linker treats object (.doj) and library (.dlb) files that appear on the
command line as object files to be linked. For more information on
objects, see the $COMMAND_LINE_OBJECTS linker macro on page 2-47.

The linker treats executable (.dxe) and shared-memory (.sm) files on the
command line as executables to be linked against. For more information
on executables, see the $COMMAND_LINE_LINK_AGAINST linker macro on

-T filename on page 2-34 Names the LDF.

-t on page 2-37 Directs the linker to output the names of link objects.

-v on page 2-37 Verbose output -- directs the linker to output status
information.

-version on page 2-37 Directs the linker to output its version and exit.

-warnonce on page 2-37 Warns only once for each undefined symbol.

-xref filename on page 2-37 Outputs a list of all cross-referenced symbols.

Table 2-4. Linker Switch Summary (Cont’d)

Switch Name Description

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 2-33

Linker

page 2-47. If you do not specify link objects on the command line or in
the linker description file, the linker generates an appropriate informa-
tion/error message.

<null>

Displays a summary of command-line options and exits. Same as
linker -help.

@ file

Uses file as input to the linker command line. This switch allows you to
circumvent environmental command-line length restrictions. The file
may not start with “linker” (it cannot be a linker command line).
Any whitespace in file serves to separate tokens, including a newline.

-Darchitecture

Specifies the target architecture.
No whitespace is permitted between -D and architecture.
architecture is case-sensitive and must be available in your
VisualDSP++ installation. This option must be used if no LDF is specified
on the command line (see -T option). It also must be used if the specified
LDF does not specify ARCHITECTURE(). Architectural inconsistency
between this option and an LDF causes an error.

-L path

Adds path name to search libraries for objects. Not case-sensitive; spacing
is unimportant. The path parameter enables searching for any file, includ-
ing the LDF itself. May be repeated to add multiple search paths. Paths
named in this command are searched before the arguments in the LDF’s
SEARCH_DIR{} command.

Linker Command-Line Reference

2-34 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

-M

Directs the linker to check a dependency and to output the result to
stdout.

-MM

Directs the linker to check a dependency and to output the result to std-
out, and also to perform the build.

-Map file

Outputs a map of link symbol information to a file, which can have any
name. The file parameter is obligatory. The linker names the file with a
.MAP extension. The whitespace is obligatory before file; otherwise, the
link fails.

-MDmacro[=def]

Defines and assigns value def to the preprocessor macro macro.
For example, the linker’s -MDFOO=BAR... means code following #ifdef
FOO==BAR in the LDF is executed (but not code following #ifdef
FOO==XXX). When =def is not included, macro is defined and set to “1”, so
code following #ifdef FOO is executed. May be repeated.

-S

Omits debugging symbol information (not all symbol information) from
the output file. Compare with -s switch (on page 2-36).

-T file

Uses file to name an LDF.
The LDF specified following the -T switch must contain an ARCHITEC-
TURE() command if the command line does not have -Darchitecture.
The linker "requires" the -T switch when linking for a processor for which

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 2-35

Linker

no IDDE support has been installed (e.g., the processor ID does not show
up in the Target processor field of the Project Options dialog box.)

A file must exist and can be found (e.g. via the -L option); there must be
whitespace before file. A file’s name is unconstrained, but must be valid;
for example, a.b works if it is a valid LDF, where .LDF is a valid extension
but not a requirement.

-e

Eliminates unused symbols from the executable.

-es secName

Names sections (secName list) to which the elimination algorithm is to be
applied. This option restricts elimination to the named input sections.

-ev

Eliminates unused symbols and verboses — reports on each symbol
eliminated.

-h|-help

Displays a summary of command-line options and exits.

-i path

Includes a search directory; directs the preprocessor to append the direc-
tory to the search path for include files.

-ip

Fills in fragmented memory with individual data objects that fit.

� NOT supported for SHARC DSPs in this release of VisualDSP++.

Linker Command-Line Reference

2-36 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

-keep symName

Retains unused symbols; directs the linker (while -e or -ev is enabled) to
keep listed symbols in the executable even if they are unused.

-o filename

Outputs executable file with the specified filename. If filename is not
specified, the linker outputs a “.dxe” file in the project’s home directory.
Alternatively, you may use the OUTPUT command in an LDF to name the
output file.

-pp

Stops after preprocessing; directs the linker to stop after the preprocessor
runs without linking. The output (preprocessed source code) prints to
stdout.

-proc ProcessorID

Directs the linker to select a target processor.

If you do not specify your target, the default is ADSP-21062 (also supports
ADSP-21060 DSPs and ADSP-21061 DSPs.
To select ADSP-21065L DSP, enter ADSP-21065L.
To select ADSP-21160 DSP, enter ADSP-21160.
To select ADSP-21161 DSP, enter ADSP-21161.

-s

Strips all symbols. Directs the linker to omit all symbol information from
the output file.

-sp

Skips preprocessing. Links without preprocessing the LDF.

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 2-37

Linker

-t

Outputs the names of link objects to standard output as the linker pro-
cesses them.

-v

(Verbose) — Outputs status information while linking.

-version

Directs the linker to output its version to stderr and exit.

-warnonce

Warns only once for each undefined symbol, rather than once for each ref-
erence to that symbol.

-xref filename

Outputs a list of all cross-referenced symbols (and where they are used) in
the link to the named file.

Linker Description File Reference

2-38 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

Linker Description File Reference
An LDF allows you to develop code for any system that contains a DSP.
The syntax of the LDF defines your system to the linker and specifies how
the linker processes executable code for your system. This reference
describes LDF syntax and provides LDF examples for typical systems.

This section includes the following topics:

• “LDF Structure” on page 2-39

• “LDF Expressions and Conventions” on page 2-40

• “Linker Keywords” on page 2-42

• “LDF Operators” on page 2-44

• “LDF Macros” on page 2-46

• “LDF Command Summary” on page 2-49

• “LDF Programming Examples” on page 2-84

� Because the linker runs the preprocessor on the LDF, you can use
any preprocessor commands (such as #define) within your LDF.
For more information on preprocessor commands, see the
VisualDSP++ 2.0 Assembler & Preprocessor Manual for ADSP-21xxx
DSPs.

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 2-39

Linker

LDF Structure
One way to produce a simple, maintainable linker description file is to
structure it to parallel the structure of your DSP system. Using your sys-
tem as a model, follow these guidelines:

• Split the LDF into a set of PROCESSOR{} commands, one for each
DSP in your system.

• Put each MEMORY{} command in the LDF scope that matches your
system, defining memory that is unique to a processor within the
scope of the corresponding PROCESSOR{} command. Define com-
mon memory definitions (shared or multiprocessor memory) in the
global LDF scope, before any PROCESSOR{} commands.

• Place MPMEMORY{} or SHARED_MEMORY{} commands in the global LDF
scope if they apply to your system. These commands represent sys-
tem resources that apply to multiprocessor systems.

For more information on the LDF structure, see “Describing the Link
Target” on page 2-14, “Placing Code on the Target” on page 2-20, and
“LDF Programming Examples” on page 2-84.

Command Scoping

The two LDF file scopes are global and command. A command scope
defines the content for an OUTPUT() command. You can use an OUTPUT()
command within a PROCESSOR{} and SHARED_MEMORY{} command. The
global scope occurs outside commands. Commands and expressions that
appear in the global scope are available in the global scope and visible in
all subsequent scopes. The effects of commands and expressions that
appear in the command scopes are limited to those scopes. Note that LDF
macros are available globally regardless of the scope where the macro is
defined (see “LDF Macros” on page 2-46).

Linker Description File Reference

2-40 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

Figure 2-3 demonstrates some scoping issues. For example, the MEMORY{}
command that appears in the global LDF scope is available in all of the
command scopes, but the MEMORY{} commands that appear in the com-
mand scopes are restricted to those scopes.

LDF Expressions and Conventions
Table 2-5 lists the linker’s non-keyword operators and conventions.

Table 2-5. Linker Non-Keyword Operators and Conventions

Convention Description

. A dot “.” in an address expression refers to the current
location pointer.

0xnumber A “0x” prefix indicates a hexadecimal number.

number A number without a prefix is a decimal number.

MEMORY{}

MPMEMORY{}

SHARED_MEMORY
 {
 OUTPUT()
 SECTIONS{}
 }

PROCESSOR P0
 {
 OUTPUT()
 MEMORY{}
 SECTIONS{}
 RESOLVE{}
 }

Scope of SHARED_MEMORY{}

Scope of PROCESSOR P0{}

Global
LDF
Scope

Figure 2-3. LDF Command Scoping Example

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 2-41

Linker

Linker commands may contain arithmetic expressions. These expressions
follow the same syntax rules as C/C++ language expressions. The linker
handles expressions as follows:

• Evaluates all expressions as type unsigned long

• Treats all constants as type unsigned long

• Supports all C/C++ language arithmetic operators

• Lets you define and refer to symbolic constants in the linker descrip-
tion file

• Lets you refer to global variables in the program being linked

• Recognizes labels conforming to the following constraints:

• Must start with a letter, underscore, or point

• May contain any letters, underscores, digits, and points

• Are whitespace-delimited

• Do not conflict with any keywords, and are unique.

numberk (or K) A decimal number multiplied by 1024.

/* comment */ C-style comments: These can cross newline boundaries until */ is
encountered.

// comment A “//” string precedes single-line C++ style comments

Table 2-5. Linker Non-Keyword Operators and Conventions (Cont’d)

Convention Description

Linker Description File Reference

2-42 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

Linker Keywords
Descriptions of linker keywords from Table 2-6 appear in the following
sections:

• “Miscellaneous LDF Keywords” on page 2-44

• “LDF Operators” on page 2-44

• “LDF Macros” on page 2-46

• “LDF Command Summary” on page 2-49

The keywords in Table 2-6 are case-sensitive; the linker only recognizes a
keyword when the entire word is UPPERCASE.

Table 2-6. Linker Keywords and Operators

ABSOLUTE on page 2-44 ADDR on page 2-45 ALGORITHM on page 2-80

ALIGN on page 2-50 ALL_FIT on page 2-80 ARCHITECTURE on
page 2-50

BEST_FIT on page 2-80 BOOT on page 2-44 DEFINED on page 2-45

DM on page 2-55 ELIMINATE on page 2-51 ELIMINATE_SECTIONS
on page 2-51

END on page 2-56 FALSE on page 2-44 FILL on page 2-78

FIRST_FIT on page 2-80 INCLUDE on page 2-49 INPUT_SECTION_ALIGN
on page 2-52

INPUT_SECTIONS on
page 2-77

KEEP on page 2-52 LENGTH on page 2-56

LINK_AGAINST on
page 2-49

MAP on page 2-49 MEMORY on page 2-54

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 2-43

Linker

MEMORY_SIZEOF on
page 2-45

MPMEMORY on page 2-56 NUMBER_OF_OVERLAYS
on page 2-80

OUTPUT on page 2-73 OVERLAY_ID on page 2-80 OVERLAY_INPUT on
page 2-80

OVERLAY_GROUP on
page 2-57

OVERLAY_OUTPUT on
page 2-80

PACKING1

PLIT on page 2-69 PLIT_DATA_OVERLAY_IDS
on page 2-72

PLIT_SYMBOL_ADDRESS
on page 2-72

PLIT_SYMBOL_OVERLAY
ID on page 2-72

PM on page 2-55 PROCESSOR on page 2-72

RAM on page 2-55 RESOLVE on page 2-74 RESOLVE_LOCALLY on
page 2-81

ROM on page 2-55 SEARCH_DIR on page 2-74 SECTIONS on page 2-75

SHARED_MEMORY on
page 2-81

SHT_NOBITS on page 2-77 SIZE on page 2-81

SIZEOF on page 2-45 START on page 2-56 TYPE on page 2-55

VERBOSE on page 2-51 WIDTH on page 2-56 XREF on page 2-44

Table 2-6. Linker Keywords and Operators

Linker Description File Reference

2-44 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

Miscellaneous LDF Keywords
This section describes the linker keywords that are not operators, macros,
or commands. For more information about linker keywords that are oper-
ators, see “LDF Operators” on page 2-44. For more information about
linker keywords that are macros, see “LDF Macros” on page 2-46. For
more information about linker keywords that are commands, see “LDF
Command Summary” on page 2-49.

ABSOLUTE—An expression operator that returns the non-relocatable
value of an expression.

BOOT—Boot memory, memory from which a ADSP-21xxx DSP can be
booted.

DM—Data Memory, the default memory space for all variables.

FALSE—A constant with the value of 0.

PM—Program Memory, the memory space for functions.

TRUE—A constant with a value of 1.

XREF—A cross-reference option setting.

LDF Operators
LDF operators in expressions support memory address operations. Expres-
sions that contain these operators terminate with a semicolon, except
when you use the operator as a variable for an address. The linker supports
the following LDF operators:

• ABSOLUTE(address_expression)

The linker returns the absolute, non-relocatable address of the
address_expression on a call to ABSOLUTE(). Use this operator to
assign an absolute address to a symbol.

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 2-45

Linker

• ADDR(section_name)

The linker returns the absolute, non-relocatable address of the
section_name on a call to ADDR(). Use this operator to assign a sec-
tion’s absolute address to a symbol.

• DEFINED(symbol)

The linker returns a 1 if the symbol appears in the linker’s symbol
table and a 0 if the symbol is not defined. Use this operator to assign
default values to symbols.

• MEMORY_SIZEOF(segment_name)

The linker returns the size, in words, of the memory segment,
segment_name. This operator is useful when knowing a segment’s
size helps with moving the current location counter to an appropri-
ate location.

• SIZEOF(section_name)

The linker returns the size, in 8-bit bytes, of the section,
section_name. This operator is useful when knowing a section’s size
helps with moving the current location counter to an appropriate
location.

• The current location counter (.)

The linker treats a . (period) surrounded by spaces as the symbol for
the current location counter. Because the “.” only refers to a location
in an output section, this operator may appear only within the
SECTIONS{} command. The . operator starts at the start address of
the target memory segment and increments through the segment’s
addresses; it may not be decremented, or moved backwards, except
for the OVERLAY_INPUT() portion of the SECTIONS{} command.

Linker Description File Reference

2-46 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

Observe the following rules when manipulating the . operator:

• Use the . operator anywhere that a symbol is allowed in expres-
sions.

• Assigning a value to the . operator moves the location counter,
leaving voids or gaps in memory.

LDF Macros
Macros are names of text strings. They may be assigned values (textual or
procedural) used to substitute the macro reference(s). Programs encoun-
tering these identifiers in their input files can:

• Substitute the string value for the name. Normally, the string value
is longer than the name, so the macro “expands” to its textual
length.

• Perform actions that are conditional on the existence or value of the
macro.

• Assign a value to the macro, possibly as the result of a procedure,
then use that value in further processing.

The linker supports all three treatments of macros it encounters in the
LDF. Some macros are built in, with predefined procedures or values,
which may be system-specific. These are called linker (or LDF) macros,
and are described below. Others, user macros, are user-defined.

A macros is identified with leading dollar sign ($).

LDF macros funnel input from the linker command line into predefined
macros and provide support for user-defined macro substitutions. Linker
macros are available globally in the LDF regardless of where they are
defined. For more information on these topics, see “Command Scoping”
on page 2-39 and “LDF Macros and Command-Line Interaction” on
page 2-48.

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 2-47

Linker

� LDF macros are independent of preprocessor macro support
(#defines), which is also available in the LDF. Preprocessor macros
(or other preprocessor commands) are placed by the preprocessor
into source files. The preprocessor macros are useful for repeating
instruction sequences in your source code. These macros facilitate
text replacement, file inclusion, and conditional assembly and com-
pilation. In addition, #define preprocessor commands define sym-
bolic constants.

LDF Macro List

The linker provides the following LDF macros:

• $COMMAND_LINE_OBJECTS

The linker expands this macro into the list of object (.DOJ) and
library (.DLB) files that are input on the linker’s command line. Use
this macro within the INPUT_SECTIONS{} syntax of the linker’s
SECTIONS{} command. This macro provides a comprehensive list of
object file input that the linker searches for input sections.

• $COMMAND_LINE_LINK_AGAINST

The linker expands this macro into the list of executable (.DXE or
.SM) files that are input on the linker’s command line. For multipro-
cessor links, this macro is useful within the RESOLVE() and PLIT{}
syntax of the linker’s PROCESSOR{} command. This macro provides
a comprehensive list of executable file input that the linker searches
when resolving external symbols.

• $COMMAND_LINE_OUTPUT_FILE

The linker expands this macro into the output executable (.DXE or
.SM) file name, which is set with the linker’s -o switch. Use this
macro only once in your LDF for file name substitution within an
OUTPUT() command.

Linker Description File Reference

2-48 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

• $ADI_DSP

The linker expands this macro into the path to the installation direc-
tory. Use this macro to control how the linker searches for files.

• $macro = list_of_files ;

The linker supports user-defined macros for file lists. Use the above
syntax to define the $macro as a comma delimited list_of_files.
After you define $macro, the linker substitutes the list_of_files
for the $macro when it subsequently appears in the LDF. Terminate
a $macro declaration with a semicolon. The linker processes the
files in the order that they appear.

LDF Macros and Command-Line Interaction

Whether you run the linker from the VisualDSP++ environment or from a
command line, the linker gets its commands through a command-line
interface. Many linker operations, such as input, output, and link against
files can be controlled through the command line. Using LDF macros,
you can apply these command-line inputs throughout your LDF. For
more information, see “LDF Macros” on page 2-46.

Whether you should use the command-line inputs in the LDF or control
the linker with LDF code depends on the following two criteria:

1. Writing an LDF that uses command-line inputs can produce a
more generic LDF that you can use for multiple projects. Because
you can specify only a single output from the command line, an
LDF that relies on command-line input should be written to pro-
duce one output file for a single-processor system.

The linker command-line interface does not allow you to name the
multiple outputs for multiprocessor, shared memory, or overlay
memory.

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 2-49

Linker

2. Writing an LDF that does not use command-line inputs can pro-
duce a more specific LDF that you can use with more complex
linker features. From VisualDSP++, you can name multiple out-
puts that you need for multiprocessor, shared memory, or overlay
memory.

LDF Command Summary
Commands in the LDF define the target system and specify the order in
which the linker processes output for that system. Linker commands oper-
ate within a scope, influencing the operation of other commands that
appear within the range of that scope. For more information, see “Com-
mand Scoping” on page 2-39.

The linker supports the following LDF commands:

• “ALIGN()” on page 2-50

• “ARCHITECTURE()” on page 2-50

• “ELIMINATE()” on page 2-51

• “ELIMINATE_SECTIONS()” on page 2-51

• “INCLUDE()” on page 2-51

• “INPUT_SECTION_ALIGN()” on page 2-52

• “KEEP()” on page 2-52

• “LINK_AGAINST()” on page 2-52

• “MAP()” on page 2-53

• “MEMORY{}” on page 2-54

• “MPMEMORY{}” on page 2-56

• “OVERLAY_GROUP{}” on page 2-57

Linker Description File Reference

2-50 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

• “PACKING()” on page 2-61

• “PLIT{}” on page 2-69

• “PROCESSOR{}” on page 2-72

• “RESOLVE()” on page 2-74

• “SEARCH_DIR()” on page 2-74

• “SECTIONS{}” on page 2-75

• “SHARED_MEMORY{}” on page 2-81

ALIGN()
The linker uses the ALIGN(address_boundary_expression) command to align
the address of the current location counter to the next address that is a
multiple (power of 2) of address_boundry_expression. The address bound-
ary expression is a word boundary (address), which depends on the word
size of the segment where the ALIGN() is taking place.

ARCHITECTURE()
The linker’s ARCHITECTURE() command specifies the processor in your tar-
get system. Your LDF may contain only one ARCHITECTURE() command.
The command must appear in a global LDF scope, applying to the entire
linker description file.

SYNTAX: ARCHITECTURE(processor)

The ARCHITECTURE() command is case-sensitive. Hence, ADSP-21160 is a
legal value but adsp-21160 is not.

If you do not specify the target processor with the ARCHITECTURE() com-
mand in the LDF, it must be in the command line (linker
-Darchitecture ...). Otherwise, the linker cannot link your program. If

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 2-51

Linker

the processor-specific MEMORY{} commands in the LDF conflict with the
processor type, the linker issues an error message and halts.

� To test whether your VisualDSP++ installation accommodates a
particular processor, type

 linker -D<your target architecture>

at a command line. If the architecture is not installed, the linker
prints out a message to that effect.

ELIMINATE()
The linker uses the ELIMINATE() command to turn on object elimination,
removing symbols from the executable if they are not called. If the
 VERBOSE keyword is added (for example, ELIMINATE(VERBOSE)), the linker
reports on objects as they are eliminated. This command is performs the
same function as the -e command-line switch.

ELIMINATE_SECTIONS()
The linker uses the ELIMINATE_SECTIONS(sectionList) command to turn
on section elimination, removing symbols ONLY from the listed sections
of the executable if they are not called. The sectionList is a comma-delim-
ited list of sections. Verbose elimination can also be obtained by
specifying ELIMINATE(VERBOSE). This command is performs the same
function as the -es command-line switch.

INCLUDE()
Specifies an additional LDF that the linker processes before processing the
remainder of the current LDF. You may specify any number of additional
LDFs. Supply one filename per INCLUDE() command. Each LDFs must
specify the same Architecture(), though only one is obligated to do so.
Normally, that is the top-level LDF, which calls the others.

Linker Description File Reference

2-52 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

INPUT_SECTION_ALIGN()
The INPUT_SECTION_ALIGN(address_boundary_expression) command is
valid only within the scope of an output section. For more information,
see “Command Scoping” on page 2-39. For more information on output
sections, see the syntax description for “SECTIONS{}” on page 2-75.)

The linker fills any “holes” created by the INPUT_SECTION_ALIGN() instruc-
tions with zeroes (by default), or with the value specified with the
preceding FILL command valid for the current scope. For more informa-
tion on FILL, see page 2-78.

The linker aligns each input section (instruction or data) placed in an out-
put section with the address specified by the address_boundry_expression.
The address boundary expression (a power of 2) is a word boundary
(address). Legal values for this expression depend on the word size of the
segment that receive the output section being aligned.

KEEP()
The linker uses the KEEP(keepList) command when section elimination is
on, retaining the listed objects in the executable even when they are not
called. The keepList is the comma delimited list of objects.

LINK_AGAINST()
To link multiprocessor programs for ADSP-21xxx processors, you must
use the LINK_AGAINST() command in your linker description file (.ldf).

A LINK_AGAINST() command directs the linker to check specific executa-
bles to resolve variables and labels that have not been resolved locally.
LINK_AGAINST() is an optional part of the PROCESSOR{}, SHARE_MEMORY{},
OVERLAY_INPUT{} command.

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 2-53

Linker

The syntax for the LINK_AGAINST() command is:

PROCESSOR n
{
 ...
 LINK_AGAINST (executable_file_names)

 }

where:

• n is the processor name (typically 0, 1, ...)

• executable_file_names is a list of one or more executable (.DXE) or
shared memory (.SM) files. Multiple file names must be separated by
whitespace.

The linker searches the executable files in the order listed in the
LINK_AGAINST() command. Once the symbol definition is found, the
linker stops searching.

You can override the search order for a specific variable or label by using
the RESOLVE() command, which directs the linker to ignore
LINK_AGAINST() for a specific symbol. LINK_AGAINST() for other symbols
still applies. Example LDFs containing the LINK_AGAINST() and
RESOLVE() commands are useful for seeing how this process works. For
more information, see Listing 2-9 on page 2-89.

MAP()
The MAP() command outputs a map file with the specified name. You
must supply the file name. Place this command anywhere in the LDF.

This command corresponds to and is overridden by the -Map <filename>
command-line switch. If your VisualDSP++ project’s options include gen-
erating a symbol map (Link tab of the Project Options dialog box), the
linker runs with -Map <projectname>.map asserted, and your LDF’s MAP()
command generates a warning.

Linker Description File Reference

2-54 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

MEMORY{}
The linker’s MEMORY{} command specifies the memory map of your target
system. After you declare memory segment names with this command, the
linker uses the memory segment names to place program SECTIONs
through the SECTIONS{} command.

Your LDF may contain a MEMORY{} command that applies to each proces-
sor’s scope and must contain a MEMORY{} command for any global memory
on your target system. There is no limit to the number of segments you
can declare within each MEMORY{} command. For more information, see
“Command Scoping” on page 2-39.

In each scope scenario, follow the MEMORY{} command with a SECTIONS{}
command. Use memory segment names to place program SECTIONs. Only
memory segment declarations can appear within the MEMORY{} command.
There is no limit on section name lengths.

If you do not specify the target processor’s memory map with the
MEMORY{} command, the linker cannot link your program. If the combined
sections directed to a segment require more space than exists in the seg-
ment, the linker issues an error message and halts the linker.

The syntax for the MEMORY{} command appears in Figure 2-4 on page
2-55, followed by definitions for the command’s components.

Definitions for the parts of the MEMORY{} command’s syntax are as follows:

• segment_commands

Declares your target processor’s memory segments. Although your
linker description file may contain only one MEMORY{} command
that applies to each scope of the LDF, there is no limit to the num-
ber of segments that you can declare within each MEMORY{} com-
mand. Each segment declaration must contain the following
parameters: a segment_name, a TYPE() command, a START() com-
mand, a LENGTH() or END() command, and a WIDTH() command.

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 2-55

Linker

• segment_name

Identifies the reference segment_name of the memory region. The
segment_name starts with a letter, underscore, or point and may
include any letters, underscores, digits, and points. A segment_name
must not conflict with any linker keywords.

• TYPE(PM|DM RAM|ROM|PORT)

Identifies the architecture-specific type of memory within the seg-
ment. (Note: not all target processors support all types of memory.)
The linker stores this information in the executable for use by other
development tools, such as the PROM splitter. A valid TYPE() com-
mand specifies the type of memory usage (PM for program memory
or DM for data memory) and the memory’s functional or hardware
locus (RAM, ROM, or PORT).

segment_name {

TYPE(PM | DM RAM | ROM | PORT)

START(address_expression)

LENGTH(length_expression) | END(address_expression)

WIDTH(width_expression)

}

MEMORY{segment_commands}

Figure 2-4. Syntax Tree of the MEMORY{} Command

Linker Description File Reference

2-56 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

• START(address_expression)

Identifies the segment’s start address. The address_expression must
be an absolute address or an expression that evaluates to an absolute
address.

• LENGTH(length_expression)|END(address_expression)

Identifies the segment length in words or sets the segment’s end
address. When stating the length, the length_expression must be the
number of addressable words within the region or an expression that
evaluates to the number of words. When stating the end address, the
address_expression must be an absolute address or an expression that
evaluates to an absolute address, such as START + LENGTH = END.

• WIDTH(width_expression)

Identifies the width in bits of memory words within the segment.
The width_expression must be the number of bits per word within
the region or an expression that evaluates to the number of bits per
word.

MPMEMORY{}
The MPMEMORY{} command specifies the offset of each processor’s physical
memory in your target multiprocessor system. After you declare the pro-
cessor names and memory segment offsets with this command, the linker
can use the offsets during multiprocessor linking.

Your LDF, and any other LDFs it includes, may contain only one
MPMEMORY{} command. The maximum number of processors that you can
declare is architecture-specific. Follow the MPMEMORY{} command with
PROCESSOR processor_name{} commands containing each processor’s MEM-
ORY{} and SECTIONS{} commands.

The syntax for the MPMEMORY{} command appears in Figure 2-5, followed
by definitions for the command’s components.

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 2-57

Linker

The parts of the MPMEMORY{} command’s syntax are as follows:

• shared_segment_commands

Contains processor_name declarations with a START{} address for
each processor’s offset in multiprocessor memory. Processor names
follow the same rules as any linker label. For more information, see
“LDF Expressions and Conventions” on page 2-40.

• PROCESSOR processor_name{placement_commands}

Applies the processor_name offset for multiprocessor linking. For
more information, see “PROCESSOR{}” on page 2-72.

OVERLAY_GROUP{}
Overlays are sets of program data or instructions that reside off chip.
When needed, they are brought on chip into run-time memory, under the
control of an overlay manager routine.

Overlaying improves performance by placing currently executing code in
your fastest memory, though the entire program may be too large to fit in
that memory. Performance is most enhanced when code executes in phases

processor_name {

START(address_expression)

}

MPMEMORY{shared_segment_commands}

Figure 2-5. Syntax Tree of the MPMEMORY{} Command

Linker Description File Reference

2-58 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

with relatively long residence in certain portions of the program. An FFT
is a good example of such code.

 Overlays may be grouped or ungrouped. Ungrouped overlays execute from
a single starting address in “run” memory. The OVERLAY_GROUP command
allows you to group overlays, so that each group has its own run-time
memory.

Grouping through OVERLAY_GROUP allows you to define a series of overlays
sequentially in the LDF, but segment the “run” memory so that multiple
overlays may reside in “run” memory simultaneously.

Figure 2-6 and Figure 2-7 demonstrate ungrouped versus grouped over-
lays.

Ungrouped overlays are executed from a single starting address in “run”
memory. The OVERLAY_GROUP command lets you group overlays, so that
one of each group of overlays resides in run-time memory, running the

OVERLAY_INPUT{
fft_one.ovl}

OVERLAY_INPUT{
fft_two.ovl}

OVERLAY_INPUT{
fft_three.ovl}

OVERLAY_INPUT{
fft_last.ovl}

fft_one.ovl
overlay

fft_two.ovl
overlay

fft_three.ovl
overlay

fft_last.ovl
overlay

Overlay
Runtime
Memory

Overlay Manager

Main: call
call

Figure 2-6. Overlays, Not Grouped

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 2-59

Linker

overlay for each group from a different starting address in run-time
memory.

In the examples in Listing 2-4 and Listing 2-5, the functions are written
to overlay files (*.OVL). It does not matter (except to a DMA that brings
them in) whether these are disk files or Memory Segments. The overlays
are active only when executed in run-time memory, all of which is located
in segment pmco.

Overlay declarations syntactically resemble SECTIONS{} commands; they
are portions of SECTIONS{} commands.

OVERLAY_GROUP{
OVERLAY_INPUT{

fft_one.ovl}
OVERLAY_INPUT{

fft_two.ovl}
}
OVERLAY_GROUP{

OVERLAY_INPUT{
fft_three.ovl}

OVERLAY_INPUT{
fft_last.ovl}

}

fft_one.ovl
overlay

fft_two.ovl
overlay

fft_three.ovl
overlay

fft_last.ovl
overlay

Overlay Group 1
Runtime
Memory

Overlay Manager

Main: call
call

Overlay Group 2
Runtime
Memory

Figure 2-7. Overlays, Grouped

Linker Description File Reference

2-60 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

Listing 2-4. LDF Overlays, Not Grouped

// Declare which functions reside in which overlay
// The overlays have been split into different segments
// if in the same file or different files.
// The overlays declared in this section, pm_code, will run
// in pm_code.

OVERLAY_INPUT {
 ALGORITHM(ALL_FIT)
 OVERLAY_OUTPUT(fft_one.ovl)
 INPUT_SECTIONS(Fft_1st.doj(pm_code))
 } >ovl_code // Overlay to live in section ovl_code
OVERLAY_INPUT {
 ALGORITHM(ALL_FIT)
 OVERLAY_OUTPUT(fft_two.ovl)
 INPUT_SECTIONS(Fft_mid.doj(pm_code))
 } >ovl_code // Overlay to live in section ovl_code
OVERLAY_INPUT {
 ALGORITHM(ALL_FIT)
 OVERLAY_OUTPUT(fft_three.ovl)
 INPUT_SECTIONS(Fft_last.doj(pm1_code))
 } >ovl_code // Overlay to live in section ovl_code
OVERLAY_INPUT {
 ALGORITHM(ALL_FIT)
 OVERLAY_OUTPUT(fft_last.ovl)
 INPUT_SECTIONS(Fft_last.doj(pm2_code))
 } >ovl_code // Overlay to live in section ovl_code

Listing 2-5. LDF Overlays, Grouped

// Declare which functions reside in which overlay
// The overlays have been split into different
// segments if in the same file or different files.
// The overlays declared in this section, pm_code, will run
// in pm_code.

OVERLAY_GROUP {
 OVERLAY_INPUT {
 ALGORITHM(ALL_FIT)
 OVERLAY_OUTPUT(fft_one.ovl)
 INPUT_SECTIONS(Fft_1st.doj(pm_code))

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 2-61

Linker

 } >ovl_code // Overlay to live in section ovl_code
 OVERLAY_INPUT {
 ALGORITHM(ALL_FIT)
 OVERLAY_OUTPUT(fft_two.ovl)
 INPUT_SECTIONS(Fft_mid.doj(pm_code))
 } >ovl_code // Overlay to live in section ovl_code
}

OVERLAY_GROUP {
 OVERLAY_INPUT {
 ALGORITHM(ALL_FIT)
 OVERLAY_OUTPUT(fft_three.ovl)
 INPUT_SECTIONS(Fft_last.doj(pm1_code))
 } >ovl_code // Overlay to live in section ovl_code
 OVERLAY_INPUT {
 ALGORITHM(ALL_FIT)
 OVERLAY_OUTPUT(fft_last.ovl)
 INPUT_SECTIONS(Fft_last.doj(pm2_code))
 } >ovl_code // Overlay to live in section ovl_code
}

PACKING()
The DSP exchanges data with its environment (on-chip or off-chip)
through several buses. The configuration, placement, and amounts of
memory are end-product-specific. You can specify memory of width(s)
and data transfer byte order(s) that suit your needs.

The linker places data in memory according to the constraints imposed by
your system’s architecture. The LDF’s PACKING() command specifies the
order the linker uses to place bytes in memory. This ordering places data
in memory in the sequence the DSP uses as it transfers data.

The PACKING() command allows the linker to structure its executable out-
put to be consistent with your installation’s memory organization. It can
be applied (scoped) on a segment-by-segment basis within the LDF, with
adequate granularity* to handle heterogeneous memory configurations.

* Any segment needing more than one packing command can be divided into homogeneous segments.

Linker Description File Reference

2-62 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

The PACKING() command syntax is:

PACKING (number_of_bytes, byte_order_list)

where:

• number_of_bytes is an integer specifying the number of bytes to
pack (reorder) before repeating the pattern

• byte_order_list is the output byte ordering — what the linker
writes into memory. Each list entry consists of B followed by the
byte’s number (in a group) at the storage medium (memory):

• Parameters are whitespace-delimited

• The total number of non-null bytes is number_of_bytes

• If null bytes are included, they are labeled B0

� Note that first byte is B1 (not B0), second byte is B2, etc.

For example,

PACKING(12 B1 B2 B3 B4 B11 B12 B5 B6 B7 B8 B9 B10)

Non-default use of the PACKING() command reorders bytes in executable
files (.DXE .SM, or .OVL), so they arrive at the target in the correct num-
ber, alignment, and sequence. To accomplish this task, the command
must know the size of the reordered group, the byte order within the
group, and whether and where null* bytes must be inserted to preserve
alignment on the target.

The order used to place bytes in a memory correlates to the order that the
DSP may use as it unpacks the data when the DSP transfers data from
external memory into its internal memory. The processor's unpacking
order can relate to the transfer method. On an ADSP-21xxx DSP,

* In this case, “null” refers to usage: the target ignores a null byte. Coincidentally, the linker sets these
bytes to all 0s.

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 2-63

Linker

PACKING() applies to the External Port. Each external port buffer contains
data packing logic that allows 8-, 16- or 32-bit external bus words to be
packed into 32- or 48-bit internal words: This logic is fully reversible.

Packing in ADSP-21xxx LDF

The following information describes how PACKING() may apply in an LDF
for your ADSP-21xxx DSP.

�
Your VisualDSP++ software comes with the packing.h file in the
...21k\include folder. This file provides macros defining packing
commands to be used in a linker description file (LDF). The file
provides macros to support the various types of packing for DMA
(used in overlays) and for direct external execution. To use these
macros, place them in the SECTIONS portion of the LDF whereever a
PACKING() command is needed.

In some DMA modes, ADSP-2106x processors unpack three 32-bit words
to build two 48-bit instruction words when the processor receives data
from 32-bit memory. For example, the following unpacked order and
storage order could apply to a DMA mode of ADSP-21xxx DSP
(B = byte):

Table 2-7. Packing Order for DMA

Unpacked Order:
Two 48-Bit Internal Words (after
the third transfer)

Transfer order from storage in a 32-Bit External

Word1, bits 47-0
(B1,B2,B3,B4,B5,B6)

Word2, bits 47-0
(B7,B8,B9,B10,B11,B12)

1. Word1, bits 47-32 (B1 & B2)
 Word1, bits 31-16 (B3 & B4)

2. Word2, bits 15-0 (B11 & B12)
 Word1, bits 15-0 (B5 & B6)

3. Word2, bits 47-32 (B7 & B8)
 Word2, bits 31-16 (B9 & B10)

Linker Description File Reference

2-64 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

Note that the order of unpacked bytes does NOT match the transfer
(stored) order. Because there are two bytes per short word used in the
ADSP-21xxx DSP, the above transfer translates into the following format
(where B = Byte), as shown in Table 2-8:

You must specify to the linker how to accommodate DSP-specific byte
(e.g. non-sequential byte order) packing with the PACKING() syntax within
the OVERLAY_INPUT command. The above example's byte ordering trans-
lates into the following PACKING() command syntax, which supports
48-bit to 32-bit packing over the DSP’s external port:

PACKING(12 B1 B2 B3 B4 B11 B12 B5 B6 B7 B8 B9 B10)

� The SHARC DSP implementation requires packing (B0) using the
PACKING() command depending upon whether the 32-bit storage is
set as PM or DM. A DM transfer is virtually 40 bits, so a single B0
is required after B4, B6 and B10, creating three DM words. For stor-
age in memory of the type “PM” and width 32 bits, the packing
command would have two null bytes per transfer.

Notice that the above PACKING() syntax places instructions in an overlay
that is stored in a 32-bit external memory, but is unpacked and executed
from 48-bit internal memory.

To see an example of the PACKING() command in a linker description file,
see the fft_ovly.ldf example file that comes with your VisualDSP++
software.

Table 2-8. Unpack vs. Storage Order

Unpacked Order:
Two 48-Bit Internal Words

Storage Order:
In 32-Bit External

B1, B2, B3, B4, B5, B6,
B7, B8, B9, B10, B11, B12

B1, B2, B3, B4, B11, B12,
B5, B6, B7, B8, B9, B10

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 2-65

Linker

For ADSP-21xxx processors, the following types of packing transfers and
corresponding PACKING() syntax apply (as in Table 2-8, null placeholders
are omitted):

1. 48-bit to 32-bit Instruction Word Packing

PACKING(12 B1 B2 B3 B4 B11 B12 B5 B6 B7 B8 B9 B10)

2. 48-bit to 16-bit Instruction Word Packing (optional, not required
because the byte ordering is sequential)

PACKING(6 B1 B2 B3 B4 B5 B6)

3. 32-bit to 16-bit Data Word Packing (optional, not required
because the byte ordering is sequential)

PACKING(4 B1 B2 B3 B4)

4. ADSP-21161N DSP supports 8-bit packing

a. 48-bit to 8-bit Word Packing

PACKING(6 B1 B2 B3 B4 B5 B6)

b. 32-bit to 8-bit Word Packing

PACKING(4 B1 B2 B3 B4)

c. 16-bit to 8-bit Word Packing

PACKING(2 B1 B2)

� Note that a byte indicated with B0 in the PACKING() syntax acts as
a place holder, and the linker sets those bytes to zero in the execut-
able.

Linker Description File Reference

2-66 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

Overlay Packing Formats

The PACKING() command has two uses. One is to pack data and instruc-
tions for overlays executed from external memory (by definition those
overlays “live” in external memory) and the other is an explicit PACKING()
command to be used whenever the width or byte order of stored data dif-
fers from its run-time organization. The linker word aligns the packing
instruction as needed.

Table 2-9 indicates the packing format combinations for ADSP-21xxx
DSP’s DMA overlays possibly used under each of the two operations.

Table 2-10 indicates the packing format combinations for ADSP-21161N
DSP’s DMA overlays for storage in 8-bit wide memory.

Table 2-9. Packing Formats for ADSP-21xxx DMA Overlays

Execution
Memory Type

Storage
Memory Type

Packing Instruction

32 Bit PM 16 Bit DM PACKING(6 B0 B0 B1 B2 B5 B0 B0 B3 B4 B6)

32 Bit DM 16 Bit DM PACKING(4 B0 B0 B1 B2 B0 B0 B0 B3 B4 B5)

48 Bit PM 16 Bit DM PACKING(6 B0 B0 B1 B2 B0 B0 B0 B3 B4 B0 B0 B0
B5 B6 B0)

48 Bit PM 32 Bit DM PACKING(12 B1 B2 B3 B4 B0 B5 B6 B11 B12 B0 B7
B8 B9 B10 B0)

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 2-67

Linker

External Execution Packing

External execution packing commands are used to pack instructions into
external memory for direct execution. The only two processors which sup-
port packed external execution are the ADSP-21161N and ADSP-21065L
DSPs. The ADSP-21161N DSP supports 48-, 32, 16-, and 8-bit wide
external memory, while the ADSP-21065L DSP only supports 32-bit
external memory.

Table 2-11 and Table 2-12 indicate the packing formats for packed exter-
nal execution.

� The packing order is different in these two processors for 32-bit
external execution.

Table 2-10. Additional Packing Formats for ADSP-21161N DMA
Overlays

Execution
Memory Type

Storage
Memory Type

Packing Instruction

48 Bit PM 8 Bit1 DM

1 * 8-bit packing is available in ADSP-2106x DSPs and ADSP-21160 DSPS only during EPROM
booting.

PACKING(6 B0 B0 B0 B1 B0 B0 B0 B0 B2 B0 B0 B0
B0 B3 B0 B0 B0 B0 B4 B0 B0 B0 B0 B5 B0 B0 B0 B0
B6 B0 B0 B0 B0 B0 B0 B0 B0 B0 B0 B0)

32 Bit DM 8 Bit DM PACKING(4 B0 B0 B0 B1 B0 B0 B0 B0 B2 B0 B0 B0
B0 B3 B0 B0 B0 B0 B4 B0)

16 Bit DM 8 Bit DM PACKING(2 B0 B0 B0 B1 B0 B0 B0 B0 B2 B0)

Linker Description File Reference

2-68 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

Table 2-12. External Execution Packing Formats for ADSP-21065L DSPs

Default Packing - No Reordering

If your memory organization matches its run-time environment, and will
load and run without reordering, the linker uses (implicit) “default” pack-
ing. Only non-default packing needs to be specified in the LDF, though
segments without reordering may be labeled as such, to retain seg-
ment-specific packing order visibility, and provide convenient locations to
change the LDF when you change your target or memory configuration.

Table 2-11. External Execution Packing Formats for ADSP-21161N DSPs

Memory Type Packing Instruction

48 bit in 32 Bit PACKING(6 B1 B2 B3 B4 B0 B0 B0 B0 B5 B6 B0 B0)

48 Bit in 16 Bit PACKING(6 B0 B0 B1 B2 B0 B0 B0 B0 B3 B4 B0 B0
B0 B0 B5 B6 B0 B0 B0 B0 B0 B0 B0 B0)

48 Bit in 8 Bit PACKING(6 B0 B0 B0 B1 B0 B0 B0 B0 B0 B2 B0 B0
B0 B0 B0 B3 B0 B0 B0 B0 B0 B4 B0 B0 B0 B0 B0 B5 B0 B0
B0 B0 B0 B6 B0 B0 B0 B0 B0 B0 B0 B0 B0 B0 B0 B0 B0 B0)

Memory Type Packing Instruction

48 Bit PM1

1 LDF memory command defines a “logical” segment, rather than a physical, which is 32 bits.

PACKING(6 B0 B0 B5 B6 B0 B0 B1 B2 B3 B4 B0 B0)

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 2-69

Linker

PLIT{}
The linker’s PLIT{} command lets you add Procedure Linkage Table
(PLIT) commands to your LDF. These commands provide a template
from which the linker generates assembly code whenever a symbol resolves
to a function in overlay memory. These instructions typically handle a call
to a function in overlay memory by calling an overlay memory manager.

A PLIT{} command may appear in the global LDF scope within a
PROCESSOR{} command or within a SECTIONS{} command.

What is a PLIT?

A PLIT is a template of instructions for loading an overlay. It may include
saving registers or stacking context information.

The linker does not accept a PLIT without any arguments (PLIT{}). If you
do not want the linker to redirect function calls in overlays, you should
omit the PLIT commands entirely. For each overlay routine in the pro-
gram, the linker builds and stores a list of PLIT instances according to
that template, as it builds its executable.

To help you to write an overlay manager, the linker generates the follow-
ing constants for each symbol in an overlay:

• Return the absolute address of the resolved symbol in “live” mem-
ory: PLIT_SYMBOL_ADDRESS.

• identify the overlay it must bring in and run when it encounters the
symbol resolving an address in it: PLIT_SYMBOL_OVERLAYID.

• If necessary, return a null-terminated array of overlay IDs contain-
ing any data for the overlay function: PLIT_DATA_OVERLAY_IDS. Data
can be overlaid, just like code.

Linker Description File Reference

2-70 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

• Save the target’s state on the stack or in memory before loading and
executing an overlay function, so it continues correctly on return.
Note: Your program may not need this information saved.

• Initiate (jump to) the routine that transfers the overlay code to
internal memory, given the previous information about its identity,
size and location: _OverlayManager “Smart” overlay managers first
check whether the overlay function is already in the internal mem-
ory; otherwise, avoid reloading it.

Allocating Space for PLITs

The LDF must allocate space in memory to hold any PLITs your linker
builds. Typically, that memory resides in the program code (seg_code*)
Memory Segment. A typical LDF declaration for that purpose appears
below.

// ... In the SECTIONS command for Processor P0
// Plit code is to reside and run in mem_pmco segment
.plit {} > seg_pmco

A PLIT{} command may appear in the global LDF scope within a
PROCESSOR{} command, or within a SECTIONS{} command.

• There is no Input Section associated with the .plit Output Section:
the LDF is allocating space for linker-generated routines, not con-
taining any of your (input) data objects.

• This segment allocation does not take any parameters. You write the
structure of this command per PLIT syntax. The linker creates
instances of the command for each symbol that resolves to an over-
lay. The linker stores each instance in the .plit Output Section
which becomes part of the program code Memory Segment.

* Whatever you name your program code Memory Segment.

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 2-71

Linker

PLIT Syntax

As noted previously, you write the PLIT{} command in the LDF. Then
the linker generates an instance of the PLIT, with appropriate values for
the parameters involved, for each symbol defined in overlay code.

The general syntax for the PLIT{} command appears in Figure 2-8, which
shows how the linker handles a symbol local to an overlay function.

The linker first evaluates the plit_commands, a sequence of assembly code.
Each line is passed to a processor-specific assembler, which supplies values
for the symbols and expressions. After evaluation, the linker puts the
returned bytes in the .plit Output Section. It also manages addressing in
that Output Section.

plit_commands include expressions that are assembly instructions or expres-
sions. There may be none, one, or more expressions. They may occur in
any reasonable order in the command structure, may precede or may fol-
low the symbols discussed in the next few paragraphs.

The next two symbols contain information about symbol and the overlay
where it occurs. In most cases, you must supply instructions to handle that
information.

PLIT{plit_commands}

expression-instruction

symbol = PLIT_SYMBOL_OVERLAYID [symbol];
symbol = PLIT_SYMBOL_ADDRESS;

symbol = PLIT_DATA_OVERLAY_IDS;

jump_OverlayManager;

Figure 2-8. Syntax Tree of the PLIT{} Command

Linker Description File Reference

2-72 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

• The PLIT_SYMBOL_OVERLAYID command directs the linker to return
the overlay ID of the resolved symbol. symbol_1 is typically a register
name or memory location, which is loaded with that overlay ID.

• The PLIT_SYMBOL_ADDRESS command directs the linker to return the
absolute address of the resolved symbol in run-time memory.
symbol_2 is typically a register name or memory location, which is
loaded with that address.

If your overlay-resident function calls for additional data overlays, you
need to include an instruction for finding them.

• The PLIT_DATA_OVERLAY_ID command directs the linker to return
the address of an array containing the IDs of overlays that hold data
used by the resolved symbol’s function. The array terminates with
the null ID “0”.
symbol_n is typically a register name or memory location, which is
loaded with that (start) address.

After the setup and variable identification are completed, the overlay itself
must be brought (DMA’d) into run-time memory. That happens under
the control of a piece of assembly code called the Overlay Manager.

• jump (_OverlayManager) is normally the last instruction in the
PLIT.

PROCESSOR{}
The PROCESSOR{} command declares a processor and its related link infor-
mation. A PROCESSOR{} command holds the MEMORY{}, SECTIONS{},
RESOLVE{}, and other linker command that apply only to that processor.

If you do not specify the type of link with a PROCESSOR{} or
SHARED_MEMORY{} command, the linker cannot link your program. If using
PROCESSOR{} with SHARED_MEMORY{} or MPMEMORY{}, the number of proces-
sors that you can declare is processor-specific.

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 2-73

Linker

The syntax for the PROCESSOR{} command appears in Figure 2-9.

The PROCESSOR{} command syntax is defined as follows:

• processor_name

Assigns a processor_name to the processor. Processor names follow
the same rules as any linker label. For more information, see “LDF
Expressions and Conventions” on page 2-40.

• OUTPUT(file_name.DXE)

Selects the output file name for the executable (.DXE). Note that an
OUTPUT() command in an LDF scope must appear before a
SECTIONS{} command in that scope.

• MEMORY{segment_commands}

Defines memory segments that apply only to this processor. Use
LDF command scoping to define these segments outside the PRO-
CESSOR{} command. For more information, see “Command Scop-
ing” on page 2-39, and “MEMORY{}” on page 2-54.

• PLIT{plit_commands}

Defines Procedure Linkage Table (PLIT) commands that apply only
to this processor. For more information, see “PLIT{}” on page 2-69.

Figure 2-9. Syntax Tree of the PROCESSOR{} Command

PROCESSOR processor_name
{
OUTPUT(file_name.DXE)
[MEMORY{segment_commands}]
[PLIT{plit_commands}]
SECTIONS{section_commands}
RESOLVE(symbol, resolver)

}

Linker Description File Reference

2-74 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

• SECTIONS{section_commands}

Defines sections for placement within the executable (.DXE). For
more information, see “SECTIONS{}” on page 2-75.

RESOLVE()
The RESOLVE(symbol_name, resolver) command directs the linker to resolve
a particular symbol (variable or label) to an address using the resolver. The
resolver is an absolute address or a file (.DXE or .SM) containing the defini-
tion of the symbol. If a linker does not find the symbol in the designated
file, it issues an error.

� When you resolve a C/C++ variable, prefix it with an underscore in
the RESOLVE() statement (i.e., _symbol_name).

Use the RESOLVE() command, which directs the linker to ignore a
LINK_AGAINST() for a specific symbol, to override the search order for a
specific variable or label. For more information, see Listing 2-9 on page
2-89.

SEARCH_DIR()
The SEARCH_DIR() command specifies one or more directories that the
linker searches for input files. You may specify multiple directories within
SEARCH_DIR commands, delimiting each path with a semicolon (;) and
enclosing long directory names within straight quotes, "long directory
name".

The search order follows the order in which directories appear. This com-
mand appends search directories to the directory selected with the -L
linker command-line switch.

Place this command at the beginning of the LDF, so the linker applies the
command to all file searches.

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 2-75

Linker

For example,

ARCHITECTURE(ADSP-21062)
// Generate a MAP file

MAP(SINGLE-PROCESSOR.MAP)
// $ADI_DSP is a predefined linker macro that expands
// to the VDSP install directory. Search for objects in
// directory 21k/lib relative to the install directory

SEARCH_DIR($ADI_DSP\21k\lib)

SECTIONS{}
The SECTIONS{} command specifies the placement of your program’s
.SECTIONs in memory, using segments defined with the MEMORY{}
command.

The LDF may contain a SECTIONS{} command within each PROCESSOR{}
and SHARED_MEMORY{} command. The SECTIONS{} command must be pre-
ceded by a MEMORY{} command, defining the memory segments in which
the linker places the sections. The syntax for the SECTIONS{} command
appears in Figure 2-10.

The SECTIONS{} command syntax is defined as follows:

• section_commands or expression

Defines expressions or output sections (section_name). Use expressions
to manipulate symbols or position the current location counter. Use
output section commands to declare your program’s sections.
Although your LDF may contain only one SECTIONS{} command
within each LDF scope, there is no limit to the number of output
sections that you can declare within each SECTIONS{} command. For
more information, see “Command Scoping” on page 2-39.

The output section, section_name declaration, has the following syn-
tax rules:

Linker Description File Reference

2-76 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

• section_name starts with a letter, underscore, or period and may
include any letters, underscores, digits, and points. A
section_name must not conflict with any linker keywords. The
special section_name, .plit, indicates the Procedure Linkage
Table (PLIT) section that the linker generates when resolving

Figure 2-10. Syntax Tree of the SECTIONS{} Command

INPUT_SECTIONS(file_source [archive_member (input_labels)])

expression

FILL(hex number)

OVERLAY_OUTPUT(file_name.OVL)
INPUT_SECTIONS(input_section_commands)
symbol=OVERLAY_ID()
symbol =NUMBER_OF_OVERLAYS()
ALGORITHM(ALL_FIT | FIRST_FIT |BEST_FIT)
SIZE(expression)

SECTIONS{section_statements}

expression
section_name [section_type] {section_commands} [> memory_segment]

LDF macro
list_of_files

OVERLAY_INPUT(overlay_commands) [>overlay_memory_segment]

PLIT{plit_commands}

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 2-77

Linker

symbols in overlay memory. You must place this section in
non-overlay memory to manage references to items in overlay
memory.

• section_type is optional and is used to assign an ELF section
type. The only legal section type keyword is SHT_NOBITS. This
section type is a section containing uninitialized data. For an
example of how to use SHT_NOBITS, see Listing 2-8.

• section_commands may contain any combination of the follow-
ing commands: an INPUT_SECTIONS() command, an expression,
a FILL() command, a PLIT{} command, or an OVERLAY_INPUT()
command.

• > memory_segment at the end of a section definition declares
whether the section is placed in the specified memory segment.
It is optional. Some sections, such as those for debugging, do
not need to be included in the memory image of the executable,
but are needed for other development tools that read the execut-
able file. By omitting a memory segment assignment for a sec-
tion, you direct the linker to keep the section in the executable,
but mark the section for exclusion from the memory image of
the executable.

• INPUT_SECTIONS()

This part of the syntax in an output_section_command identifies the
parts of your program to place in the executable with
input_section_commands. When placing an input section, specify
the file_source, archive_member (if the file_source is an archive), and
input_labels of the sections. An INPUT_SECTIONS() command has the
following syntax rules:

Linker Description File Reference

2-78 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

• file_source may be a list of files or any LDF macro that
expands into a file list, such as the $COMMAND_LINE_OBJECTS
macro. The list may contain object or archive files. Use com-
mas to delimit files within the list and enclose long file names
within straight-quotes, "long file name".

• archive_member names the source-object file within an
archive. The archive_member parameter and the left/right
brackets, [], are only required if the file_source of the
input_label is an archive.

• input_labels come from the run-time .SECTION labels in your
assembly program. Use commas to delimit .SECTION names
within the list.

• expression

In a section_command, manipulates symbols or positions the current
location counter specified by a period. It is an assembly directive.

• FILL(hex number)

In a section_command, fills with hexadecimal number any gaps that
you create by aligning or advancing the current location counter. By
default, the linker fills these gaps with zeroes. Specify only one
FILL() command per output section. For example,

FILL (0x0) or

FILL (0xFFFF)

• PLIT{plit_commands}

In a section_command, declares a locally*scoped Procedure Linkage
Table (PLIT). It contain its own labels and expressions. For more
information, see “PLIT{}” on page 2-69.

* In that section only.

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 2-79

Linker

• OVERLAY_INPUT(overlay_commands)

In a section_command, identifies parts of your program to be placed
in an overlay executable with overlay_commands. For more informa-
tion, see “Linking for Overlay Memory” on page 2-95.

The overlay_commands part of the syntax must contain at least one
of the following commands: an INPUT_SECTIONS() command, and
OVERLAY_ID() command, a NUMBER_OF_OVERLAYS() command, a
OVERLAY_OUTPUT() command, an ALGORITHM() command, a
RESOLVE_LOCALLY() command, or SIZE() command.

Note that you can increment the current location counter only
within the OVERLAY_INPUT() command; this is the only context
where it is illegal to decrement the counter.

The memory_segment_name determines whether the section is
placed in an overlay segment and is optional. Some overlay sections,
such as those loaded from a host, do not need to be included in the
overlay memory image of the executable, but are needed for other
development tools that read the executable file.

By omitting an overlay memory segment assignment for a section,
you direct the linker to keep the section in the executable, but mark
the section for exclusion from the overlay-memory image of the exe-
cutable.

Linker Description File Reference

2-80 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

An OVERLAY_INPUT() command has the following syntax rules:

• The OVERLAY_OUTPUT() command directs the linker to output an
overlay file (.OVL) for the overlay with the name specified. Note that
an OVERLAY_OUTPUT() command in an OVERLAY_INPUT() command
must appear before any INPUT_SECTIONS() for that overlay.

• The INPUT_SECTIONS() command has the same syntax within an
OVERLAY_INPUT() command as when it appears within a
output_section_command, except that you can not place the .plit
section in the overlay memory. For more information, refer to
page 2-77.

• The OVERLAY_ID() command directs the linker to return the overlay
ID of the resolved symbol.

• The NUMBER_OF_OVERLAYS() command directs the linker to return
the number of overlays that the current link generates when using
the FIRST_FIT or BEST_FIT overlay-placement ALGORITHM().

• The ALGORITHM() command directs the linker to use the specified
overlay linking algorithm. Valid linking algorithms include
ALL_FIT, FIRST_FIT, and BEST_FIT.

• For ALL_FIT, the linker tries to fit all the OVERLAY_INPUT() into
a single overlay that can overlay into the output_section’s
run-time memory segment.

• For FIRST_FIT, the linker splits the input sections mentioned in
the OVERLAY_INPUT() into a set of overlays that can each overlay
the output_section’s run-time memory segment, according to
First-In-First-Out (FIFO) order.

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 2-81

Linker

• For BEST_FIT, the linker splits the input sections mentioned in
the OVERLAY_INPUT() into a set of overlays that can each overlay
the output_section’s runtime memory segment, but splits these
overlays to optimize memory usage.

When you use the FIRST_FIT or BEST_FIT algorithm, the overlay
ID of the next overlay is:

Next ID = OVERLAY_ID() + NUMBER_OF_OVERLAYS()

• The RESOLVE_LOCALLY() command, when applied to an overlay,
controls whether the linker generates PLIT entries for function calls
that are resolved within the overlay. For RESOLVE_LOCALLY(TRUE),
the linker does not generate PLIT entries for locally resolved func-
tions within the overlay. For RESOLVE_LOCALLY(FALSE), the linker
generates PLIT entries for all functions, whether or not they are
locally resolved within the overlay. The default is TRUE.

• The SIZE() command directs the linker to set an upper limit on the
size of the memory that is occupied by an overlay.

SHARED_MEMORY{}
The linker produces two types of executable output: .DXEs, which run in a
single processor’s address space, and Shared Memory executable (.SM) files
that reside in the shared memory of a system. These are produced by the
SHARED_MEMORY{} command.

� If you do not specify the type of link with a PROCESSOR{} or
SHARED_MEMORY{} command, the linker cannot link your program.

Your LDF may contain any number of SHARED_MEMORY{} commands, but
the number of processors that can access a shared memory is processor-
specific.* The SHARED_MEMORY{} command must appear in the same LDF
scope of a MEMORY{} command that describes the shared memory. The
PROCESSOR{} commands that declare the processors that share this memory
must also appear within this same LDF scope.

Linker Description File Reference

2-82 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

The syntax for the SHARED_MEMORY{} command appears in Figure 2-11,
followed by definitions of its components.

The SHARED_MEMORY{} command syntax is defined as follows:

• OUTPUT(file_name.SM)

Selects the output file name for the Shared Memory executable
(.SM). An OUTPUT() command in a SHARED_MEMORY{} command
must appear before the SECTIONS{} command in that scope.

• SECTIONS{section_commands}

Defines sections for placement within the Shared Memory execut-
able (.SM). For more information, see “SECTIONS{}” on page
2-75.

An example of this command scoping appears in Figure 2-12 on page
2-83. For more information, see “Command Scoping” on page 2-39.

* For SHARC shared memory systems, you may have up to 6 processors accessing the shared memory
without adding external logic for bus arbitration. This limit may be exceeded if you add bus arbitra-
tion logic to the system.

SHARED_MEMORY
{
OUTPUT(file_name.SM)
SECTIONS{section_commands}

}

Figure 2-11. Syntax Tree of the SHARED_MEMORY{} Command

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 2-83

Linker

MEMORY
{
mem_pmda
{
TYPE(PM RAM) START(5120k) LENGTH(8k) WIDTH(32)

}
}

SHARED_MEMORY
{

OUTPUT(shared.sm)

SECTIONS
{
my_shared_sections{section_commands}
> sec_pmda

}
}

PROCESSOR p0{
processor_commands with link against shared memory}

PROCESSOR p1{
processor_commands with link against shared memory}

The MEMORY{} command appears in a scope that is available to any
SHARED_MEMORY{} commands and PROCESSOR{} commands that use the
shared memory. To achieve this type of scoping across multiple links, put the
sharedMEMORY{} in a separate linker description file and use theINCLUDE()
command to include that memory in both links.

Figure 2-12. LDF Scoping for the SHARED_MEMORY{} Command

LDF Programming Examples

2-84 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

LDF Programming Examples
This section shows LDF examples for many typical system models. As you
modify these examples, refer to the syntax descriptions in “LDF Com-
mand Summary” on page 2-49. The examples in this section include the
following:

• “Linking for Single-Processor Memory” on page 2-85

• “Linking Large Uninitialized Variables” on page 2-87

• “Linking for Multi-Processor and Shared Memory” on page 2-88

• “Linking for Overlay Memory” on page 2-95

• “Using a Procedure Linkage Table” on page 2-98

• “Managing Overlays” on page 2-105

• “Managing Two Overlays” on page 2-111

• “Reducing Overlay Manager Overhead” on page 2-118

� The source code for a variety of example programs comes with your
development software. Each example program includes an LDF file.
For working examples of the linking process, examine the LDF files
that come with the examples. For the ADSP-21xxx DSPs, these
examples are in the directory:

<VisualDSP++ InstallPath>\21xxx\Examples

� A variety of per processor default LDF files come with the develop-
ment software, providing an example LDF for each processor’s
internal memory architecture. For the ADSP-21xxx DSPs, these
default LDFs are in the directory:

<VisualDSP++ InstallPath>\21xxx\ldf

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 2-85

Linker

Linking for Single-Processor Memory
When linking an executable file for a single-processor system, the LDF
describes the processor’s memory and places code for that processor. The
example LDF in Listing 2-6 shows a single processor LDF. Note the fol-
lowing items in this LDF:

• ARCHITECTURE() command defines the processor type

• SEARCH_DIR() commands add the lib and current working directory
to the search path

• $OBJS and $LIBS macros get object (.DOJ) and library (.DLB) file
input

• MAP() command outputs a map file

• MEMORY{} command defines memory for the processor

• PROCESSOR{} and SECTIONS{} commands define a processor and
place program sections for that processor’s output file, using the
memory definitions

Listing 2-6. Single-Processor System LDF Example

// Link for the ADSP-21062

ARCHITECTURE(ADSP-21062)

// Generate a MAP file

MAP(SINGLE-PROCESSOR.MAP)

// $ADI_DSP is a predefined linker macro that expands
// to the VDSP install directory. Search for objects in
// directory 21k/lib relative to the install directory

SEARCH_DIR($ADI_DSP\21k\lib)

// Lib060.dlb is a 2106x specific archive library and it

LDF Programming Examples

2-86 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

// must precede libc.dlb, the “C” archive library in order
// to link in 2106X specific routines

$LIBS = lib060.dlb, libc.dlb;

// single.doj is a user generated file. The linker
// will be invoked as follows
// linker -T single-processor.ldf single.doj.
// $COMMAND_LINE_OBJECTS is a predefined linker
// macro. The linker expands this
// macro into the name(s) of the object(s) (.doj files)
// and archives (.dlb files)
// that appear on the command line. In this example,
// $COMMAND_LINE_OBJECTS = single.doj

// 060_hdr.doj is the standard initialization file
// for 2106X
$OBJS = $COMMAND_LINE_OBJECTS, 060_hdr.doj;

// A linker project to generate a DXE file

PROCESSOR P0 {
 // The name of the output file is specified with the
 // OUTPUT command
 OUTPUT(SINGLE.DXE)
 // Processor-specific memory command
 MEMORY {
 INCLUDE(“21062_memory.h”)
 // For more information, see Listing 2-2 on page 2-19.
 }
 // Specify the output sections
 SECTIONS {
 INCLUDE(“21062_sections.h”)
 // For more information, see Listing 2-3 on page 2-21.
 } // end P0 sections
 } // end P0 processor

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 2-87

Linker

Linking Large Uninitialized Variables
When linking an executable file that contains large uninitialized variables,
you can reduce the size of the executable by using the SHT_NOBITS section
qualifier (Section Header Type No Bits). This is a useful technique, espe-
cially for ADSP-21065L users who work with large SDRAM systems.

A variable defined in a source file normally takes up space in an object and
executable file even if that variable is not explicitly initialized when
defined. For large buffers this can result in large executables filled mostly
with zeros. Such files take up excess disk space and can incur large down-
load times when using the emulator.

The LDF can specify that an output section is omitted from the output
file. The LDF output section type SHT_NOBITS directs the linker to omit
data for that section from the output file. Listing 2-8 shows an example
using the SHT_NOBITS section to avoid initialization of a segment.

� The SHT_NOBITS technique corresponds to using the /UNINIT seg-
ment qualifier in previous (.ACH) development tools.

Even if you do not use the SHT_NOBITS technique, the boot loader
removes variables initialized to zeros from the .ldr file and replaces
them with instructions for the loader kernel to zero out the variable.
This reduces the loader output file size, but still requires execution
time for the processor to initialize the memory with zeros.

Listing 2-7. Using Large Uninitialized Variables: Assembly Source

.SEGMENT/DM sdram_area; /* 1Mx32 SDRAM */

.VAR huge_bufffer[0x100000];

.ENDSEG;

LDF Programming Examples

2-88 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

Listing 2-8. Using Large Uninitialized Variables: LDF Source

ARCHITECTURE(ADSP-21061)

// Libraries & objects from the command line

$OBJECTS = $COMMAND_LINE_OBJECTS;

MEMORY {
 mem_sdram {
 TYPE(DM RAM) START(0x3000000) END(0x30fffff) WIDTH(32)
 } // end segment
 } // end memory
PROCESSOR P0 {
 LINK_AGAINST($COMMAND_LINE_LINK_AGAINST)
 OUTPUT($COMMAND_LINE_OUTPUT_FILE)
 // SHT_NOBITS section isn’t written to the output file
 SECTION {
 sdram_ouput SHT_NOBITS {
 INPUT_SECTIONS($OBJECTS (sdram_area))
 } >mem_sdram
 } //end section
 } // end processor P0

Linking for Multi-Processor and Shared Memory
When linking executable files for a multiprocessor memory and shared
memory system, the LDF describes the multiprocessor memory offsets,
shared memory, and each processor’s memory; it also places code for each
processor. The sample LDF in Listing 2-9 shows a multiprocessor memory
and shared memory LDF. Note the following items in this LDF:

• ARCHITECTURE() command defines the processor type (note that
only one processor type can be defined within an LDF)

• SEARCH_DIR() commands add the lib and current working directory
to the search path

• $OBJS and $LIBS macros get object (.DOJ) and library (.DLB) file
input

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 2-89

Linker

• MPMEMORY{} command defines each processor’s offset within multi-
processor memory

• SHARED_MEMORY{} command identifies the output for the shared
memory items

• MAP() command outputs map files

• MEMORY{} command defines memory for the processors

• PROCESSOR{} and SECTIONS{} commands define each processor and
place program sections for each processor’s output file, using the
memory definitions

• LINK_AGAINST() commands resolve symbols within multiprocessor
memory

Listing 2-9. Multiprocessor System LDF Example

ARCHITECTURE(ADSP-21062)
SEARCH_DIR($ADI_DSP\21k\lib)
// Multiprocessor memory space is represented in the
// LDF via the MPMEMORY command. The values represent
// an “offset” that the linker will use when
// it resolves undefined symbols in one DXE to symbols
// defined in another DXE. That is, the offset is added
// to the defined symbols value.
//
// For example,
// PROCESSOR project PSH0 references the undefined symbol
// “buffer”
// PROCESSOR project PSH1 defined the symbol “buffer” at
// address 0x22000
//
// the linker will “fix up” the reference to “buffer” in
// PSH0’s code to address
// 0x22000 + MPMEMORY(PSH1) =
// 0x22000 + 0x280000 =
// 0x2a2000

LDF Programming Examples

2-90 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

MPMEMORY {
 PSH0 { START (0x200000) }
 PSH1 { START (0x280000) }
}
MEMORY {
 //This memory description is to be used for all
 //processors
 //Alternatively, a PROCESSOR could describe its
 //own MEMORY
 mem_rth {
 TYPE(PM RAM) START(0x20000) END(0x200ff) WIDTH(48) }
 mem_init {
 TYPE(PM RAM) START(0x20100) END(0x201ff) WIDTH(48) }
 mem_pmco {
 TYPE(PM RAM) START(0x20200) END(0x249ff) WIDTH(48) }
 mem_pmda {
 TYPE(DM RAM) START(0x24a00) END(0x24fff) WIDTH(40) }
 mem_dmda {
 TYPE(DM RAM) START(0x28000) END(0x2bfff) WIDTH(40) }
 mem_heap {
 TYPE(DM RAM) START(0x2e000) END(0x2efff) WIDTH(32) }
 mem_stak {
 TYPE(DM RAM) START(0x2f000) END(0x2ffff) WIDTH(32) }
}

$LIBRARIES = lib060.dlb, libc.dlb;

//
//There will be three link projects specified in this
//one LDF file.
//The first link project is a shared memory link project
//against which the PROCESSOR projects will be linked
//

SHARED_MEMORY {
// The file containing the shared data buffers is defined
// in shared.c

$SHARED_OBJECTS = shared.doj;

//The output name of this shared object is subsequently
//used in the LINK_AGAINST command of the PROCESSOR
//projects

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 2-91

Linker

OUTPUT(shared.sm)

//shared.c has only data declarations. No need to
//specify any output section other than “seg_dmda”

SECTIONS {
 .sec_dmda {INPUT_SECTIONS($SHARED_OBJECTS(seg_dmda))
 } > mem_dmda
 }
}

//The second link project described in this LDF is a DXE
//project.
//This project will be linked against the SHARED link
//project defined above.

PROCESSOR PSH0 {
 $PSH0_OBJECTS = psh0.doj, 060_hdr.doj;
LINK_AGAINST(shared.sm)

OUTPUT(psh0.dxe)

SECTIONS {
 dxe_pmco {INPUT_SECTIONS(
 $PSH0_OBJECTS(seg_pmco) $LIBRARIES(seg_pmco))
 } >mem_pmco
 dxe_pmda {INPUT_SECTIONS(
 $PSH0_OBJECTS(seg_pmda) $LIBRARIES(seg_pmda))
 } >mem_pmda
 dxe_dmda {INPUT_SECTIONS(
 $PSH0_OBJECTS(seg_dmda) $LIBRARIES(seg_dmda))
 } >mem_dmda
 dxe_init {INPUT_SECTIONS(
 $PSH0_OBJECTS(seg_init) $LIBRARIES(seg_init))
 } >mem_init
 dxe_rth {INPUT_SECTIONS(
 $PSH0_OBJECTS(seg_rth) $LIBRARIES(seg_rth))
 } >mem_rth
 stackseg {
 // allocate a stack for the application
 ldf_stack_space = .;
 ldf_stack_length = 0x2000;
 } > mem_stak
 heap {

LDF Programming Examples

2-92 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

 // allocate a heap for the application
 ldf_heap_space = .;
 ldf_heap_end = ldf_heap_space + 0x2000;
 ldf_heap_length = ldf_heap_end - ldf_heap_space;
 } > mem_heap
 }
}
//
//The third and final link project defined in this LDF
//file is another DXE project. This PROCESSOR project will
//be linked against both the SHARED project defined above
//and the PSH0 DXE project also defined above.
//

PROCESSOR PSH1 {
 $PSH1_OBJECTS = psh1.doj, 060_hdr.doj;
 LINK_AGAINST(shared.sm, psh0.dxe)
 OUTPUT(psh1.dxe)
 SECTIONS {
 dxe_pmco {INPUT_SECTIONS(
 $PSH1_OBJECTS(seg_pmco) $LIBRARIES(seg_pmco))
 } >mem_pmco
 dxe_pmda {INPUT_SECTIONS(
 $PSH1_OBJECTS(seg_pmda) $LIBRARIES(seg_pmda))
 } >mem_pmda
 dxe_dmda {INPUT_SECTIONS(
 $PSH1_OBJECTS(seg_dmda) $LIBRARIES(seg_dmda))
 } >mem_dmda
 dxe_init {INPUT_SECTIONS(
 $PSH1_OBJECTS(seg_init) $LIBRARIES(seg_init))
 } >mem_init
 dxe_rth {INPUT_SECTIONS(
 $PSH1_OBJECTS(seg_rth) $LIBRARIES(seg_rth))
 } >mem_rth
 stackseg {
 // allocate a stack for the application
 ldf_stack_space = .;
 ldf_stack_length = 0x2000;
 } > mem_stak
 heap {
 // allocate a heap for the application
 ldf_heap_space = .;
 ldf_heap_end = ldf_heap_space + 0x2000;
 ldf_heap_length = ldf_heap_end - ldf_heap_space;

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 2-93

Linker

 } > mem_heap

//The following definition sections are only needed for
//pre-VisualDSP compatibility with COFF objects.
 .coff.stringstab {INPUT_SECTIONS(
 $PSH1_OBJECTS(.coff.stringstab)
 $LIBRARIES(.coff.stringstab))
 }
 .coff.SDB {INPUT_SECTIONS(
 $PSH1_OBJECTS(.coff.SDB) $LIBRARIES(.coff.SDB))
 }
 .lnno.seg_pmco {INPUT_SECTIONS(
 $PSH1_OBJECTS(.lnno.seg_pmco)
 $LIBRARIES(.lnno.seg_pmco))
 }
 }
}

Using Reflective Semaphores

Semaphores can be used in multiprocessor (MP) systems to allow the pro-
cessors to share resources such as memory or I/O. A semaphore is a flag
that can be read and written by any of the processors sharing the resource.
The value of the semaphore tells the processor when it can access the
resource. Reflective semaphore is a way to communicate among processors
which share a multiprocessor memory space.

Broadcast writes can be used to implement reflective semaphores in a mul-
tiprocessing system. Broadcast writes allow simultaneous transmission of
data to all of the ADSP-21xxx DSPs in a multiprocessing system. The
master processor can perform broadcast writes to the same memory loca-
tion or IOP register on all of the slaves. During broadcast writes, the
master also writes to itself unless the broadcast is a DMA write. Broadcast
writes can be used to implement reflective semaphores in a multiprocess-
ing system. Broadcast writes can also be used to simultaneously download
code or data to multiple processors.

Bus lock can be used in combination with broadcast writes to implement
reflective semaphores in a multiprocessing system. The reflective sema-

LDF Programming Examples

2-94 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

phore should be located at the same address in internal memory (or IOP
register) of each ADSP-21xxx DSP.

The ADSP-21xxx SHARC DSPs have a “broadcast” space. You may use
LDF (or HH file) to define a memory segment in this space, just as in
internal or any processor MP space. The broadcast space aliases internal
space, so if there is a memory segment defined in the broadcast space,
LDF cannot have a segment at the corresponding address in the internal
space, or in the MP space of any processor. Otherwise, the linker will gen-
erate an error indicating that the memory definition is not valid.

To check the semaphore, each ADSP-21xxx DSP simply reads from its
own internal memory. Any object in the project could be mapped to an
appropriate segment defined in the broadcast space for use as a “reflective
semaphore”. If an object defining symbol SemA is mapped to a broadcast
segment, then when the program writes to SemA, the written value appears
at the aliased internal address of each processor in the cluster. Each proces-
sor may read the value using SemA, or from internal memory by selecting
(SemA-0x380000), thus avoiding bus traffic.

To modify the semaphore, an ADSP-21xxx DSP requests bus lock and
then performs a broadcast write to the semaphore address (i.e., SemA) on
every DSP, including itself. Before modifying the semaphore, though, the
DSP should read it to verify that another processor has not changed it.

� For more information on semaphores, refer to the Hardware Refer-
ence manual for appropriate DSP model.

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 2-95

Linker

Linking for Overlay Memory
When linking executable files for an overlay memory system, the LDF
describes the overlay memory, the processors that use the overlay memory,
and each processor’s unique memory. The LDF places code for each pro-
cessor and the special .plit section. The example LDF in Listing 2-10
shows an overlay memory LDF. For more information on this LDF, see
the comments in the listing.

Listing 2-10. Overlay-Memory System LDF Example

ARCHITECTURE(ADSP-21062)
SEARCH_DIR($ADI_DSP\21k\lib)

MAP(overlay.map)

//
//This simple overlay example will use internal memory as
//overlay
//memory (overlays would never “live” in internal memory)
//

MEMORY {
 mem_rth {
 TYPE(PM RAM) START(0x20000) END(0x200ff) WIDTH(48) }
 mem_init {
 TYPE(PM RAM) START(0x20100) END(0x201ff) WIDTH(48) }
 mem_pmco {
 TYPE(PM RAM) START(0x20200) END(0x20723) WIDTH(48) }
 mem_ovly {
 TYPE(PM RAM) START(0x20724) END(0x23fff) WIDTH(48) }
 mem_pmda {
 TYPE(PM RAM) START(0x26000) END(0x27fff) WIDTH(32) }
 mem_dmda {
 TYPE(DM RAM) START(0x2a000) END(0x2bfff) WIDTH(32) }
 mem_heap {
 TYPE(DM RAM) START(0x2e000) END(0x2efff) WIDTH(32) }
 mem_stak {
 TYPE(DM RAM) START(0x2f000) END(0x2ffff) WIDTH(32) }
}
// mem_pmco is the “run” memory segment

LDF Programming Examples

2-96 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

// mem_ovly is the “live” memory segment
//
//Processor and application specific assembly language
//instructions. One instance of these instructions is
//generated for each symbol that is resolved in overlay memory.

PLIT { //Each of five instructions are duplicated for each
 //symbol in an overlay
 R0 = PLIT_SYMBOL_OVERLAYID;
 // Assign the overlay ID of the resolved symbol to R0

 R1 = PLIT_SYMBOL_ADDRESS;
 // Assign the “run” address of the resolved symbol to R1

 dm(_overlayID) = R0;
 dm(_pf) = R1;
 JUMP _OverlayManager;
}

$LIBRARIES = lib060.dlb, libc.dlb;
$OBJECTS = 060_hdr.doj;

PROCESSOR P0 {
 $P0_OBJECTS = main.doj , manager.doj;
 OUTPUT(mgrovly.dxe)
 SECTIONS {
 // .text output section
seg_pmco {
 INPUT_SECTIONS(
 $P0_OBJECTS(seg_pmco) $LIBRARIES(seg_pmco))

//Specify the first overlay. This overlay will
//“live” in the memory defined by “mem_ovly”. It
//will run in the memory space defined by “mem_pmco”

OVERLAY_INPUT {
// The output archive file “overlay1.ovl” will
// contain the code and symbol table for this overlay.

 OVERLAY_OUTPUT(overlay1.ovl)

 // Only take the code from the file overlay1.doj.
 // If there is data that this code needs it must be
 // the INPUT of a data overlay or the INPUT to

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 2-97

Linker

 // non-overlay data memory.

 INPUT_SECTIONS(overlay1.doj(seg_pmco))

 // Tell the linker that all of the code must fit into
 // the “run” memory all at once. Other ALGORITHM commands
 // provide more optimized overlay support.

 ALGORITHM(ALL_FIT)
 SIZE(0x100) // max ovlay size

} > mem_ovly

 // This is the second overlay. Not that these
 // OVERLAY_INPUT command must be contiguous in the LDF
 // file in order for them to occupy the same
 // “run-time” memory.

 OVERLAY_INPUT {
 OVERLAY_OUTPUT(overlay2.ovl)
 INPUT_SECTIONS(overlay2.doj(seg_pmco))
 ALGORITHM(ALL_FIT)
 SIZE(0x100)
 } > mem_ovly

} > dxe_pmco

 // The instructions generated by the linker in the
 // .plit section must be placed in non-overlay memory.
 // Here is the one-and-only specification telling the
 // linker where to place these instructions.
 .plit {
 } > mem_pmco

 dxe_pmda {
 INPUT_SECTIONS(
 $P0_OBJECTS(seg_pmda) $LIBRARIES(seg_pmda))
 } > mem_pmda

 dxe_dmda {
 INPUT_SECTIONS(
 $P0_OBJECTS(seg_dmda) $LIBRARIES(seg_dmda))
 } > mem_dmda

LDF Programming Examples

2-98 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

 seg_init {
 INPUT_SECTIONS(
 $P0_OBJECTS(seg_init) $LIBRARIES(seg_init))
 } > mem_init

 dxe_rth {
 INPUT_SECTIONS(
 $P0_OBJECTS(seg_rth) $LIBRARIES(seg_rth))
 } > mem_rth

 stackseg {
 // allocate a stack for the application
 ldf_stack_space = .;
 ldf_stack_length = 0x2000;
 } > mem_stak

 heap {
 // allocate a heap for the application
 ldf_heap_space = .;
 ldf_heap_end = ldf_heap_space + 0x2000;
 ldf_heap_length = ldf_heap_end - ldf_heap_space;
 } > mem_heap
 }
}

Using a Procedure Linkage Table

The linker resolves function calls and variable accesses, both direct and
indirect, across overlays. This support implies that the linker must gener-
ate some extra code in order to transfer control to a user-defined routine
(an overlay manager) that handles the loading of overlays. The linker gen-
erated code goes in a special section of the executable, which has the
section name .plit. For more details on placing .plit code, see the
description of “PLIT{}” on page 2-69.

The PLIT{} command lets you insert assembly instructions that handle
calls to functions in overlays. The assembly commands are specific to an
overlay and are executed each time a call to a function in that overlay is
detected.

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs 2-99

Linker

Figure 2-13 on page 2-99 shows the interaction between a PLIT and an
overlay manager. To make this kind of interaction possible, the linker

generates some special symbols for overlays. These overlay symbols
include:

_ov_startaddress_#
_ov_endaddress_#
_ov_size_#
_ov_runtimestartaddress_#

The # in these symbols indicates the overlay number.

main()
{
int (*pf)() = X;
Y();

}
/* PLIT & software-manager handle calls,
using the PLIT for resolving calls and
loading overlays as needed */

.plt_X: call OM

.plt_Y: call OM

X() {...} // function X defined

Y() { ... } // function Y defined

Run-time Overlay Memory

Overlay 1 Storage

Overlay 2 Storage

// currently loaded overlay

Non-Overlay Memory

Figure 2-13. PLITs & Overlay Memory; main() Calls to Overlays

LDF Programming Examples

2-100 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx

The two functions are on different overlays. By default, the linker gener-
ates PLIT code only when an unresolved function reference is resolved to
a function definition in overlay memory.

The main function calls functions X() and Y(), which are defined in over-
lay memory. Because the linker cannot resolve these functions locally, the
linker replaces the symbols X and Y with .plit_X and .plit_Y. Any unre-
solved references to X and Y are resolved to .plit_X and .plit_Y. In cases
where both the reference and the definition reside in the same executable,
the linker does not generate PLIT code. However, you can force the linker
to output a PLIT, even when all references can be resolved locally.

PLITs let you resolve inter-overlay calls, as shown in Figure 2-14 on page
2-101. You should structure your LDF so the PLIT code that the linker
generates for inter-overlay function references is part of the .plit section
for main(), which is stored in non-overlay memory.

� The PLIT section should always be stored in non-overlay memory.

A PLIT also lets you resolve inter-processor-overlay calls as shown in
Figure 2-15 on page 2-102. When one processor makes a call into another
processor’s overlay, the call increases the size of the .plit section in the
executable that manages the overlay.

The linker resolves all references to variables in overlays, and the PLIT lets
an overlay manager handle the overhead of loading and unloading over-
lays. One way to optimize overlays is to not put global variables in
overlays. This avoids the difficulty of making sure the proper overlay is
loaded before a global gets called.

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

Linker

F1: // function F1 defined
call F2
call F3

/* PLIT & software-manager handle
calls, using the PLIT for resolving
calls and loading overlays as needed */

.plit_F2: jump OM

.plit_F3: jump OM

F2: // function F2 defined
call F1
call .plit_F3

Run-time Overlay Memory

Overlay 1 Storage

Overlay 2 Storage

// currently loaded overlay

Non-Overlay Memory

F3: // function F3 defined
call F1
call .PLIT_F2

Figure 2-14. PLITs & Overlay Memory; Inter-Overlay Calls

LDF Programming Examples

2-102 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx

main()
{

.plt_foo();
}

Processor P1
Non-Overlay Memory

// current overlay

Processor P2
Overlay Memory

Processor P2
Overlay Storage

Processor P2
Non-Overlay Memory

P2_Overlay_Manager()
{

// manager routines
}

/* PLIT & software-manager
handle calls, using the
PLIT for resolving calls
and loading overlays as
needed */

.plt_foo:
call P2_Overlay_Manager

P2 Overlay
foo(){...}

Figure 2-15. PLITs & Overlay Memory; Inter-Processor Calls

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

Linker

Using An Overlay Memory Manager
In order to reduce DSP system costs, many applications use DSPs with
smaller amounts of on chip memory—placing much of the program code
and data off chip. In order to run the applications efficiently, memory
overlays are used.

This section discusses the concept of memory overlays and how they are
used with Analog Devices 32-bit SHARC DSPs. The following topics and
examples are discussed:

• “Managing Overlays” on page 2-105

• “Managing Two Overlays” on page 2-111

• “Reducing Overlay Manager Overhead” on page 2-118

All of the code segments used in the following discussion are parts of the
two example programs that appear at the end of this section.

Memory overlays provide support for applications whose entire program
instructions and data do not fit in the internal memory of the processor.
In such a case, program instructions and data are partitioned and stored in
external memory until they are required for program execution. The parti-
tions are referred to as memory overlays and the routines that call and
execute them overlay managers.

Overlays are a “many to one” memory mapping system. Several overlays
“live” (or are stored) in unique locations in external memory, but they
“run” (or execute) in a common location in internal memory. Throughout
this note, the storage location of overlays are referred to as the “live” loca-
tion, and the internal location where instructions are executed are referred
to as the “run” (run-time) space.

Figure 2-16 demonstrates the concept of memory overlays. There are two
memory spaces: internal and external. The external memory is partitioned
into five overlays. The internal memory contains the main program, an

LDF Programming Examples

2-104 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx

overlay manager function and two segments reserved for execution of
overlay program instructions.

In this example, Overlay 1 and 2 share the same run-time location within
internal memory. Overlays 3, 4 and 5 also share a common run-time
memory. If FUNC_B is required, the overlay manager loads Overlay 2 in the
location within internal memory where Overlay 2 is designated to run. If
FUNC_D is required, the overlay manager loads Overlay 3 into its designated
run-time memory.

The overlay manager is a user-defined function responsible for insuring
that a required symbol (function or data) within an overlay is in the run-

Overlay 1

Overlay 2

Overlay 3

Overlay 4

Overlay 5

Overlay 3, 4, and 5
Run Time Memory

Overlay 1 and 2
Run Time Memory

OverlayManager

Main: call FUNC_H
call .plt_FUNC_AFUNC_A

FUNC_C

FUNC_B

FUNC_E

FUNC_D

FUNC_F

FUNC_G

DATA_A

DATA_B

External Memory Internal Memory

Figure 2-16. Memory Overlays

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

Linker

time memory when it is needed. The transfer occurs using the direct mem-
ory access (DMA) capability of the SHARC processor.

The overlay manager can also handle more advanced functionality such as
checking if the requested overlay is already in run-time memory, executing
another function while loading an overlay, and tracking recursive overlay
function calls.

Managing Overlays

The overlay support provided by the 32-bit tools includes the following:

• Specification of the live and run location of each overlay

• The generation of constants

• The redirection of overlay function calls to a jump table

• The overlay manager.

The overlay support is partially designed by the user in the LDF. The user
specifies which overlays share run-time memory and which memory seg-
ments establish the live and run space. Listing 2-11 shows the section of
an LDF defining two overlays:

Listing 2-11. Overlay Declaration in LDF

.dxe_pmco
{ OVERLAY_INPUT
 OVERLAY_OUTPUT(OVLY_one.ovl)
 INPUT_SECTIONS(FUNC_A.doj(sec_pmco))
}>ovl_pmco

{ OVERLAY_INPUT
 OVERLAY_OUTPUT(OVLY_two.ovl)
 INPUT_SECTIONS(FUNC_B.doj(sec_pmco))
 (FUNC_C.doj(pm_code))
}>ovl_pmco
}>sec_pmco

LDF Programming Examples

2-106 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx

The overlay declaration in Listing 2-11 configures two overlays to share a
common run-time memory space:

• OVLY_one contains FUNC_A and lives somewhere in memory segment
ovl_pmco.

• OVLY_two contains functions FUNC_B and FUNC_C. It also lives in
memory segment ovl_pmco.

The common run-time location shared by overlays OVL_one and OVL_two is
within the memory segment sec_pmco.

The LDF tells the linker how to configure the overlays as well as the infor-
mation necessary for the overlay manager routine to load the overlays. The
information provided by the linker includes the following constants,
where N = the Overlay ID:

Listing 2-12. Linker-Generated Overlay Constants

N = the Overlay ID
_ov_startaddress_N
_ov_endaddress_N
_ov_size_N
_ov_word_size_run_N
_ov_word_size_live_N
_ov_runtimestartaddress_N

Each overlay has a word size and an address which the overlay manager
uses to determine where the overlay resides and where it is executed. The
linker also produces _ov_size_N which specifies the total size in bytes.

The overlay live and run word sizes are different if the internal memory
and external memory widths are different. For example, the instruction
word width of the SHARC DSP is 48-bits. A system containing 32-bit
wide external memory requires data packing to store an overlay containing
instructions. The overlay live word size (number of words in the overlay)
is based on the number of 32-bit words required to pack all of the 48-bit
instructions.

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

Linker

Figure 2-17 shows the difference between overlay live and run size.

• Overlays 1 and 2 are instruction overlays, with a run word width of
48-bits.

• Because external memory is 32-bits, their live word width is 32-bits.

• Overlay 1 contains one function with 16 instructions—overlay 2
contains two functions with a total of 40 instructions.

• The live word size for overlays 1 and 2 are 24 and 60 words respec-
tively.

• The run word size for overlay 1 and 2 are 16 and 40 respectively.

External Memory

Address 0x2 0000

0x2 0017

0x2 0018

0x2 0053

Overlay 1

(24 x 32-bits)

FUNC_A

Overlay 2

(60 x 32-bits)

FUNC_B

FUNC_C

Internal Memory

Address 0x8800

Overlay Runtime Memory

(40 x 48-bits)

Overlay 1 Overlay 2

16 x 48 bits 40 x 48 bits

Figure 2-17. Example Overlay Run and Live Sizes

LDF Programming Examples

2-108 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx

The following code shows the value of all constants generated by the
linker for the example in Figure 2-17:

Listing 2-13. Linker Generated Constants

_ov_startaddress_1 = 0x20000 _ov_startaddress_1 = 0x20000
_ov_endaddress_1 = 0x20017 _ov_endaddress_1 = 0x20017
_ov_word_size_run_1 = 0x118 _ov_word_size_run_1 = 0x118
_ov_word_live_run_1 = 0x10 _ov_word_size_live_1 = 0x10
_ov_run-timestartaddress_1 = 0x8800
_ov_run-timestartaddress_1 = 0x8800

Along with providing constants, the linker redirects overlay symbol refer-
ences within your code to the overlay manager routine. This redirection is
accomplished using a procedure linkage table (PLIT). The PLIT is essen-
tially a jump table that executes user defined code and then jumps to the
overlay manager.The linker replaces an overlay symbol reference (function
call) with a jump to a location in the PLIT.

.plt_FUNC_A: r0=0x00001;
r1=0x22000;
jumpOverlayManager;

.plt_FUNC_B: r0=0x00002;
r1=0x22000;
jumpOverlayManager;

.plt_FUNC_C: r0=0x00002;
r1=0x23000;
jumpOverlayManager;

Overlay 1
FUNC_A

Overlay 2
FUNC_B
FUNC_C

Internal Memory

call .plt_FUNC_A
.
.
.

call .plt_FUNC_C
call .plt_FUNC_B

.

.

Main: Plit_table
:

Figure 2-18. Expanded PLIT Table.

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

Linker

PLIT code is defined within the linker description file (LDF) by the pro-
grammer. This code prepares the overlay manager to handle the overlay
containing the referenced symbol. The code generally initializes registers
to contain the overlay ID and the referenced symbols run time address.

The following is an example call instruction to an overlay function:

R0 = DM(I0,M3);
R1 = R0 * R2;
CALL FUNC_A; /* Call to function in overlay */
DM(I3,M3) = R1;

If FUNC_A is in an overlay, the linker replaces the function call with the fol-
lowing instruction:

R0 = DM(I0,M3);
R1 = R0 * R2;
CALL .plt_FUNC_A; / * Call to PLIT entry */
DM(I3,M3) = R1;

The .plt_FUNC_A is the entry in the PLIT containing your defined instruc-
tions. These instructions prepare the VisualDSP++ environment for the
overlay manager to load the overlay containing FUNC_A. The instructions
executed in the PLIT are specified within the LDF.

Listing 2-14 is an example PLIT definition from an LDF where the regis-
ter R0 is set to the value of the overlay ID that contains the referenced
symbol, and register R1 is set to the run time address of the referenced
symbol. (PLIT_SYMBOL_OVERLAY_ID and PLIT_SYMBOL_ADDRESS are linker
key words). The last instruction branches to the overlay manager that uses
the initialized registers to determine which overlay to load, and where to
jump to execute the overlay function called.

LDF Programming Examples

2-110 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx

Listing 2-14. PLIT Definition in LDF

PLIT
{
 R0 = PLIT_SYMBOL_OVERLAY_ID;
 R1 = PLIT_SYMBOL_ADDRESS;
 JUMP_OverlayManager
}

The linker expands the PLIT definition into individual entries in a table.
An entry is created for each overlay symbol as shown in Figure 2-18. The
redirect function calls the PLIT table for overlays 1 and 2 of the example.
For each entry the linker replaces the generic assembly instructions with
specific instructions (where applicable). For example, the first entry in the
PLIT shown in Figure 2-18 is for the overlay symbol FUNC_A. The linker
replaces the constant name PLIT_SYMBOL_OVERLAYID with the ID of the
overlay containing FUNC_A. The linker also replaces the constant name
PLIT_SYMBOL_ADDRESS with the run time address of FUNC_A.

When the overlay manager subroutine is called via the jump instruction of
the PLIT table, R0 contains the referenced function’s overlay ID, and R1
contains the referenced function’s run time address. The overlay manager
subroutine uses the overlay ID and run time address to load and execute
the referenced function.

The overlay manager is a user-defined routine that is responsible for load-
ing a referenced overlay function or data buffer into internal memory (run
time space). This is done with the aid of the linker generated constants
and the PLIT commands. The linker generated constants tell the overlay
manager the addresses of the live overlay, where the overlay resides for exe-
cution, and the number of words in the overlay. The PLIT commands tell
the overlay manager such information as which overlay is required and the
run time address of the referenced symbol.

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

Linker

The main objective of overlay managers is to transfer overlays to their run
time location when required. However, overlay managers may also be
required to:

• Set up a stack to store register values.

In some cases stacks may be corrupted by the overlay.

• Check if a referenced symbol has already been transferred into its
run-time space as a result of a previous reference.

If the overlay is already in internal memory, the overlay transfer is
bypassed and execution of the overlay routine can begin immedi-
ately.

• Load an overlay while executing a function from a second overlay
(or a non overlay function).

You may need your overlay manager to perform other specialized tasks to
satisfy the special needs of a given application.

Managing Two Overlays

This example has two overlays, each of which contain two functions.
Overlay 1 contains the functions fft_first_two_stages and
fft_last_stage. Overlay 2 contains functions fft_middle_stages and
fft_next_to_last. For the sample overlay manager source code, see the
examples that come with the development software. In the following
example, the overlay manager:

1. creates and maintains a stack for the registers it uses

2. determines if the referenced function is in internal memory

3. sets up a DMA transfer

4. flushes the cache and executes the referenced function

LDF Programming Examples

2-112 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx

Several code segments for the LDF and the Overlay Manager are displayed
and explained in the text.

Listing 2-15. FFT Overlay Example

 OVERLAY_INPUT
 {
 ALGORITHM(ALL_FIT)
 OVERLAY_OUTPUT(fft_one.ovl)
 INPUT_SECTIONS(Fft_1st_last.doj(seg_pmco))
 PACKING(12 B1 B2 B3 B4 B0 B11 B12 B5 B6 B0 B7 B8 B9
 B10 B0)
 } >ovl_pmco // Overlay to live in section ovl_code
 OVERLAY_INPUT
 {
 ALGORITHM(ALL_FIT)
 OVERLAY_OUTPUT(fft_two.ovl)
 INPUT_SECTIONS(Fft_mid.doj(seg_pmco))
 PACKING(12 B1 B2 B3 B4 B0 B11 B12 B5 B6 B0 B7 B8 B9
 B10 B0)
 } >ovl_pmco // Overlay to live in section ovl_c

Two overlays are defined: fft_one.ovl and fft_two.ovl. Both overlays
live in the segment ovl_pmco defined in the memory section of the LDF
and run in section seg_pmco. All instruction and data defined in segments
named pm_code within the file Fft_1st_last.doj are part of overlay
fft_one.ovl. All instructions and data defined in segments named
seg_pmco within the file Fft_mid.doj are part of overlay fft_two.ovl. The
result is two functions within each overlay.

The first and the last functions called are in overlay fft_one. The two
middle functions called are in overlay fft_two. When the first function,
fft_one, is referenced during code execution, overlay id=1 is transferred
to internal memory. When the second function, fft_two, is referenced,
overlay id=2 is transferred to internal memory. Since the third function
is in the overlay fft_two, when it is referenced, the overlay manager recog-
nizes that it is already in internal memory and an overlay transfer does not
occur. Finally, when the last function, fft_one, is referenced, overlay

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

Linker

overlay id=1 is again transferred to internal memory for execution. The
following code segment calls the four functions of FFT:

fftrad2:

 call fft_first_2_stages (db);
 call fft_middle_stages (db);
 call fft_next_to_last (db);
 call fft_last_stage (db);

wait: idle;

 jump wait;

The linker replaces the overlay function calls with calls to the appropriate
entry in the procedure linkage table (PLIT). For this example only three
instructions are placed in each entry of the PLIT as shown below:

PLIT

{
 R0 = PLIT_SYMBOL_OVERLAYID;
 R1 = PLIT_SYMBOL_ADDRESS;
 JUMP _OverlayManager;
}

Register R0 contains the overlay ID that occupies the referenced symbol
and register R1 contains the run time address of the referenced symbol.
The final instructions jump the program counter (PC) to the overlay man-
ager routine. The overlay manager routine uses the overlay ID in
conjunction with the overlay constants generated by the linker to transfer
the proper overlay into internal memory. Once the transfer is complete,
the overlay manager sends the PC to the address of the referenced symbol
stored on R1.

LDF Programming Examples

2-114 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx

The linker generates the following constants used by the overlay manager:

.EXTERN _ov_word_size_run_1;

.EXTERN _ov_word_size_run_2;

.EXTERN _ov_word_size_live_1;

.EXTERN _ov_word_size_live_2;

.EXTERN _ov_startaddress_1;

.EXTERN _ov_startaddress_2;

.EXTERN _ov_runtimestartaddress_1;

.EXTERN _ov_runtimestartaddress_2;

These constants supply the overlay manager with:

• The size of the overlays, using both run time word sizes and live
word sizes

• The starting address of the live space

• The starting address of the run space

The overlay manager code places the constants in arrays as shown below.
The arrays are referenced by using the overlay ID as the index to the array.
The index or ID is stored in a modify (m#) register and the beginning
address of the array is stored in the (i#) register.

.VAR liveAddresses[2] = _ov_startaddress_1,
_ov_startaddress_2;
.VAR runAddresses[2] = _ov_runtimestartaddress_1,
 _ov_runtimestartaddress_2;
.VAR runWordSize[2] = _ov_word_size_run_1,
_ov_word_size_run_2;
.VAR liveWordSize[2] = _ov_word_size_live_1,
_ov_word_size_live_2;

Before preparing the DMA, the overlay manager stores the values con-
tained in each register it uses onto a run-time stack. The stack stores the
values of all data registers, address generator registers and any other regis-
ters required by the overlay manager.

The overlay manager also stores the ID of an overlay currently in internal
memory. When an overlay is transferred to internal memory the overlay

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

Linker

manager stores the overlay ID in internal memory in the buffer labeled
ov_id_loaded. Before another overlay is transferred, the overlay manager
compares the required overlay ID with that stored in buffer ov_id_loaded.
If they are equal, the required overlay is already in internal memory and a
transfer is not required. The PC is sent to the proper location to execute
the referenced function. If they are not equal, the value in ov_id_loaded is
updated and the overlay is transferred.

The following segment of the overlay manager function creates the run
time stack, stores the overlay ID in a modify register, and checks the over-
lay ID stored in ov_id_loaded:

/* _overlayID has been defined as R0. R0 is set in the PLIT
 of LDF. */
/* Set up DMA transfer to internal memory through the external
 port. */
/* Store values of registers used by the overlay manager in
 to the software stack. */

dm(ov_stack)=i8;
dm(ov_stack+1)=m8;
dm(ov_stack+2)=l8;
dm(ov_stack+3)=r2;

/* Use the overlay id as an index (must subtract one) */
R0=R0-1; /* Overlay ID -1 */
m8=R0; /* Offset into the arrays containing linker
 defined overlay constants. */

r2=dm(ov_id_loaded);
r0=r0-r2;
if EQ jump continue;
dm(ov_id_loaded)=m8;

r0=i0; dm(ov_stack+4)=r0;
r0=m0; dm(ov_stack+5)=r0;
r0=l0; dm(ov_stack+6)=r0;

The overlay manager uses the value of the linker generated constants to set
up the DMA transfer as shown in the following code segment of the over-
lay manager function. The constants are in arrays as previously described.

LDF Programming Examples

2-116 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx

The index registers I8 and I7 point to the first location of the arrays. The
overlay ID is stored in the modify registers M8 and M7. The index and mod-
ify registers together in DAG instructions read the appropriate elements
from the arrays.

 /* Get overlay run and live addresses from memory and use to
*/
/* set up the master mode DMA.
*/
i8 = runAddresses;
i0 = liveAddresses;

r0=0; /* Disable DMA */
dm(DMAC0) = r0;

/* Set DMA external pointer to overlay live address */
r0=dm(m0,i0);
dm(EIEP0)=r0;

/* Set DMA internal pointer to overlay run address */
r0=pm(m8,i8);
dm(IIEP0)=r0;

i0=runWordSize; /* Number of words stored in internal memory
*/
 /* Most likely the word size will be 48 bits */
 /* for instructions. */

/* Set DMA external modifier */
r0=1;
dm(EMEP0)=r0;

i8=liveWordSize; /* Number of words stored in external */
 /* memory. Most likely the word size */
 /* will be 32- or 16-bits for external */
 /* storage.*/

/* Set DMA internal modify to 1 */
dm(IMEP0)=r0;

/* Set DMA internal count to Overlay run size. */
r0=dm(m0,i0);
dm(CEP0)=r0;

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

Linker

/* Set DMA external count to Overlay live size. */
r0=pm(m8,i8);
dm(ECEP0)=r0;

/* DMA enabled, instruction word, Master, 48-32 packing */
r0=0x2e1;
dm(DMAC0)=r0;

On completion of the transfer, the overlay manager restores register values
from the run-time stack, flushes the cache and then jumps the PC to the
run time location of the referenced function. It is very important to flush
the cache before jumping to the referenced function because when code is
replaced or modified, incorrect code execution may occur if the cache is
not flushed. If the program sequencer searches the cache for an instruction
and an instruction from the previous overlay is in the cache, the cached
instruction may be executed rather than receiving the expected cache miss.

In summary, the overlay manager routine does the following:

• Maintains a run-time stack for registers being used by the overlay
manager

• Compares the requested overlay’s ID with that of the previously
loaded overlay (stored in buffer ov_id_loaded)

• Sets up the DMA transfer of the overlay (if it is not already in inter-
nal memory)

• Jumps the PC to the run-time location of the referenced function

These are the basic tasks that are performed by an overlay manager. More
sophisticated overlay managers may be required for individual
applications.

LDF Programming Examples

2-118 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx

Reducing Overlay Manager Overhead

The following example incorporates the ability to transfer one overlay to
internal memory while the core executes a function from another overlay.
Instead of the core sitting idle while the overlay DMA transfer occurs, the
core enables the DMA, then begins executing another function. For over-
lay manager source code, see the examples that come with the
development software.

These examples use the concept of overlay function loading and executing.
A function load is a request to load the overlay function into internal
memory but not execute the function. A function execution is a request to
execute an overlay function that may or may not be in internal memory at
the time of the execution request. If the function is not in internal mem-
ory, a transfer must occur before execution.

There are several circumstances under which an overlay transfer can be in
progress while the core is executing another task. Each circumstance can
be labeled as deterministic or non-deterministic. A deterministic circum-
stance is one where you know exactly when an overlay function is required
for execution. A non-deterministic circumstance is one where you cannot
predict when an overlay function is required for execution. For example, a
deterministic application may consist of linear flow code except for func-
tion calls. A non-deterministic example is an application with calls to
overlay functions within an interrupt service routine where the interrupt
occurs randomly.

The software-provided example contains deterministic overlay function
calls. The time of overlay function execution requests are known as are the
number of cycles required to transfer an overlay. Therefore, an overlay
function load request can be placed such that the transfer is complete by
the time the execution request is made. The next overlay transfer (from a
load request) can be enabled by the core and the core can execute the
instructions leading up to the function execution request.

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

Linker

Since the linker handles all overlay symbol references in the same way
(jump to PLIT table then overlay manager), it is up to the overlay man-
ager to distinguish between a symbol reference requesting the load of an
overlay function and a symbol reference requesting the execution of an
overlay function. In the example, the overlay manager uses a buffer in
memory as a flag to indicate whether the function call (symbol reference)
is a load or an execute request.

The overlay manager first determines if the referenced symbol is in inter-
nal memory. If not, it sets up the DMA transfer. If the symbol is not in
internal memory and the flag is set for execution, the core waits for the
transfer to complete (if necessary) and then executes the overlay function.
If the symbol is set for load, the core returns to the instructions immedi-
ately following the location of the function load reference. Every overlay
function call requires initializing the load/execute flag buffer. In the exam-
ple, the function calls are delayed branch calls. The two slots in the
delayed branch contain instructions to initialize the flag buffer. Register
R0 is set to the value that is placed in the flag buffer, and the value in R0 is
stored in memory; 1 indicates a load and 0 indicates an execution call. At
each overlay function call the load buffer must be updated.

The following code is from the main FFT subroutine. Each of the four
function calls are execution calls so the pre-fetch (load) buffer is set to
zero. The flag buffer in memory is read by the overlay manager to deter-
mine if the function call is a load or an execute.

call fft_first_2_stages (db);
 r0=0;
 dm(prefetch) = r0;
call fft_middle_stages (db);
 r0=0;
 dm(prefetch) = r0;
call fft_next_to_last (db);
 r0=0;
 dm(prefetch) = r0;
call fft_last_stage (db);
 r0=0;
 dm(prefetch) = r0;

LDF Programming Examples

2-120 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx

The next set of instructions represents a load function call.

call fft_middle_stages (db);
 /* This function call pre loads */
 /* the function into the overlay run memory. */
r0=1;
 dm(prefetch) = r0;
 /* Set prefetch flag to 1 to indicate a load. */

The code executes the first function and transfers the second function and
so on. Therefore, each function resides in a unique overlay and requires
reserving two run time locations; while one overlay is loading into one run
time location, a second overlay function is executing in another run time
location.

The following code segment allocates the functions to overlays and forces
two run-time locations.

OVERLAY_INPUT
{
 ALGORITHM(ALL_FIT)
 OVERLAY_OUTPUT(fft_one.ovl)
 INPUT_SECTIONS(Fft_ovl.doj(seg_pmco))
 PACKING(12 B1 B2 B3 B4 B0 B11 B12 B5 B6 B0 B7 B8 B9 B10 B0)
} >ovl_pmco // Overlay to live in section ovl_pmco

OVERLAY_INPUT
{
 ALGORITHM(ALL_FIT)
 OVERLAY_OUTPUT(fft_three.ovl)
 INPUT_SECTIONS(Fft_ovl.doj(seg_pmco1))
 PACKING(12 B1 B2 B3 B4 B0 B11 B12 B5 B6 B0 B7 B8 B9 B10 B0)
} >ovl_pmco // Overlay to live in section ovl_code

INPUT_SECTIONS(ovly_mgr.doj(pm_code))

OVERLAY_INPUT
{
 ALGORITHM(ALL_FIT)
 OVERLAY_OUTPUT(fft_two.ovl)
 INPUT_SECTIONS(Fft_ovl.doj(seg_pmco3))
 PACKING(12 B1 B2 B3 B4 B0 B11 B12 B5 B6 B0 B7 B8 B9 B10 B0)

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

Linker

} >ovl_pmco // Overlay to live in section ovl_code
OVERLAY_INPUT
{
 ALGORITHM(ALL_FIT)
 OVERLAY_OUTPUT(fft_last.ovl)
 INPUT_SECTIONS(Fft_ovl.doj(seg_pmco2))
 PACKING(12 B1 B2 B3 B4 B0 B11 B12 B5 B6 B0 B7 B8 B9 B10 B0)
} >ovl_pmco // Overlay to live in section ovl_code

The first and third overlays share one run-time location and the second
and fourth overlays share the second run-time location. By placing an
input section between overlay declarations, multiple run-time locations
are allocated.

The overlay manager requires modification from that of Example 1. Addi-
tional instructions are included to determine if the function call is a load
or an execution call. If the function call is a load, the overlay manager ini-
tiates the DMA transfer, then jumps the PC back to the location where
the call was made. If the call is an execution call, the overlay manager
determines if the overlay is currently in internal memory. If so, the PC
jumps to the run-time location of the called function. If the overlay is not
in internal memory, a DMA transfer is initiated and the core waits for the
transfer to complete.

The overlay manager pushes the appropriate registers on the run-time
stack. It checks to see if the requested overlay is currently in internal mem-
ory. If not, it sets up the DMA transfer. It then checks to see if the
function call is a load or an execution call. If it is a load, it begins the
transfer and returns the PC back to the instruction following the call. If it
is an execution call, the core is idle until the transfer completes (if the
transfer was necessary) and then jumps the PC to the run-time location of
the function.

The overlay managers in these examples are used universally. Specific
applications may require some modifications. These modifications may
allow for the elimination of some instructions. For instance, if your appli-
cation allows for the free use of registers, you may not need a run-time
stack.

Linker Glossary

2-122 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx

Linker Glossary
LDF commands — Commands in the Linker Description File that
define the target system and order the processing of linker output for that
system.

LDF Input Sections — parts of object files produced by the compiler and
assembler consist of various sections, referred to as Input Sections. Each
type of Input Section holds a particular type of compiled/assembled
source code.

LDF macros — Built-in macros (text strings to be executed), with pre-
defined procedures or values, which may be system-specific. LDF macros
are available globally regardless of the scope where the macro is defined.

LDF Memory Segment — parts of the DSP/Chip memory map that are
defined in the linker description file.

LDF Output Sections — parts of an executable file are broken up into
sections. These sections are defined by the Executable and Linking Format
(ELF) file format that the development software uses for executable files.
These sections (or segments) are called Output Sections, and these sections
have Output Section names.

LDF scope — The two types of LDF file scopes are global and command.
A command scope defines the content for an OUTPUT() command that can
be used within a PROCESSOR{} or SHARED_MEMORY{} command; the effects
of commands and expressions that appear in the command scope are lim-
ited to those scopes. The global scope occurs outside of commands and
defines commands and expressions to be available in the global scope and
visible in all subsequent scopes.

VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx DSPs

Linker

LDF Sections Versus Segments — the linker takes Input Sections as
inputs, places them in a Output Section, and maps Output Sections into
selected Memory Segments. The line:

dxe_isr{ INPUT_SECTIONS ($OBJECT1 (isr_tbl)) } > mem_isr

directs the linker to take the isr_tbl Input Section, place it in the dxe_isr
Output Section, and map it to the mem_isr Memory Segment.

Link against — the linker resolves symbols to which multiple executables
refer. For instance, shared memory executable files (.SM) contain sections
of code that other processor executables (.DXE) link against. Through this
process, the shared item is available to multiple executables without being
duplicated.

Link objects — object files (.DOJ) that get linked and other items, such as
executables (.DXE, .SM, .OVL), that are linked against.

Linker description file — the commands, macros, and expressions that
control how the linker arranges your program in memory.

Live Memory — The off-chip area of memory where an overlay lives (is
stored) when it is not running.

Overlays — sections of code or data that are swapped in and out of
run-time memory, depending on program execution. The linker produces
overlay files (.OVL) that your overlay manager swaps in and out of
memory.

Run-time Memory — The on-chip area where an overlay (or a group of
overlays) runs.

Target — The type of processor chip on which a project is intended to be
run.

Linker Glossary

2-124 VisualDSP++ 2.0 Linker and Utilities Manual for ADSP-21xxx

	Contents
	2 Linker
	Overview
	Mapping Files To Memory with an LDF
	Linking Process Overview
	Default LDF and Object Code Placement
	The Linking Process and the LDF
	Figure 2-1. The LDF File and Linking Process
	Listing 2-1. Example Linker Description File

	Inputs—C, C++ & Assembly Sources
	Input Section Directives in Assembly Code
	Input Section Directives in C/C++ Source Files

	Outputs—DSP Executables

	Linker Guide
	Linker Operations
	Describing the Link Target
	Representing Memory Architecture
	Figure 2-2. Example System for Linker Description

	Specifying the Memory Map
	Table 2-1. ADSP-21062 Memory vs. Sections Usage
	Table 2-2. Example ADSP�21062 Memory�
	Listing 2-2. Linker MEMORY{} Command Example

	Placing Code on the Target
	Listing 2-3. Linker SECTIONS{} Command Example

	Using Linker Features
	Specifying Linker Options
	Linker Error and Warning Messages

	Linker Command-Line Reference
	Command-Line Syntax
	Object Files in the Linker Command Line
	Switch Format in the Linker Command Line
	File Names on the Linker Command Line
	Table 2-3. File Name Extension Conventions

	Linker Command-Line Switches
	Table 2-4. Linker Switch Summary�

	Linker Description File Reference
	LDF Structure
	Command Scoping
	Figure 2-3. LDF Command Scoping Example

	LDF Expressions and Conventions
	Table 2-5. Linker Non�Keyword Operators and Conventions�

	Linker Keywords
	Table 2-6. Linker Keywords and Operators

	Miscellaneous LDF Keywords
	LDF Operators
	LDF Macros
	LDF Macro List
	LDF Macros and Command-Line Interaction

	LDF Command Summary
	ALIGN()
	ARCHITECTURE()
	ELIMINATE()
	ELIMINATE_SECTIONS()
	INCLUDE()
	INPUT_SECTION_ALIGN()
	KEEP()
	LINK_AGAINST()
	MAP()
	MEMORY{}
	Figure 2-4. Syntax Tree of the MEMORY{} Command

	MPMEMORY{}
	Figure 2-5. Syntax Tree of the MPMEMORY{} Command

	OVERLAY_GROUP{}
	Figure 2-6. Overlays, Not Grouped
	Figure 2-7. Overlays, Grouped
	Listing 2-4. LDF Overlays, Not Grouped
	Listing 2-5. LDF Overlays, Grouped

	PACKING()
	Packing in ADSP-21xxx LDF
	Table 2-7. Packing Order for DMA
	Table 2-8. Unpack vs. Storage Order

	Overlay Packing Formats
	Table 2-9. Packing Formats for ADSP-21xxx DMA Overlays�
	Table 2-10. Additional Packing Formats for ADSP-21161N DMA Overlays�

	External Execution Packing
	Table 2-11. External Execution Packing Formats for ADSP-21161N DSPs
	Table 2-12. External Execution Packing Formats for ADSP-21065L DSPs

	Default Packing - No Reordering

	PLIT{}
	What is a PLIT?
	Allocating Space for PLITs
	PLIT Syntax
	Figure 2-8. Syntax Tree of the PLIT{} Command

	PROCESSOR{}
	Figure 2-9. Syntax Tree of the PROCESSOR{} Command

	RESOLVE()
	SEARCH_DIR()
	SECTIONS{}
	Figure 2-10. Syntax Tree of the SECTIONS{} Command

	SHARED_MEMORY{}
	Figure 2-11. Syntax Tree of the SHARED_MEMORY{} Command
	Figure 2-12. LDF Scoping for the SHARED_MEMORY{} Command

	LDF Programming Examples
	Linking for Single-Processor Memory
	Listing 2-6. Single-Processor System LDF Example

	Linking Large Uninitialized Variables
	Listing 2-7. Using Large Uninitialized Variables: Assembly Source
	Listing 2-8. Using Large Uninitialized Variables: LDF Source

	Linking for Multi-Processor and Shared Memory
	Listing 2-9. Multiprocessor System LDF Example
	Using Reflective Semaphores

	Linking for Overlay Memory
	Listing 2-10. Overlay-Memory System LDF Example
	Using a Procedure Linkage Table
	Figure 2-13. PLITs & Overlay Memory; main() Calls to Overlays
	Figure 2-14. PLITs & Overlay Memory; Inter-Overlay Calls
	Figure 2-15. PLITs & Overlay Memory; Inter-Processor Calls

	Using An Overlay Memory Manager
	Figure 2-16. Memory Overlays
	Managing Overlays
	Listing 2-11. Overlay Declaration in LDF
	Listing 2-12. Linker-Generated Overlay Constants
	Figure 2-17. Example Overlay Run and Live Sizes
	Listing 2-13. Linker Generated Constants
	Figure 2-18. Expanded PLIT Table.
	Listing 2-14. PLIT Definition in LDF

	Managing Two Overlays
	Listing 2-15. FFT Overlay Example

	Reducing Overlay Manager Overhead

	Linker Glossary

