
W3.5
Product Release Bulletin

for 16-Bit Processors

 Revision 1.0, October 2003

Part Number
82-000035-01

Analog Devices, Inc.
One Technology Way
Norwood, Mass. 02062-9106 a

Copyright Information
© 2003 Analog Devices, Inc., ALL RIGHTS RESERVED. This docu-
ment may not be reproduced in any form without prior, express written
consent from Analog Devices, Inc.

Printed in the USA.

Disclaimer
Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by impli-
cation or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice
The Analog Devices logo, VisualDSP, the VisualDSP logo, Blackfin, the
Blackfin logo, CROSSCORE, the CROSSCORE logo, and EZ-KIT Lite
are registered trademarks of Analog Devices, Inc.

VisualDSP++ and the VisualDSP++ logo are trademarks of Analog
Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors iii

CONTENTS

PREFACE

Purpose of This Document .. xiii

Intended Audience .. xiii

Manual Contents ... xiv

Technical or Customer Support ... xv

Supported Processors ... xv

Product Information ... xv

MyAnalog.com ... xvi

DSP Product Information ... xvi

Related Documents ... xvii

Online Documentation .. xviii

From VisualDSP++ ...xix

From Windows ...xix

From the Web ..xx

Printed Manuals .. xx

VisualDSP++ Documentation Set ...xx

Hardware Manuals ...xx

Data Sheets ...xxi

CONTENTS

iv VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

Contacting DSP Publications ... xxi

Notation Conventions .. xxii

INTRODUCTION

Product Release Description .. 1-2

VisualDSP++ 3.5 System Requirements ... 1-2

Platform and Processor Support .. 1-3

VisualDSP++ 3.5 Product Highlights .. 1-4

VISUALDSP++ 3.5 MAJOR CHANGES

Changes to Installer .. 2-2

Discrete Installer ... 2-2

Emulation Tools Included in Installer 2-4

Changes to Blackfin Compiler .. 2-5

Command-Line Switches ... 2-5

Linker Description Files .. 2-8

Startup Code and Libraries .. 2-10

Miscellaneous changes ... 2-13

Changes to ADSP-219x Compiler ... 2-14

Command-Line Switches ... 2-14

Linker Description Files .. 2-16

Libraries ... 2-16

Miscellaneous Changes .. 2-17

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors v

CONTENTS

Changes to ADSP-218x Compiler ... 2-18

Command-Line Switches ... 2-18

Linker Description Files .. 2-19

Miscellaneous Changes .. 2-19

Changes to ADSP-BF535 Simulator .. 2-20

NEW FEATURES AND ENHANCEMENTS

VisualDSP++ IDDE .. 3-2

New Processor Support .. 3-3

Multiple Project Support ... 3-3

XML Project File Format ... 3-3

Project Migration .. 3-3

License Management ... 3-4

Data Streaming and Logging .. 3-4

Profile-Guided Optimization ... 3-4

Integrated Source Code Control ... 3-4

Automation Aware Scripting Engine .. 3-5

Address Bar in Memory and Disassembly Windows 3-5

Menus with Icons .. 3-5

Enhanced Compiled Simulation Support 3-5

Memory Streams ..3-6

Overlays ..3-6

PGO ...3-6

Linear Profiling ..3-6

CONTENTS

vi VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

ADSP-BF535 SPORT ... 3-6

Assembler for Blackfin Processors .. 3-7

Feature Macro ... 3-7

VCSE Optimization Directives .. 3-7

Assembler Command-Line Switch ... 3-8

Preprocessor Macros .. 3-8

Preprocessor Command-Line Switches 3-8

Include Path Search Algorithm Matches Compiler 3-8

Assembler for ADSP-218x and ADSP-219x DSPs 3-10

VCSE Optimization Directives .. 3-10

Assembler Command-Line Switch ... 3-10

Preprocessor Macro ... 3-11

Preprocessor Command-Line Switches 3-11

Include Path Search Algorithm Matches Compiler 3-11

Compiler and Library for Blackfin Processors 3-13

File Extensions .. 3-14

Compiler Command-Line Switches 3-14

Optimization Control ... 3-16

Bank Type Qualifiers ... 3-17

ETSI Support ... 3-18

Video Operation Built-In Functions 3-18

Pragmas .. 3-19

GCC Compatibility Extensions ... 3-21

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors vii

CONTENTS

Caching and Memory Protection ... 3-22

Predefined Compiler Macros .. 3-23

Data Storage Formats .. 3-24

C/C++ Libraries and Startup Files .. 3-24

C Library Functions ... 3-25

DSP Run-Time Library ... 3-26

Compiler and Library for ADSP-219x Processors 3-28

File Extensions .. 3-28

Compiler Command-Line Switches .. 3-29

Optimization Control .. 3-31

Assembly Construct Operands .. 3-32

Builtins for Non-literal Address Inputs 3-34

System Control Register Set ... 3-34

Near and Far Type Qualifiers .. 3-34

Circular Buffer Built-in Functions 3-35

ETSI Support .. 3-35

Pragmas .. 3-36

GCC Compatibility Extensions ... 3-38

Predefined Compiler Macro ... 3-39

File IO Support ... 3-39

C Library Functions .. 3-40

DSP Run-Time Library Functions ... 3-41

CONTENTS

viii VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

Compiler and Library for ADSP-218x DSPs 3-42

Input and Output File Extensions .. 3-42

C Compiler Command-Line Switches 3-43

Optimization Control ... 3-44

Assembly Construct Operands ... 3-45

Builtins for Non-literal Address Inputs 3-47

ETSI Support ... 3-47

Pragmas .. 3-48

GCC Compatibility Extensions ... 3-50

Predefined Compiler Macro .. 3-50

File IO Support .. 3-51

C Library Functions .. 3-51

Linker and Utilities ... 3-53

Modified Link Page in Project Options Dialog Box 3-53

Migrating LDFs from Previous Installations 3-55

Linker Command-Line Switches .. 3-56

Jump/Call Expansions ... 3-57

Updated List of LDF Keywords ... 3-57

Modifications to LDF Commands ... 3-58

SECTIONS{} LDF Command ... 3-59

OVERLAY_GROUP{} Command 3-59

Breakpoints on Overlays .. 3-60

Expert Linker .. 3-61

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors ix

CONTENTS

Menu Updates ... 3-61

Profiling Object Sections .. 3-62

Memory Map File (.XML) ... 3-62

Archiver .. 3-63

Archiver Switches ... 3-63

Warnings for Duplicate Library Entries 3-64

Improved Support for File Specifications 3-64

Tagging an Archive with Version Information 3-64

Basic Version Information ... 3-64

User-Defined Version Information 3-64

Printing Version Information ... 3-65

Removing Version Information from an Archive 3-65

Checking Version Number .. 3-65

Adding Text to Version Information 3-65

Loaders ... 3-66

Blackfin Loader Features .. 3-66

ADSP-219x Loader Features .. 3-66

VCSE ... 3-67

VCSE Peripheral Control Components 3-68

VDK .. 3-69

Object Protection .. 3-70

Documentation Changes ... 3-70

Compiler Manuals ... 3-70

CONTENTS

x VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

VisualDSP++ 3.5 User’s Guide .. 3-71

Online Help ... 3-71

Error Messages .. 3-71

Merged Index .. 3-72

Online Manuals ... 3-72

OBSOLETE OR REMOVED FEATURES

Assembler and Preprocessor for Blackfin Processors 4-2

Directives and Keywords ... 4-2

Assembly Operator .. 4-2

Feature Macros ... 4-3

Preprocessor Command-Line Switch .. 4-3

Assembler and Preprocessor for ADSP-21xx DSPs 4-4

Assembly Input Section Names .. 4-4

Directives and Keywords ... 4-4

Assembler Command-Line Switches .. 4-5

Preprocessor Command-Line Switch .. 4-5

Compiler and Library for Blackfin Processors 4-6

C/C++ Compiler Command-Line Switches 4-6

Predefined Macro .. 4-8

C/C++ Run-Time Library ... 4-8

CONTENTS

xi VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

Compiler and Library for ADSP-219x DSPs 4-9

Compiler and Library for ADSP-218x DSPs 4-10

Linker .. 4-11

Silicon Part Number ... 4-12

ADSP-BF535 Simulator ... 4-12

Tcl Scripting Engine ... 4-12

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors xiii

PREFACE

Thank you for purchasing VisualDSP++TM, Analog Devices development
software for digital signal processor (DSP) applications.

Purpose of This Document
This document briefly describes the new features and enhancements
provided by VisualDSP++ 3.5 for 16-bit digital signal processors. It also
describes the differences (obsolete features and functions) between
VisualDSP++ 3.5 and previous VisualDSP++ releases.

For details, refer to the VisualDSP++ 3.5 manuals listed in “Related Doc-
uments” and online Help.

Intended Audience
This publication is primarily intended for programmers who are upgrad-
ing from the previous releases of VisualDSP++ development software and
who want an overview of the changes to VisualDSP++ 3.5.

PREFACE

xiv VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

Manual Contents
This manual consists of:

• Chapter 1, “Introduction”
Describes VisualDSP++ 3.5 and its benefits, provides the minimal
system requirements for running the product, and lists the sup-
ported processors.

• Chapter 2, “VisualDSP++ 3.5 Major Changes”
Describes major changes in VisualDSP++ 3.5 compared to
VisualDSP++ 3.0 and VisualDSP++ 3.1 (for Blackfin processors)
releases.

• Chapter 3, “New Features and Enhancements”
Describes what is new in the VisualDSP++ 3.5 IDDE, assembler,
compiler, linker, loader, and documentation. Also describes the new
features in the Expert Linker (EL), VisualDSP++ Component Soft-
ware Engineering (VCSE), and the VisualDSP++ Kernel (VDK).

• Chapter 4, “Obsolete or Removed Features”
Describes the removed/obsolete features in VisualDSP++ 3.5 (com-
pared to the previous VisualDSP++ software release as they pertain
to code generation tool chain: commands, switches, operators,
directives, pragmas, keywords, macros, and library functions.

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors xv

PREFACE

Technical or Customer Support
You can reach DSP Tools Support in the following ways.

• Visit the DSP Development Tools website at

www.analog.com/technology/dsp/developmentTools/index.html

• Email questions to

dsptools.support@analog.com

• Phone questions to 1-800-ANALOGD

• Contact your ADI local sales office or authorized distributor

• Send questions by mail to

Analog Devices, Inc.
One Technology Way
P.O. Box 9106
Norwood, MA 02062-9106
USA

Supported Processors
VisualDSP++ 3.5 release for 16-bit processors supports Blackfin,
ADSP-219x, and ADSP-218x processors. For more information, refer to
“Platform and Processor Support” on page 1-3.

Product Information
You can obtain product information from the Analog Devices website,
from the product CD-ROM, or from the printed publications (manuals).

PREFACE

xvi VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

Analog Devices is online at www.analog.com. Our website provides infor-
mation about a broad range of products—analog integrated circuits,
amplifiers, converters, and digital signal processors.

MyAnalog.com
MyAnalog.com is a free feature of the Analog Devices website that allows
customization of a webpage to display only the latest information on
products you are interested in. You can also choose to receive weekly email
notification containing updates to the webpages that meet your interests.
MyAnalog.com provides access to books, application notes, data sheets,
code examples, and more.

Registration:

Visit www.myanalog.com to sign up. Click Register to use MyAnalog.com.
Registration takes about five minutes and serves as a means for you to
select the information you want to receive.

If you are already a registered user, just log on. Your user name is your
email address.

DSP Product Information
For information on digital signal processors, visit our website at
www.analog.com/dsp, which provides access to technical publications,
datasheets, application notes, product overviews, and product
announcements.

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors xvii

PREFACE

You may also obtain additional information about Analog Devices and its
products in any of the following ways.

• Email questions or requests for information to
dsp.support@analog.com

• Fax questions or requests for information to
1-781-461-3010 (North America)
+49 (0) 89 76903-157 (Europe))

• Access the Digital Signal Processing Division’s FTP website at
ftp ftp.analog.com or ftp 137.71.23.21
ftp://ftp.analog.com

Related Documents
For information on product related development software, see the follow-
ing publications:

VisualDSP++ 3.5 Getting Started Guide for 16-Bit Processors

VisualDSP++ 3.5 User’s Guide for 16-Bit Processors

VisualDSP++ 3.5 Assembler and Preprocessor Manual for Blackfin Processors

VisualDSP++ 3.5 C/C++ Compiler and Library Manual for Blackfin Processors

VisualDSP++ 3.5 Assembler and Preprocessor Manual for ADSP-218x and ADSP-219x DSPs

VisualDSP++ 3.5 C Compiler and Library Manual for ADSP-218x DSPs

VisualDSP++ 3.5 C/C++ Compiler and Library Manual for ADSP-219x DSPs

VisualDSP++ 3.5 Loader Manual for 16-Bit Processors

VisualDSP++ 3.5 Kernel (VDK) User’s Guide for 16-Bit Processors

VisualDSP++ 3.5 Component Software Engineering User’s Guide for 16-Bit Processors

Quick Installation Reference Card

PREFACE

xviii VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

For hardware information, refer to your DSP’s Hardware Reference manual
and datasheet. All documentation is available online. Most documentation
is available in printed form.

Online Documentation
Online documentation comprises Microsoft HTML Help (.CHM), Adobe
Portable Documentation Format (.PDF), and HTML (.HTM and .HTML)
files. A description of each file type is as follows.

Access the online documentation from the VisualDSP++ environment,
Windows Explorer, or Analog Devices website.

File Description

.CHM VisualDSP++ online Help system files and VisualDSP++ manuals are provided in
Microsoft HTML Help format. Installing VisualDSP++ automatically copies these
files to the VisualDSP\Help folder. Online Help is ideal for searching the entire
tools manual set. Invoke Help from the VisualDSP++ Help menu or via the
Windows Start button.

.PDF Manuals and data sheets in Portable Documentation Format are located in the
installation CD’s Docs folder. Viewing and printing a .PDF file requires a PDF
reader, such as Adobe Acrobat Reader (4.0 or higher). Running setup.exe on the
installation CD provides easy access to these documents. You can also copy .PDF
files from the installation CD onto another disk.

.HTM
 or
.HTML

Dinkum Abridged C++ library and FlexLM network license manager software
documentation is located on the installation CD in the Docs\Reference folder.
Viewing or printing these files requires a browser, such as Internet Explorer 4.0 (or
higher). You can copy these files from the installation CD onto another disk.

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors xix

PREFACE

From VisualDSP++

VisualDSP++ provides access to online Help. It does not provide access to
.PDF files or the supplemental reference documentation (Dinkum
Abridged C++ library and FlexLM network licence). Access Help by:

• Choosing Contents, Search, or Index from the VisualDSP++ Help
menu

• Invoking context-sensitive Help on a user interface item
(toolbar button, menu command, or window)

From Windows

In addition to any shortcuts you may have constructed, there are many
ways to open VisualDSP++ online Help or the supplementary documenta-
tion from Windows.

Help system files (.CHM files) are located in the Help folder, and .PDF files
are located in the Docs folder of your VisualDSP++ installation. The Docs
folder also contains the Dinkum Abridged C++ library and FlexLM net-
work license manager software documentation.

Using Windows Explorer

• Double-click any file that is part of the VisualDSP++ documenta-
tion set.

• Double-click the vdsp-help.chm file, which is the master Help sys-
tem, to access all the other .CHM files.

Using the Windows Start Button

Access the VisualDSP++ online Help by clicking the Start button and
choosing Programs, Analog Devices, VisualDSP++ for 16-bit processors,
and VisualDSP++ Documentation.

PREFACE

xx VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

From the Web

To download the tools manuals, point your browser at
www.analog.com/technology/dsp/developmentTools/gen_purpose.html.

Select a DSP family and book title. Download archive (.ZIP) files, one for
each manual. Use any archive management software, such as WinZip, to
decompress downloaded files.

Printed Manuals
For general questions regarding literature ordering, call the Literature
Center at 1-800-ANALOGD (1-800-262-5643) and follow the prompts.

VisualDSP++ Documentation Set

Printed copies of VisualDSP++ manuals may be purchased through Ana-
log Devices Customer Service at 1-781-329-4700; ask for a Customer
Service representative. The manuals can be purchased only as a kit. For
additional information, call 1-603-883-2430.

If you do not have an account with Analog Devices, you will be referred to
Analog Devices distributors. To get information on our distributors, log
onto www.analog.com/salesdir/continent.asp.

Hardware Manuals

Printed copies of hardware reference and instruction set reference manuals
can be ordered through the Literature Center or downloaded from the
Analog Devices website. The phone number is 1-800-ANALOGD
(1-800-262-5643). The manuals can be ordered by a title or by product
number located on the back cover of each manual.

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors xxi

PREFACE

Data Sheets

All data sheets can be downloaded from the Analog Devices website. As a
general rule, printed copies of data sheets with a letter suffix (L, M, N, S)
can be obtained from the Literature Center at 1-800-ANALOGD
(1-800-262-5643) or downloaded from the website. Data sheets without
the suffix can be downloaded from the website only—no hard copies are
available. You can ask for the data sheet by part name or by product
number.

If you want to have a data sheet faxed to you, the phone number for that
service is 1-800-446-6212. Follow the prompts and a list of data sheet
code numbers will be faxed to you. Call the Literature Center first to find
out if requested data sheets are available.

Contacting DSP Publications
Please send your comments and recommendations on how to improve our
manuals and online Help. You can contact us at dsp.techpubs@analog.com.

PREFACE

xxii VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

Notation Conventions
The following table identifies and describes text conventions used in this
manual. Additional conventions, which apply only to specific chapters,
may appear throughout this document.

Example Description

Close command
(File menu) or OK

Text in bold style indicates the location of an item within the
VisualDSP++ environment’s menu system and user interface items.

{this | that} Alternative required items in syntax descriptions appear within curly
brackets separated by vertical bars; read the example as this or that.

[this | that] Optional items in syntax descriptions appear within brackets and sepa-
rated by vertical bars; read the example as an optional this or that.

[this,…] Optional item lists in syntax descriptions appear within brackets
delimited by commas and terminated with an ellipsis; read the example
as an optional comma-separated list of this.

.SECTION Commands, directives, keywords, code examples, and feature names
are in text with letter gothic font.

filename Non-keyword placeholders appear in text with italic style format.

A note providing information of special interest or identifying a
related topic. In the online version of this book, the word Note appears
instead of this symbol.

A caution providing information about critical design or programming
issues that influence operation of a product. In the online version of
this book, the word Caution appears instead of this symbol.

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors 1-1

1 INTRODUCTION

This chapter describes the product, VisualDSP++, and the requirements
for running its latest revision, VisualDSP++ 3.5. It also lists the supported
processors and some of the benefits provided by this release.

The information is organized as follows.

• “Product Release Description” on page 1-2

• “VisualDSP++ 3.5 System Requirements” on page 1-2

• “Platform and Processor Support” on page 1-3

• “VisualDSP++ 3.5 Product Highlights” on page 1-4

Product Release Description

1-2 VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

Product Release Description
VisualDSP++ is Analog Devices project management and development
environment for Digital Signal Processor (DSP) applications.
VisualDSP++ 3.5 successfully integrates a graphical user interface and
code generation and debugging tools, enabling programmers to move
easily between editing, building, debugging, and deployment of final
products.

The code generation tool chain is comprised of the processor-specific
software necessary for completing a DSP-based project: simulator,
assembler, C/C++ compiler (no C++ support for ADSP-218x processors)
and libraries, linker, loader, splitter, and utilities. Analog Devices also
provides VisualDSP++ Component Software Engineering (VCSE) with
VIDL compiler and VisualDSP++ Kernel (VDK),

The product CD-ROM also includes an evaluation suite of the EZ-KIT
Lite® software, which provides an easy method for initial evaluation of a
target processor system and allows application prototyping.

The successor to VisualDSP++ 3.0 (and VisualDSP++ 3.1 for Blackfin
processors), this software release incorporates a number of new features
and enhancements, as described in “New Features and Enhancements”.

VisualDSP++ 3.5 System Requirements
To install and run VisualDSP++ 3.5, your PC must provide the following
software, configuration, and system resources.

• Windows 98 SR2 (or greater)/NT 4.0 SP3/2000/ME/XP

• At least 100 MB of available hard drive space

• At least 32 MB of RAM

• CD-ROM drive

• Internet Explorer 4.01 or later

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors 1-3

Introduction

Platform and Processor Support
Blackfin Processors

The name “Blackfin” refers to a family of Analog Devices 16-bit,
fixed-point embedded processors. VisualDSP++ currently supports all
Analog Devices Blackfin processors:

• ADSP-BF532 (formerly ADSP-21532)
• ADSP-BF535 (formerly ADSP-21535)
• ADSP-BF531
• ADSP-BF533
• ADSP-BF561
• AD6532

The ADSP-BF531 and ADSP-BF533 processors are memory variants of
the ADSP-BF532 processor. The ADSP-BF561 processor is a dual-core
processor using the same core as the ADSP-BF532 processor.

ADSP-218x and ADSP-219x DSPs

The name “ADSP-21xx” refers to two families of Analog Devices 16-bit,
fixed-point processors. VisualDSP++ currently supports the following
processors:

• ADSP-218x DSPs: ADSP-2181, ADSP-2183,
ADSP-2184/84L/84N, ADSP-2185/85L/85M/85N,
ADSP-2186/86L/86M/86N, ADSP-2187L/87N,
ADSP-2188L/88N, and ADSP-2189M/89N

• ADSP-219x DSPs: ADSP-2191, ADSP-2192-12, ADSP-2195,
ADSP-2196, ADSP-21990, ADSP-21991, and ADSP-21992

VisualDSP++ 3.5 Product Highlights

1-4 VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

VisualDSP++ 3.5 Product Highlights
Major product highlights and benefits include:

• Platform and Processor Support.
VisualDSP++ 3.5 for 16-bit processors supports all Analog Devices
Blackfin processors, ADSP-219x processors and ADSP-218x DSPs
on Windows® 98, Windows ME, Windows NT 4.0, Windows
2000, and Windows XP.

• Robust and Flexible Project Management
The VisualDSP++ 3.5 Integrated Development and Development
Environment (IDDE) provides robust and flexible project
management for the development of applications and includes
access to all the activities necessary to create and debug projects. It
enables users to open and switch between multiple projects in the
same session.

• Time-Saving Debugger
The VisualDSP++ debugger has a user-friendly, common interface
to simulators and emulators available from Analog Devices and
participating third-parties. On top of that, the debugger has many
features that greatly reduce debugging time. Users can view C/C++
source code interspersed with the resulting assembly code, profile
execution of a range of instructions in a program, set watchpoints
on hardware, view program and data memory, and trace instruction
execution and memory accesses. These time-saving features enable
users to quickly correct coding errors, identify bottlenecks, and
examine signal processor performance all within the debugger. Also,
when used with the simulator, the debugger can generate inputs,
outputs, and interrupts to simulate real world application
conditions and give users better insight in tuning the performance
of their code.

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors 1-5

Introduction

• VisualDSP++ Kernel
The VisualDSP++ Kernel (VDK) is a real-time operating system
that provides scheduling and resource allocation services applicable
to embedded programming. VDK applications are configured
within the IDDE and initial source files are generated from
templates, where appropriate, to provide a working project
framework within which users can insert their own code.

• Automation API and Aware Scripting Engine
The Automation Aware Scripting Engine using the ActiveX script
host framework allows the use of multiple popular scripting
languages such as VBScript and JavaScript to access the Automation
API. Now you are able to interface with the IDDE using either a
single command or a script file.

• Multiple Processor (MP) Support
The VisualDSP++ multiple processor (MP) support provides a
single seamless interface for debugging multiple processors on the
same physical hardware. Users can easily issue parallel step, run, and
halt commands to all of the applicable processors. Developers can
easily pick and choose individual processor registers, or memory sets
of interest, by pinning those that should be updated between runs,
halts and steps. This feature also eliminates screen clutter in
multiple processor debugging.

• Background Telemetry Channel Support
The Background Telemetry Channel (BTC) feature is a mechanism
for exchanging data between a host and target application, with
minimal intrusion on the target system’s “real-time” characteristics
and minimal addition on a development and debugging time. BTC
enables real-time data collection and status messaging, eliminating
the overhead involved with halting the target application, getting
the desired information, and then restarting the target application.
VisualDSP++ 3.5 extends BTC support on Blackfin and
ADSP-219x processors, so that users will be able to directly benefit

VisualDSP++ 3.5 Product Highlights

1-6 VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

from BTC in the IDDE plot window. In this case, the plot window
will read the target's memory contents on a user-defined time
interval and upon receipt of the data, convert them to the desired
data type and update the plot display for users to view and analyze
immediately.

• Statistical Profiling
Statistical profiling allows a more generalized form of profiling of
which JTAG emulator debug targets can take advantage. The
debugger has the ability to unobtrusively and statically sample the
target processors and then present a graphical display of the
resultant samples for review. This enables to easily and effortlessly
identify where your application is spending more of its time.

• Graphical Plotting
VisualDSP++ includes numerous graphical plotting options,
including Line, Constellation, Eye Diagrams, and 3D waterfall
plots that help users to better visualize, analyze, and understand
their data. The plotting engine is also capable of doing some simple
data processing such as Fast Fourier Transform, 2-D Fast Fourier
Transform, and Convert to Decibels on the data before it is
displayed.

• VisualDSP++ Component Software Engineering (VCSE)
VCSE supports an Interface Definition Language (IDL) and
compiler that allow developers to create and reuse components
without having to become familiar with the detail of the model and
the mechanisms it involves. Components can easily be integrated
into an application and are reusable. VCSE dramatically simplifies
the process of incorporating and utilizing components from a
variety of developers. The VIDL compiler can automatically
generate a test shell for each component that can be used to monitor
a component, to validate its actions and to measure the resources
used by it.

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors 1-7

Introduction

• Cache Visualization (Blackfin processors only)
Cache statistics, such as Total Cache Accesses, Cache Hits, and
Cache Misses, are associated with both the PC/Source Line and the
Cache Line/Set and are collected by the simulator. Once these
statistics are collected, you have the option to easily view and
analyze them in the following forms: Histogram by PC/Source Line,
Cache Line Display where hit/miss data is associated by Cache
Line/Set(way), and Summary Display of totals for hits/misses by
cache.

• Pipeline Viewer
The Pipeline Viewer allows to easily view the instruction flow
through the sequencer’s pipeline. Stalls, aborts, and other pipeline
events are graphically represented in an easy-to-read format for the
developer. Visualization of the pipeline and of the events, which
occur with it, allow you to better understand where and why
latencies and stalls are being introduced into an executable. Armed
with this knowledge, you can effectively and efficiently optimize an
executable's instruction sequence to minimize the number of
undesirable pipeline events.

• Compiled Simulation (Blackfin processors only)
Traditionally, a standard simulator fetches, decodes and then
simulates each instruction that an application executes. This
approach is inefficient and costly as each time an instruction is
executed, it has to be first decoded. With Compiled Simulation, the
simulation compiler automatically examines the whole application
once and generates C code for each instruction in the application,
generating a native Win32 executable tailored to run your
application. As a result, the generated application can be used to
simulate that one application very efficiently (at speed of 100 to
1000 times faster than the ordinary simulator).

VisualDSP++ 3.5 Product Highlights

1-8 VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

• C/C++ Compiler
The best-in-class C/C++ compiler is a time-saver for developers who
use it for application code generation. It generates efficient
application code that is optimized for both code density and
execution time. C/C++ code modules can be easily interfaced with
assembly code modules, allowing users to program in C/C++ and
still use assembly for time-critical loops. Beyond that, developers
can realize an additional significant decrease in their time to market
with the ability to efficiently work with complex data types and take
advantage of specialized operations without having to understand
the underlying architecture. C++ is supported on Blackfin and
ADSP-219x processors; ADSP-218x DSPs do not have C++
support.

Among other notable features, the VisualDSP++ 3.5 compiler offers
64-bit integer data types support; C++ standard exception handling
as defined by the ISO/IEC 14882:1998 standard on Blackfin
processors; and improved external interface on ADSP-219x
processors.

• Profile-Guided Optimization (Blackfin processors only)
Profile-Guided Optimization (PGO) is an iterative compilation
approach which uses information from previous compilations to
improve the optimizer's decisions on the code being compiled.
Traditionally, a compiler only compiles each function once and
attempts to generate code that will perform optimally in most cases
by making reasonable default assumptions in the behavior of that
code. With PGO, the compiler makes educated assumptions based
on data collected during previous executions of the generated code
and subsequently makes decisions about the relative importance of
parts of the application rather than simply using the default
behavior.

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors 1-9

Introduction

This technique can enable large gains to be realized in the run-time
performance and code density of the program automatically,
without additional effort by the users.

• Expert Linker
The Expert Linker creates a graphical utility that makes it easier for
users to produce Linker Description File (LDF) without having to
learn the LDF syntax. The graphical representation of commands in
an LDF file also allows the engineer to easily make changes or to
generate a new LDF file. In VisualDSP++ 3.5, the Expert Linker
also allows users to easily profile object sections of their program,
identify “hotspots” graphically, and optimize their placement of
code in one single step with minimal additional effort.

• Integrated Source Code Control
The Source Code Control (SCC) integration in the IDDE enables
users to easily connect to SCC applications that are installed on
their machines through the Microsoft Common Source Code
Control (MCSCC) interface that is widely supported by leading
SCC vendors. Using the plug-in, you can also access commonly
used features (such as getting the latest version, checking out, and
removing a selected file from source code control) of these SCC
applications, launch the SCC applications, and view a file's source
control status in a project window quickly and conveniently without
leaving the IDDE.

VisualDSP++ 3.5 Product Highlights

1-10 VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors 2-1

2 VISUALDSP++ 3.5 MAJOR
CHANGES

Table 2-0.

This chapter summarizes major changes in VisualDSP++ 3.5 compared to
VisualDSP++ 3.0 and VisualDSP++ 3.1 (for Blackfin processors) releases.

The chapter details:

• “Changes to Installer” on page 2-2

• “Changes to Blackfin Compiler” on page 2-5

• “Changes to ADSP-219x Compiler” on page 2-14

• “Changes to ADSP-218x Compiler” on page 2-18

• “Changes to ADSP-BF535 Simulator” on page 2-20

Please note that all obsolete/removed features are listed in Chapter 4.

Changes to Installer

2-2 VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

Changes to Installer

Discrete Installer
VisualDSP++ 3.5 and all future releases of VisualDSP++ will install
discretely from other versions of VisualDSP++. Historically, releases
installed into a common, shared location. The new installer allows you to
switch between different releases of VisualDSP++ more efficiently. Each
installation of VisualDSP++ will have its own default installation directory
and Start menu icons.

! Installing VisualDSP++ into the same location as another version of
VisualDSP++ is not supported and highly discouraged.

Discrete installation relies on certain facilities within Microsoft Windows
that are not supported on older versions of the operating system.
VisualDSP++ will not be fully discrete under Windows 95, Windows 98,
and Window NT 4.0. Users of those operating systems are highly
encouraged to migrate to Windows XP. On the named, older versions of
Windows, the debug targets to which VisualDSP++ IDDE can connect
will not be handled discretely. VisualDSP++ will be able to connect to
another installation’s targets; however, the build tools will be managed
discretely.

When using multiple versions of VisualDSP++ on the same host PC, be
aware of:

1. Multiple product installations have no visibility into each other (by
design) to ensure that each installation behaves exactly as it does on a
dedicated host PC. One implication of this is that user settings, such as
JTAG platforms, debug session, and preferences need to be set under
each installation.

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors 2-3

VisualDSP++ 3.5 Major Changes

2. License management is likewise discrete. In most cases, licenses already
installed and validated for a past release of VisualDSP++ can be imported
into VisualDSP++ 3.5 by simply copying the …\System\license.dat
file from the historical release of VisualDSP++ to the …\System directory
of the new installation. Alternatively, the license can be reregistered from
within VisualDSP++ 3.5.

3. If building from the command line, make sure that the PATH environ-
ment variable is correctly set. The VisualDSP++ installer will place a
helper file, VDSP3_5.BAT, in the VisualDSP++ directory that will cor-
rectly set the PATH variable to point to that installation of
VisualDSP++ 3.5.

4. Very old releases of the tools had used an environment variable, ADI_DSP.
This variable should not be set at all when using VisualDSP++ 3.5.
Third-party debug targets under older releases can be selected from the
New Session dialog box by selecting the Show All Targets checkbox.

5. If a VisualDSP++ connection is via Automation (for example, from a
VBScript), the last registered version of IDDE.EXE is invoked. To change
the version of VisualDSP++, run the desired version of IDDE.EXE with
the /RegServer switch.

6. VisualDSP++ project file (.DPJ) association is a Windows-wide setting
and, thus, is not handled discretely; it is generally made to be associated
with whichever version of VisualDSP++ was installed most recently.
Association can be changed as desired within Windows. The exact pro-
cedure depends on a particular Windows version. For example, under
Windows XP, select a .DPJ file, chose Properties from the context
(right-click) menu, and click the Change… button next to the Open
with field.

Changes to Installer

2-4 VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

Emulation Tools Included in Installer
The emulation tools now are included in the base VisualDSP++
installation. There is no longer a second ICE software installation
procedure. To install emulation support, select the appropriate
components in the installation wizard. The installer handles the
installation and/or update of the emulator hardware device driver.

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors 2-5

VisualDSP++ 3.5 Major Changes

Changes to Blackfin Compiler
This section summarizes changes to the Blackfin compiler environment
since VisualDSP++ 3.1. As with any major upgrade, some of the
improvements have necessitated changes to how the compiler is invoked.
The compiler’s optimizing technology has undergone extensive revision as
well, but most of these changes are purely internal.

In general, the changes can be grouped into:

• “Command-Line Switches” (some have been removed, some
renamed)

• “Linker Description Files” (the default LDFs have been reorganized
to reflect the new libraries)

• “Startup Code and Libraries” (the new libraries require different
initialization)

• “Miscellaneous changes” (other miscellaneous changes)

Command-Line Switches
Some command-line switches that have been removed, as they are no
longer appropriate or enable archaic language dialects no longer supported
by the compiler. Other switches have been removed because they
historically supported facilities useful for UNIX-targeted compilers but
have became inappropriate for compilers targeted at signal processing and
embedded platforms.

-csync, -avoid-dag1, -isr-imask-check, -isr-ssync
These switches instruct the compiler to work around particular hardware
anomalies. They have all been replaced by a uniform mechanism under
the -workaround switch. Instead of invoking:

ccblkfn -csync prog.c

Changes to Blackfin Compiler

2-6 VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

you now invoke:

ccblkfn -workaround csync prog.c

The other anomaly switches are also passed to -workaround, in a similar
fashion. This change has been made to create a uniform approach to
hardware -workaround switches across Analog Devices compilers.

-Ox, -Oz
The -Ox and -Oz switches have been removed.

The -Ox switch specified that the code being compiled contained
arithmetic that stayed within the confines of 16 bits. The intention was
that DSP code, often expressed via short ints, could be evaluated without
first expanding expressions to 32-bit ints, as required by strict adherence
to the ANSI C Standard. Unfortunately, this assertion was difficult to
make reliable and led to incorrect program behavior, as comparisons and
other operations worked on incorrect data. Now the compiler removes all
sign- and zero-extensions it can provably discard and leaves all others in.
The -Ox switch is accepted by the compiler but has no effect. Use -O
instead.

The -Oz switch specified that the entire program and data resided in the
address range 0x00000000 to 0x0000FFFF, with the intention of only
needing to load the low halves of pointer registers. The idea was to reduce
program size. Blackfin processors place L1, MMR space, and (where
available) L2 into the address space above this range. Furthermore, the low
64 Kbytes of memory space is occupied by slow external memory, so there
were no gains to be made from this option. The -0z switch is accepted by
the compiler but has no effect.

-circbuf
The old -circbuf switch has been renamed to -force-circbuf to better
indicate that it is causing the creation of circular buffers that would not
otherwise happen. The -no-circbuf switch exists to prevent the automatic
creation of circular buffers. Explicit circular buffer usage, via the
corresponding intrinsic functions, is still honored.

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors 2-7

VisualDSP++ 3.5 Major Changes

-alttok
The -alttok switch, which directs the compiler to allow digraph
sequences in C and C++ source files, is no longer on by default as it was in
previous releases.

-analog is renamed to -c89
The -analog switch is renamed to -c89 to reference a particular revision of
the ANSI C Standard.

-2153{1|2|3|5}, -BLACKFIN
These switches, which were used to determine which target to compile for,
are removed. Use -proc processor (where processor is
ADSP-BF53{1|2|3|5}) instead. The -BLACKFIN switch is ignored.

-BF53{1|2|3|5}, -AD6532
These switches have been deprecated in favor of -proc processor
(ADSP-BF53{1|2|3|5}) and -proc AD6532.

-inline, -no-inline
These switches are no longer supported because the inliner is integrated
into the optimizer. When optimization is on, the inliner operates. When
optimization is off, the inliner is disabled. See also -Oa (auto-inlining).

-xml
This switch specified that map files generated by the linker should be in
XML format. In VisualDSP++ 3.5, the linker always generates
XML-format map files, so the switch has been removed. The -xml switch
is still accepted but has no effect.

-no-bss
In VisualDSP++ 3.1, the default mode was -no-bss. In VisualDSP++ 3.5,
the default mode is -bss. Having -bss as the default has ramifications for
the Linker Description Files, as the “bsz” sections must be consumed by
the linker.

Changes to Blackfin Compiler

2-8 VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

-mem-bsz
This switch invoked the Memory Initializer to process the “bsz” sections.
In VisualDSP++ 3.5, the Memory Initializer is invoked with -mem and
defaults to processing all sections that are marked as ZERO_INIT and
RUNTIME_INIT. The “bsz” section is marked as ZERO_INIT in the default
LDFs, so -mem-bsz now is redundant. The switch is accepted but ignored.

Other switches
The following switches have been removed because they correspond to
language options no longer supported in VisualDSP++ 3.5.
-traditional, -dollar, -no-dollar, -J, -force, -instantall,
-instantlocal, -instantused, -suppress, -tpautooff.

The following switches have been removed because they were used to
select between two compilation modes; only the default mode is available
in VisualDSP++ 3.5.
-bool, -explicit, -namespace, -newforinit, -newvec, -std, -typename,
and -wchar. These switches now are always on.

The -no-bool, -no-explicit, -no-namespace, -trdforinit, -no-newvec,
-no-std, and -no-wchar switches are no longer available because their
corresponding elections are not supported in VisualDSP++ 3.5.

Linker Description Files
There are many differences between the LDFs in VisualDSP++3.5 and
preceding VisualDSP++ releases. Projects that use customized LDFs
derived from earlier VisualDSP++ releases almost certainly require some
modification in order to link successfully with VisualDSP++ 3.5.

BSS sections created by default
The libraries now separate global zero-initialized data into the “bsz”
section, which must be consumed by the LDFs; the compiler will follow
suit in later releases. Consequently, the “bsz” input sections must be
mapped to output sections in data memory space by the LDF.

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors 2-9

VisualDSP++ 3.5 Major Changes

cplbtabx.doj now linked directly by LDF
In VisualDSP++ 3.1, each Blackfin core used a generic memory
configuration table. ADSP-BF531/BF532/5333 processors used
cplbtab532.doj from libc532.dlb, and the ADSP-BF535 processor used
cplbtab535.doj from libc535.dlb. Now that each processor has its own
specific memory table, the LDF must include this object in the $OBJECTS
link macro. For example, ADSP-BF533 processor projects should be
linked with cplbtab533.doj.

Voldata has moved
In VisualDSP++ 3.1, the voldata section was mapped into the L1
Scratchpad area. This is incorrect because voldata may contain initialized
data, and L1 Scratchpad may not have initialized data mapped to it. In
VisualDSP++ 3.5, the voldata section is mapped to normal data space,
which is safe by default as the run-time library flushes its voldata items
from data cache before referencing them. If your application has any
additional data items that are mapped into voldata, you must map the
voldata to a suitable, non-cached space or flush the data from cache
before referring to it.

USERMODE no longer supported, MEM_SYSSTACK section removed
The optional USERMODE configuration of VisualDSP++ 3.1 is no longer
supported in VisualDSP++ 3.5. Consequently, there is no need for two
stack sections. The space occupied by the MEM_SYSSTACK section has been
reallocated to the MEM_STACK section.

Farther modifications to your application program can take advantage of
additional run-time library facilities.

Changes to Blackfin Compiler

2-10 VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

USE_CACHE macro for enabling cache and external memory
The default LDFs allow building in two configurations:

1. The first configuration—internal memories only; no space reserved
for caching.

2. The second configuration—internal and external memories; some
internal space reserved for caching.

The second configuration is selected by the USE_CACHE linker macro.

“Guard” symbols to determine cache availability
The default LDFs define symbols, such as ___l1_cache_data_a, setting its
value to be 1 to indicate that the space is available for cache, or to be 0 to
indicate that its space has been used for program/data. The run-time
library can use these guard symbols to detect invalid cache configurations.

C++ exception support
The compiler’s C++ exception support relies on a support library
(libx*.dlb) and exceptions-enabled versions of the run-time libraries
(named with an “x” suffix). In addition, the exceptions support requires
several new input sections (.frt, .edt, .cht, .gdt) that must be mapped
to data areas.

Memory Initializer
The Memory Initializer utility makes use of a special “.meminit” section
to determine where initialization tables should be placed.

-no-std-lib support
The -no-std-lib compiler option indicates that the LDF should not use
the default search path to locate libraries by defining linker macro
__NO_STD_LIB to guard the SEARCH_DIR directive.

Startup Code and Libraries
Changes to the run-time library cause a small number of changes to the
startup code in basiccrt.s.

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors 2-11

VisualDSP++ 3.5 Major Changes

Clock-speed changes
On ADSP-BF533 processors, the default clock speed is set to be
approximately 600 MHz.

No User mode support
As the User mode operation has been discontinued, only one stack is
configured, the Supervisor stack. The User stack pointer is set to point to
the Supervisor stack. However, the default startup code only goes into
User mode long enough to return to Supervisor mode at the lowest
Supervisor priority. The startup code does not make use of the User mode
stack during this process.

Disposition functions for CPLB failure
After (optionally) enabling CPLBs and any requested caching, the startup
code calls __install_default_handlers, a stub function that just returns.
This routine may be replaced with an alternative routine that installs
additional handlers. This is useful if you wish to install handlers prior to
main() being invoked.

Default exception handler
The default exception handler installed for CPLB management now
invokes stub functions when the event is unrecognized or when the
replacement operation fails:

__unknown_exception_occurred()

__cplb_miss_all_locked()

__cplb_miss_without_replacement()

These stub functions merely loop on IDLE, since there is no sensible way
for the application program to continue, but your program may choose to
provide alternative behavior.

Redefined csqu_fr16() intrinsic
The csqu_fr16() intrinsic was incorrect, in that it did not sensibly
produce the square of a complex 16-bit fractional number. This intrinsic
now performs as required.

Changes to Blackfin Compiler

2-12 VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

arg_fr16 function
The DSP run-time library function arg_fr16 returns the phase that is
associated with a Cartesian number. In previous releases of VisualDSP++,
the phase returned by the function would be in the range [-1.0, 1.0)
corresponding to [0, 2ð). This range was not consistent with the range
used by the polar_fr16 library function, which converts a polar
coordinate into a Cartesian number. As a consequence, the following
identity was not true:

polar (cabs(a),arg(a)) == a

In VisualDSP++ 3.5, this conflict has been addressed by modifying the
range of the phase returned by the arg_fr16 function to be [0, 1.0). The
mentioned identify now holds true. Furthermore, the following identity,

cartesian (polar(mag,phase),&phase) == mag

is also true for the new library function cartesian_fr16, which has been
added for VisualDSP++ 3.5.

Window functions
The definition of the windowing functions (defined in the window.h
header file) includes the argument N, which in VisualDSP++ 3.1 and
earlier releases is defined as the size of the output vector. Thus, for a stride
argument a other than 1, the functions would return an incomplete
window of N/a samples.

In VisualDSP++ 3.5, the argument N has been redefined as the size of the
window required. The windowing functions now generate a complete
window of N samples, but the size of the output vector must be N * a.
Note that this change does not affect applications which use a stride value
of 1.

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors 2-13

VisualDSP++ 3.5 Major Changes

Miscellaneous changes
Interprocedural Analysis (IPA)
The IPA optimizer, ipa.exe, has been entirely redesigned for
VisualDSP++ 3.5. Although there are no user-visible changes, you should
be aware that there are likely to be significant changes to the assembler
generated by an IPA-optimized function. You should also ensure that full
rebuilds are done, cleaning out any residual .opa or .ipa files.

Others

• The compiler reorders functions in assembly files (.s). Functions
do not necessarily appear in the assembly file in the same order in
which they are defined in the source file.

• MEM_PCI_IO and pci_io are no longer needed. The MEM_PCI_IO
memory space and the “pci_io” input sections only need to be
included in the LDF when using a PCI-based IO system. This PCI
IO system is used for some third-party Blackfin boards and is not
part of the standard VisualDSP++ distribution.

• The defbf532.h header defined LOOP as a macro, which conflicted
with assembler syntax. Now it is defined as LOOP_ENA.

• The CHIPID macro is no longer defined in the defBF531.h,
defBF532.h, or defBF533.h include files. The corresponding C
macro is not defined in the cdefBF531.h, cdefBF532.h, or
cdefBF533.h files.

Changes to ADSP-219x Compiler

2-14 VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

Changes to ADSP-219x Compiler
This section summarizes changes to the ADSP-219x compiler
environment since VisualDSP++ 3.0. As with any major upgrade, some of
the improvements have necessitated changes to how the compiler is
invoked. The compiler’s optimizing technology has undergone extensive
revision for VisualDSP++ 3.5, but most of these changes are purely
internal.

In general, the changes can be grouped into:

• “Command-Line Switches” (some have been removed, some
renamed)

• “Linker Description Files” (some minor changes to support new
features)

• “Miscellaneous Changes” (other miscellaneous changes)

Command-Line Switches
Some command-line switches have been removed, as they are no longer
appropriate and enable archaic language dialects no longer supported by
the compiler. Other switches have been removed because they historically
supported facilities useful for UNIX-targeted compilers and became
inappropriate for compilers targeted at signal processing and embedded
platforms.

-2191, -2192-12, -219x, -219x
These switches have been deprecated in favor of -proc ADSP-2191,
-proc ADSP-2192-12, and -proc ADSP-219x.

-alttok is no longer a default
The -alttok (alternative tokens) switch directs the compiler to allow
digraph sequences in C and C++ source files. This switch is no longer on
by default as it was in previous releases.

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors 2-15

VisualDSP++ 3.5 Major Changes

-analog is renamed to -c89
This switch is renamed to reference a particular revision of the ANSI C
Standard.

-inline, -no-inline (deprecated switches)
These switches are no longer supported because the inliner is integrated
into the optimizer. When optimization is on, the inliner operates. When
optimization is off, the inliner is disabled. See also -Oa (auto-inlining).

-no-alttok (now default)
The -no-alttok switch directed the compiler not to accept alternative
operator keywords and digraph sequences in the source files. In
VisualDSP++ 3.5, this is done by default.

Other switches
The following switches have been removed because they correspond to
language options no longer supported in VisualDSP++ 3.5.
-traditional, -dollar, -no-dollar, -J, -force, -instantall,
-instantlocal, -instantused, -suppress, -tpautooff.

The following switches have been removed because they were used to
select between two compilation modes; only the default mode is available
in VisualDSP++ 3.5.
-bool, -explicit, -namespace, -newforinit, -newvec, -std, -typename,
and -wchar. These switches now are always on.

The -no-bool, -no-explicit, -no-namespace, -trdforinit, -no-newvec,
-no-std, and -no-wchar switches are no longer available because their
corresponding elections are not supported in VisualDSP++ 3.5.

Changes to ADSP-219x Compiler

2-16 VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

Linker Description Files
Default LDFs support -no-std-libs
The compiler has a -no-std-lib switch, which directs the compiler not to
search the standard library directory for libraries to resolve symbols. This
is achieved by defining the linker preprocessing macro __NO_STD_LIB,
which guards the SEARCH_DIR linker directive. Without this guarding
macro, the LDF still directs the linker to search the standard directory.

Default LDFs include .meminit
The memory initializer uses a special “.meminit” section to determine
placement of initialization tables.

Libraries
arg_fr16 function
The DSP run-time library function arg_fr16 returns the phase that is
associated with a Cartesian number. In previous releases of VisualDSP++,
the phase returned by the function would be in the range [-1.0, 1.0)
corresponding to [0, 2ð). This range was not consistent with the range
used by the polar_fr16 library function, which converts a polar
coordinate into a Cartesian number. As a consequence, the following
identity was not true:

polar (cabs(a),arg(a)) == a

In VisualDSP++ 3.5, this conflict has been addressed by modifying the
range of the phase returned by the arg_fr16 function to be [0, 1.0). The
mentioned identify now holds true. Furthermore, the following identity,

cartesian (polar(mag,phase),&phase) == mag

is also true for the new library function cartesian_fr16, which has been
added for VisualDSP++ 3.5.

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors 2-17

VisualDSP++ 3.5 Major Changes

Window functions
The definition of the windowing functions (defined in the window.h
header file) includes the argument N, which in VisualDSP++ 3.0 and
earlier releases, is defined as the size of the output vector. Thus, for a
stride argument a other than 1, the functions return an incomplete
window of N/a samples.

In VisualDSP++ 3.5, the argument N has been redefined as the size of the
window required. The windowing functions now generate a complete
window of N samples, but the size of the output vector must now be N *a.
Note that this change does not affect applications that use a stride value of
1.

Miscellaneous Changes
Structure return values when the structure size is one or two words
The compiler and libraries of VisualDSP++ 3.5 have been modified to fix
a long-standing problem concerning one- and two-word structures. In the
previous releases, one- and two-word structures were returned through the
aggregate return mechanism using callee-allocated memory with the
address passed in registers I0. The C run-time description states that
structures of size one (word) should be returned by the AX1 register, and
size two should be returned by SR1:0. Assembly code that corresponds to
the previous behavior (use of I0) needs to be modified to use AX1 or
SR1:0. All C code needs to be recompiled with the new compiler to ensure
compatibility.

Global interrupt enable
The signal() and interrupt() functions now are no longer enable
interrupts; therefore, it might be necessary to globally enable interrupts
where it might not have been required before.

Changes to ADSP-218x Compiler

2-18 VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

Changes to ADSP-218x Compiler
This section summarizes changes to the ADSP-218x compiler
environment since VisualDSP++ 3.0. As with any major upgrade, some of
the improvements have necessitated changes to how the compiler is
invoked. The compiler’s optimizing technology has undergone extensive
revision for VisualDSP++ 3.5, but most of these changes are purely
internal.

In general, the changes to the ADSP-218x compiler can be grouped into:

• “Command-Line Switches” (some have been removed, some
renamed)

• “Linker Description Files” (some minor changes to support new
features)

• “Miscellaneous Changes” (other miscellaneous changes)

Command-Line Switches
Some ADSP-219x compiler switches that have been removed, as they are
no longer appropriate or enable archaic language dialects no longer
supported by the compiler. Other switches have been removed because
they historically supported facilities useful for UNIX-targeted compilers
but inappropriate for compilers targeted at signal-processing and
embedded platforms.

-21{8x|81|83|84|85|86|87|88|89}
These switches have been deprecated in favor of
-proc ADSP-21{81|83|84|85|86|87|88|89}.

-analog is renamed to -c89
The -c89 switch is renamed to reference a particular revision of the ANSI
C Standard.

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors 2-19

VisualDSP++ 3.5 Major Changes

-inline, -no-inline (deprecated switches)
These switches are no longer supported because the inliner is integrated
into the optimizer. When optimization is on, the inliner operates. When
optimization is off, the inliner is disabled. See also -Oa (auto-inlining).

Other switches
The following switches have been removed because they correspond to
language options no longer supported in VisualDSP++ 3.5.
-traditional, -dollar, -no-dollar, -J.

Linker Description Files
Default LDFs support -no-std-libs
The compiler has a -no-std-lib switch, which directs the compiler not to
search the standard library directory for libraries to resolve symbols. This
is achieved by defining the linker preprocessing macro __NO_STD_LIB,
which guards the SEARCH_DIR linker directive. Without this guarding
macro, the LDF still directs the linker to search the standard directory.

Default LDFs include .meminit
The memory initializer makes use of a special “.meminit” section to
determine the placement of initialization tables.

Miscellaneous Changes
Structure return values when the structure size is one or two words
The compiler and libraries of VisualDSP++ 3.5 have been modified to fix
a long-standing problem concerning one- and two-word structures. In the
previous releases, one- and two-word structures were returned through the
aggregate return mechanism using callee-allocated memory with the
address passed in registers I0. The C run-time description states that
structures of size one (word) should be returned by the AX1 register, and
size two should be returned by SR1:0. Assembly code that corresponds to
the previous behavior (use of I0) needs to be modified to use AX1 or

Changes to ADSP-BF535 Simulator

2-20 VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

SR1:0. All C code needs to be recompiled with the new compiler to ensure
compatibility.

Changes to ADSP-BF535 Simulator
The ADSP-BF535 simulator has been entirely redesigned to support
cycle-accurate simulations. The new simulator models core and memory
events in order to forecast latencies and feed the pipeline viewer with
appropriate information. This replaces the post-pass instruction analysis
used by the functional simulator to detect latencies.

The new simulator also allows cache events to be tracked with the cache
viewer.

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors 3-1

3 NEW FEATURES AND
ENHANCEMENTS

Table 2-0.

VisualDSP++ 3.5 has a number of new features and enhancements
designed to increase productivity and shorten application development
cycles. This chapter describes the new features and enhancements
introduced in VisualDSP++ 3.5.

The information is presented as follows.

• “VisualDSP++ IDDE” on page 3-2

• “Assembler for Blackfin Processors” on page 3-7

• “Assembler for ADSP-218x and ADSP-219x DSPs” on page 3-10

• “Compiler and Library for Blackfin Processors” on page 3-13

• “Compiler and Library for ADSP-219x Processors” on page 3-28

• “Compiler and Library for ADSP-218x DSPs” on page 3-42

• “Linker and Utilities” on page 3-53

• “Loaders” on page 3-66

• “VCSE” on page 3-67

• “VDK” on page 3-69

• “Object Protection” on page 3-70

• “Documentation Changes” on page 3-70

VisualDSP++ IDDE

3-2 VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

VisualDSP++ IDDE
The VisualDSP++ 3.5 Integrated Development and Debugging
Environment (IDDE) introduces:

• “New Processor Support” on page 3-3

• “Multiple Project Support” on page 3-3

• “XML Project File Format” on page 3-3

• “Project Migration” on page 3-3

• “License Management” on page 3-4

• “Data Streaming and Logging” on page 3-4

• “Profile-Guided Optimization” on page 3-4

• “Integrated Source Code Control” on page 3-4

• “Automation Aware Scripting Engine” on page 3-5

• “Address Bar in Memory and Disassembly Windows” on page 3-5

• “Menus with Icons” on page 3-5

• “Enhanced Compiled Simulation Support” on page 3-5

For more information about VisualDSP++ IDDE, refer to the
VisualDSP++ 3.5 User’s Guide for 16-Bit Processors and online Help.

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors 3-3

New Features and Enhancements

New Processor Support
The following new processor is supported by VisualDSP++ 3.5.

ADSP-BF561

Refer to the ADSP-BF561 Blackfin Processor Hardware Reference and data
sheet for details.

Multiple Project Support
VisualDSP++ provides the ability to switch among multiple open projects
in the same IDDE session. The Project window displays active projects.

XML Project File Format
The binary project file format used in previous releases of VisualDSP++
has been replaced with a new text-based XML format. The XML format
has several benefits:

• Forward and backward compatibility in successive releases

• Better version control and comparison in source code control
environments

• Better readability

Project Migration
Projects migrated to VisualDSP++ 3.5 cannot be opened in previous
versions. However, a backup copy of the project is automatically made
before conversion that can be opened for backwards compatibility.

VisualDSP++ IDDE

3-4 VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

License Management
License installation and validation has been integrated into the
VisualDSP++ IDDE. Installing a FlexLM license server is still handled by
the separate installation application. Two licensing options are available:
single-user and client. A server license is required before you can install a
client license.

Data Streaming and Logging
VisualDSP++ now offers the ability to stream from a target DSP without
halting the DSP. The IDDE takes advantage of this capability in plot
windows. If the target supports BTC, the plot window is updated without
halting the target.

Profile-Guided Optimization
The VisualDSP++ IDDE includes facilities to run common
Profile-Guided Optimization (PGO) scenarios simply and also provides
a mechanism for advanced users who require more control over the
profiling process via scripting. The technique relies on setting up and
executing data sets to produce an optimized application. See
“Optimization Control” on page 3-16 for more information.

Integrated Source Code Control
VisualDSP++ provides integration between the IDDE and Integrated
Source Code Control (SCC) applications (such as Visual SourceSafe,
PVCS Version Manager, and Concurrent Versions System (CVS))
installed on your machine through Microsoft Common Source Code
Control (MCSCC) interface. You can conveniently access commonly-used
SCC features from VisualDSP++ without leaving the IDDE.
Application-specific and advanced SCC features not available from the
IDDE must be run directly from the SCC applications.

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors 3-5

New Features and Enhancements

Automation Aware Scripting Engine
VisualDSP++ includes a scripting engine that utilizes the Microsoft
ActiveX script host framework. The engine allows you to use multiple
scripting languages, such as VBScript, JavaScript and others, to access the
VisualDSP++ Automation API.

You can interact with the IDDE using a single command or a script file
similar to the Tcl scripting functionality, which was available in previous
versions of VisualDSP++.

Address Bar in Memory and Disassembly Windows
When enabled, Disassembly and Memory windows display an address
bar. Use the address bar to navigate by address, symbol, or expression. The
address bar maintains a most recently used history of visited locations.

Menus with Icons
Icons now appear beside menu commands that have equivalent toolbar
buttons.

Enhanced Compiled Simulation Support
Compiled simulation has been enhanced for the VisualDSP++ 3.5 release.
Compiled simulation now supports the following functions:

• “Memory Streams”

• “Overlays”

• “PGO”

• “Linear Profiling”

• “ADSP-BF535 SPORT”

VisualDSP++ IDDE

3-6 VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

Memory Streams

The 8-, 16-, and 32-bit streams are supported to any suitably aligned
memory address (excepting the core MMRs).

Overlays

Code overlays are now supported. Debugging is available if your memory
manager includes the debug labels _ov_start and _ov_end, as for normal
simulation.

PGO

The compiler’s Profile-Guided Optimization is supported by compiled
simulation to provide a faster simulation speed.

Linear Profiling

Larger programs can be now profiled due to the faster simulation speed.
Note that the cycle counts are not fully cycle accurate, they reflect an
instruction count plus core program control stalls.

ADSP-BF535 SPORT

The ADSP-BF535 processor now includes the SPORT peripheral.

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors 3-7

New Features and Enhancements

Assembler for Blackfin Processors
For Blackfin processors, the assembler’s most notable new features and
enhancements are:

• “Feature Macro” on page 3-7

• “VCSE Optimization Directives” on page 3-7

• “Assembler Command-Line Switch” on page 3-8

• “Preprocessor Macros” on page 3-8

• “Preprocessor Command-Line Switches” on page 3-8

• “Include Path Search Algorithm Matches Compiler” on page 3-8

For more information, refer to the VisualDSP++ 3.5 Assembler and
Preprocessor Manual for Blackfin Processors and online Help.

Feature Macro
The new feature macros is -D__ADSPBF561__=1. It is present when running
easmblkfn -proc ADSP-BF561.

VCSE Optimization Directives
The .VCSE_ directives are the optimization directives for VCSE compo-
nents. The .VCSE_METHODCALL_START and .VCSE_METHODCALL_END directives
mark VCSE methods for linker code/data elimination. The linker is pro-
vided with the interface name and actual offset of the corresponding entry
in the method table. The .VCSE_RETURNS directive is used for marking
VCSE constant methods.

Assembler for Blackfin Processors

3-8 VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

Assembler Command-Line Switch
The new assembler command line switch -si-revision version specifies
a silicon revision of the named processor.

Preprocessor Macros
The new preprocessor predefined macro, __LASTSUFFIX__, specifies the
last value of suffix that was used to build preprocessor generated labels.

The new preprocessor feature macro is __ADSPBF561__.

Preprocessor Command-Line Switches
VisualDSP++ 3.5 introduces some new preprocessor command-line
switches:

Include Path Search Algorithm Matches Compiler
In VisualDSP++ 3.5, the include path semantics used by the
linker/assembler preprocessor and the compiler for user and system header
files are the same.

Switch Name Description

-cstring Enables the stringization operator and provides “C compiler”
style preprocessor behavior

–tokenize-dot Treats “.” (dot) as an operator when parsing identifiers

–v[erbose] Displays information about each preprocessing phase

–version Displays version information for preprocessor

-w Removes all preprocessor-generated warnings

-Wnumber Suppresses any report of the specified warning

-warn Prints warning messages (default)

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors 3-9

New Features and Enhancements

The #include <file> (system header file) search order is:

1. include path specified by the -I switch

2. ...\VisualDSP\processor\include folders

The #include “file” (user header file) search order is:

1. local directory —the directory in which the source file resides

2. include path specified by the -I switch

3. ...VisualDSP\processor\include folders

When both -I and -I- appear on the command line, the system search
path (#include < >) is modified in such a manner that search directories
specified with the -I switch that appear before the directory specified with
the -I- switch are ignored.

Assembler for ADSP-218x and ADSP-219x DSPs

3-10 VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

Assembler for ADSP-218x and
ADSP-219x DSPs

For ADSP-218x and ADSP-219x DSPs, the assemblers’ most notable new
features and enhancements are:

• “VCSE Optimization Directives” on page 3-10

• “Assembler Command-Line Switch” on page 3-10

• “Preprocessor Macro” on page 3-11

• “Preprocessor Command-Line Switches” on page 3-11

• “Include Path Search Algorithm Matches Compiler” on page 3-11

For more information, refer to the VisualDSP++ 3.5 Assembler and
Preprocessor Manual for ADSP-218x and ADSP-219x DSPs and online
Help.

VCSE Optimization Directives
The .VCSE_ directives are the optimization directives for VCSE compo-
nents. The .VCSE_METHODCALL_START and .VCSE_METHODCALL_END directives
mark VCSE methods for linker code/data elimination. The linker is pro-
vided with the interface name and actual offset of the corresponding entry
in the method table. The .VCSE_RETURNS directive is used for marking
VCSE constant methods.

Assembler Command-Line Switch
The new assembler command line switch -si-revision version specifies
a silicon revision of the named processor.

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors 3-11

New Features and Enhancements

Preprocessor Macro
The new preprocessor predefined macro __LASTSUFFIX__ specifies the last
value of suffix that was used to build preprocessor generated labels.

Preprocessor Command-Line Switches
The following preprocessor command-line switches have been introduced
in VisualDSP++ 3.5.

Include Path Search Algorithm Matches Compiler
In VisualDSP++ 3.5, the include path semantics used by the
linker/assembler preprocessor and the compiler for user and system header
files are the same.

The #include <file> (system header file) search order is:

1. include path specified by the -I switch

2. ...\VisualDSP\processor\include folders

Switch Name Description

-cstring Enables the stringization operator and provides “C compiler”
style preprocessor behavior

–tokenize-dot Treats “.” (dot) as an operator when parsing identifiers

–v[erbose] Displays information about each preprocessing phase

–version Displays version information for preprocessor

-w Removes all preprocessor-generated warnings

-Wnumber Suppresses any report of the specified warning

-warn Prints warning messages (default)

Assembler for ADSP-218x and ADSP-219x DSPs

3-12 VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

The #include “file” (user header file) search order is:

1. local directory —the directory in which the source file resides

2. include path specified by the -I switch

3. ...VisualDSP\processor\include folders

When both -I and -I- appear on the command line, the system search
path (#include < >) is modified in such a manner that search directories
specified with the -I switch that appear before the directory specified with
the -I- switch are ignored.

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors 3-13

New Features and Enhancements

Compiler and Library for Blackfin
Processors

For Blackfin processors, the most notable new features and enhancements
of the C/C++ compiler are:

• “File Extensions” on page 3-14

• “Compiler Command-Line Switches” on page 3-14

• “Optimization Control” on page 3-16

• “Bank Type Qualifiers” on page 3-17

• “ETSI Support” on page 3-18

• “Video Operation Built-In Functions” on page 3-18

• “Pragmas” on page 3-19

• “GCC Compatibility Extensions” on page 3-21

• “Caching and Memory Protection” on page 3-22

• “Predefined Compiler Macros” on page 3-23

• “Data Storage Formats” on page 3-24

• “C/C++ Libraries and Startup Files” on page 3-24

• “DSP Run-Time Library” on page 3-26

For detailed information on these features, refer to the VisualDSP++ 3.5
C/C++ Compiler and Library Manual for Blackfin Processors and online
Help.

Compiler and Library for Blackfin Processors

3-14 VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

File Extensions
The compiler supports new file extensions.

Compiler Command-Line Switches
This section summarizes C/C++ compiler command-line switches intro-
duced or enhanced in VisualDSP++ 3.5. Table 3-1 through Table 3-3 list
and briefly describe each switch:

• Table 3-1, “C or C++ Mode Selection Switches” on page 3-14

• Table 3-2, “C/C++ Compiler Common Switches” on page 3-15

• Table 3-3, “C++ Mode Compiler Switches” on page 3-16.

File Extension Description

.cc C++ source code

.idl Interface definition language files for VCSE

.pgo Execution profile generated by Profile-Guided Optimization

.pch Precompiled header file

.xml Processor memory map file output

Table 3-1. C or C++ Mode Selection Switches

Switch Name Description

-c89 Supports programs that conform to the ISO/IEC 9899:1990
standard

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors 3-15

New Features and Enhancements

Table 3-2. C/C++ Compiler Common Switches

Switch Name Description

-default-link-
age-<asm|C|C++>

Sets the default linkage type.

-ED Preprocesses and sends all output to a file.

-flags-meminit Passes each comma-separated option to the Memory Initializer
utility.

-force-circbuf Treats array references of the form array[i%n] as circular buffer
operations.

-force-link Forces stack frame creation for leaf functions.
Always creates a new stack frame for leaf functions (defaults to
ON with -g option set, enforced for the -p option).

-I- Specifies the point in the include directory list where the search
for header files enclosed in angle brackets should begin.

-i Outputs only header details or makefile dependencies for
include files specified in double quotes.

-MD Generates make rule, compiles, and prints to a file.

-Mo filename Writes dependency information to filename. This switch is used
in conjunction with the -ED or -MD options.

-no-circbuf Disables the automatic generation of circular buffering code.

-no-force-link Does not create a new stack frame for leaf functions, if one can be
omitted. Overrides the default for -g.

-Oa Enables automatic function inlining.

-path-tool Enhanced. Uses the specified directory as the location of the
build tool.

-pch Enables automatic generation and use of precompiled header
files.

-pch directory Specifies an alternative directory to PCHRepository in which to
store precompiled header files.

-pguide Add instrumentation for the gathering of a profile as the first
stage of performing profile-guided optimization.

-signed-bitfield Makes the default type for int bitfields signed.

Compiler and Library for Blackfin Processors

3-16 VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

Optimization Control
The following list identifies several new optimization levels. Refer to
Chapter 2, Achieving Optimal Performance from C/C++ Source Code, of the
compiler manual for detailed information on how to obtain maximal code
performance from the compiler.

-si-revision version Specifies a silicon revision of the specified processor. The default
setting is the latest silicon revision.

-sysdefs Instructs the driver to define preprocessor macros that describe
the current user and machine.

-unsigned-bitfield Makes the default type for plain int bitfields unsigned.

-val-global name-list Adds global names.

-workaround workaround Enables code generator workaround for specific hardware errata.

Table 3-3. C++ Mode Compiler Switches

Switch Name Description

-anach Supports some language features (anachronisms) that are prohib-
ited by the C++ standard but still in common use.

-eh Enables exception handling.

-no-anach Disallows the use of anachronisms that are prohibited by the
C++ standard.

-no-eh Disables exception-handling.

-no-rtti Disables run-time type information.

-rtti Enables run-time type information.

Table 3-2. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors 3-17

New Features and Enhancements

The new and enhanced optimization features are:

• Profile-Guided Optimizations
The compiler performs advanced aggressive optimizations using
profiler statistics generated from running the application using rep-
resentative training data. PGO can be used in conjunction with
interprocedural optimizations (IPA) and automatic inlining. The
PGO operation is handled via a new PGO submenu added to the
top-level Tools menu: Tools -> PGO -> Manage Data Sets.

• Automatic Inlining
The compiler automatically inlines C/C++ functions which are not
necessarily declared as inline in the source code. The compiler
determines when the inlining will reduce execution time. How
aggressively the compiler performs automatic inlining is controlled
by the -Ov switch. Automatic inlining is enabled using the -Oa
switch and additionally enables Procedural Optimizations (-O).

• C++ Standard Exceptions Support
When in C++ mode, the compiler supports run-time type
information (RTTI) and exception handling as defined by the
ISO/IEC 14882:1998 standard and modified by Technical
Corrigendum 1. Exceptions are enabled using the -eh switch, and
the RTTI is enabled using the -rtti switch.

• 64-bit Integer Support
The C/C++ compiler fully supports 64-bit integer types: long long
and unsigned long long.

Bank Type Qualifiers
The new bank("string") keyword can be used in data declarations to
indicate that the data resides in a particular memory bank.

Compiler and Library for Blackfin Processors

3-18 VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

ETSI Support
VisualDSP++ 3.5 for Blackfin processors provides European
Telecommunications Standards Institute (ETSI) support routines in
libetsi*.dlb. The library contains routines for manipulating the fract16
and fract32 data types. The routines provide bit-accurate calculations for
common operations and conversions between fract16 and fract32 data.
To use the ETSI routines, the header file libetsi.h must be included,
and all source code must be compiled with the ETSI_SOURCE macro
defined.

The “ETSI Support” section of the VisualDSP++ 3.5 C/C++ Compiler
Manual for Blackfin Processors provides descriptions of all 16- and 32-bit
fractional ETSI routines.

Video Operation Built-In Functions
The VisualDSP++ 3.5 C/C++ compiler provides new built-in functions
for the Blackfin processor’s video pixel operations. You should include the
video.h header file before using the builtins. For further information
regarding the underlying Blackfin processor instructions that implement
the video operations, refer to the Blackfin DSP Instruction Set Reference.

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors 3-19

New Features and Enhancements

Pragmas
The VisualDSP++ 3.5 C/C++ compiler supports a number of new prag-
mas. Pragmas are implementation-specific directives that modify the
compiler’s behavior. The new and enhanced pragmas are described briefly
in Table 3-4.

Table 3-4. ADSP-BF53x Compiler Pragmas

Pragma Function

#pragma all_aligned Asserts that all pointers are initially aligned on the most
desirable boundary; applies to the subsequent loop.

#pragma no_vectorization Turns off all vectorization for the loop on which it is
specified.

#pragma different_banks Allows the compiler to assume that groups of memory
accesses based on different pointers within a loop reside in
different memory banks.

#pragma loop_count(min, max,
modulo)

Asserts that the loop will iterate at least min times, no
more than max times, and a multiple of modulo times.
This information enables the optimizer to omit loop
guards, to decide whether the loop is worth completely
unrolling, and whether code need be generated for odd
iterations.

#pragma
optimize_as_cmd_line

Resets the optimization settings to be those specified on
the ccblkfn command line when the compiler was
invoked.

#pragma alloc Tells the compiler that the function behaves like the
library function “malloc”, returning a pointer to a newly
allocated object. An important property of these functions
is that the pointer returned by the function does not point
at any other object in the context of the call.

Compiler and Library for Blackfin Processors

3-20 VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

#pragma pure Tells the compiler that the function does not write to any
global variables, and does not read or write any volatile
variables.

#pragma const This is a more restrictive form of the pure pragma. It tells
the compiler that the function does not read from global
variables as well as not writing to them or reading or
writing volatile variables. The result of the function is
therefore a function of its parameters.

#pragma regs_clobbered
string

Used with a function declaration or definition to specify
which registers are modified (or clobbered) by that
function.

#pragma result_alignment (n) Asserts that the pointer or integer returned by the
function has a value that is a multiple of n.

#pragma instantiate instance Requests the compiler to instantiate instance in the
current compilation.

#pragma do_not_instantiate
instance

Directs the compiler not to instantiate instance in the
current compilation.

#pragma can_instantiate
instance

Tells the compiler that if instance is required anywhere in
the program, it should be instantiated in this compilation
and has the same effect as #pragma instantiate.

#pragma hdrstop Used in conjunction with the -pch (precompiled header)
switch. The switch tells the compiler to look for a
precompiled header (.pch file) and, if it cannot find one,
to generate a file for use on a later compilation.

#pragma no_pch Overrides the -pch (precompiled headers) switch for a
particular source file. It directs the compiler not to look
for a .pch file and not to generate one for the specified
source file.

Table 3-4. ADSP-BF53x Compiler Pragmas (Cont’d)

Pragma Function

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors 3-21

New Features and Enhancements

GCC Compatibility Extensions
The compiler provides compatibility with the C dialect accepted by ver-
sion 3.2 of the GNU C Compiler. Many of these extensions are available
in the C99 ANSI Standard. A brief description of each extension is
included in the compiler manual (see Chapter 1). The following topics are
described:

• Statement expressions

• Type reference support keyword (Typeof)

• GCC generalized Lvalues

• Hexadecimal floating-point numbers

• Arithmetic on pointers to void and pointers to functions

• Cast to union

• Ranges in case labels

• Declarations mixed with code

• Conditional expressions with missing operands

• Zero length arrays

• Variable argument macros

#pragma once Appears at the beginning of a header file and tells the
compiler that the header is written in such a way that
including it several times has the same effect as including
it once.

#pragma system_header Appears in a header file and identifies the file as one that
is supplied with VisualDSP++.

Table 3-4. ADSP-BF53x Compiler Pragmas (Cont’d)

Pragma Function

Compiler and Library for Blackfin Processors

3-22 VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

• Line breaks in string literals

• Escape character constant

• Alignment inquiry keyword (__alignof__)

• Keyword for specifying names in generated assembler (asm)

• Function, variable and type attribute keyword (__attribute__)

Caching and Memory Protection
Blackfin processors support caching of external memory or L2 SRAM into
L1 SRAM, for both Instruction and Data memory. The cache configura-
tion is defined through the memory protection hardware, using tables that
define Cache Protection Lookaside Buffers (CPLBs).

The new and/or enhanced features are:

• Code and Data CPLBs can be enabled independently through new
bits in the __cplb_ctrl control variable.

• Write Back cache mode is now supported in addition to Write
Through cache mode.

• There is a complete CPLB table specific to each Blackfin processor
in the appropriate cplbtabx.doj.

• The routine for handling CPLB exceptions now calls stub functions
when some error condition is detected. These stubs can be replaced
to provide application-specific error handling.

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors 3-23

New Features and Enhancements

Predefined Compiler Macros
The new predefined compiler macros are:

• The __ADSPLPBLACKFIN__ macro is defined as 1 when the target
processor (set with the -proc switch) is one of ADSP-BF531,
ADSP-BF532, ADSP-BF533, or ADSP-BF561 processors.

• The __ADSPBF561__ macro is defined as 1 when building for the
ADSP-BF561 processor target with -proc ADSP-BF561.

• The __DOUBLES_ARE_FLOATS__ macro is always defined as 1. This
macro indicates that the double type is supported as a
single-precision type, the same as type float.

• The __EXCEPTIONS macro is defined as 1 when C++ exception
handling is enabled (using the -eh switch).

• The __LANGUAGE_C macro is always defined as 1. This macro is
present when used for C compiler calls to specify headers.

• The __RTTI macro is defined as 1 when C++ run-time type
information is enabled (using the -rtti switch).

• The __SIGNED_CHARS__ macro is defined as 1, unless you compile
with the -unsigned-char command-line switch.

Compiler and Library for Blackfin Processors

3-24 VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

Data Storage Formats
The new data types and data formats used by Blackfin processors are.

Refer to “Using Data Storage Formats” in Chapter 1 of the compiler
manual for more information.

C/C++ Libraries and Startup Files
The new C/C++ run-time libraries and startup files are:

! All startup files and run-time libraries are located in Blackfin\lib
subdirectory of your VisualDSP++ installation directory.

Table 3-5. New Data Storage Formats and Data Type Sizes

Type Bit Size Number Representation sizeof returns

long long 64 bits signed 64-bit two’s complement 8

unsigned long
long

64 bits unsigned 64-bit unsigned magnitude 8

Library\Startup File Description

cplbtab*.doj Memory protection and caching attributes for each Blackfin memory
map. Default cache configuration table.

idle*.doj Normal “termination” code that enters IDLE loop after “end” of the
application.

__initsbsz*.doj Memory initializer support files.

libx*.dlb C++ exception handling support library.

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors 3-25

New Features and Enhancements

The new and updated filename suffixes (*) are.

C Library Functions

The C run-time library has been extended with the addition of some new
functions and enhanced functionality.

The formatted input/output functions defined in stdio.h (i.e. printf,
scanf, fprintf, ...) now support the %a conversion specifier. The %a
specifier is similar both in form and meaning to the %e specifier, with the
exception that the %e specifier is used to input and output decimal
floating-point numbers, while the %a specifier is used to input and output
hexadecimal floating-point numbers.

Additional functions defined in the stdio.h header file are supported in
the VisualDSP++ 3.5 release. These functions are:
fgetpos, fseek, fsetpos, ftell, remove, rename, rewind

! The C standard stdio.h functions tmpfile and tmpnam are not sup-
ported in this release. The isinf and isnan functions existed in
VisualDSP++ 3.1 but were not documented.

Filename Suffix Description

531 Compiled only for ADSP-BF531 processor

532 Compiled for execution on a ADSP-BF531, ADSP-BF532,
ADSP-BF533, or ADSP-BF561 processor

533 Compiled only for ADSP-BF533 processor

535 Compiled for execution on a ADSP-BF535 or AD6532 processor

561 Compiled only for ADSP-BF561 processor

a Compiled only for ADSP-BF561 Core A processor

b Compiled only for ADSP-BF561 Core B processor

x Compiled with C++ exception handling enabled

Compiler and Library for Blackfin Processors

3-26 VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

The complete list of supported library functions in the stdio.h header file
is as follows.

The atof and strtod functions have been modified to support
hexadecimal floating-point numbers. The function documentation has
been updated to reflect the new functionality.

DSP Run-Time Library
Some new functions have been added to the DSP run-time library. These
functions are identified in the following table.

clearerr fclose feof

ferror fflush fgetc

fgetpos fgets fprintf

fputc fputs fopen

fread freopen fscanf

fseek fsetpos ftell

fwrite getc getchar

gets perror putc

putchar puts printf

remove rename rewind

scanf setbuf setvbuf

sprintf sscanf ungetc

vfprintf vprintf vsprintf

Library Function Description

alog calculates the natural (base e) anti-log of its argument

alog10 calculates the base 10 anti-log of its argument

cartesian transforms a complex number from Cartesian notation to polar
notation

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors 3-27

New Features and Enhancements

! The new functions are fully documented in the compiler manual.

cfftf_fr16 fast N-point radix-4 complex input FFT

twidfftf_fr16 generate FFT twiddle factors for cfftf_fr16

Library Function Description

Compiler and Library for ADSP-219x Processors

3-28 VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

Compiler and Library for ADSP-219x
Processors

For ADSP-219x processors, the most notable new features and
enhancements of the C/C++ compiler are:

• “File Extensions” on page 3-28

• “Compiler Command-Line Switches” on page 3-29

• “Optimization Control” on page 3-31

• “ETSI Support” on page 3-35

• “Pragmas” on page 3-36

• “GCC Compatibility Extensions” on page 3-38

• “Predefined Compiler Macro” on page 3-39

• “File IO Support” on page 3-39

• “C Library Functions” on page 3-40

• “DSP Run-Time Library Functions” on page 3-41

For more information about these features, refer to the VisualDSP++ 3.5
C/C++ Compiler and Library Manual for ADSP-219x DSPs and online
Help.

File Extensions
The compiler supports new file extensions:

File Extension Description

.cc C++ source code

.ipa, .opa IPA files used internally by the .pch header file

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors 3-29

New Features and Enhancements

Compiler Command-Line Switches
This section summarizes C/C++ compiler command-line switches intro-
duced or enhanced in VisualDSP++ 3.5. Table 3-6 through Table 3-8 list
and briefly describe each switch:

• Table 3-6, “C or C++ Mode Selection Switches” on page 3-29

• Table 3-7, “C/C++ Compiler Common Switches” on page 3-29

• Table 3-8, “C++ Mode Compiler Switches” on page 3-31

.pch Precompiled header file

.xml Processor memory map file output

Table 3-6. C or C++ Mode Selection Switches

Switch Name Description

-c89 Supports programs that conform to the ISO/IEC 9899:1990 standard.

Table 3-7. C/C++ Compiler Common Switches

Switch Name Description

-bss Causes the compiler to put global zero-initialized data into a sep-
arate BSS-style section.

-const-read-write Specifies that data accessed via a pointer to const data may be
modified elsewhere.

-ED Preprocesses and sends all output to a file.

-flags-meminit Passes each comma-separated option to the Memory Initializer
utility.

File Extension Description

Compiler and Library for ADSP-219x Processors

3-30 VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

-fp-associative Treats floating-point multiplication and addition as associative.

-i Outputs only header details or makefile dependencies for
include files specified in double quotes.

-ipa Specifies that interprocedural analysis should be performed for
optimization between translation units.

-jump-{pm|dm|same} Specifies where the compiler should place jump tables in mem-
ory.

-MD Generates make rule, compiles, and prints to a file.

-Mo filename Writes dependency information to filename. This switch is
used in conjunction with the -ED or -MD options.

-mem Causes the compiler to invoke the Memory Initializer after link-
ing the executable file.

-no-bss Causes the compiler to group global zero-initialized data into the
same section as global data with non-zero initializers.

-no-circbuf Disables the automatic generation of circular buffering code.

-no-fp-associative Does not treat floating-point multiply and addition as an
associative.

-no-mem Causes the compiler to not invoke the Memory Initializer
after linking; set by default.

-Oa Enables automatic function inlining.

-Ov num Controls speed vs. size optimizations.

-oldasmcall-{csp|8x} Switches the operation of the OldAsmCall linkage specifier
between compatibility call for the ADSP-21csp01 and legacy
ADSP-218x processors (-oldasmcall-csp is default).

Table 3-7. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors 3-31

New Features and Enhancements

Optimization Control
The following list identifies several new optimization levels. Refer to
Chapter 2, Achieving Optimal Performance from C/C++ Source Code, of the
compiler manual for detailed information on how to obtain maximal code
performance from the compiler. The new and enhanced optimization fea-
tures are:

• Automatic Inlining
The compiler automatically inlines C/C++ functions which are not
necessarily declared as inline in the source code. The compiler
determines when the inlining will reduce execution time. How

-path-tool Enhanced. Uses the specified directory as the location of the
specified compilation tool (assembler, compiler, library builder,
linker, or memory initializer).

-signed-bitfield Makes the default type for int bitfields signed.

-si-revision version Specifies a silicon revision of the specified processor. The default
setting is the latest silicon revision.

-unsigned-bitfield Makes the default type for plain int bitfields unsigned.

Table 3-8. C++ Mode Compiler Switches

Switch Name Description

-anach Supports some language features (anachronisms) that are prohib-
ited by the C++ standard but still in common use.

-no-anach Disallows the use of anachronisms that are prohibited by the
C++ standard.

Table 3-7. C/C++ Compiler Common Switches (Cont’d)

Switch Name Description

Compiler and Library for ADSP-219x Processors

3-32 VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

aggressively the compiler performs automatic inlining is controlled
using the -Ov switch. Automatic inlining is enabled using the -Oa
switch and additionally enables procedural optimizations (-O).

• Interprocedural Optimizations
The compiler performs advanced, aggressive optimization over the
whole program, in addition to the per-file optimizations in proce-
dural optimization. IPA is enabled using the -ipa switch and
additionally enables Procedural Optimizations (-O).

Assembly Construct Operands

The second and third arguments to the asm() construct describe the
operands in the assembly language template. To know how to assign
registers to operands, the compiler needs information on operand
constraints. A detailed description of how to convey this information to
the compiler can be found in the compiler manual.

New asm constraints for MAC and SHIFTER long result targets
Two new asm() statement constraints, “M” and “S”, have been added to
allow users to map MAC and SHIFTER outputs to C/C++ long (double-word)
variables. Example usage:

static long f1(int a, int b) {
 long ret;
 asm volatile("%0 = %1 * %2 (SS);"
 :"=M"(ret)
 : "b"(a),"B"(b) :);
 return ret;

}

static long f2(int a, int b) {
 long ret;
 asm volatile("SE=%1; %0 = LSHIFT %2 (lo);"
 :"=S"(ret)
 : "e"(b), "d"(a) : "SE");
 return ret;

}

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors 3-33

New Features and Enhancements

Hard-register support in asm statements
It is now possible to claim registers directly for use as asm() constraints,
instead of requesting a register from a certain class using the constraint
letters. This is done by simply naming the register in the location where
the class letter would previously have been given. For example,

 asm("%0 = %1 + %2;"
 :"=ar"(sum) /* output */
 :"g"(x), "G"(y) /* input */
);

loads x into ALU-X register, y into ALU-Y register, and calculated sum in
register AR.

Expanded list of asm constraints: +symbol, ?symbol, and #symbol
The +symbol operand is both an input and an output. It must appear as
part of the second argument to the asm() construct. The allocated register
is loaded with the C/C++ expression value, the asm() template is executed,
and then the allocated register’s new value is stored back into the C/C++
expression. Therefore, as with pure outputs, the C/C++ expression must
be one that is valid on the left-hand side of an assignment.

The ?symbol operand is temporary. It must appear as part of the third
argument to the asm() construct. A register is allocated as working space
for the duration of the asm() template execution. The register’s initial
value is undefined, and the register’s final value is discarded. The
corresponding C/C++ expression is not loaded into the register but must
be present. This expression is normally specified using a literal zero.

The #symbol operand is an input, but the register’s value is clobbered by
the asm() template execution. The compiler may make no assumptions
about the register’s final value. The operand must appear as part of the
second argument to the asm() construct.

Compiler and Library for ADSP-219x Processors

3-34 VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

Builtins for Non-literal Address Inputs

The o_space_read and io_space_write sysreg.h builtins now support
non-literal address inputs.

The instruction set limits the IO memory load and store instructions to
using literal addresses only. Previously, the compiler-supported builtins,
which used the io_space_read and io_space_write instructions, asserted
or caused an assembler error when non-literal addresses or an out-of-range
literal were used. The VisualDSP++ 3.5 compiler has been enhanced to
call a support subroutine defined in the C run-time library to implement
the unsupported cases by generating the IO access instruction using values
loaded programatically. The support will not be most efficient and
io_space_read and io_space_write address parameters should be passed
as literals when this is possible.

System Control Register Set

New sysreg.h support for non-mapped system registers has been added to
the sysreg enumeration. The register definitions added are CACTL, DBGC-
TRL, DBGSTAT, CNT0, CNT1, CNT2, and CNT3. The new compiler is
incompatible with previous versions of sysreg.h.

Near and Far Type Qualifiers

The ADSP-219x processors can have external memory, which by default,
for reasons of efficiency, be addressable in 16-bits from C/C++ source.
The compiler provides an extension to support access to external memory,
which allows using external memory in C applications without degrading
performance when accessing internal memory. This extension is enabled
using C type qualifiers, “far” and “near”.

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors 3-35

New Features and Enhancements

Circular Buffer Built-in Functions

The C/C++ compiler provides built-in support for the ADSP-219x pro-
cessor’s circular buffer mechanisms. The compiler can automatically
detect situations where circular buffers would be appropriate and generate
code to use the buffers.

Circular buffers may also be specified explicitly using built-in functions.
The builtins are:

• Circular buffer increment of an index (__builtin_circindex())

• Circular buffer increment of a pointer (__builtin_circptr())

ETSI Support
The ETSI support for ADSP-219x processors is a collection of functions
that provide high-performance implementations for operations commonly
required by DSP applications. The operations, provided by the ETSI
library (libetsi.dlb) and built-in functions defined in
ETSI_fract_arith.h, support fractional or fixed-point arithmetic.

The “ETSI Support” section of the VisualDSP++ 3.5 C/C++ Compiler
Manual for Blackfin Processors provides descriptions of all 16- and 32-bit
fractional ETSI routines.

Compiler and Library for ADSP-219x Processors

3-36 VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

Pragmas
The VisualDSP ++ 3.5 C/C++ compiler supports a number of new prag-
mas. Pragmas are implementation-specific directives that modify the
compiler’s behavior. The new and enhanced pragmas are described briefly
in Table 3-9.

Table 3-9. ADSP-219x C/C++ Compiler Pragmas

Pragma Function

#pragma align num May be used before variable and field declarations. It
applies to the variable or field declaration that
immediately follows the pragma. Use of this pragma
causes the compiler to generate the next variable or field
declaration aligned on a boundary specified by num.

#pragma pad (alignopt) May be applied to struct definitions. It applies to struct
definitions that follow, until the default alignment is
restored by omitting alignopt, for example, by
#pragma pad() with empty parentheses.

#pragma vector_for Notifies the optimizer that it is safe to execute two
iterations of the loop in parallel. The pragma does not
force the compiler to vectorize the loop; the optimizer
checks various properties of the loop and does not
vectorize it if it believes it is unsafe.

#pragma loop_count(min, max,
modulo)

Asserts that the loop will iterate at least min times, no
more than max times, and a multiple of modulo times.
This information enables the optimizer to omit loop
guards, to decide whether the loop is worth completely
unrolling, and whether code need be generated for odd
iterations.

#pragma optimize_as_cmd_line Resets the optimization settings to be those specified on
the cc219x command line when the compiler was
invoked.

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors 3-37

New Features and Enhancements

#pragma no_alias Tells the compiler the following has no loads or stores
that conflict due to references to the same location
through different pointers, known as “aliases”.

#pragma alloc Tells the compiler that the function behaves like the
library function “malloc”, returning a pointer to a newly
allocated object. An important property of these
functions is that the pointer returned by the function
does not point at any other object in the context of the
call.

#pragma pure Tells the compiler that the function does not write to any
global variables, and does not read or write any volatile
variables.

#pragma const This is a more restrictive form of the pure pragma. It
tells the compiler that the function does not read from
global variables as well as not writing to them or reading
or writing volatile variables. The result of the function is
therefore a function of its parameters.

#pragma regs_clobbered
string

Used with a function declaration or definition to specify
which registers are modified (or clobbered) by that
function.

#pragma result_alignment (n) Asserts that the pointer or integer returned by the
function has a value that is a multiple of n.

#pragma instantiate instance Requests the compiler to instantiate instance in the
current compilation.

#pragma do_not_instantiate
instance

Directs the compiler not to instantiate instance in the
current compilation.

#pragma can_instantiate
instance

Tells the compiler that if instance is required anywhere in
the program, it should be instantiated in this
compilation, and has the same effect as #pragma
instantiate.

Table 3-9. ADSP-219x C/C++ Compiler Pragmas (Cont’d)

Pragma Function

Compiler and Library for ADSP-219x Processors

3-38 VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

GCC Compatibility Extensions
The compiler provides compatibility with the C dialect accepted by ver-
sion 3.2 of the GNU C Compiler. Many of these extensions are available
in the C99 ANSI Standard. A brief description of the following extensions
is included in the compiler manual (see Chapter 1):

• Statement expressions

• Type reference support keyword (Typeof)

• GCC generalized Lvalues

• Conditional expressions with missing operands

• Hexadecimal floating-point numbers

• Arithmetic on pointers to void and pointers to functions

#pragma hdrstop Used in conjunction with the -pch (precompiled header)
switch. The switch tells the compiler to look for a
precompiled header (.pch file), and, if it cannot find one,
to generate a file for use on a later compilation.

#pragma no_pch Overrides the -pch (precompiled headers) switch for a
particular source file. It directs the compiler not to look
for a .pch file and not to generate one for the specified
source file.

#pragma once Appears at the beginning of a header file and tells the
compiler that the header is written in such a way that
including it several times has the same effect as including
it once.

#pragma system_header Appears in a header file and identifies the file as one that
is supplied with VisualDSP++.

Table 3-9. ADSP-219x C/C++ Compiler Pragmas (Cont’d)

Pragma Function

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors 3-39

New Features and Enhancements

• Cast to union

• Ranges in case labels

• Declarations mixed with code

• Zero-length arrays

• Variable argument macros

• Line breaks in string literals

• Escape character constant

• Alignment inquiry keyword (__alignof__)

• Keyword for specifying names in generated assembler (asm)

• Function, variable and type attribute keyword (__attribute__)

Predefined Compiler Macro
The new macro __VERSION__ defines a string constant, giving the version
number of the compiler used to compile this module.

File IO Support
In earlier VisualDSP++ releases, the implementation of the functions
defined in the header file stdio.h was based on a device driver, known as
primIO, provided by the VisualDSP++ simulator and EZ-KIT Lites. This
device driver, however, only provides access to the host file system.

VisualDSP++ 3.5 permits alternative device drivers to be registered, which
can then be used through the normal stdio functions and, therefore,
enable the routines to interact with a device other than the host file
system. By default, the stdio functions will continue to use the device
driver provided by the VisualDSP++ simulator and EZ-KIT Lites, and
users should not notice any difference in functionality. Full details of the

Compiler and Library for ADSP-219x Processors

3-40 VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

new extensible driver mechanism are available in the C/C++ compiler
manual.

C Library Functions
The C run-time library has been extended with the addition of some new
functions and enhanced functionality.

The formatted input/output functions defined in stdio.h (i.e. printf,
scanf, fprintf, ...) now support the %a conversion specifier. The %a
specifier is similar both in form and meaning to the %e specifier, with the
exception that the %e specifier is used to input and output decimal
floating-point numbers, while the %a specifier is used to input and output
hexadecimal floating-point numbers.

Additional functions defined in the stdio.h header file are supported in
the VisualDSP++ 3.5 release. These functions are:
fgetpos, fseek, fsetpos, ftell, remove, rename, rewind

! The C standard stdio.h functions tmpfile and tmpnam are not sup-
ported in this release. The isinf and isnan functions existed in
VisualDSP++ 3.1 but were not documented.

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors 3-41

New Features and Enhancements

The complete list of supported library functions in the stdio.h header file
is as follows.

The atof, strtod, and strtodf functions have been modified to support
hexadecimal floating-point numbers. The function documentation has
been updated to reflect the new functionality.

DSP Run-Time Library Functions
Some new functions have been added to the DSP run-time library; these
functions are identified as follows.

! The new functions are fully documented in the compiler manual.

clearerr fclose feof

ferror fflush fgetc

fgetpos fgets fprintf

fputc fputs fopen

fread freopen fscanf

fseek fsetpos ftell

fwrite getc getchar

gets perror putc

putchar puts printf

remove rename rewind

scanf setbuf setvbuf

sprintf sscanf ungetc

vfprintf vprintf vsprintf

Library Function Description

alog calculates the natural (base e) anti-log of its argument

alog10 calculates the base 10 anti-log of its argument

cartesian transforms a complex number from Cartesian notation to polar
notation

Compiler and Library for ADSP-218x DSPs

3-42 VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

Compiler and Library for ADSP-218x
DSPs

For ADSP-218x DSPs, the most notable new compiler’s features and
enhancements of the C compiler are in the following areas:

• “Input and Output File Extensions” on page 3-42

• “C Compiler Command-Line Switches” on page 3-43

• “Optimization Control” on page 3-44

• “ETSI Support” on page 3-47

• “Pragmas” on page 3-48

• “GCC Compatibility Extensions” on page 3-50

• “Predefined Compiler Macro” on page 3-50

• “File IO Support” on page 3-51

• “C Library Functions” on page 3-51

For information on these features, refer to the VisualDSP++ 3.5 C
Compiler and Library Manual for ADSP-218x DSPs and online Help.

Input and Output File Extensions
The compiler supports new file extensions.

File Extension Description

.ipa, .opa IPA files used internally by the .pch header file

.pch Precompiled header files

.xml Processor memory map file output

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors 3-43

New Features and Enhancements

C Compiler Command-Line Switches
This section summarizes C/C++ compiler command-line switches intro-
duced or enhanced in VisualDSP++ 3.5. Table 3-10 lists and briefly
describes each switch.

Table 3-10. C Compiler Common Switches

Switch Name Description

-bss Causes the compiler to put global zero-initialized data into a sep-
arate BSS-style section.

-const-read-write Specifies that const data accessed via a pointer may be modified
elsewhere.

-ED Preprocesses and sends all output to a file.

-flags-meminit Passes each comma-separated option to the Memory Initializer
utility.

-fp-associative Treats floating-point multiplication and addition as associative.

-full-version Displays version information for build tools.

-i Outputs only header details or makefile dependencies for
include files specified in double quotes.

-ipa Specifies that interprocedural analysis should be performed for
optimization between translation units.

-jump-{pm|dm|same} Specifies that the compiler should place jump tables in data
memory (-jump-dm), program memory (-jump-pm) or the same
memory section as the function to which it applies
(-jump-same).

-MD Generates make rule, compiles, and prints to a file.

-Mo filename Writes dependency information to filename. This switch is
used in conjunction with the -ED or -MD options.

-mem Causes the compiler to invoke the Memory Initializer after link-
ing the executable file.

-no-bss Causes the compiler to group global zero-initialized data into the
same section as global data with non-zero initializers.

Compiler and Library for ADSP-218x DSPs

3-44 VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

Optimization Control
The following list identifies several new optimization levels. Refer to
Chapter 2, Achieving Optimal Performance from C Source Code, of the
compiler manual for detailed information on how to obtain maximal code
performance from the compiler. The new and enhanced optimization fea-
tures are:

• Automatic Inlining
The compiler automatically inlines C/C++ functions which are not
necessarily declared as inline in the source code. The compiler
determines when the inlining will reduce execution time. How

-no-fp-associative Does not treat floating-point multiply and addition as an
associative.

-no-mem Causes the compiler not to invoke the Memory Initializer
after linking; set by default.

-Oa Enables automatic function inlining.

-Ov num Controls speed vs. size optimizations.

-P Preprocesses, but does not compile, the source file. Omits line
numbers in the preprocessor output.

-PP Similar to -P, but does not halt compilation after preprocessing.

-path-tool Enhanced. Uses the specified directory as the location of the
specified compilation tool.

-signed-bitfield Makes the default type for int bitfields signed.

-si-revision version Specifies a silicon revision of the specified processor. The default
setting is the latest silicon revision.

-unsigned-bitfield Makes the default type for plain int bitfields unsigned.

Table 3-10. C Compiler Common Switches (Cont’d)

Switch Name Description

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors 3-45

New Features and Enhancements

aggressively the compiler performs automatic inlining is controlled
using the -Ov switch. Automatic inlining is enabled using the -Oa
switch and additionally enables procedural optimizations (-O).

• Interprocedural Optimizations
The compiler performs advanced, aggressive optimization over the
whole program, in addition to the per-file optimizations in proce-
dural optimization. IPA is enabled using the -ipa switch and
additionally enables Procedural Optimizations (-O).

Assembly Construct Operands

The second and third arguments to the asm() construct describe the
operands in the assembly language template. To know how to assign
registers to operands, the compiler needs information on operand
constraints. A more detailed description of how to convey this
information to the compiler can be found in the compiler manual.

New asm constraints for MAC and SHIFTER long result targets
Two new asm() statement constraints, “M” and “S”, have been added to
allow users to map MAC and SHIFTER outputs to C/C++ long (double-word)
variables. Example usage:

static long f1(int a, int b) {
 long ret;
 asm volatile("%0 = %1 * %2 (SS);"
 :"=M"(ret)
 : "b"(a),"B"(b) :);
 return ret;

}

static long f2(int a, int b) {
 long ret;
 asm volatile("SE=%1; %0 = LSHIFT %2 (lo);"
 :"=S"(ret)
 : "e"(b), "d"(a) : "SE");
 return ret;

}

Compiler and Library for ADSP-218x DSPs

3-46 VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

Hard-register support in asm statements
It is now possible to claim registers directly for use as asm() constraints,
instead of requesting a register from a certain class using the constraint
letters. This is done by simply naming the register in the location where
the class letter would previously have been given. For example,

 asm("%0 = %1 + %2;"
 :"=ar"(sum) /* output */
 :"g"(x), "G"(y) /* input */
);

loads x into ALU-X register, y into ALU-Y register, and calculated sum in
register AR.

Expanded list of asm constraints: +symbol, ?symbol, and #symbol
The +symbol operand is both an input and an output. It must appear as
part of the second argument to the asm() construct. The allocated register
is loaded with the C/C++ expression value, the asm() template is executed,
and then the allocated register’s new value is stored back into the C/C++
expression. Therefore, as with pure outputs, the C/C++ expression must
be one that is valid on the left-hand side of an assignment.

The ?symbol operand is temporary. It must appear as part of the third
argument to the asm() construct. A register is allocated as working space
for the duration of the asm() template execution. The register’s initial
value is undefined, and the register’s final value is discarded. The
corresponding C/C++ expression is not loaded into the register but must
be present. This expression is normally specified using a literal zero.

The #symbol operand is an input, but the register’s value is clobbered by
the asm() template execution. The compiler may make no assumptions
about the register’s final value. The operand must appear as part of the
second argument to the asm() construct.

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors 3-47

New Features and Enhancements

Builtins for Non-literal Address Inputs

The o_space_read and io_space_write sysreg.h builtins now support
non-literal address inputs.

The instruction set limits the IO memory load and store instructions to
using literal addresses only. Previously, the compiler-supported builtins,
which used the io_space_read and io_space_write instructions, asserted
or caused an assembler error when non-literal addresses or an out-of-range
literal were used. The VisualDSP++ 3.5 compiler has been enhanced to
call a support subroutine defined in the C run-time library to implement
the unsupported cases by generating the IO access instruction using values
loaded programatically. The support will not be most efficient and
io_space_read and io_space_write address parameters should be passed
as literals when this is possible.

ETSI Support
The ETSI support for ADSP-218x processors is a collection of functions
that provides high-performance implementations for operations com-
monly required by DSP applications. These operations, provided by the
ETSI library libetsi.dlb and built-in functions defined in
ETSI_fract_arith.h, support fractional or fixed-point arithmetic.

The ADSP-218x compiler manual provides descriptions of all 16- and
32-bit fractional ETSI routines.

Compiler and Library for ADSP-218x DSPs

3-48 VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

Pragmas
The ADSP-218x C compiler supports a number of new pragmas. Pragmas
are implementation-specific directives that modify the compiler’s behav-
ior. The new and enhanced pragmas are described in Table 3-11.

Table 3-11. ADSP-218x Compiler Pragmas

Pragma Function

#pragma aligned num May be used before variable and field declarations. It applies to
the variable or field declaration that immediately follows the
pragma. Use of this pragma causes the compiler to generate the
next variable or field declaration aligned on a boundary specified
by num.

#pragma pad (alignopt) May be applied to struct definitions. It applies to struct
definitions that follow, until the default alignment is restored by
omitting alignopt, for example, by #pragma pad() with
empty parentheses.

#pragma vector_for Notifies the optimizer that it is safe to execute two iterations of
the loop in parallel. The pragma does not force the compiler to
vectorize the loop; the optimizer checks various properties of the
loop and does not vectorize it if it believes it is unsafe.

#pragma
loop_count(min, max,
modulo)

Asserts that the loop will iterate at least min times, no more than
max times, and a multiple of modulo times. This information
enables the optimizer to omit loop guards, to decide whether the
loop is worth completely unrolling, and whether code need be
generated for odd iterations.

#pragma
optimize_as_cmd_line

Resets the optimization settings to be those specified on the
cc218x compiler’s command line when the compiler was
invoked.

#pragma no_alias Tells the compiler the following has no loads or stores that
conflict due to references to the same location through different
pointers, known as “aliases”.

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors 3-49

New Features and Enhancements

#pragma alloc Tells the compiler that the function behaves like the library
function “malloc”, returning a pointer to a newly allocated
object. An important property of these functions is that the
pointer returned by the function does not point at any other
object in the context of the call.

#pragma pure Tells the compiler that the function does not write to any global
variables and does not read or write any volatile variables.

#pragma const This is a more restrictive form of the pure pragma. It tells the
compiler that the function does not read from global variables as
well as not writing to them or reading or writing volatile
variables. The result of the function is therefore a function of its
parameters.

#pragma regs_clobbered
string

Used with a function declaration or definition to specify which
registers are modified (or clobbered) by that function.

#pragma
result_alignment (n)

Asserts that the pointer or integer returned by the function has a
value that is a multiple of n.

#pragma hdrstop Used in conjunction with the -pch (precompiled header) switch.
The switch tells the compiler to look for a precompiled header
(.pch file) and, if it cannot find one, to generate a file for use on
a later compilation.

#pragma no_pch Overrides the -pch (precompiled headers) switch for a particular
source file. It directs the compiler not to look for a .pch file and
to not generate one for the specified source file.

#pragma once Appears at the beginning of a header file and tells the compiler
that the header is written in such a way that including it several
times has the same effect as including it once.

#pragma system_header Appears in a header file and identifies the file as one that is
supplied with VisualDSP++.

Table 3-11. ADSP-218x Compiler Pragmas (Cont’d)

Pragma Function

Compiler and Library for ADSP-218x DSPs

3-50 VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

GCC Compatibility Extensions
The compiler provides compatibility with the C dialect accepted by ver-
sion 3.2 of the GNU C Compiler. Many of these extensions are available
in the C99 ANSI Standard. A brief description of each extension is
included in the compiler manual (see Chapter 1). The following topics are
covered in the manual.

• Statement expressions

• Type reference support keyword (Typeof)

• GCC generalized Lvalues

• Conditional expressions with missing operands

• Hexadecimal floating-point numbers

• Arithmetic on pointers to void and pointers to functions

• Cast to union

• Ranges in case labels

• Zero length arrays

• Variable argument macros

• Line breaks in string literals

• Escape character constant

• Alignment inquiry keyword (__alignof__)

• Keyword for specifying names in generated assembler (asm)

• Function, variable and type attribute keyword (__attribute__)

Predefined Compiler Macro
The new macro __VERSION__ defines a string constant, giving the version
number of the compiler used to compile this module.

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors 3-51

New Features and Enhancements

File IO Support
In earlier VisualDSP++ releases, the implementation of the functions
defined in the header file stdio.h was based on a device driver, known as
primIO, provided by the VisualDSP++ simulator and EZ-KIT Lites. This
device driver, however, only provides access to the host file system.

VisualDSP++ 3.5 permits alternative device drivers to be registered, which
can then be used through the normal stdio functions and, therefore,
enable the routines to interact with a device other than the host file
system. By default, the stdio functions will continue to use the device
driver provided by the VisualDSP++ simulator and EZ-KIT Lites, and
users should not notice any difference in functionality. Full details of the
new extensible driver mechanism are available in the C/C++ compiler
manual.

C Library Functions
The C run-time library has been extended with the addition of some new
functions and enhanced functionality.

The formatted input/output functions defined in stdio.h (i.e. printf,
scanf, fprintf, ...) now support the %a conversion specifier. The %a
specifier is similar both in form and meaning to the %e specifier, with the
exception that the %e specifier is used to input and output decimal
floating-point numbers, while the %a specifier is used to input and output
hexadecimal floating-point numbers.

Additional functions defined in the stdio.h header file are supported in
the VisualDSP++ 3.5 release. These functions are:
fgetpos, fseek, fsetpos, ftell, remove, rename, rewind

! The C standard stdio.h functions tmpfile and tmpnam are not sup-
ported in this release. The isinf and isnan functions existed in
VisualDSP++ 3.1 but were not documented.

Compiler and Library for ADSP-218x DSPs

3-52 VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

The complete list of supported library functions in the stdio.h header file
is as follows.

The functions atof, strtod, and strtodf have been enhanced to support
hexadecimal floating-point numbers. The description of these functions in
the manual has been updated to reflect this new functionality.

clearerr fclose feof

ferror fflush fgetc

fgetpos fgets fprintf

fputc fputs fopen

fread freopen fscanf

fseek fsetpos ftell

fwrite getc getchar

gets perror putc

putchar puts printf

remove rename rewind

scanf setbuf setvbuf

sprintf sscanf ungetc

vfprintf vprintf vsprintf

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors 3-53

New Features and Enhancements

Linker and Utilities
The VisualDSP++ 3.5 linker and utility programs are upgraded to operate
more efficiently on 16-bit fixed-point Blackfin and ADSP-21xx
processors.

For the linker and utilities, the most notable new features and enhance-
ments are:

• “Modified Link Page in Project Options Dialog Box” on page 3-53

• “Migrating LDFs from Previous Installations” on page 3-55

• “Linker Command-Line Switches” on page 3-56

• “Updated List of LDF Keywords” on page 3-57

• “Modifications to LDF Commands” on page 3-58

• “Breakpoints on Overlays” on page 3-60

• “Expert Linker” on page 3-61

• “Memory Map File (.XML)” on page 3-62

• “Archiver” on page 3-63

For more information, refer to the VisualDSP++ 3.5 Linker and Utilities
Manual for 16-Bit Processors and online Help.

Modified Link Page in Project Options Dialog Box
Within VisualDSP++, the Link page of the Project Options dialog box is
modified to have more flexibility in specifying tool settings for project
builds. Choosing a Category from the pull-down list at the top of the
Link page presents several different pages of options.

Linker and Utilities

3-54 VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

There are four sub-pages you can access—General, LDF Preprocessing,
Elimination, and Processor. Almost every setting option has a corre-
sponding compiler command-line switch. For more information, refer to
the VisualDSP++ 3.5 Linker and Utilities Manual for 16-Bit Processors and
online Help.

Figure 3-1. Main Link Tab with Category Selections

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors 3-55

New Features and Enhancements

Migrating LDFs from Previous Installations
Migrating LDFs from previous VisualDSP++ installations includes linking
CPLB configuration tables directly, adding guard symbols, and supporting
run-time initialization.

For example, an .LDF file of VisualDSP++ 3.1 has the following code to
support the run-time initialization.

 bsz
 {
 INPUT_SECTION_ALIGN(4)
 INPUT_SECTIONS($OBJECTS(bsz) $LIBRARIES(bsz))
 } >MEM_DATA

 bsz_init
 {
 INPUT_SECTION_ALIGN(4)
 INPUT_SECTIONS($OBJECTS(bsz_init) $LIBRARIES(bsz_init))
 } >MEM_DATA2

In VisualDSP++ 3.5, this needs to be replaced by the following.

 bsz ZERO_INIT
 {
 INPUT_SECTION_ALIGN(4)
 INPUT_SECTIONS($OBJECTS(bsz) $LIBRARIES(bsz))
 } >MEM_L1_DATA_A

 bsz_init
 {
 INPUT_SECTION_ALIGN(4)
 INPUT_SECTIONS($OBJECTS(bsz_init) $LIBRARIES(bsz_init))
 } >MEM_L1_DATA_A
 .meminit {} >MEM_L1_DATA_A

Linker and Utilities

3-56 VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

The key points to note are:

• The output section “bsz” now has the ZERO_INIT flag specified.

• The special output section named “.meminit” is included.

• The size reduction, which was used only when the -mem-bsz switch
was set, is now always done.

• The initialization of a section flagged with ZERO_INIT is done by the
appropriate utility (the IDDE, loader, etc.) instead of at run-time.

Refer to “SECTIONS{} LDF Command” on page 3-59 for more detail on
the changed and new functionality for ZERO_INIT and RUNTIME_INIT.

Linker Command-Line Switches
Table 3-12 lists the new or modified linker command-line switches.

Table 3-12. New Linker Command-Line Switches

Switch Description

-DprocessorID Modified syntax and description. Specifies the target processor ID.
The use of the -proc processor switch is recommended.

-Ovcse Enables VCSE method call optimization.

-Wwarn number Demotes the specified error message to a warning.

-flags-meminit Passes each comma-separated option to the Memory Initializer
utility.

-flags-pp Passes each comma-separated option to the preprocessor.

-ip Modified syntax and description.
Fills fragmented memory with individual data objects that fit and
requires that objects have been assembled with the assembler’s -ip
switch.
Note: ADSP-21xx DSPs only.

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors 3-57

New Features and Enhancements

Jump/Call Expansions
The mechanism, which converts out-of-range short calls and jumps to the
longer or indirect form on Blackfin and ADSP-219x processors has been
modified for VisualDSP++ 3.5.

Refer to the Linker manual for more information about jump and call
expansions. Refer to the ADSP-BF53x Instruction Set Reference for more
information about jump and call instructions.

Updated List of LDF Keywords
Table 3-13 lists .LDF file keywords that apply to all 16-bit processors
(Blackfin, ADSP-218x, and ADSP-219x).

-jcs21 Modified syntax and description.
Converts out-of-range short calls and jumps to the longer form.
Note: Blackfin processors and ADSP-219x DSPs only.

-jcs21+ Modified syntax and description.
Enables -jcs21 and allows the linker to convert out-of-range
branches to indirect calls and jumps sequences
Note: Blackfin processors only.

-meminit Directs the linker to post-process the .DXE file through the Mem-
ory Initializer utility. This will cause the sections specified in the
.LDF file to be “run-time” initialized by the C run-time library. By
default, if this flag is not specified, all sections are initialized at
“load” time (for example, via the VisualDSP++ IDDE or the boot
loader).

-si-revision version Specifies a silicon revision of the specified processor.

-v|-verbose Verbose—outputs status information.

Table 3-12. New Linker Command-Line Switches (Cont’d)

Switch Description

Linker and Utilities

3-58 VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

Modifications to LDF Commands
Some LDF commands are enhanced to support better linking and
memory management in VisualDSP++ 3.5.

Table 3-13. LDF File Keywords Summary

ABSOLUTE ADDR ALGORITHM

ALIGN ALL_FIT ARCHITECTURE

BEST_FIT BM1 BOOT

DEFINED DM2 ELIMINATE

ELIMINATE_SECTIONS END FALSE

FILL FIRST_FIT INCLUDE

INPUT_SECTION_ALIGN INPUT_SECTIONS KEEP

LENGTH LINK_AGAINST MAP

MEMORY MEMORY_SIZEOF MPMEMORY

NUMBER_OF_OVERLAYS OUTPUT OVERLAY_GROUP

OVERLAY_ID OVERLAY_INPUT OVERLAY_OUTPUT

PACKING PAGE_INPUT2 PAGE_OUTPUT2

PLIT PLIT_SYMBOL_ADDRESS

PLIT_SYMBOL_OVERLAYID PM2 PROCESSOR

RAM RESOLVE RESOLVE_LOCALLY

ROM SEARCH_DIR SECTIONS

SHARED_MEMORY SHT_NOBITS SIZE

SIZEOF START TYPE

VERBOSE WIDTH XREF

1 Supported on ADSP-218x DSPs only.
2 These keywords apply only to ADSP-218x/9x LDFs.

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors 3-59

New Features and Enhancements

SECTIONS{} LDF Command

The SECTIONS{} command uses memory segments (defined by MEMORY{}
commands) to specify the placement of output sections in memory.

The section_declaration of the SECTIONS{} command is enhanced to use
a special section name .MEMINIT that indicates where to place the
“run-time” initialization structures to be used by the C run-time library.
The linker will “place” this section into the largest available unused
memory at the specified memory segment. The Memory Initializer
post-processor will fill this space with the data needed by the C run-time
library for run-time initialization. The .MEMINIT section should be placed
in non-overlay memory.

The init_qualifier specifies run-time initialization type (optional). The
qualifiers are:

• NO_INIT – The section type contains un-initialized data. There is no
data stored in the .DXE file for this section (equivalent to the
SHT_NOBITS legacy qualifier).

• ZERO_INIT – The section type contains only “zero-initialized” data.
If invoked with the -meminit switch, the “zeroing” of the section is
done at runtime by the C run-time library. If -meminit is not
specified, the “zeroing” is done at “load” time.

• RUNTIME_INIT – If the linker is invoked with the -meminit switch,
this section will be filled at runtime. If -meminit is not specified,
the section will be filled at “load” time.

Refer to the VisualDSP++ 3.5 Linker and Utilities Manual for 16-Bit
Processors for more information.

OVERLAY_GROUP{} Command

The OVERLAY_GROUP{} LDF command is deprecated and is not
recommended for use. Though in VisualDSP++ 3.5, the OVERLAY_GROUP{}

Linker and Utilities

3-60 VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

can still be used to group overlays, it is recommend that you revise any
LDF files which include the command. The linker of the current release
processes all overlay groups and explicit OVERLAY_GROUP{} commands,
producing a warning. The preferable way to manage overlays is to create a
separate output section for each overlay group.

Breakpoints on Overlays
You may require an overlay manager to perform other specialized tasks to
satisfy the special needs of a given application. Overlay managers for
Blackfin processors must be developed by the user.

One overlay enhancement is how the overlay manager handles breakpoints
on overlays. The debugger relies on the presence of the __ov_start
and__ov_end symbols to support breakpoints on overlays.The symbol
manager will set a silent breakpoint at each symbol.

The more important of the two symbols is the breakpoint at _ov_end.
Code execution in the overlay manager should pass through this location
once an overlay has been fully swapped in. At this point, the debugger
may probe the target to determine which overlays are in context. The sym-
bol manager will now set any breakpoints requested on the overlays and
resume execution.

The second breakpoint is at _ov_start. The label _ov_start should be
defined in the overlay manager, in code always executed immediately
before the transfer of a new overlay begins. The breakpoint disables all of
the overlays in the debugger—while the target is running in the overlay
manager, the target is “unstable” in the sense that the debugger should not
rely on the overlay information it may gather since the target is “in flux”.
The debugger will still function without this breakpoint, but there may be
some inconsistencies while overlays are being moved in and out.

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors 3-61

New Features and Enhancements

Expert Linker
The Expert Linker provides a GUI-based means of supplying the link
commands currently supplied to the linker in a Linker Description File
(.LDF). The tool also provides graphical and hypertext representations of
text output for cross-reference, the linker map, and ELFDUMP. For more
information on the Expert Linker, refer to the corresponding chapter of
the VisualDSP++ 3.5 Linker and Utilities Manual for 16-Bit Processors and
online Help.

Menu Updates

The VisualDSP++ 3.5 Expert Linker GUI and context menus are
enhanced to better process graphical data. The most significant menu
changes are as follows.

In the Input Sections context menu, new selections are:

• Remove – Removes an LDF macro from another LDF macro but
does not delete the input section mappings that contain the
removed macro. The difference between Delete and Remove is that
Delete deletes the input section macros that contain the deleted
macro. The Remove option becomes available only if you
right-click on an LDF macro that is part of another LDF macro.

• Expand All LDF Macros – Expands all the LDF macros in the
input sections pane to display the contents of all the LDF macros.

In the Memory Map context menu, a new selection is:

• Expand All – Expands all items in the memory map tree so that their
contents are visible.

Linker and Utilities

3-62 VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

Profiling Object Sections

The Expert Linker is enhanced to give you the option of profiling object
sections. If this feature is enabled, the Expert Linker uses the profiler to
collect profiling information while your program is running. When the
program halts, the Expert Linker graphically displays how much time was
spent in each object section so that you can see “hotspots” in the code and
move that code to faster internal memory.

To profile a program with the Expert Linker:

7. Enable profiling in the Global Properties dialog box.

8. Load the program into the current project. After the program is loaded,
the Expert Linker sets up the profiling bins to collect the profiling
information.

9. Run the program. When the program halts, the Expert Linker will
color each object section with a different shade of red to indicate how
much time was spent executing that section.

From the Expert Linker, you can view PC sample counts for object sec-
tions. To view an actual PC sample count, move the mouse pointer over
an object section and view the PC sample count. To view sample counts
for functions located within an object section, double-click on the object
section. You can view detailed profile information, such as the sample
counts, for each line in the function.

Memory Map File (.XML)
The linker can output memory map files that contain memory and symbol
information for your executable file(s). The map contains a summary of
memory defined with MEMORY{} commands in the .LDF file and provides a
list of the absolute addresses of all symbols. For VisualDSP++ 3.5, the file
format has been changed from plain text to XML, and the extension has
been changed from .MAP to .XML.

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors 3-63

New Features and Enhancements

Archiver
For the VisualDSP++ 3.5 release, the archiver (elfar) provides several
improvements. For more information about the archiver, refer to
“Archiver” chapter in the VisualDSP++ 3.5 Linker and Utilities Manual for
16-Bit Processors.

Archiver Switches

Table 3-14 summarizes new archiver command-line switches.

Table 3-14. New Archiver Command-Line Switches

Item Description

-anv Appends one or more object files and clears version information

-dnv Removes the listed object file(s) from the specified library file and clears
version information

-pv Prints only version information in library to standard output

-pva Prints all version information in library to standard output

-t verno Tags the library with version information in string

-tx filename Tags the library with version information in the file

-twc ver Tags the library with version information in the num.num.num form

-tnv Clears version information from a library

-version Prints the archiver (elfar) version to standard output

-w Removes all archiver-generated warnings

-Wnnnn Selectively disables warnings specified by one or more message numbers. For
example, -W0023 disables warning message ar0023.

Linker and Utilities

3-64 VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

Warnings for Duplicate Library Entries

The archiver will warn if two objects with the same name are put into a
library. In VisualDSP++ 3.5, the archiver produces the warning:

[Warning ea0079] An object file named "<fname>" already exists in
this library

Improved Support for File Specifications

In VisualDSP++ 3.5, the archiver accepts command lines with wildcard
specification of the files for inclusion:

elfar -c mylib.dlb *.doj

The archiver now accepts UNC filename specification:

elfar -r fruit.dlb \\c\tests\strawberry.doj

or

elfar -r fruit.dlb //c/tests/strawberry.doj

Tagging an Archive with Version Information

The archiver supports embedding version information into a library built
with elfar. The following is a list of version information tagging features
provided by the archiver.

Basic Version Information

You can “tag” an archive with a version. The easiest way to tag an archive
is using the -t switch. The –t switch can be used in addition to any other
elfar switch. To highlight the version information, precede it with “::”.

User-Defined Version Information

Any number of user-defined version values can be provided by supplying a
text with those values. Each line in the text file begins with a name, fol-
lowed by a space, and then the value associated with that name.

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors 3-65

New Features and Enhancements

Printing Version Information

Use the –p switch to print version information. The –pv switch prints only
version information and does not print the contents of the archive. The –
pva switch prints all version information. Version names without values
are not be printed with –p or –pv but are shown with –pva.

Removing Version Information from an Archive

Adding “nv” to a switch strips version information. In addition, a special
form of the –t switch, which takes no argument, can be used for stripping
version information from an archive.

Checking Version Number

The –twc switch causes the archiver to raise a warning if the version num-
ber is not provided. The check ensures that the version number starts with
a number in that format.

Adding Text to Version Information

You can add additional text to the end of the version information.

Loaders

3-66 VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

Loaders
The loader program (elfloader.exe) for Blackfin and ADSP-219x
processors has been modified as follows.

Blackfin Loader Features
The Blackfin loader modifications are:

• The loader has been updated to support ADSP-BF561 processors.
Refer to the VisualDSP++ 3.5 Loader Manual for 16-Bit Processors
for details.

• The -si-revision switch has been added to provide a silicon
revision number to the loader.

• The -init filename switch has been added to provide an
initialization file name to the loader. This switch is for
ADSP-BF531/BF532/BF533 and ADSP-BF561 processors only.

• The -GHK # switch has been added to provide a 4-bit global header
cookie value. This switch is for the processors which have a global
header with their loader files.

• The SPI boot mode now supports Intel HEX format.

ADSP-219x Loader Features
In VisualDSP++ 3.5, the ADSP-219x loader supports multiple .DXE
booting in parallel EPROM boot mode. New switches, such as -pd addr
inputfile, allow you to append another application program at the
specified address.

For details, see the VisualDSP++ 3.5 Loader Manual for 16-Bit Processors.

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors 3-67

New Features and Enhancements

VCSE
VCSE is a combination of tools and guidelines that simplify the process of
developing reusable components and help to document and validate such
components. These tools and guidelines:

• Enable applications to incorporate and use software algorithm
components from other developers easily and with confidence

• Ensure that components from multiple vendors do not interact with
each other in unpredictable ways or have resource clashes

• Allow components to be developed in assembly, C, or C++ and be
used from applications developed in any of these languages

• Allow components to be reused easily

• Allow comparison of algorithms that offer the same functionality

• Encourage third party developers to provide the implementation of
algorithms as easily used components

• Automatically generate a set of HTML pages that document a
component and the interfaces it provides or requires. The generated
documentation include a table of contents and an index.

VCSE supports an Interface Definition Language (IDL) and a VIDL
compiler that enable developers to specify and then create and use
components without having to become familiar with the detail of the
model and its mechanisms.

The VIDL compiler can automatically generate a test shell component
from the VIDL definition of a component. The generated test can include
code to validate the argument values passed to and from the component,
carry out array bound checking of arguments, ensure that methods of an
interface are called in the correct sequence, and measure the resources used
by a component.The level of checking effected by the test shell can be

VCSE

3-68 VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

controlled by the developer. The generated test shells can be used by the
developer of a component while testing his component but can also be
used by the user of a component to check that he is using a component in
a valid way.

VCSE Peripheral Control Components
A collection of VCSE components for Blackfin processors is available
though the Tools -> VCSE -> Manage components for download using
the VisualDSP++ VCSE component manager. The available components
are:

• Components that provide support for DMA, the SPORT, SPI and
the codecs on the Blackfin EZ-KIT Lite evaluation systems and
example talk-through applications using the components either
stand alone or with VDK.

• Components that allow a host application to communicate with a
DSP application over the background telemetry channel, and
support to allow standard file system input/output to be effected
over BTC. File input/output over BTC is much faster than standard
file input/output.

• Components that provide a TCP/IP stack which provide the
capability of supporting different network interfaces.

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors 3-69

New Features and Enhancements

VDK
The following VisualDSP++ Kernel (VDK) features have been added to
the VisualDSP++ 3.5 release.

• Support for configuring and using multiple heaps.

• Ability to specify, at build time, the heap from which each object
(such as semaphores, device flags, etc.) is allocated.

• Ability to specify, at build time, the heap from which the stack and
thread structure for each thread type are allocated.

• Ability to specify the size of the stack and the heap for the idle
thread.

• Support for inter-processor messaging, which uses the same
messaging API as intra-processor messaging.

• Out-of-the-box support for transporting messages between the two
cores of the ADSP-BF561 processor is provided using DMA.

• Support for marshalling the payloads of inter-processor messages
which have been allocated from heaps and memory pools.

• Support for user-defined marshalling of message payloads.

• Routing between processors can be configured in the Kernel tab to
allow messages to be passed between processors that are not directly
connected.

• Support for importing projects that will be used on other processors
in order to simplify the configuring of multi-processor messaging.

Object Protection

3-70 VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

Object Protection
The VisualDSP++ 3.5 tool chain now supports the encryption and
decryption of object files. This feature enables algorithm providers to
distribute objects and libraries under license protection.

Documentation Changes
This section describes the changes to online Help and online manuals.

Compiler Manuals
In VisualDSP++ 3.5, each compiler manual has a new chapter, called
“Achieving Optimal Performance from C/C++ Source Code”. The text
focuses on how to fine-tune your program code to obtain maximal code
performance from the compiler while optimizing for minimum code size.

The chapter starts with discussing some general optimization principles
and explains how the compiler can lend the most help to your optimiza-
tion effort. Optimal coding styles are described in detail. Special features,
such as compiler switches, built-in functions, and pragmas are also dis-
cussed. The chapter ends with a short example to demonstrate how the
optimizer works.

The new chapter (Chapter 2) is available in the following manuals:

In addition to the new chapter, each compiler manual in the VisualDSP++
3.5 documentation set has been enhanced with the addition of the new or
existing run-time libraries, header files, and function descriptions. Nota-

VisualDSP++ 3.5 C/C++ Compiler and Library Manual for Blackfin Processors

VisualDSP++ 3.5 C/C++ Compiler and Library Manual for ADSP-219x DSPs

VisualDSP++ 3.5 C Compiler and Library Manual for ADSP-218x DSPs

VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors 3-71

New Features and Enhancements

bly, the stdio.h header file’s description is updated to provide additional
information about alternative device drivers, software restrictions, and IO
support using _primIO(). Other examples are: iso646.h, def218x.h,
locale.h, setjump.h, stdarg.h, stdlib.h, fgetpos(), fseek(), fset-
pos(), ftell(), remove(), rename(), rewind(), isinf(), isnan(), and
cartesian_fr16().

Many library function descriptions have been updated to reflect the
changed functionality. Some examples are:
atof(), cos(), io_space_read(), io_space_write (), setjmp(), sin(),
strtod(), strtodf(), sysreg_read(), sysreg_write(), va_arg(),
va_start(), arg(), histogram(), and polar().

VisualDSP++ 3.5 User’s Guide
The legacy Tcl documentation is removed from the User’s Guide but
made available through the technical support as requested.

Online Help
An ongoing effort to enhance the VisualDSP++ online Help yields a more
detailed error message presentation, a unified index for all online manuals
in the documentation set, and the ability to search for keywords across the
documentation set.

Error Messages

To view an explanation of the error message, select the six-character error
identifier (for example, cc0251) in the Output window’s Build page with
the mouse or keyboard. Press the F1 key. Error message details appear in
the Help window.

Documentation Changes

3-72 VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors

Merged Index

Index entries from all the VisualDSP++ 3.5 manuals have been merged
into one unified index, which you can access by clicking the Index tab in
the online Help. You can use the Search function in the online Help to
search for keywords and instructions across all VisualDSP++ 3.5
publications for the target processor family. The Help window lists each
occurrence and its location (manual).

Online Manuals

All manuals in the VisualDSP++ 3.5 documentation set have been
converted to HTML Help and merged to facilitate searches in the online
Help. Each book is still available in PDF format.

The Docs directory of your VisualDSP++ 3.5 installation CD contains a
complete set of documentation for processors that are supported by your
development tools suite. The set is comprised of VisualDSP++ tools and
EZ-KIT Lite manuals, hardware manuals, and data sheets placed in the
appropriate folders:

• Datasheets directory contains one .PDF file for each data sheet.

• Tools Manuals and EZ-KIT Lite Manuals directories contains one
.PDF file for each manual.

• Hardware Manuals directory contains one .PDF file for each book
or for each chapter in the manual.

VisualDSP++ 3.5 Product Bulletin for 16-Bit Processors 4-1

4 OBSOLETE OR REMOVED
FEATURES

Table 3-14.

Table 3-0.

This chapter describes the features that have been deprecated or removed
since VisualDSP++ 3.0 (VisualDSP++ 3.1 for Blackfin processors). Read
this chapter if upgrading from the previous software release.

Existing project files (.DPJ) can be imported into the new release.
However, once the project file is imported, you are not able to bring the
project back into VisualDSP++ 3.0. Similarly, new projects created using
VisualDSP++ 3.5 cannot be used by earlier versions of the tools.

This chapter contains listings of obsolete and/or removed features:

• “Assembler and Preprocessor for Blackfin Processors” on page 4-2

• “Assembler and Preprocessor for ADSP-21xx DSPs” on page 4-4

• “Compiler and Library for Blackfin Processors” on page 4-6

• “Compiler and Library for ADSP-218x DSPs” on page 4-10

• “Linker” on page 4-11

• “Silicon Part Number” on page 4-12

• “ADSP-BF535 Simulator” on page 4-12

• “Tcl Scripting Engine” on page 4-12

You may want to consult the cover letter that accompanies the product
installation CD for the last-minute information concerning this release.

Assembler and Preprocessor for Blackfin Processors

4-2 VisualDSP++ 3.5 Product Bulletin for 16-Bit Processors

Assembler and Preprocessor for Blackfin
Processors

For VisualDSP++ 3.5 assembler/preprocessor for Blackfin processors, the
deprecated and/or removed features are grouped as follows.

• “Directives and Keywords” on page 4-2

• “Assembly Operator” on page 4-2

• “Feature Macros” on page 4-3

• “Preprocessor Command-Line Switch” on page 4-3

Directives and Keywords
The following assembly directives and keywords have been removed or
deprecated from VisualDSP++ 3.5.

Assembly Operator

Table 3-1. Obsolete/Deprecated Assembly Directives

Directive Description

.ASCII Deprecated; replaced with the .BYTE directive

.ORG Removed

Operator Description

pageof() Removed

VisualDSP++ 3.5 Product Bulletin for 16-Bit Processors 4-3

Obsolete or Removed Features

Feature Macros
In both the assembler and preprocessor, the following feature macros are
removed.

Preprocessor Command-Line Switch

Macro Definition Description

-D__ADSPDM102__=1 In assembler.
Removed. ADSP-DM102 DSP is not supported.

__ADSPDM102__ In preprocessor.
Removed. ADSP-DM102 DSP is not supported.

Switch Description

-cpredef Deprecated; replaced with the -cstring switch

Assembler and Preprocessor for ADSP-21xx DSPs

4-4 VisualDSP++ 3.5 Product Bulletin for 16-Bit Processors

Assembler and Preprocessor for
ADSP-21xx DSPs

For VisualDSP++ 3.5 assembler/preprocessor for ADSP-21xx DSPs, the
deprecated and/or removed features are grouped as follows.

• “Assembly Input Section Names” on page 4-4

• “Directives and Keywords” on page 4-4

• “Assembler Command-Line Switches” on page 4-5

• “Preprocessor Command-Line Switch” on page 4-5

Assembly Input Section Names
Input section names that you can use in assembly source files are data1
and program. The data2 section name (for a section that holds data) is not
used in VisualDSP++ 3.5.

Directives and Keywords
The following assembly directive has been removed from
VisualDSP++ 3.5.

Directive Description

.ORG Removed - no longer supported

VisualDSP++ 3.5 Product Bulletin for 16-Bit Processors 4-5

Obsolete or Removed Features

Assembler Command-Line Switches

Preprocessor Command-Line Switch

Switch Description

-ip Removed

-jcs2l Removed

-no-ip Removed

Switch Description

-cpredef Removed; replaced with the -cstring switch.

Compiler and Library for Blackfin Processors

4-6 VisualDSP++ 3.5 Product Bulletin for 16-Bit Processors

Compiler and Library for Blackfin
Processors

The compiler features that were either renamed, removed, or became
obsolete in VisualDSP++ 3.5 as compared to VisualDSP++ 3.1 are
grouped as follows.

• “C/C++ Compiler Command-Line Switches” on page 4-6

• “Predefined Macro” on page 4-8

• “C/C++ Run-Time Library” on page 4-8

Refer to Chapter 3, “New Features and Enhancements” of this manual for
more information about the changes to the C/C++ compiler and run-time
libraries.

C/C++ Compiler Command-Line Switches
The following switches are obsolete or deprecated in VisualDSP++ 3.5.

Table 4-2. Obsolete/Deprecated C or C++ Mode Selection Switches

Switch Name Description

-analog Renamed to -c89

-traditional Removed

Table 4-3. Obsolete/Deprecated C/C++ Compiler Common Switches

Switch Name Description

-csync Deprecated, use -workaround instead

-expert-linker Removed

-inline Removed

VisualDSP++ 3.5 Product Bulletin for 16-Bit Processors 4-7

Obsolete or Removed Features

-mem-bsz Accepted but ignored; replaced with -mem.

-no-dir-warnings Removed

-no-inline Removed

-no-restrict Removed; use -no-extra-keywords instead

-restrict Removed; now the default mode

-traditional Removed

-xml Removed

Table 4-4. Obsolete/Deprecated C++ Mode Compiler Switches

Switch Name Description

-explicit Removed

-instant[all|local|used] Removed

-namespace Removed

-newforinit Removed

-newvec Removed

-no-explicit Removed

-no-namespace Removed

-no-newvec Removed

-notstrict Removed; now is the default mode

-no-wchar Removed

-Ox Removed; replaced with the -O switch

-Oz Removed

-strict Removed; use -pedantic-errors instead

-strictwarn Removed; use -pedantic instead

Table 4-3. Obsolete/Deprecated C/C++ Compiler Common Switches

Switch Name Description

Compiler and Library for Blackfin Processors

4-8 VisualDSP++ 3.5 Product Bulletin for 16-Bit Processors

Predefined Macro
Prior to VisualDSP++ 3.5, the long long integer data types were not sup-
ported, causing the macro __NO_LONGLONG to be always defined.
VisualDSP++ 3.5 adds support for the long long int data types; there-
fore, the __NO_LONGLONG macro is no longer predefined.

C/C++ Run-Time Library
The bootup*.doj, the C/C++ run-time startup file used to define
jump-to-start symbols, is removed.

-tpautooff Removed

-trdforinit Removed

-typename Removed

-wchar Removed

Table 4-4. Obsolete/Deprecated C++ Mode Compiler Switches (Cont’d)

Switch Name Description

VisualDSP++ 3.5 Product Bulletin for 16-Bit Processors 4-9

Obsolete or Removed Features

Compiler and Library for ADSP-219x
DSPs

The compiler features that were either renamed or became obsolete in
VisualDSP++ 3.5 as compared to VisualDSP++ 3.0 are described in
Table 4-5 through Table 4-7.

Table 4-5. Obsolete/Deprecated C or C++ Mode Selection Switches

Switch Name Description

-analog Renamed to -c89

-traditional Removed

Table 4-6. Obsolete/Deprecated C Compiler Switches

Switch Name Description

-21{9x|91|92-12} Removed; use -proc processor instead

-dollar Removed

-J Removed

-no-dollar Removed

-no-dir-warnings Removed

-no-inline Removed

Table 4-7. Obsolete/Deprecated C++ Mode Compiler Switches

Switch Name Description

-no-restrict Removed; use -no-extra-keywords instead

-restrict Removed; now the default mode

Compiler and Library for ADSP-218x DSPs

4-10 VisualDSP++ 3.5 Product Bulletin for 16-Bit Processors

Compiler and Library for ADSP-218x
DSPs

The compiler features that were either removed or became obsolete in
VisualDSP++ 3.5 as compared to VisualDSP++ 3.0 are described in
Table 4-8.

Table 4-8. Obsolete/Deprecated C Compiler Switches

Switch Name Description

-21{81|83|84|85|86|87|88|89} Removed; use -proc processor instead

-analog Renamed to -c89

-dollar Removed

-J Removed

-no-dir-warnings Removed

-no-dollar Removed

-no-inline Removed

-traditional Removed

VisualDSP++ 3.5 Product Bulletin for 16-Bit Processors 4-11

Obsolete or Removed Features

Linker
For VisualDSP++ 3.5 linker, no Linker Description File, command-line
switches, LDF commands, and utilities were removed or considered
obsolete. The only feature to be considered is the use of the
OVERLAY_GROUP{} legacy LDF command.

In VisualDSP++ 3.5, the OVERLAY_GROUP{} is still used to group overlays,
allowing each overlay to run from a different start address in run-time
memory. The linker still processes all overlay groups and explicit
OVERLAY_GROUP{} commands, producing a warning. However, the
preferable way to manage overlays is to create a separate output section for
each overlay group.

Silicon Part Number

4-12 VisualDSP++ 3.5 Product Bulletin for 16-Bit Processors

Silicon Part Number
The ADSP-DM102 part, supported in VisualDSP++ 3.1 has been
removed from VisualDSP++ 3.5. All designs should migrate toward the
ADSP-BF533 processor.

ADSP-BF535 Simulator
Compared to VisualDSP++ 3.1, in VisualDSP++ 3.5 for ADSP-BF535
processors, the following simulator menu options are not available:

Settings -> Simulator -> Exceptions

Settings -> Simulator -> ARGV/ARGC

Tcl Scripting Engine
The existing Tcl scripting engine within the IDDE is removed in favor of
the more generic Automation scripting approach, which is the preferred
mechanism for VisualDSP++ scripting.

The new approach is backward-compatible in nearly all respects to the
legacy Tcl functionality. Only four Tcl commands no longer available in
VisualDSP++ 3.5. If any of these commands are invoked, a message will
be printed stating that the command is no longer supported:

dspplotwin

dspplotrotate

dspmemorywin

dspregisterwin

	VisualDSP++ 3.5 Product Release Bulletin for 16-Bit Processors
	Contents
	Preface
	Purpose of This Document
	Intended Audience
	Manual Contents
	Technical or Customer Support
	Supported Processors
	Product Information
	MyAnalog.com
	DSP Product Information
	Related Documents
	Online Documentation
	From VisualDSP++
	From Windows
	From the Web

	Printed Manuals
	VisualDSP++ Documentation Set
	Hardware Manuals
	Data Sheets

	Contacting DSP Publications

	Notation Conventions

	1 Introduction
	Product Release Description
	VisualDSP++ 3.5 System Requirements
	Platform and Processor Support
	VisualDSP++ 3.5 Product Highlights

	2 VisualDSP++ 3.5 Major Changes
	Changes to Installer
	Discrete Installer
	Emulation Tools Included in Installer

	Changes to Blackfin Compiler
	Command-Line Switches
	Linker Description Files
	Startup Code and Libraries
	Miscellaneous changes

	Changes to ADSP-219x Compiler
	Command-Line Switches
	Linker Description Files
	Libraries
	Miscellaneous Changes

	Changes to ADSP-218x Compiler
	Command-Line Switches
	Linker Description Files
	Miscellaneous Changes

	Changes to ADSP-BF535 Simulator

	3 New Features and Enhancements
	VisualDSP++ IDDE
	New Processor Support
	Multiple Project Support
	XML Project File Format
	Project Migration
	License Management
	Data Streaming and Logging
	Profile-Guided Optimization
	Integrated Source Code Control
	Automation Aware Scripting Engine
	Address Bar in Memory and Disassembly Windows
	Menus with Icons
	Enhanced Compiled Simulation Support
	Memory Streams
	Overlays
	PGO
	Linear Profiling
	ADSP-BF535 SPORT

	Assembler for Blackfin Processors
	Feature Macro
	VCSE Optimization Directives
	Assembler Command-Line Switch
	Preprocessor Macros
	Preprocessor Command-Line Switches
	Include Path Search Algorithm Matches Compiler

	Assembler for ADSP-218x and ADSP-219x DSPs
	VCSE Optimization Directives
	Assembler Command-Line Switch
	Preprocessor Macro
	Preprocessor Command-Line Switches
	Include Path Search Algorithm Matches Compiler

	Compiler and Library for Blackfin Processors
	File Extensions
	Compiler Command-Line Switches
	Optimization Control
	Bank Type Qualifiers
	ETSI Support
	Video Operation Built-In Functions
	Pragmas
	GCC Compatibility Extensions
	Caching and Memory Protection
	Predefined Compiler Macros
	Data Storage Formats
	C/C++ Libraries and Startup Files
	C Library Functions

	DSP Run-Time Library

	Compiler and Library for ADSP-219x Processors
	File Extensions
	Compiler Command-Line Switches
	Optimization Control
	Assembly Construct Operands
	Builtins for Non-literal Address Inputs
	System Control Register Set
	Near and Far Type Qualifiers
	Circular Buffer Built-in Functions

	ETSI Support
	Pragmas
	GCC Compatibility Extensions
	Predefined Compiler Macro
	File IO Support
	C Library Functions
	DSP Run-Time Library Functions

	Compiler and Library for ADSP-218x DSPs
	Input and Output File Extensions
	C Compiler Command-Line Switches
	Optimization Control
	Assembly Construct Operands
	Builtins for Non-literal Address Inputs

	ETSI Support
	Pragmas
	GCC Compatibility Extensions
	Predefined Compiler Macro
	File IO Support
	C Library Functions

	Linker and Utilities
	Modified Link Page in Project Options Dialog Box
	Migrating LDFs from Previous Installations
	Linker Command-Line Switches
	Jump/Call Expansions
	Updated List of LDF Keywords
	Modifications to LDF Commands
	SECTIONS{} LDF Command
	OVERLAY_GROUP{} Command

	Breakpoints on Overlays
	Expert Linker
	Menu Updates
	Profiling Object Sections

	Memory Map File (.XML)
	Archiver
	Archiver Switches
	Warnings for Duplicate Library Entries
	Improved Support for File Specifications
	Tagging an Archive with Version Information

	Loaders
	Blackfin Loader Features
	ADSP-219x Loader Features

	VCSE
	VCSE Peripheral Control Components

	VDK
	Object Protection
	Documentation Changes
	Compiler Manuals
	VisualDSP++ 3.5 User’s Guide
	Online Help
	Error Messages
	Merged Index
	Online Manuals

	4 Obsolete or Removed Features
	Assembler and Preprocessor for Blackfin Processors
	Directives and Keywords
	Assembly Operator
	Feature Macros
	Preprocessor Command-Line Switch

	Assembler and Preprocessor for ADSP-21xx DSPs
	Assembly Input Section Names
	Directives and Keywords
	Assembler Command-Line Switches
	Preprocessor Command-Line Switch

	Compiler and Library for Blackfin Processors
	C/C++ Compiler Command-Line Switches
	Predefined Macro
	C/C++ Run-Time Library

	Compiler and Library for ADSP-219x DSPs
	Compiler and Library for ADSP-218x DSPs
	Linker
	Silicon Part Number
	ADSP-BF535 Simulator
	Tcl Scripting Engine

