
CrossCore Embedded Studio 1.0.0 Release Notes

Page 1

CrossCore® Embedded Studio Release Notes
2012 March 29

Table of Contents
Preface ... 2

Purpose of This Document .. 2
Intended Audience ... 2

Technical or Customer Support ... 2
Platform and Processor Support .. 3
Related Products and Documentation ... 3
Online Technical Documentation ... 4

Introduction .. 4

Product Release Description ... 4

Release 1.0.0 System Requirements .. 5

Getting Started with CrossCore Embedded Studio .. 5
Getting Started Video ... 5

Working with Projects ... 5
Viewing Documentation ... 6
Getting Help ... 6

Online Training Modules .. 6
License Activation .. 6

Notable Features ... 7
IDE ... 7
User Interfaces for Source Generation .. 7

Analysis and Diagnostic Support ... 8

Reports for Instrumented Profiling, Heap Debugging, and Code Coverage 8
Stack Overflow Detection ... 8
Fatal Error Diagnostic Information .. 8

Inter-core Communication ... 9
Peripheral Controller Driver Model... 9

Standardized Interrupt Management ... 9

Compiler Language Standards Support ... 10
Embedded C Support ... 10

C99 and C++2003 Support .. 11
Full C++ Standard Library .. 11
MISRA-C:2004 Support ... 11

Device Programmer ... 11
Known Limitations .. 12

Supported Processors ... 12
Simulator ... 12
Image Viewer ... 12
Pipeline Viewer .. 12
ADSP-BF60x Loader ... 12

Documentation .. 12
Anomalies .. 13

CrossCore Embedded Studio 1.0.0 Release Notes

Page 2

Preface

Thank you for purchasing CrossCore® Embedded Studio for Analog Devices
Processors.

The first release of our latest development environment, CrossCore Embedded Studio
1.0.0 is designed to make developing software applications for Analog Devices
processors even easier.

CrossCore Embedded Studio represents a major step forward in embedded system
development. It combines an industry-leading integrated development environment
(IDE) with Analog Devices' advanced optimizing compiler technology. It also supports
standards such as ISO/IEC C and C++, MISRA-C, Embedded C and MCAPI™, plus
additional features to get your products to market even sooner.

Purpose of This Document

This document briefly introduces features of CrossCore Embedded Studio 1.0.0, which
supports the ADSP-BF60x family of Analog Devices Blackfin processors.

Details of this product and other products in the CrossCore family are found in the
“Related Documents” section of these release notes or in the online Help that is
accessible from within CrossCore Embedded Studio.

Intended Audience

This publication is primarily intended for programmers looking for a short overview of
CrossCore Embedded Studio. For additional introductory information, you can view the
video tutorials that are available through the “Welcome Page” that appears when you
first start using CrossCore Embedded Studio, or at:

http://videos.analog.com/category/products/processors-dsp/ .

Technical or Customer Support

There are several options for contacting support:

 Submit your questions online at: http://www.analog.com/support

 E-mail your processor and DSP software and development tools questions from
within CrossCore Embedded Studio. To do this: Go to “Help->E-mail Support…”
This will create a new e-mail addressed to processor.tools.support@analog.com,
and will automatically attach your CrossCore Embedded Studio version
information (ProductInfo.html).

 E-mail your processor and DSP applications and processor questions to:
processor.support@analog.com or processor.china@analog.com (Greater China
support)

http://videos.analog.com/category/products/processors-dsp/
http://www.analog.com/support
mailto:processor.tools.support@analog.com
mailto:processor.support@analog.com
mailto:processor.china@analog.com

CrossCore Embedded Studio 1.0.0 Release Notes

Page 3

 Post your questions in the Processors and DSP online technical support
community in Engineer Zone: http://ez.analog.com/community/dsp

Platform and Processor Support

This release of CrossCore Embedded Studio supports the ADSP-BF60x family, which
are dual-core Blackfin processors. The following processors are supported:

ADSP-BF606
ADSP-BF607
ADSP-BF608
ADSP-BF609

Support for SHARC processors, and other processors in the Blackfin family will be
available in a future update to CrossCore Embedded Studio.

Related Products and Documentation

CrossCore Embedded Studio can work in concert with other software add-ins and
hardware as part of a comprehensive software development solution. All of these
products install easily into the CrossCore Embedded Studio environment and are
available through the Analog Devices web site for CrossCore Embedded Studio,
www.analog.com/cces. Associated documentation can also be accessed there. This
section identifies these products.

Software Add-Ins:

1. Real Time Kernel
2. USB Stack (Device)
3. File System
4. lwIP Lightweight TCP/IP Stack

Development Hardware:

1. ADSP-BF609 Evaluation Hardware for the ADSP-BF60x Blackfin Family of
Processors

2. WVGA/LCD EI3 Extender Board
3. Video Decoder & Video Encoder EI3 Extender Boards
4. Audio EI3 Extender Board
5. Camera EI3 Extender Board
6. HPUSB and USB Emulators
7. ICE-100B Emulator

For target processor information, refer to your processor’s hardware reference manual,
programming reference, or data sheet. All documentation is available online and also
directly from within the IDE without needing an external URL.

http://ez.analog.com/community/dsp
http://www.analog.com/cces

CrossCore Embedded Studio 1.0.0 Release Notes

Page 4

Online Technical Documentation

Full documentation for CCES and any optionally installed add-ins is available from your
Windows start menu by clicking Analog Devices -> CrossCore Embedded Studio 1.0.0 -
> CrossCore Embedded Studio Help or by clicking the Help -> Help Contents menu
directly from within the IDE. This documentation includes the following manuals:

 Graphical Development Environment

 System Runtime Documentation

 Licensing Guide

 Assembler and Preprocessor Manual

 C/C++ Compiler and Library Manual for Blackfin® Processors

 Linker and Utilities Manual

 Loader and Utilities Manual

 Development Hardware Documentation

 ADSP-BF6xx Blackfin Processor Hardware Reference

 ADSP-BF5xx/BF60x Blackfin Processor Programming Reference

Additional documentation for Analog Devices processor hardware can be downloaded
directly from the IDE by clicking Help -> Install New Software… and selecting
“CrossCore Embedded Studio Software and Documentation” in the “work with” field of
the Install dialog.

Introduction

This chapter describes CrossCore Embedded Studio, the requirements for running
version 1.0.0 and some of the benefits provided by this release.

Product Release Description

CrossCore Embedded Studio integrates an Eclipse-based IDE with the latest versions
of our mature code generation and debugging tools, enabling programmers to move
easily between editing, debugging, and deployment of final products.

Release 1.0.0 includes the code generation tool chain comprised of the processor-
specific software necessary for completing a project: assembler, C/C++ compiler and
libraries, linker, loader, splitter, and utilities.

CrossCore Embedded Studio 1.0.0 Release Notes

Page 5

Release 1.0.0 System Requirements

To install and run Release 1.0.0, your computer must provide the following software,
configuration, and system resources:

 2 GHz single core Intel Pentium 32-bit processor (or x86 compatible); A 3.3 GHz
or faster dual core machine is recommended.

 Windows XP Professional SP3 (32-bit only), Windows Vista Business
Enterprise/Ultimate SP2 (32-bit only), Windows 7
Professional/Enterprise/Ultimate (32 and 64-bit)

 At least 1 GB of internal memory; 4 GB or more is recommended

 At least 2 GB of available disk space

Windows Vista and Windows 7 users may experience User Access Control (UAC)
related errors if the software is installed into a protected location such as “Program
Files” or “Program Files (x86)”. We recommend installing the software in a non-UAC-
protected location. The default installation location is “C:/Analog Devices/CrossCore
Embedded Studio 1.0.0”.

Getting Started with CrossCore Embedded Studio

The first time you start CrossCore Embedded Studio you will see the Welcome Screen
which has links to learning resources to help you use this product effectively. You can
return to the Welcome Screen anytime by selecting Welcome from the Help menu. The
Welcome Screen has links to the following areas:

Getting Started Video

The Getting Started video will introduce you to the basics of this product. It’s
recommended that new users begin by watching this informative presentation.

Working with Projects

The Working with Projects section gives you three easy ways to begin working with
CrossCore Embedded Studio projects.

 Selecting “Create a new project” will open a dialog that guides users through the
new project creation process, along with options for creating a customized Linker
Description File and startup code.

 Selecting “Import an existing CCES project” will import an existing CrossCore
Embedded Studio project into your workspace.

 Selecting the Example Browser will enable you to search all of the examples that
have been installed on your system. You can search by any number of criteria
including processor, processor family, platform, language, and keyword. Many of
the related products in the CrossCore family also come with examples. When

CrossCore Embedded Studio 1.0.0 Release Notes

Page 6

these products are installed, their examples will also be available through the
Example Browser.

Viewing Documentation

Under the Viewing Documentation heading you will find a link to open the online help
facility and a link to find and download additional processor documentation.

Getting Help

Finally, the Welcome Page includes links to get additional help on CrossCore
Embedded Studio.

Processors and DSP Community on EngineerZone:
http://ez.analog.com/community/dsp. Here you can search the FAQs, blogs, and
forums for more information. You can also use the forum to ask questions to the
community.

Private Technical Support: http://www.analog.com/support. Submit a private
support request to our technical support team.

Online Training Modules

One of the best ways to become familiar with CrossCore Embedded Studio is to visit the
online training site at http://videos.analog.com/category/products/processors-dsp/. Here
are some of the available training modules:

 CrossCore Embedded Studio Introduction and Overview

 Navigating Through the Eclipse Based IDE

 Creating, Configuring, and Building Projects

 Debugging on a Hardware Target

 Creating and Debugging a Boot Image

 System Services and Device Drivers in CrossCore Embedded Studio

 Transitioning from VDK to a new RTOS

 An introduction to the ADSP-BF609 Blackfin Processor

License Activation

The New License Wizard starts automatically the first time you run CrossCore
Embedded Studio or thereafter if no valid licenses are detected. When the wizard
appears, click Yes to start the New License Wizard. If you don’t use the wizard when
you first begin CrossCore Embedded Studio you can start the wizard later by choosing
Help->Manage Licenses->New and the New License Wizard will appear.

On the first page of the wizard you will be asked whether you would like a free 90 day
evaluation of the product or if you have a serial number that you would like to register.
If you choose to enter a serial number then you will be asked to enter it at this time.
Enter the number exactly as it appears, including dashes.

http://ez.analog.com/community/dsp
http://www.analog.com/support
http://videos.analog.com/category/products/processors-dsp/

CrossCore Embedded Studio 1.0.0 Release Notes

Page 7

The next page will ask you to select a license activation method. If you have internet
access the “one-step” activation is recommended. The one-step activation will install,
register, and validate your license and you will be ready to begin using CrossCore
Embedded Studio.

The alternative method of activation will install a temporary license so you can continue
to use CrossCore Embedded Studio. You will need to register and activate your
permanent license through the Analog Devices website.

Full information on CrossCore Embedded Studio licensing can be found by choosing
Help->Help Contents->CrossCore Embedded Studio 1.0.0->Licensing Guide.

Notable Features

IDE

The CrossCore Embedded Studio IDE is based on the industry standard Eclipse
environment. Eclipse features a best-in-class smart editing environment and a
language-aware editor. The editor provides code completion of language constructs
and source browsing of names.

The project environment features different perspectives, making it easy for users to
switch back and forth between views pertinent to specific development tasks. One
perspective can be used for editing and building your project while another can provide
the visibility necessary for debugging your program.

In addition to the Eclipse features, Analog Devices has enhanced the environment to
provide project customization. The build options can be easily changed to take best
advantage of the code generation tools including the Optimizing C/C++ Compiler.

User Interfaces for Source Generation

The Startup Code/LDF add-in makes it easy to create and configure a DSP Project. It
helps you create a new project with startup code that sets up peripherals like cache,
DMA, and I/O, etc.

In additional to startup code, a linker description file (LDF) can be generated and added
to the project to link in only necessary libraries, and specify SDRAM partitioning, etc.
This takes away much of the complexity of configuring your application’s memory
layout.

The Startup Code/LDF add-in automatically adds the generated files to your project,
and updates them to reflect changes as you configure your project’s settings, while
preserving your custom modifications to the generated files.

CrossCore Embedded Studio 1.0.0 Release Notes

Page 8

Analysis and Diagnostic Support

CrossCore Embedded Studio provides tools to more quickly identify common code
errors at runtime and provide you with the information necessary to efficiently optimize
your program.

Reports for Instrumented Profiling, Heap Debugging, and Code Coverage

CrossCore Embedded Studio provides support for generating various profiling and
tracing reports in HTML that can be launched from within the IDE.

The compiler has several profiling and tracing facilities. These include:

 Heap debugging (.hpl files): To identify memory leaks, corruption and other
problems relating to malloc and free.

 Instrumented profiling (.prf files): To identify the functions that consume the most
cycles.

 Code coverage (.pgo files): To identify which parts of your application have been
exercised by your testing.

Each of these facilities generates data files during application execution, containing
profile or trace data. These files can be converted into HTML-formatted reports through
the IDE.

To generate an HTML report, open the File menu, and select the New...>Code Analysis
Report option. There is a choice for each of the report types.

For further details go to Help->Help Contents->CrossCore Embedded Studio 1.0.0-
>C/C++ Compiler and Library Manual for Blackfin Processors, Chapter 2, “Analyzing
Your Application” section.

Stack Overflow Detection

The Blackfin compiler supports stack overflow detection in CrossCore Embedded Studio
1.0.0. This facility is enabled through the -rtcheck-stack compiler switch, and
instruments the generated code to check the stack pointer against the end of the stack.
If an overflow is detected, the application jumps to adi_stack_overflowed, where a
breakpoint is placed automatically by the IDE. For more information go to Help->Help
Contents->CrossCore Embedded Studio 1.0.0->C/C++ Compiler and Library Manual for
Blackfin Processors, Chapter 2, “Stack Overflow Detection” section.

Fatal Error Diagnostic Information

In CrossCore Embedded Studio 1.0.0, the run-time libraries use a common, extensible
API for reporting fatal application errors. When the API is invoked, the application
transfers control to the adi_fatal_error function. The IDE automatically places a
breakpoint on this label when your application is loaded, so the application halts. When
this occurs, the IDE will retrieve diagnostic information passed to the API by the run-
time library, and will display it in the console window.

CrossCore Embedded Studio 1.0.0 Release Notes

Page 9

Inter-core Communication

CrossCore Embedded Studio 1.0.0 includes support for the Multicore Communications
API (MCAPI™), version 2.0, defined by The Multicore Association.

MCAPI allows communication between cores using

 unconnected messages

 connected packet streams

 connected scalar streams.

Communication within a core is also supported.

MCAPI is available on all Blackfin processors, but is most useful with dual-core
processors such as ADSP-BF609. MCAPI is enabled by default when creating new
projects for ADSP-BF609. MCAPI configuration can be added to your project via the
System Configuration utility.

To see the MCAPI 2.0 Specification document, open CrossCore Embedded Studio
Help: Help -> Help Contents->CrossCore Embedded Studio 1.0.0->System Runtime
Documentation->Multicore Communication API (MCAPI) Specification.

The MCAPI examples can be found here: Help -> Browse Examples and search on
“MCAPI”.

Peripheral Controller Driver Model

The driver model deployed in CrossCore Embedded Studio was designed with the
following guidelines in mind:

 Ease of use

 Minimal footprint

 Minimal latency

For further information go to Help->Help Contents->CrossCore Embedded Studio 1.0.0-
>System Runtime->System Services and device drivers

For examples and/or "Code Sketches" using the driver model go to Help->Browse
Examples and search on the appropriate keywords (e.g. “audio”, “video”, “twi”, etc.)
(Code Sketches are interactive code examples where input values can be modified to
show their effect on the code in real time.)

Standardized Interrupt Management

To make the programming of Analog Devices processors consistent, the same APIs
and methodology will be available for Blackfin and SHARC processors and supported
operating systems in future updates. These interrupt management APIs begin with the
adi_int prefix.

CrossCore Embedded Studio 1.0.0 Release Notes

Page 10

The types of interrupts that can be managed with these APIs are:

SHARC processors:

 All core interrupts

Blackfin processors:

 All core interrupt levels

 All system interrupts

 Exceptions

 Non-maskable interrupt (NMI)

The same interrupt APIs and methodology are also available for the following operating
environments:

 Bare-metal (no operating system). Support for this configuration is shipped with
CrossCore Embedded Studio

 Real time operating system. Support for this configuration is shipped in the real
time kernel add-in available for CrossCore Embedded Studio.

This interrupt management mechanism is not only available for use within applications,
but it is also the mechanism used by CrossCore Embedded Studio’s system services
and device drivers.

For further information go to Help->Help Contents->CrossCore Embedded Studio 1.0.0-
>System Runtime Documentation->Interrupt Support.

Compiler Language Standards Support

Embedded C Support

The Blackfin compiler in CrossCore Embedded Studio 1.0.0 provides support for the
native fixed-point types fract and accum, defined in Chapter 4 of the “Extensions to
support embedded processors” ISO/IEC draft technical report TR 18037. These native
fixed-point types allow you to write your applications in a more natural manner, without
sacrificing performance.

For instance, the following function is an example of a dot product implemented using
fract and accum, with natural fractional, saturating multiplication, addition, and
assignment operators instead of built-in functions.

#include <stdfix.h>

accum dot_product(fract *a, fract *b, int n)

{

accum sum = 0.0k;

int i;

for (i = 0; i < n; i++)

CrossCore Embedded Studio 1.0.0 Release Notes

Page 11

sum += a[i] * b[i];

return sum;

}

For more information go to Help->Help Contents->CrossCore Embedded Studio 1.0.0-
>C/C++ Compiler and Library Manual for Blackfin Processors, Chapter 1 “Using Native
Fixed-Point Types”.

C99 and C++2003 Support

The compiler conforms to the ISO/IEC language standards:

 C99 is the default C language accepted by the compiler. This is a freestanding
implementation of the ISO/IEC 9899:1999 C language standard.

 C89 mode is available through the -c89 compiler switch. In this mode, the
compiler supports a hosted implementation of the ISO/IEC 9899:1990 C
language standard.

 C++2003 is the default C++ language accepted by the compiler. This is a hosted
implementation of the ISO/IEC 14882:2003 C++ language standard.

In all these modes, the compiler accepts Analog Devices’ language extensions. Some
language features are standard features in some modes, and extensions in others; for
further information go to Help-> Help Contents->CrossCore Embedded Studio 1.0.0-
>C/C++ Compiler and Library Manual for Blackfin Processors, and refer to the feature
descriptions for details on standards conformance.

Full C++ Standard Library

The Blackfin compiler supports both the abridged and full C++ standard libraries. For
more details go to Help->Help Contents->CrossCore Embedded Studio 1.0.0->C/C++
Compiler and Library Manual for Blackfin Processors for documentation on the -full-
cpplib switch.

MISRA-C:2004 Support

The compiler provides comprehensive support for MISRA-C: 2004, a set of guidelines
published by the Motor Industry Software Reliability Association (MISRA). The compiler
detects violations at compile-time, at link-time and at run-time.

For details go to Help->Help Contents->CrossCore Embedded Studio 1.0.0->C/C++
Compiler and Library Manual for Blackfin Processors and find the section “MISRA-C
Compiler “in Chapter 1 “Compiler”.

Device Programmer

The Device Programmer is a utility for programming device memory, such as parallel or
serial flash devices, on a target board. The Device Programmer is invoked in a
command window as cldp, which is installed in the root folder of CrossCore Embedded
Studio. The device programmer can also be added as a post build step in CrossCore

CrossCore Embedded Studio 1.0.0 Release Notes

Page 12

Embedded Studio to automatically program device memory after creating a Loader File
artifact.

The Device Programmer interfaces with the target board using a device programmer
interface application (dpia) that is installed separately from CrossCore Embedded
Studio as part of the EZ-Board/EZ-Kit board support installation. If not interfacing to an
Analog Devices, Inc. EZ-Board/EZ-Kit, then users must create their own dpia.

For more information on how to use the Device Programmer or creating a custom dpia
please go Help->Help Contents->CrossCore Embedded Studio 1.0.0->Graphical
Development Environment >Device Programmer.

Known Limitations

Supported Processors

This release of CrossCore Embedded Studio supports the ADSP-BF60x family of
Blackfin processors. Support for SHARC processors, and other processors in the
Blackfin family will be available in a future update to CrossCore Embedded Studio.
Note that the documentation for CrossCore Embedded Studio already reflects our plans
to include these other processors.

Note that many components of the toolchain for other processors are included in this
release; however, they should not be considered production-quality.

Simulator

There is no simulator for the ADSP-BF60x family of processors. Consequently, to run
programs for this family you will need the ADSP-BF609 EZ Kit Evaluation Hardware and
its associated board support package or your own board with a BF60x processor and
board support software.

Image Viewer

Support for the Image Viewer will be available in a future update.

Pipeline Viewer

There is no support for the Pipeline Viewer in this release.

ADSP-BF60x Loader

The CrossCore Embedded Studio loader does not provide a switch for creating forward
blocks for the ADSP-BF609 where an entire boot stream can be contained in the
payload of a block, and that entire stream can be forwarded to a peripheral.

Documentation

The following documentation is not up-to-date in this release. Instead the included
documentation represents the toolchain and libraries at the time of the CrossCore
Embedded Studio Beta Release.

CrossCore Embedded Studio 1.0.0 Release Notes

Page 13

 C/C++ Compiler for SHARC Processors.

 C/C++ Library Manual for SHARC Processors.

Anomalies

The following table is a list of known anomalies in CrossCore Embedded Studio 1.0.0.

Tar Summary Release Note

TAR-
48052

part function names in call
stack for C++ functions

When debugging an application, the displayed
name for C++ functions in the call stack will not
give all available information about the functions.
Information about namespace scope, templates,
etc. will be missing. For example, the function
"my_test::array<short, long>::array(int)" will be
displayed as "array(int)".

This issue may make it difficult to navigate sources
that use these standard C++ features

TAR-
47733

Symbol manager should reset
breakpoints when memory
initialization is complete

If code that has breakpoints set in it is initialized
using the runtime initialization support, the
instruction at the breakpoints will be corrupted and
the program will fail to execute properly. To avoid
the problem, do one of the following:
1) Disable run-time initialization support when you
need to rely on the use of breakpoints (for
example, when debugging)
2) Ensure that code containing breakpoints is not
initialized at runtime. This can be done in one of
two ways:
- by adding the following line to the the appropriate
source file:
#pragma file_attr("requiredForROMBoot")
- By adding the function name (with a prefixed
underscore) to the list of functions defined in the
LDF as "OBJS_LIBS_WITH_BREAKPOINTS"

TAR-
48245

cldp crashes with commands
file that does not have a new
line at the end

When using a command file(-@ filename), the
command line device programmer will not work if
the file does not have a new line at the end.

TAR-
48048

Duplicate entries for HPUSB
emulator seen during Found
New Hardware Wizard

The USB device driver for the Analog Devices, Inc.
line of emulators inadvertently did not receive an
update of it's version. Therefore, there may be
times when installing the driver where the user may
be asked to pick between device drivers with the
same exact version. It is safe to choose the
oem*.inf file where * is a higher number.

CrossCore Embedded Studio 1.0.0 Release Notes

Page 14

TAR-
48373

Memory Browser loses
memory tabs on relaunch

If you create a new memory tab in the Memory
Browser view and then re-launch your debug
configuration using the "Relaunch" menu, it loses
the memory tab that you just created.

To reproduce:

1. Launch any debug configuration
2. Open the Memory Browser view
3. Type 0 for the address and click Go
4. In the Debug view, right-click on the top level
node and choose "Relaunch"

Workaround: Terminate your debug configuration
first and then re-launch it.

TAR-
48160

Warnings and errors when the
project name contain "-"

Projects with a dash (-) in their name may fail to
build

To reproduce:

1. Install CCES, and create a project named TAR-
48041, other things set as default
2. Build the new created projects, there are
warnings
3. Open the project Properties setting page, Enable
MISRA-C
4. Rebuild the project, there is a error indicate the
name should not include "-"

Workaround: Do not use a dash in the name of
your project.

TAR-
47906

Project paths that contain an
ampersand (&) will not build

If a project path has the ampersand character in it
then it fails to build.

To reproduce:

* Create a new project where the path to the
project has a ampersand in it.
* Build the project to see the error.

Workaround: Do not use ampersands in the path or
project name.

TAR-
48189

String index out of range in
Debug As, Debug
Configuration menu

When there is more than one project open and you
select a dxe to run or debug, you may see a pop-
up about 'String index is out of range' and cannot
load the dxe.

Workaround: To load the dxe, select to run or
debug from the project level instead of selecting

CrossCore Embedded Studio 1.0.0 Release Notes

Page 15

the individual dxe.

TAR-
47759

"Invalid format:
STRING.Format" errors when
debugging

When debugging an executable you may
occasionally see a number of "Invalid format:
STRING.Format" errors in the output console and
no application output.

Workaround: None. This error can be safely
ignored.

TAR-
48176

Not resolved errors in
system/uCLIB/source lib files

When using the wizard to create a project that has
uC/OS-III and then clicking on the
system/uCLIB/source files lib_ascii, lib_mem.c,
lib_math.c and lib_str.c files, you may see a
number of errors in the Problems window. These
are spurious errors detected by the editor and will
not impact the ability to build or debug the project .

To reproduce:

* File, New, CrossCore Project. Select 609 and
silicon rev any. Next.
* Deselect MCAPI, Startup/LDF and pin muxing.
Select RTOS.
* Everything else default.
* In Project Explorer, click on any of the files in
system/uC-LIB/Source.

Workaround: None

TAR-
48254

Boot fails when Start Address
(-p) with Initialization File (-
init) due to incorrect NEXT
PTR argument in initialization
FIRST block

Do not use "Start address (-p <alternate-
address>)" when building a ldr file with "Boot
format Intel HEX (-f hex)" and "Initialization file (-init
<init.dxe>)" at this release. Either:

1) Build the ldr file with "Boot format ASCII (-f
ASCII)" with the default start address and specify
the offset when programming the memory using
the Device Programmer:

cldp -offset <alternate-address> ...

or 2) Build the ldr file with "Boot format HEX (-f
hex)" and add "-kp <alternate-address>" in
Additional Options instead of "Start address (-p
<alternate-address>)".

TAR-
44454

String comparison functions
fail on signed values

String comparison functions (strcmp, strncmp and
memcp) can return the wrong result if the
parameter strings contain non-ASCII characters.

CrossCore Embedded Studio 1.0.0 Release Notes

Page 16

TAR-
48374

BF60x def headers have
incorrect casts for some
registers in the EMAC module

In the "cdef" header files for BF60x processors
(which contain C register and bitfield definitions), a
number of macros for memory-mapped registers in
the EMAC module are incorrect.The macros should
use (volatile uint32_t *) instead of (void * volatile *).
The list of incorrect macros is given below,
followed by correct definitions:
pREG_EMAC0_DMA_RXDSC_ADDR
pREG_EMAC0_DMA_TXDSC_ADDR
pREG_EMAC0_DMA_TXDSC_CUR
pREG_EMAC0_DMA_RXDSC_CUR
pREG_EMAC0_DMA_TXBUF_CUR
pREG_EMAC0_DMA_RXBUF_CUR
pREG_EMAC1_DMA_RXDSC_ADDR
pREG_EMAC1_DMA_TXDSC_ADDR
pREG_EMAC1_DMA_TXDSC_CUR
pREG_EMAC1_DMA_RXDSC_CUR
pREG_EMAC1_DMA_TXBUF_CUR
pREG_EMAC1_DMA_RXBUF_CUR

Correct definitions:
#define pREG_EMAC0_DMA_RXDSC_ADDR
((volatile uint32_t
)REG_EMAC0_DMA_RXDSC_ADDR) / EMAC0
RX Descriptor List Address */
#define pREG_EMAC0_DMA_TXDSC_ADDR
((volatile uint32_t
)REG_EMAC0_DMA_TXDSC_ADDR) / EMAC0
TX Descriptor List Address */
#define pREG_EMAC0_DMA_TXDSC_CUR
((volatile uint32_t
)REG_EMAC0_DMA_TXDSC_CUR) / EMAC0
TX current descriptor register */
#define pREG_EMAC0_DMA_RXDSC_CUR
((volatile uint32_t
)REG_EMAC0_DMA_RXDSC_CUR) / EMAC0
RX current descriptor register */
#define pREG_EMAC0_DMA_TXBUF_CUR
((volatile uint32_t
)REG_EMAC0_DMA_TXBUF_CUR) / EMAC0
TX current buffer pointer register */
#define pREG_EMAC0_DMA_RXBUF_CUR
((volatile uint32_t
)REG_EMAC0_DMA_RXBUF_CUR) / EMAC0
RX current buffer pointer register */
#define pREG_EMAC1_DMA_RXDSC_ADDR
((volatile uint32_t
)REG_EMAC1_DMA_RXDSC_ADDR) / EMAC1
RX Descriptor List Address */
#define pREG_EMAC1_DMA_TXDSC_ADDR
((volatile uint32_t

CrossCore Embedded Studio 1.0.0 Release Notes

Page 17

)REG_EMAC1_DMA_TXDSC_ADDR) / EMAC1
TX Descriptor List Address */
#define pREG_EMAC1_DMA_TXDSC_CUR
((volatile uint32_t
)REG_EMAC1_DMA_TXDSC_CUR) / EMAC1
TX current descriptor register */
#define pREG_EMAC1_DMA_RXDSC_CUR
((volatile uint32_t
)REG_EMAC1_DMA_RXDSC_CUR) / EMAC1
RX current descriptor register */
#define pREG_EMAC1_DMA_TXBUF_CUR
((volatile uint32_t
)REG_EMAC1_DMA_TXBUF_CUR) / EMAC1
TX current buffer pointer register */
#define pREG_EMAC1_DMA_RXBUF_CUR
((volatile uint32_t
)REG_EMAC1_DMA_RXBUF_CUR) / EMAC1
RX current buffer pointer register */

TAR-
48372

___cplb_ctrl is used as part of
the instruction/parity
workaround but may not be
initialized before use

The ___cplb_ctrl variable is checked during the
startup code sequence to see if instruction caching
is enabled; if it is, instruction parity is disabled to
avoid anomaly 16000005 ("Using L1 Instruction
Cache with Parity Enabled is Unreliable").

If runtime initialization support is enabled (i.e. the "-
mem" switch is used or "Runtime initialization" is
selected in the linker project options), ___cplb_ctrl
will be checked before it is initialized by the runtime
initialization sequence, and will contain a random
value. This can mean that parity and instruction
caching get enabled together and the anomaly will
be hit.

To avoid this issue, do one of the following:
- do not use runtime initialization.
- disable instruction caching..
- disable parity support by defining __parity_ctrl to
zero.

TAR-
48443

USB Controller Driver header
file MISRA errors

The USB controller driver is prebuilt and is included
in the driver library file libdrv.dlb. If you are
rebuilding this driver library from source and you
are building with the -misra-strict compiler option
you will encounter some MISRA-C warnings and
errors.

CrossCore Embedded Studio 1.0.0 Release Notes

Page 18

TAR-
48549

Watchdog services are not
included in libssl

The ADSP-BF609 Watch Dog Timer (WDT) service
sources were not built into the System Services
library

Blackfin\lib\bf609_rev_any\libssl.dlb
Blackfin\lib\bf609_rev_none\libssl.dlb

To use the WDT you will need to include its source
file into your project.

Blackfin\lib\src\services\source\wd\adi_wd.c

The header file to include to include in your project
is
#include <services\wd\adi_wd.h>

Please note that the documentation for the WDT is
not available in help system. However,
Blackfin\lib\src\services\source\wd\adi_wd.c
contains the documenation for the WDT APIs. As
of this release you will need to browse
Blackfin\lib\src\services\source\wd\adi_wd.c for API
documentation.

TAR-
48092

The Power Service is unable
to put the processor into deep
sleep

The Power Service has an
adi_pwr_SetPowerMode() API which is used to set
the processor dynamic power management
operating mode. This API is currently capable of
setting the operating mode to Full On, Active,
Active PLL Disabled or Sleep. The Deep Sleep and
Hibernate modes are not currently supported by
this API. The adi_pwr_SetPowerMode() API
doesn't return an error code and the mode is not
changed if attempting to set the mode to Deep
Sleep or Hibernate.

TAR-
48392

Disabling PPIRx broadcast in
the Video Subsystem driver
clobbers VSS connection
register contents

If the Video Subsystem API
adi_vss_EnablePPIRxBcast is called to disabled
the EPPI receive broadcast, the VSS_CONN
register contents will be cleared. This is due to a
bug in the implementation of the API.

By default the EPPI Rx broadcast is disabled. So it
is not required to call the
adi_vss_EnablePPIRxBcast to disable the
broadcast. This will be fixed in the upcoming
update of the CCES.

