
CCES 1.1.0 Release Notes
Introduction

Supported Operating Systems
System Requirements

Hardware Requirements
ICE-100B
Standalone Debug Agent 2 (SADA 2)

New Functionality
Support for ADSP-BF70x Family Processors
Debug Support for ADSP-BF707 EZ-Board Evaluation Hardware
Functional Simulation of ADSP-BF70x Processors
ICE-1000 Emulator
ICE-2000 Emulator

Changed Functionality
Blackfin Compiler
Run Time Libraries

Known Problems and Limitations
No System Reset
Unlocking a Secure Part
Debugging Multiprocessor BF70x Target
Build Issues with Windows 8.0
Interaction with Verdasys DGAgent
ADSP-BF707 Secure Boot Requires LDR File With No Fill Blocks
Some CAN registers are displayed incorrectly in register windows

Functions in L2 Utility ROM
C and DSP Run-Time Library Functions
Device Driver functions
RTOS functions

Introduction
This document describes the changes for CrossCore Embedded Studio (CCES) 1.1.0. This release adds support for the ADSP-BF70x processor
family revision 0.1, the new ICE-1000 and ICE-2000 emulator hardware and general maintenance updates.

Supported Operating Systems
This release of CCES is supported on the following operating systems:

Windows XP Professional SP3 (32-bit only)
Windows Vista Business, Enterprise, or Ultimate SP2 (32-bit only)
Windows 7 Professional, Enterprise, or Ultimate (32 and 64-bit)
Windows 8.1 Pro or Enterprise (32 and 64-bit)

System Requirements
Verify that your PC has these minimum requirements for the CCES installation:

2 GHz single core processor; 3.3GHz dual core or better recommended
1 GB RAM; 4GB or more recommended
2 GB available disk space
One open USB port

Note
Windows Vista, Windows 7, and Windows 8 users may experience User Access Control (UAC) related errors if the software is installed
into a protected location, such as or . We recommend installing the software in aProgram Files Program Files (x86)
non-UAC-protected location.

Note
A faster disk drive decreases the build time, especially for a large amount of source files. 4GB of RAM or more will substantially
increase the performance of the IDE.

Hardware Requirements

ICE-100B
Starting with CCES 1.1.0 users are required to install a jumper on JP2 of the ICE-100B in order to use the emulator. When going back to prior
CCES releases or any VisualDSP++ release, users must have this jumper removed. When installing or removing the jumper, USB should be
disconnected or unplugged and then plugged in again to the emulator after the jumper has been changed. Please refer to the following diagram
for the location and proper placement of JP2 highlighted in .red

Standalone Debug Agent 2 (SADA 2)
Starting with CCES 1.1.0 users are required to install a jumper on JP1(pins 1+2) of the SADA 2 in order to use the direct USB connection through
the debug agent. When going back to prior CCES releases or any VisualDSP++ release, users must have this jumper removed. When installing
or removing the jumper, USB should be disconnected or unplugged and then plugged in again to the debug agent after the jumper has been
changed. Please refer to the following diagram for the location and proper placement of JP1 highlighted in .red

New Functionality

Support for ADSP-BF70x Family Processors
This release of CCES adds support for the following new Blackfin+ parts as well as support for the new ADSP-BF707 EZ-Board evaluation

ICE-100B jumper placement

SADA 2 jumper placement

hardware.

ADSP-BF700
ADSP-BF701
ADSP-BF702
ADSP-BF703
ADSP-BF704
ADSP-BF705
ADSP-BF706
ADSP-BF707

Default Configurations

When a new project is created for a processor in the ADSP-BF70x family, the out-of-the-box configuration is set by the Startup Code/LDF Add-in,
and is as follows:

Instruction cache is enabled.
Data cache is disabled and Data CPLBs for memory protection is enabled.
Parity-checking is enabled, for L1 Instruction SRAM and L1 Data SRAM.
L2 ECC is enabled.
External memory support is disabled.
Stack and heap are allocated using L1 data memory.

When a new application is built without the Startup Code/LDF Add-in, the configuration is provided by the run-time library and default LDF, as
follows:

Instruction cache is enabled.
Data cache and data CPLBs are enabled.
Parity-checking is enabled, for L1 Instruction SRAM and L1 Data SRAM.
L2 ECC is enabled.
External memory support is disabled.
Stack and heap are allocated using L1 data memory.

Utility ROM

The ADSP-BF70x processors include extensive functionality in L2 ROM space, which includes:

Commonly-accessed run-time library support, including DSP library functions and maths emulation.
Device drivers.
Two configurations of the Micrium uC/OS-III Real-Time Operating System. The Micrium uC/OS-III Add-in must be installed and the
appropriate add-ins must be added to the application to utilitize either of these configurations.
FFT twiddle tables.

Support for using this functionality is enabled by default when building applications for ADSP-BF70x parts using CCES 1.1.0. A list of the
functions and data exported by the L2 Utility ROM is included later in this document.

Adding a driver to an application as source via the add-in mechanism only disables the ROM version of that specific driver. Any API calls to other
drivers that are including in the ROM still uses the ROM.

Debug Support for ADSP-BF707 EZ-Board Evaluation Hardware
This release of CCES adds native debug support for the ADSP-BF707 EZ-Board.

Note
Please note that you will need an ICE-1000 emulator or an ICE-2000 emulator to connect to an ADSP-BF70x processor. Previous ICE
emulators are not compatible with the ADSP-BF70x processor family.

Functional Simulation of ADSP-BF70x Processors
In this release, functional simulation of the ADSP-BF70x parts is supported for the following components:

Instruction set and core machine state
Core event controller
Internal and external memory spaces
Utility ROM images in L2 ROM space
Core timer

Many additional system components and peripherals such as below are being developed for future releases of the simulator but are not yet
present:

DDE, SEC, TRU, SPU, SMPU, CGU, DPM, RCU
GPIO, PINT
GPT, RTC, WDT
SPI, SPT
Other peripherals, accelerators, and infrastructure.

If your program references a currently unsupported simulation module you will receive error messages when attempting tounimplemented MMR
program the module's MMR registers.

Simulation of the ADSP-BF70x parts can be done in a CrossCore Embedded Studio simulator session or using the command line simulator

Interactive Debug using CCES

To establish a simulator session for the ADSP-BF707 part make the following selections on the Debug Configurations dialog:

Target ChipFactory Instruction Set Simulator

Platform ADSP-BF707 Functional-Sim

Processor ADSP-BF707

Command Line Simulation using CHIPFACTORY.EXE

ADSP-BF70x parts may also be simulated using the "chipfactory.exe" command line simulator.

Simulator command-line switches

The simulator supports the following command-line switches:

-bound-exe-time num

Bound the execution to cycles. 0 means infinity. (Can also be achieved with environment variablenum
ADI_CCES_SIM_BOUND_EXE_TIME)

Default value : 0x0

-help

Print help information

-ignore-fail-label

The simulator will halt if it encounters a “fail” label. This is a label that begins with one or more underscores, followed by the four characters
“fail”. For example, both and are fail labels, and will cause the simulation to halt. Use the _fail ____fail_on_return –ignore-fail-

 switch to cause the simulator to ignore fail labels.label

Default value : false

-syntax

Print syntax information

-proc proc-name

Simulate processor identified by proc-name. For example:

-proc ADSP-BF707.

Default value: none - this is a required switch.

-sim-type sim-type

Platform name. Use the following value, for ADSP-BF70x processors:

-sim-type Functional-Sim

Default value: Functional-Sim

-quiet

Be as quiet as possible

Default value: false

-xml-path path

Sets the path to the folder containing the 'System/Chipfactory' directory in order to load the processor description and instantiate the
described simulator.

The and are also used to select the desired processor description. sim-type proc-name

Default value : The location of the CrossCore Embedded Studio installation directory.

-no-exit-value

Ignore the value passed to exit() by the application being simulated.

Default value : false

-version

Print version number

chipfactory -proc ADSP-BF707 hello.dxe
Unimplemented MMR Write to 0x20000020
Unimplemented MMR Read from 0x20000060
Unimplemented MMR Write to 0x20000064
Hello World
Halt label "___lib_prog_term" hit at PC = 0x11a03096
 - Simulation result : 0 (ok)
 - Simulated application result : 0

 (69304 simulated chip cycles) : (end-start wall clock=30) (2310.13
KHz) (2.31 MHz)

In this simulation, support for ROM image used in interactive debugging will also be supported when using the command line simulator. However,
whether a specific portion of a ROM image can be simulated is a function of whether support for all parts of the processor required are being
simulated.

ICE-1000 Emulator
Support for a new low cost emulator has been added to this release of CCES which can debug all legacy SHARC and Blackfin processors. The
ICE-1000 is one of two emulators that will allow users to debug the ADSP-BF70x family processors.

ICE-2000 Emulator
Support for a new emulator has been added to this release of CCES which can debug all legacy SHARC and Blackfin processors. The ICE-2000
is one of two emulators that will allow users to debug the ADSP-BF70x family processors. The ICE-2000 operating frequency can be 1MHz,
5MHz, 9MHz, 15MHz, 23MHz, or 46MHz but defaults to 9MHz. In order to successfully run at a certain emulator operating frequency, it is
recommended that the core clock of the processor being debugged is running at 2X the emulator operating frequency. So if the emulator
operating frequency is 9MHz, it is recommended that the core clock be at least 18MHz. Other variations on the target board can also affect the
emulator operating frequency. Additionally the should have a which is 2X the emulatorADSP-BF70x processors core clock and system clock
operating frequency.

Chipfactory command line simulator example

Changed Functionality

Blackfin Compiler

Compiler error cc0137

The Blackfin compiler raises error cc0137 for uses of decrement or increment operators for the result of a cast in a single expression. Previous
versions of the Blackfin compiler and the CCES 1.1.0 SHARC compiler issue a warning for this problem. For example the following source will
cause new error cc0137.

void func(void *buffer, unsigned short us, int len) {
 for (int i=0; i<len; i++)
 *((unsigned short *)buffer)++ = us;
}

Correct the error by performing the cast in a separate expression from the decrement or increment. For the example above the correction is
shown below.

void func(void *buffer, unsigned short us, int len) {
 unsigned short *usPtr = (unsigned short *)buffer;
 for (int i=0; i<len; i++) {
 *usPtr++ = us;
 }
}

Run Time Libraries

Data cache invalidation

The library functions dcache_invalidate() and cache_invalidate() now always use the appropriate configuration bits to invalidate the data caches
for all Blackfin parts. This means that the caches can no longer be invalidated individually, with the exception of BF70x parts where data cache B
can be invalidated without also invalidating data cache A. Any other options will invalidate both cache banks, the equivalent of calling
dcache_invalidate_both(). The behavior of instruction cache invalidation remains unchanged.

cc0137 example

example cc0137 correction

Scratchpad

The L1 SRAM space known as scratchpad in Blackfin architectures has been replaced by L1 Data C, in the Blackfin+ architecture, and the output
sections in the .ldf files reflect this change. The .ldf files for ADSP-BF70x continue to accept L1_scratchpad input sections, which are mapped to
L1 Data C.

Updated Language Standards Support

The Blackfin compiler accepts many features of the ANSI/ISO 14882:2011 Standard (C++11), when the -c++11 switch is used. Note that the
underlying run-time library conforms to ANSI/ISO 14882:2003. When the -c++ switch is used, the compiler conforms to the ANSI/ISO 14882:2003
Standard.

The -g++ switch may be used with the Blackfin compiler. It directs the compiler to support many of the GNU G++ extensions to the C++ language.
The -g++ switch may be used in conjunction with either the -c++ or -c++11 switches.

These language conformance enhancements are only available in the Blackfin compiler. They are not available in the SHARC compiler.

Updated USB Controller Driver for ADSP-BF52x, ADSP-BF54x, ADSP-BF60x and new
driver for ADSP-BF70x

The separate USB Device and Host mode controller drivers have been replaced with a single integrated driver for both host and device modes of
operation. This integrated driver has also been ported to the ADSP-BF70x family of processors. It is also enhanced to provide Isochronous
transfers and to improve stability.

As a result, the device driver API has been changed. As such, all C/USB Device Stack 1.0.0 and 1.0.1 products are incompatible with CCES
1.1.0, even though they may be displayed within the Add-in Manager dialog. Please upgrade your C/USB Device Stack products to release 1.1.0.
Please refer to the Release Notes of the C/USB Device 1.1.0 products for further information.

Known Problems and Limitations

No System Reset
Currently only a core reset is supported on the BF70x which has shown limitations when peripherals are running at the time of a core reset.
 There may be cases where users will run an example and then reload to run the example a second time and they will get exceptions. This could
be due to the peripheral interrupt being serviced at the wrong time causing an exception. In order to fix this, users need to identify the peripheral
that is causing the issue and create a custom board support package xml file that adds the appropriate register to reset the peripheral. The other
option would be to use the hard reset on the target board in between running examples. Using Engineer Zone or sending a private support
request is also a good option so that we are aware of the issue and can add it to the standard support files for the upcoming release. An example
custom board support file is shown below and more information on custom board support files can be found in the CCES help.

<?xml version="1.0" standalone="yes"?>
<custom-cces-proc-xml
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="\Analog Devices\CrossCore Embedded Studio
1.1.0\System\ArchDef\ADSP-custom-board.xsd"
 processor-family="Blackfin"
 file="ADSP-BF706_mini_custom.xml">

<custom-register-reset-definitions>
 <!-- Reset EPPI peripheral -->
 <register name="EPPI0_CTL" reset-value="0x00000000" core="Common" />

</custom-register-reset-definitions>
</custom-cces-proc-xml>

Custom Board Support(Resetting Registers)

Unlocking a Secure Part
The ADSP-BF70x processors can be locked in order to protect customer IP. Once a processor is locked, it cannot be accessed externally by an
emulator unless a special key is provided, which must also have been programmed into the processor's OTP memory the part is locked.before

A custom board support file is recommended in this situation with the contents similar to the following, in order to make the access key available
to the emulator:

<?xml version="1.0" standalone="yes"?>
<custom-cces-proc-xml
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="\Analog Devices\CrossCore Embedded Studio
1.1.0\System\ArchDef\ADSP-custom-board.xsd"
 processor-family="Blackfin"
 file="example_custom_board_support.xml">

 <custom-register-reset-definitions>
 <register name="userkey0" reset-value="0x00001111" core="Common" />
 <register name="userkey1" reset-value="0x22223333" core="Common" />
 <register name="userkey2" reset-value="0x44445555" core="Common" />
 <register name="userkey3" reset-value="0x66667777" core="Common" />
 </custom-register-reset-definitions>
</custom-cces-proc-xml>

The 128 bit user key format is:

|127 96|95 64|63 32|31
0|
+----------------------------+----------------------------+----------------------------+-------------------
---------+
| KEY3 | KEY2 | KEY1 | KEY0
|
+----------------------------+----------------------------+----------------------------+-------------------
---------+
|31 0|31 0|31 0|31
0|

Debugging Multiprocessor BF70x Target
Multiprocessor support for more than 1 BF70x processor in a JTAG scan chain is limited. If there are more than 1 BF70x processor in a scan
chain, users can only connect to 1 processor at a time. A custom platform would need to be created in this case using the Target Configurator so
that the processors that are not being debugged are set to unknown as shown in the picture below. Even though Device 1 is also a BF70x
processor, it is set to unknown when the user wants to debug Device 0. When the user wants to debug Device 1, then they will have to make
Device 0 unknown and Device 1 would be set to ADSP-BF707.

Custom Board Support Example

Build Issues with Windows 8.0
There is a known bug in the Eclipse framework used by the CCES IDE which may cause builds to crash with the error: "starter.exe has quit
unexpectedly". This crash has not been observed under either Windows 7 or Windows 8.1 and seems specific to just the first release of Windows
8. We are working to fix this issue in an upcoming release of CCES.

For more information please see the following bug report:

Bug 429838 - starter.exe has stopped working [pop up when building with eclipsec.exe]

Interaction with Verdasys DGAgent
The CCES build tools (compiler, assembler and linker) can interact with the product from Verdasys ()Digital Guardian https://www.verdasys.com/
such that the build is prevented from completing. This generally manifests as a "compiler hang". We are working to identify the reason for this
issue. If the compiler appears to be hanging, you can determine whether you're running into this problem, using Microsoft's
freely-available ProcessExplorer utility:

Invoke ProcessExplorer.
Click on the CPU column, to sort by CPU utilization.
Double-click on the process that is consuming the most CPU cycles.
Click on the tab.Threads
If the column lists then you're hitting this problem.Start Address dgapi.dll,

To obtain ProcessExplorer, please visit .http://technet.microsoft.com/en-us/sysinternals/bb896653.aspx

ADSP-BF707 Secure Boot Requires LDR File With No Fill Blocks
ADSP-BF70x processors support Secure Booting, where the loader stream is digitally signed and/or encrypted using the new signtool utility, and
the processor's Boot Kernel decrypts the stream and authenticates the signature before permitting the stream to boot. Silicon anomaly 19000022
describes a problem processing "fill blocks" when booting in secure mode, which causes the boot to fail. To avoid this problem, build the loader
stream using the elfloader's -NoFillBlock switch.

There is no problem processing "fill blocks" in non-secure mode.

Some CAN registers are displayed incorrectly in register windows
Several sets of registers for the CAN0 and CAN1 peripherals of the ADSP-BF70x processor family are not displayed correctly when viewed in
register windows in the IDE. They have fields which are defined as being in bit positions 0-7 within the register, but which should be defined to be
in positions 8-15. This issue is CCES-7713, and does not affect the correct functioning of applications.

Functions in L2 Utility ROM

https://bugs.eclipse.org/bugs/show_bug.cgi?id=429838
https://www.verdasys.com/
http://technet.microsoft.com/en-us/sysinternals/bb896653.aspx

C and DSP Run-Time Library Functions
The following table contains a list of functions from the C and DSP run-time libraries that are also available in the L2 Utility ROM. The ROM also
includes compiler support functions, which are hidden routines that the compiler knows about and relies on to provide run-time services for the
code that it generates (such as emulation of floating-point arithmetic).

Function Header File

a_compress filter.h

a_expand filter.h

abs stdlib.h

abs_fr16 stdlib.h

acos_fr16 math.h

acos_fr32 math.h

acosd math.h

acosf math.h

alog10d math.h

alog10f math.h

alogd math.h

alogf math.h

arg_fr16 complex.h

arg_fr32 complex.h

argd complex.h

argf complex.h

asin_fr16 math.h

asin_fr32 math.h

asind math.h

asinf math.h

atan_fr16 math.h

atan_fr32 math.h

atan2_fr16 math.h

atan2_fr32 math.h

atan2d math.h

atan2f math.h

atand math.h

atanf math.h

autocoh_fr16 stats.h

autocoh_fr32 stats.h

autocohd stats.h

autocohf stats.h

autocorr_fr16 stats.h

autocorr_fr32 stats.h

autocorrd stats.h

autocorrf stats.h

cabs_fr16 complex.h

cabs_fr32 complex.h

cabsd complex.h

cabsf complex.h

caddd complex.h

cartesian_fr16 complex.h

cartesian_fr32 complex.h

cartesiand complex.h

cartesianf complex.h

cdiv_fr16 complex.h

cdiv_fr32 complex.h

cdivf complex.h

ceild math.h

ceilf math.h

cexpd complex.h

cexpf complex.h

cfft_fr16 filter.h

cfft_fr32 filter.h

cfft2d_fr16 filter.h

cfft2d_fr32 filter.h

cfftf_fr16 filter.h

cfftf_fr32 filter.h

cfir_fr16 filter.h

cfir_fr32 filter.h

clip math.h

clip_fr16 math.h

cmatmmlt_fr16 matrix.h

cmatmmlt_fr32 matrix.h

cmatmmltd matrix.h

cmatmmltf matrix.h

cmlt_fr32 complex.h

cmltd complex.h

coeff_iirdf1_fr16 filter.h

coeff_iirdf1_fr32 filter.h

conjd complex.h

conv2d_fr16 filter.h

conv2d_fr32 filter.h

conv2d3x3_fr16 filter.h

conv2d3x3_fr32 filter.h

convolve_fr16 filter.h

convolve_fr32 filter.h

copysign_fr16 math.h

copysign_fr32 math.h

copysignd math.h

copysignf math.h

cos_fr16 math.h

cos_fr32 math.h

cosd math.h

cosf math.h

coshd math.h

coshf math.h

cotd math.h

cotf math.h

countones math.h

crosscoh_fr16 stats.h

crosscoh_fr32 stats.h

crosscohd stats.h

crosscohf stats.h

crosscorr_fr16 stats.h

crosscorr_fr32 stats.h

crosscorrd stats.h

crosscorrf stats.h

csubd complex.h

cvecdot_fr16 vector.h

cvecdot_fr32 vector.h

cvecdotd vector.h

cvecdotf vector.h

cvecsadd_fr16 vector.h

cvecsadd_fr32 vector.h

cvecsaddd vector.h

cvecsaddf vector.h

cvecsmlt_fr16 vector.h

cvecsmlt_fr32 vector.h

cvecsmltd vector.h

cvecsmltf vector.h

cvecssub_fr16 vector.h

cvecssub_fr32 vector.h

cvecssubd vector.h

cvecssubf vector.h

cvecvadd_fr16 vector.h

cvecvadd_fr32 vector.h

cvecvaddd vector.h

cvecvaddf vector.h

cvecvmlt_fr16 vector.h

cvecvmlt_fr32 vector.h

cvecvmltd vector.h

cvecvmltf vector.h

cvecvsub_fr16 vector.h

cvecvsub_fr32 vector.h

cvecvsubd vector.h

cvecvsubf vector.h

expd math.h

expf math.h

fabs math.h

fabsd math.h

fabsf math.h

fclipd math.h

fclipf math.h

fft_magnitude_fr16 filter.h

fft_magnitude_fr32 filter.h

fir_decima_fr16 filter.h

fir_decima_fr32 filter.h

fir_fr16 filter.h

fir_fr32 filter.h

fir_interp_fr16 filter.h

fir_interp_fr32 filter.h

floord math.h

floorf math.h

fmaxd math.h

fmind math.h

fminf math.h

fmodf math.h

frexpd math.h

frexpf math.h

gen_bartlett_fr16 window.h

gen_bartlett_fr32 window.h

gen_blackman_fr16 window.h

gen_blackman_fr32 window.h

gen_gaussian_fr16 window.h

gen_gaussian_fr32 window.h

gen_hamming_fr16 window.h

gen_hamming_fr32 window.h

gen_hanning_fr16 window.h

gen_hanning_fr32 window.h

gen_harris_fr16 window.h

gen_harris_fr32 window.h

gen_kaiser_fr16 window.h

gen_kaiser_fr32 window.h

gen_rectangular_fr16 window.h

gen_rectangular_fr32 window.h

gen_triangle_fr16 window.h

gen_triangle_fr32 window.h

gen_vonhann_fr16 window.h

histogram_fr16 stats.h

histogram_fr32 stats.h

histogramd stats.h

histogramf stats.h

ifft_fr16 filter.h

ifft_fr32 filter.h

ifft2d_fr16 filter.h

ifft2d_fr32 filter.h

ifftf_fr16 filter.h

ifftf_fr32 filter.h

iir_fr16 filter.h

iir_fr32 filter.h

iirdf1_fr16 filter.h

iirdf1_fr32 filter.h

isalnum ctype.h

isalpha ctype.h

iscntrl ctype.h

isdigit ctype.h

isgraph ctype.h

isinf math.h

isinfd math.h

islower ctype.h

isnan math.h

isnand math.h

isprint ctype.h

ispunct ctype.h

isspace ctype.h

isupper ctype.h

isxdigit ctype.h

labs stdlib.h

lcountones math.h

ldexpd math.h

llabs stdlib.h

llclip math.h

lldiv stdlib.h

llmax math.h

llmin math.h

log10d math.h

log10f math.h

logd math.h

logf math.h

matmmlt_fr16 matrix.h

matmmlt_fr32 matrix.h

matmmltd matrix.h

matmmltf matrix.h

max math.h

max_fr16 math.h

maxf math.h

mean_fr16 stats.h

mean_fr32 stats.h

meand stats.h

meanf stats.h

meansf stats.h

memchr string.h

memcmp string.h

memcpy string.h

memmove string.h

memset string.h

min math.h

min_fr16 math.h

modfd math.h

modff math.h

mu_compress filter.h

mu_expand filter.h

normd complex.h

normf complex.h

polar_fr16 complex.h

polar_fr32 complex.h

polard complex.h

polarf complex.h

powd math.h

powf math.h

rfft_fr16 filter.h

rfft_fr32 filter.h

rfft2d_fr16 filter.h

rfft2d_fr32 filter.h

rfftf_fr16 filter.h

rfftf_fr32 filter.h

rms_fr16 stats.h

rms_fr32 stats.h

rmsd stats.h

rmsf stats.h

rsqrtd math.h

rsqrtf math.h

sin_fr16 math.h

sin_fr32 math.h

sind math.h

sinf math.h

sinhd math.h

sinhf math.h

sqrt_fr16 math.h

sqrt_fr32 math.h

sqrtd math.h

sqrtf math.h

strcat string.h

strchr string.h

strcmp string.h

strcoll string.h

strcpy string.h

strcspn string.h

strftime string.h

strlen string.h

strncat string.h

strncmp string.h

strncpy string.h

strpbrk string.h

strrchr string.h

strspn string.h

strstr string.h

strxfrm string.h

tan_fr16 math.h

tan_fr32 math.h

tand math.h

tanf math.h

tanhd math.h

tanhf math.h

tolower ctype.h

toupper ctype.h

transpm_fr16 matrix.h

transpm128 matrix.h

transpm16 matrix.h

transpm32 matrix.h

transpm64 matrix.h

transpmd matrix.h

transpmf matrix.h

twidfft2d_fr16 filter.h

twidfftf_fr16 filter.h

twidfftf_fr32 filter.h

twidfftrad2_fr16 filter.h

twidfftrad2_fr32 filter.h

var_fr16 stats.h

var_fr32 stats.h

vard stats.h

varf stats.h

vecdot_fr16 vector.h

vecdot_fr32 vector.h

vecdotd vector.h

vecdotf vector.h

vecmax_fr16 vector.h

vecmax_fr32 vector.h

vecmaxd vector.h

vecmaxf vector.h

vecmaxloc_fr16 vector.h

vecmaxloc_fr32 vector.h

vecmaxlocd vector.h

vecmaxlocf vector.h

vecmin_fr16 vector.h

vecmin_fr32 vector.h

vecmind vector.h

vecminf vector.h

vecminloc_fr16 vector.h

vecminloc_fr32 vector.h

vecminlocd vector.h

vecminlocf vector.h

vecsadd_fr16 vector.h

vecsadd_fr32 vector.h

vecsaddd vector.h

vecsaddf vector.h

vecsmlt_fr16 vector.h

vecsmlt_fr32 vector.h

vecsmltd vector.h

vecsmltf vector.h

vecssub_fr16 vector.h

vecssub_fr32 vector.h

vecssubd vector.h

vecssubf vector.h

vecvadd_fr16 vector.h

vecvadd_fr32 vector.h

vecvaddd vector.h

vecvaddf vector.h

vecvmlt_fr16 vector.h

vecvmlt_fr32 vector.h

vecvmltd vector.h

vecvmltf vector.h

vecvsub_fr16 vector.h

vecvsub_fr32 vector.h

vecvsubd vector.h

vecvsubf vector.h

zero_cross_fr16 stats.h

zero_cross_fr32 stats.h

zero_crossd stats.h

zero_crossf stats.h

The L2 ROM also contains these pre-computed twiddle tables, which can used when generating FFTs:

const complex_fract16 twidfftf_fr16_8k_table[]
const complex_fract32 twidfftf_fr32_4k_table[]
const complex_fract16 twidfftrad2_fr16_8k_table[]
const complex_fract32 twidfftrad2_fr32_4k_table[]

Device Driver functions
All APIs related to the following drivers:

Rotary counter
EPPI
SPI

Interrupt mode is not functional for the ROM version of the SPI driver. To use interrupt mode you will need to include the SPI
sources into your project using the Add-In manager.

SPORT
TWI

RTOS functions
 All APIs in

C-LIB version v1.37.00
C-CPU version 1.29.01
COS-III version 3.03.01

	CCES 1.1.0 Release Notes

