
© 2015 Analog Devices, Inc.

http://www.analog.com

processor.tools.support@analog.com

CCES 2.0.0 Release Notes

June 2015

CCES 2.0.0 Release Notes

http://analog.com

Contents

1 Introduction 4

1.1 Supported Operating Systems 4

1.2 System Requirements 4

2 New and Noteworthy 5

2.1 ADSP-SC58x/ADSP-2158x Processor Support Added 5

2.2 ADSP-BF70x Silicon Revision 1.0 Revised 5

2.3 Upgraded Development Environment 5

3 ADSP-SC58x and ADSP-2158x Processor Support 6

3.1 Developing for ADSP-SC58x/ADSP-2158x Processors 6

3.2 Drivers and Services for the ADSP-SC58x Processors 7

3.3 Creating Projects for ADSP-SC58x 8

3.4 Using Pre-load Files 8

3.5 Supported Emulators 9

3.6 Simulation of ADSP-21584 and ADSP-SC589 Processor cores 9

3.7 Debugging Multiple Cores 10

3.7.1 Core Option Settings in Debug Configurations 10

3.8 Debugging Only a SHARC+ Core 11

3.9 Creating Bootable LDR Files for ADSP-SC58x / ADSP-2158x 13

4 ADSP-BF70x Processor Support 14

4.1 ADSP-BF70x silicon revision 1.0 14

4.1.1 Utility ROM Improvements for ADSP-BF70x revision 1.0 14

4.2 Updated Silicon Anomaly Support 15

4.2.1 Assembler detection for STI-CLI silicon anomaly 19000010 15

4.2.2 Watchdog service workaround for silicon anomaly 19000011 15

4.2.3 Branch Predictor cleared during application startup for silicon anomaly 19000047 15

4.2.4 Branch Predictor disabled during ISRs for silicon anomaly 19000054 15

5 IDE Changes 16

5.1 Platform Changes Since 3.7 16

5.2 C/C++ Development Tools (CDT) Changes Since 8.0 16

5.3 New IDE Features Added Since CCES 1.2.0 16

5.4 Eclipse Features Removed Since CCES 1.2.0 17

5.5 Workspace Compatibility with Previous Versions of CCES 17

5.6 IDE Workspace Default Changed for CCES 2.0.0 18

6 Toolchain Updates 19

6.1 SHARC Compiler 19

6.1.1 Updated Language Standards Support 19

6.1.2 Universal-character-names in narrow string literals 19

6.1.3 Compiler error cc0137 19

6.1.4 Inlining support in C99 20

6.1.5 cc21k SHARC compiler driver switch changes 21

6.2 New Compiler Warnings 21

6.2.1 cc1486: invalid section qualifier 21

6.3 Run-Time Library Changes 22

6.3.1 Library performance optimizations 22

6.3.2 exit 22

6.3.3 rand (SHARC only) 22

6.3.4 Data cache invalidation (Blackfin only) 22

6.3.5 The %a conversion specifier 23

6.3.6 INTR_TAPC0_KEYFAIL renamed 23

6.3.7 Core-management functions for multi-core processors 24

6.4 LDF and Linking Related Changes 24

6.4.1 Implicit support for External memory sections in SHARC+ cores 24

6.4.2 32-bit SHARC+ PM data changes 24

6.4.3 SHARC+ Cache support (changes required for custom LDFs) 25

6.4.4 USE_L1_ONLY macro no longer has an effect 25

6.4.5 MEM_ASYNC sections renamed for ADSP-BF60x generated LDFs 25

6.5 Blackfin Assembler and Branch Instruction Encoding 25

7 Known Problems and Limitations 27

7.1 No System Reset 27

7.2 ICE-2000 JTAG Frequencies limited on ADSP-BF70x Rev 1.0 silicon 27

7.3 No SWD debug support for ADSP-SC58x/ADSP-2158x 27

7.4 GDB with OpenOCD with ICE-1000 or ADSP-SC584 28

7.5 Access to Uninitialized External Memory on ADSP-SC58x/ADSP-2158x Processors 28

7.6 Changing silicon revision on a ADSP-BF707 that contains SSL drivers added as source from the UI

may not work if the driver is in ROM 29

7.7 OTP Programmer not visible through Examples Browser 29

7.8 Ensure the volatile type qualifier is used where necessary 29

7.9 Passing data between SHARC+ and ARM cores 30

7.10 No concurrent USB Host and Device stack capability for ADSP-SC58x Processors 30

7.11 "Target not available" 30

7.12 Relaunching Debug Sessions with GDB with OpenOCD or QEMU 30

7.13 Stdio and Multithreaded Libraries in the GNU ARM Toolchain 31

7.14 QEMU Memory Limitations 31

7.15 Other Known Issues 31

CCES 2.0.0 Release Notes
June 2015

4

1 Introduction

This document describes the changes for CrossCore Embedded Studio (CCES) 2.0.0. This release
adds support for the ADSP-SC58x and ADSP-2158x processor families.

1.1 Supported Operating Systems

This release of CCES is supported on the following operating systems:

Windows Vista Business, Enterprise, or Ultimate SP2 (32-bit only)

Windows 7 Professional, Enterprise, or Ultimate (32 and 64-bit)

Windows 8.1 Pro or Enterprise (32 and 64-bit)

Note

Windows Vista, Windows 7, and Windows 8.1 users may experience User Access
Control (UAC) related errors if the software is installed into a protected location, such
as or . We recommend installing the Program Files Program Files (x86)

software in a non-UAC-protected location.

1.2 System Requirements

Verify that your PC has these minimum requirements for the CCES installation:

2 GHz single core processor; 3.3GHz dual core or better recommended

1 GB RAM; 4GB or more recommended

2 GB available disk space

One open USB port

Notes

A faster disk drive decreases the build time, especially for a large amount of
source files. 4GB of RAM or more will substantially increase the performance
of the IDE.

For proper viewing of documentation under Windows Internet Explorer 9 or
greater is recommended.

CCES 2.0.0 Release Notes
June 2015

5

2 New and Noteworthy

2.1 ADSP-SC58x/ADSP-2158x Processor Support Added

The ADSP-SC58x/ADSP-2158x processors are supported in CCES 2.0.0. These processors have
the following key features:

Two SHARC+ cores (except ADSP-SC582 which only has one SHARC+ core); a
proprietary toolchain is included to support these cores.

ARM Cortex-A5 core (ADSP-SC58x processors); a GNU toolchain is included to support
this core, including GDB with QEMU (Simulator) and OpenOCD (Emulator).

Functionality specific to Analog Devices processors is detailed in the Analog
 which can be found from the Devices ARM Toolchain Manual Help > Help

 menu of the IDE.Contents

Open source documentation relevant to the tools is also provided with the online
help.

The source files for the GNU toolchain and related open source software are
available from .http://analog.com/opensource

High-Performance Floating-Point FFT Accelerator (FFTA), accessible from the ARM and
SHARC+ cores. Details on how to use the accelerator in your application can be found in

 within the on-line help.Using the SHARC+ FFTA Accelerator

For more details, see , later in this document.ADSP-SC58x and ADSP-2158x Processor Support

2.2 ADSP-BF70x Silicon Revision 1.0 Revised

ADSP-BF70x silicon revision 1.0 has been revised in CCES 2.0.0 to include workarounds for
silicon anomalies that have been characterized since CCES 1.2.0. For details, refer to ADSP-

later in this document.BF70x Processor Support,

2.3 Upgraded Development Environment

The IDE has been upgraded from Eclipse 3.7.2 found in CCES 1.2.0 to Eclipse 4.4.0 in CCES
2.0.0. As the culmination of more than 4 years of development this update brings along a LOT of
new functionality and features. For more details, see , later in this document.IDE Changes

http://analog.com/opensource

CCES 2.0.0 Release Notes
June 2015

6

3 ADSP-SC58x and ADSP-2158x Processor Support

3.1 Developing for ADSP-SC58x/ADSP-2158x Processors

The SHARC+ cores in these processors represent a significant advancement upon the earlier
SHARC cores in earlier SHARC processors. There are a number of significant changes of which
you should be aware:

The ARM core is the primary core, in ADSP-SC58x processors, and is the core that boots.
The boot process follows the advanced, flexible boot architecture found on Blackfin
processors.

There is a new memory map, supporting the ARM core and the SHARC+ cores. Custom
LDFs will need to be replaced.

The SHARC+ cores introduce a number of performance improvements to the architecture:

Hardware support for double-precision floating-point operations.

A new cache architecture, with instruction and data caches.

A Branch Target Buffer.

The SHARC+ cores have a longer pipeline:

A given sequence of instructions may have different stalls on SHARC+, compared to
SHARC. The compiler will schedule instructions to avoid stalls, where possible; this
can lead to minor variances in arithmetic results relative to SHARC, when
commutative operations are re-ordered.

Some DSP library functions included with CrossCore Embedded Studio may require
more cycles on SHARC+, compared to SHARC. Please contact Analog Devices for
assistance if you encounter difficulties.

The SHARC+ architecture accepts SHARC assembly language, but is not binary-
compatible; SHARC assembly code, C and C++ must be rebuilt for correct execution on
SHARC+.

CCES 2.0.0 Release Notes
June 2015

7

The SHARC+ core supports word-addressed memory spaces, but is primarily a byte-
addressed architecture:

Peripherals deal with byte-addressed spaces. SSL/DD device drivers are available to
assist in development.

RTOS and other middleware products operate in byte-addressed space.

The compiler supports byte- and word-addressed spaces, and has support for
interoperability between them. Refer to in the Using Byte Addressing Compiler

.Manual for SHARC Processors

SHARC assembly code may need changes to operate correctly when dealing with
byte addresses.

Supported silicon revisions

CCES 2.0.0 supports silicon revisions 0.0, 0.1 and 1.0 of ADSP-SC58x and ADSP-
2158x processors. Please note:

Support for silicon revision 0.0 is deprecated; it will not be supported in CCES
2.1.0 and later releases.

Silicon revision 1.0 is currently equivalent silicon revision 0.1. Later releases of
CCES 2.1.0 will refine the support for silicon revision 1.0, to disable
workarounds for silicon anomalies that no longer apply.

3.2 Drivers and Services for the ADSP-SC58x Processors

The SSL 2.0 driver model provides support for almost all of the the ADSP-SC58x peripherals. For
a complete list of supported peripheral please see the ADSP-SC58x API Reference for both the
SHARC+ and Cortex-A cores in the online help.

The main features of this driver model are:

Small footprint and minimal cycle counts

Easy to use/modify

Interrupts and DMA have been abstracted

Switching between Interrupt and DMA Mode supported via API

Works with or without a RTOS (uC/OS-II, uC/OS-III and non-RTOS are supported)

Three Programming Models are supported

Non-Blocking Mode

CCES 2.0.0 Release Notes
June 2015

8

Blocking Mode

Callback Mode

For more information on these programming models, see the Low-Level Driver API Reference
within the in the online help.Device Drivers User Guide

The Cross Core Embedded Studio environment supports and simplifies the use of the SSL 2.0
model in the following ways:

Adding Device Drivers and Services sources through the System Configuration Manager
(system.svc) Add-In manager.

Pin multiplexing code generation via a CCES GUI

SRU (system routing unit) Code Generation via a CCES GUI

Example Manager

Code Sketches also available via the Example Manager

Examples for supported peripherals are found in the ADSP-SC58x Board Support Package (BSP),
available separately from www.analog.com.

Power On Self Test (POST)

Working examples for on and off-chip peripherals

USB Driver PMU usage

The USB enumeration process, for both host and device mode, may require a delay of precisely 1
msec. On the Cortex-A the USB driver uses the PMU (Performance Management Unit) to precisely
calculate the delay. The USB driver will reset the PMU and then use its cycle counting registers.
The PMU is a shared resource and any other part of the application that requires the PMU must be
aware of the USB enumeration process and its dependency on the PMU.

3.3 Creating Projects for ADSP-SC58x

To create a project within the CCES IDE for ADSP-SC58x you should choose the SHARC family,
and then select your target processor, e.g. ADSP-SC589. The IDE will then let you choose to
create projects for each (or all) of the cores. Whether you are just targeting the ARM core, one of
the SHARC+ cores, or all three cores, you can choose which projects you would like to create.

3.4 Using Pre-load Files

External memory needs to be configured appropriately before you can load your application into it.
When your application boots, this is done through initcodes; when you load your application into
your target using the debugger, this can be done by the IDE automatically for simple processors.

CCES 2.0.0 Release Notes
June 2015

9

For heterogeneous processors such as the ADSP-SC58x processors, more flexibility is required.
This release of CCES 2.0.0 introduces the concept of , which are equivalent to pre-load files
initcodes, but used during the debugging phase of development.

These pre-load files are only used for the ADSP-SC58x and ADSP-2158x processors currently.
You can find the pre-built binary files in . The projects used to create the pre-load SHARC\ldr
binary files are located in . The main purpose of these pre-load SHARC\ldr\init_code\SC589_Init
files is to set up clocks and DMC settings so that the debugger is able to load your application to
external memory. If you wish to change this setup, you can update the source files, rebuild the pre-
load executable, and place the binary in the folder in place of the existing file. The SHARC\ldr
master core is generally the only core that will need a pre-load so debug configurations will
automatically fill the pre-load file in for you as one of the applications that will be loaded. For an
ADSP-SC58x processor, the pre-load will be part of the ARM Core 0 project. For an ADSP-2158x
processor the pre-load will be part of the first SHARC+ core project.

In most cases, you will want your project executables to have the options set as described in Core
, as described under , Option Settings for Debug Configurations Debugging Multiple Cores

below.

See also Access to Uninitialized External Memory on ADSP-SC58x/ADSP-2158x Processors
in the section for additional information on pre-load files.Known Problems and Limitations

Note: Do not use preload files when building bootable LDR files. See also the the Init Code
section in the for additional information.Loader and Utilities Manual

3.5 Supported Emulators

Only the ICE-1000 and ICE-2000 emulators can be used to debug ADSP-SC58x and ADSP-2158x
processors.

3.6 Simulation of ADSP-21584 and ADSP-SC589 Processor cores

CCES 2.0.0 has the following options for simulating ADSP-2158x/ADSP-SC58x processor cores:

SHARC+ cores:

Functional simulation.

Cycle-accurate simulation.

ARM Cortex-A5 core:

Functional simulation, using the open source QEMU simulator.

The SHARC+ Cycle Accurate Simulator is accurate to within a tolerance of +/- 3%, compared to
silicon.

CCES 2.0.0 Release Notes
June 2015

10

The following cases are known to differ from the silicon:

cjump/rframe to use of I6/I7 register.

Some inaccuracies in stalls during read/write to core MMR registers.

Write to CCNTR to LCE based non-branch instruction.

Floating point compute or any multiplier operation followed by move of the result to any
register outside the relevant execution unit.

For more information on these new simulators please see the in the online Simulator User's Guide
help.

3.7 Debugging Multiple Cores

There is heterogeneous (ARM Cortex-A5 and 2 SHARC+ cores) debugging support when
debugging applications with the CrossCore Debugger and an emulator.

When the processor starts execution, the SHARC+ cores are held in IDLE until enabled by the
application running on the ARM core. This means:

If the application running on Core 0 does not explicitly enable the other cores, the SHARC+
cores will not run their applications.

When you load your application into the processor using the debugger and run to the start of
main() on Core 0, the other cores will still be in IDLE.

The run-time libraries include the adi_core_enable() function to release other cores from IDLE.
When you create new projects for ADSP-SC58x or ADSP-2158x processors and elect to generate
template code for your projects, the IDE populates the main() function of the booting core with
sample code that enables the other cores.

3.7.1 Core Option Settings in Debug Configurations

In most cases, you will want your project executables to have the following options set:

Application "Reset"
Option

"Run after
Load" Option

"Reset"
Option

"Run after
Load" Option

Emulator Simulator

Pre-load on
booting core

Set Set N/A N/A

Application on
booting core

Unset Set Set Unset

CCES 2.0.0 Release Notes
June 2015

11

Application "Reset"
Option

"Run after
Load" Option

"Reset"
Option

"Run after
Load" Option

Application on
other cores

Set Unset Unset Unset

These options are accessed in the ‘Modify configuration and continue’ window during session
startup. Select the appropriate core/dxe and click ‘Edit…’

With this configuration, when you launch the emulator debug session, the pre-load file will run to
completion, the main application for the booting core will be loaded, and it will run to the start of
main(). The other cores will be loaded and halted. At this point, you can use Run->MP Resume to
run the applications on your processor; when the booting core invokes adi_core_enable(), the
respective core will start executing its application.

If "Run after load" is "Set" for the non-booting cores, they will attempt to execute their applications
before the booting core executes adi_core_enable(); this will be indicated in the debugger by
showing those cores as , when the booting core halts at main(). In this situation, you can Running
halt those cores, and then use Run->MP Resume, to run all cores. This behavior is due to a
limitation in the processor's Reset handling; see under No System Reset Known Problems and

, for details.Limitations

For debugging multiple cores with the simulator, refer to the , section Simulator User's Guide
Features -> Simulator Sessions -> Handling Multiple DXE Files.

3.8 Debugging Only a SHARC+ Core

For convenience, you may only want to debug a SHARC+ core with the emulator and not run an
ARM application each time to enable your SHARC+ core. This can be achieved by following these
steps:

CCES 2.0.0 Release Notes
June 2015

12

Create an XML file that has the following contents:

Release Sharc Cores

<?xml version="1.0" standalone="yes"?>
<custom-cces-proc-xml
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="\Analog Devices\CrossCore
Embedded Studio 2.0.0\System\ArchDef\ADSP-custom-board.xsd"
 processor-family="sharc"
 file="example_custom_board_support.xml">
 <custom-register-reset-definitions>
 <register name="RCU0_MSG_SET" reset-value="0x00180000" core=
"Common" />
 </custom-register-reset-definitions>
</custom-cces-proc-xml>

In the debug configuration, click on the Custom Board Support tab and check Enable
customizations.

Then point to the XML file that you have just created.

With this XML configuration in place, you do not need to unset the option Run after load
on the SHARC+ core.

Now upon connecting to just the SHARC+ core you should be halted at main().

Since you will only be debugging one core, there is no need to use any of the MP run
control options such as MP Resume in this case.

CCES 2.0.0 Release Notes
June 2015

13

3.9 Creating Bootable LDR Files for ADSP-SC58x / ADSP-2158x

Multi-core bootable LDR files for ARM and SHARC+ cores can be created for the ADSP-SC58x /
ADSP-2158x processors using the CCES elfloader tool described in the online help. Refer to

 in the Loader for ADSP-SC58x / ADSP-2158x Multicore Processors Loader and Utilities
 for details.Manual

The ADSP-SC58x / ADSP-2158x processors have on-chip L2 boot ROMs for ARM and SHARC+
cores. With the boot kernel code already resident in the on-chip boot ROMs, there is no need to
load a boot kernel from the LDR files as was required when booting applications for prior SHARC
processor families. ADSP-SC58x / ADSP-2158x LDR files contain a series of bootable blocks in
the format expected by the modern on-chip boot ROM developed by Analog Devices. This LDR
file format is different than the ones used for existing SHARC processors.

Refer to inBoot ROM and Booting the Processor ADSP-SC58x SHARC+ Processor Hardware
 for details.Reference

CCES 2.0.0 Release Notes
June 2015

14

4 ADSP-BF70x Processor Support

4.1 ADSP-BF70x silicon revision 1.0

CCES 2.0.0 supports silicon revisions 0.0 and 1.0 of ADSP-BF70x processors, with silicon
revision 1.0 being the default.

Silicon revision 1.0 includes a number of significant silicon fixes including:

Improved booting functionality.

Support for misaligned data accesses.

Corrections to LUT, MSI and Pinmuxing.

Corrections to the Branch Target Buffer.

An updated Utility ROM

4.1.1 Utility ROM Improvements for ADSP-BF70x revision 1.0

Silicon revision 1.0 of ADSP-BF70x processors includes the following updates to the Utility
ROM:

The / / components have been further optimized for the Blackfin+ libdsp libcc libc

core.

uC/OS-III has been updated to use version 3.04.04 of Micrium's product.

LIBDRV was updated to add new drivers for RSI and HADC peripherals.

A new set of libraries, LDF symbol maps, include files and DXE files for simulation debugging
have been included in CCES 2.0.0 to support using the ADSP-BF70x parts silicon revision 1.0
utility ROM.

The IDE-based simulator debug sessions and the chipfactory.exe command-line simulation
automatically load the correct ROM DXE files based on the silicon revision that the application
being simulated was built for.

Warning

Before running an executable on an ADSP-BF70x processor, ensure that the executable
has been built for the correct silicon revision:

Applications that use the utility ROM and are built for 0.0 silicon will not
function correctly on 1.0 silicon.

CCES 2.0.0 Release Notes
June 2015

15

Applications that use the utility ROM and are built for 1.0 silicon will not
function correctly on 0.0 silicon.

Applications that do not use the utility ROM, or are built for revisions or any
 are unaffected by this update to the utility ROM.none

4.2 Updated Silicon Anomaly Support

A number of silicon anomalies have been addressed in silicon revision 1.0, and are no longer
enabled by default. Refer to the Analog Devices Silicon Anomaly List for your respective
processor, for details.

4.2.1 Assembler detection for STI-CLI silicon anomaly 19000010

The CCES 2.0.0 Blackfin assembler will issue new anomaly detection warning, ea5526, for
adjacent and instructions. The warning is to indicate where a workaround is required for STI CLI

silicon anomaly 19000010 “STI Directly Before CLI Does Not Enable Interrupts”.

Compiler and runtime library workarounds for 19000010 were previously added in
CCES 1.1.0.

4.2.2 Watchdog service workaround for silicon anomaly 19000011

The watchdog system-service provided in the CCES 2.0.0 has been updated to incorporate a
workaround for silicon anomaly 19000011 " The WRDO Bit in WDOG_CTL is Erroneously

".Cleared Under Certain Conditions

4.2.3 Branch Predictor cleared during application startup for silicon anomaly 19000047

The branch predictor can operate incorrectly if the predictor learns from a control-flow instruction
within an initcode, then the subsequent application happens to have a different control-flow
instruction mapped to the same location. To work around this situation, the startup code in CCES
2.0.0 flushes the branch predictor's learned information at the beginning of the application.

4.2.4 Branch Predictor disabled during ISRs for silicon anomaly 19000054

Silicon anomaly 19000054 describes a situation where the branch predictor's operation can lead to
a self-nested interrupt returning to User Mode instead of to the preceding interrupt level. To avoid
this situation, the interrupt dispatchers in CCES 2.0.0 disable the branch predictor during interrupt
service routines.

CCES 2.0.0 Release Notes
June 2015

16

5 IDE Changes

The IDE has been upgraded from Eclipse 3.7.2 found in CCES 1.2.0 to Eclipse 4.4.0 in CCES
2.0.0. As the culmination of more than 4 years of development this update brings along a LOT of
new functionality and features. Please refer to the individual release notes for the major Eclipse
components for specifics as to these new features:

5.1 Platform Changes Since 3.7

New and Noteworthy in Eclipse 4.0 (Helios)

New and Noteworthy in Eclipse 4.1 (Indigo)

New and Noteworthy in Eclipse 4.2 (Juno)

New and Noteworthy in Eclipse 4.3 (Kepler)

New and Noteworthy in Eclipse 4.4 (Luna)

5.2 C/C++ Development Tools (CDT) Changes Since 8.0

New and Noteworthy in CDT 8.1

New and Noteworthy in CDT 8.2

New and Noteworthy in CDT 8.3

New and Noteworthy in CDT 8.4

5.3 New IDE Features Added Since CCES 1.2.0

Native GIT support via EGit

Support for remote development via the Remote System Explorer

Pipeline Viewer

http://archive.eclipse.org/eclipse/downloads/drops4/R-4.0-201007271520/eclipse-news.html
http://archive.eclipse.org/eclipse/downloads/drops/R-3.7-201106131736/eclipse-news-part1.html
http://archive.eclipse.org/eclipse/downloads/drops/R-3.8.2-201301310800/news/eclipse-news-part1.html
http://archive.eclipse.org/eclipse/downloads/drops4/R-4.3-201306052000/news/eclipse-news-part1.html
http://www.eclipse.org/eclipse/news/4.4/eclipse-news-part1.php
http://wiki.eclipse.org/CDT/User/NewIn81
http://wiki.eclipse.org/CDT/User/NewIn82
http://wiki.eclipse.org/CDT/User/NewIn83
http://wiki.eclipse.org/CDT/User/NewIn84
http://www.eclipse.org/egit/
http://help.eclipse.org/luna/index.jsp?topic=%2Forg.eclipse.rse.doc.user%2Fgettingstarted%2Fg_start.html

CCES 2.0.0 Release Notes
June 2015

17

Linear and Statistical Profiler

5.4 Eclipse Features Removed Since CCES 1.2.0

Native CVS support via Platform-CVS

5.5 Workspace Compatibility with Previous Versions of CCES

Due to the move from Eclipse 3.7 to 4.4 it may not be possible to use the same workspace with
CCES 2.0 and earlier versions of CCES. When you point CCES 2.0 to a workspace created by
CCES 1.x you will see the following message. We recommend keeping separate workspaces for
multiple versions of CCES.

http://www.eclipse.org/eclipse/platform-cvs/

CCES 2.0.0 Release Notes
June 2015

18

5.6 IDE Workspace Default Changed for CCES 2.0.0

The default workspace path is more Linux friendly . For ${home}/cces/2.0.0

example, on Windows the default workspace path is C:\Users\${username}
 and on Linux the default workspace path is \cces\2.0.0 /home/${username}

./cces/2.0.0

CCES 2.0.0 Release Notes
June 2015

19

6 Toolchain Updates

6.1 SHARC Compiler

The CCES 2.0.0 SHARC compiler has been updated to provide improved language standards
compliance. These changes bring the SHARC compiler in line with the Blackfin compiler, which
was updated for CCES 1.1.0.

6.1.1 Updated Language Standards Support

The compilers accept many features of the ANSI/ISO 14882:2011 Standard (C++11), when the -
c++11 switch is used. Note that the underlying run-time library conforms to ANSI/ISO 14882:
2003. When the -c++ switch is used, the compilers conform to the ANSI/ISO 14882:2003
Standard.

The -g++ switch may be used with the compilers. It directs the compilers to support many of the
GNU G++ extensions to the C++ language. The -g++ switch may be used in conjunction with
either the -c++ or -c++11 switches.

6.1.2 Universal-character-names in narrow string literals

The way the SHARC compiler in CCES 2.0.0 (and the Blackfin compiler as of CCES 1.1.0)
handles universal-character-names in narrow string literals has changed. Previously the Unicode
value of a universal-character-name appearing in a narrow string literal was truncated (with a
warning) to the least-significant byte and represented as a single character in the value. Now the
value is the UTF-8 variable width encoding representation of the Unicode character. For example,
the string "\u20AC" (the Euro symbol) was previously equivalent to "\0xAC"; it is now equivalent
to "\0xE2\0x82\0xAC".

6.1.3 Compiler error cc0137

The SHARC compiler in CCES 2.0.0 (and the Blackfin compiler in CCES 1.1.0) raises error
cc0137 for uses of decrement or increment operators for the result of a cast in a single expression.
Previous versions of the Blackfin compiler and the CCES 1.1.0 SHARC compiler issue a warning
for this problem. For example the following source will cause new error cc0137.

cc0137 example

void func(void *buffer, unsigned short us, int len) {
 for (int i=0; i<len; i++)
 *((unsigned short *)buffer)++ = us;

CCES 2.0.0 Release Notes
June 2015

20

}

Correct the error by performing the cast in a separate expression from the decrement or increment.
For the example above the correction is shown below.

example cc0137 correction

void func(void *buffer, unsigned short us, int len) {
 unsigned short *usPtr = (unsigned short *)buffer;
 for (int i=0; i<len; i++) {
 *usPtr++ = us;
 }
}

6.1.4 Inlining support in C99

The support for inline functions that do not specify a storage class has changed in the CCES 2.0.0
SHARC compiler (and CCES 1.1.0 Blackfin compiler). Previously such inline functions were
implicitly treated as if they had static storage class. Such functions are now treated in a more
standard conforming way. The compiler support for inlining in C99 is described below. (Be aware
that C++ also has "extern inline"; this section specifically refers to behavior in C99 mode.)

inline (with static storage class)

static inline void func() { } int main() { func(); }

A static instance of "func" is generated when a call is not inlined or the address of the
function is taken

the call and the address refer to the static instance.

No instance of "func" is generated if all calls are inlined and the address of the function is
not taken.

The behavior is the same as C89 mode.

The behavior is the same as gcc with C99 enabled.

inline (with no storage class specifier)

inline void func() { } int main() { func(); }

If a call is not inlined, then function "func" is a static instance to which the call refers.

If the address of func is taken, the address and all calls to func within the translation unit
instead refer to an externally defined function.

If all calls are inlined, then no static instance is generated.

CCES 2.0.0 Release Notes
June 2015

21

The behavior is the same as C89 mode, apart from in c89 taking the address refers to the
local instance.

The behavior differs from gcc with C99 enabled. In C99 mode there is no local instance of
the function generated. All references are to a function defined elsewhere.

inline (with extern storage class specifier)

extern inline void func() { } int main() { func(); }

An external definition of the function is always created, this could lead to multiply defined
symbols if it is declared in a header file.

If all calls are not inlined, then the call refers to the external definition in this module.

If the address is taken, then the call refers to the external definition in this module.

This behavior differs from C89 mode. In this mode there is no definition of the function
created. Taking the address or not inlining a call will lead to an external reference being
created.

The behavior is compatible with gcc with C99 enabled.

Treatment of double-precision floating-point denormal values

The hardware support for double-precision floating-point arithmetic on the ADSP-215xx and
ADSP-SC58x family of processors flushes denormal input values to zero before each operation. In
contrast, the run-time library support used with earlier SHARCs without double-precision hardware
support does not flush denormals to zero. Therefore when denormals are present, the output given
by programs built for ADSP-215xx and ADSP-SC58x processors, and those built for earlier
SHARC parts, may not match exactly.

6.1.5 cc21k SHARC compiler driver switch changes

-aligned-stack switch is no longer supported and will be ignored if used. The stack uses of
the compiler will by default attempt to retain double-word alignment assuming the stack is aligned
at the start of a function unless the switch is used.-no-aligned-stack

6.2 New Compiler Warnings

6.2.1 cc1486: invalid section qualifier

The SHARC and Blackfin compilers will now issue warning for uses of cc1486 #pragma

 and with invalid or unknown section qualifiers. The sections #pragma default_section

invalid qualifier will be ignored as before and compilation will continue. Fix this problem by
selecting a correct section qualifier or by deleting the invalid one if it is not required.

CCES 2.0.0 Release Notes
June 2015

22

SHARC valid section qualifiers are , , , NO_INIT RUNTIME_INIT ZERO_INIT DOUBLE32,

 (for VISA parts code only), (for VISA parts code only), DOUBLE64, DOUBLEANY, SW NW

, and (for data only).DMAONLY PM DM

Blackfin valid section qualifiers are , , , NO_INIT RUNTIME_INIT ZERO_INIT DOUBLE32,

and .DOUBLE64 DOUBLEANY

6.3 Run-Time Library Changes

6.3.1 Library performance optimizations

A number of functions in the SHARC library have received performance improvements, as they
are common to SHARC and SHARC+, and have been optimized to avoid SHARC+ stalls. In some
cases, these performance improvements may result in minor changes in computed values.

Several SHARC functions have increased in code size, to overcome stalls.

6.3.2 exit

The behaviour of exit() has been rationalized between architectures to provide a consistent
interface. This also removes any differing behaviour with threaded/non-threaded applications.

The new behaviour is now as follows:

_Exit(int val) saves val to _exit_value and terminates the application (jumping to
__lib_prog_term), without running any atexit handlers.

exit(int val) invokes any atexit() handlers before calling _Exit(val) to save val to _exit_value and
terminate the application.

6.3.3 rand (SHARC only)

The rand implementation on SHARC processors has been replaced with an implementation which
uses a 64-bit seed to give a period of > 2^32.
This will result in a different series of values returned from rand() compared to previous releases,
but reduces the possibility of repeating patterns.

6.3.4 Data cache invalidation (Blackfin only)

The library functions dcache_invalidate() and cache_invalidate() now always invalidate the data
caches for all Blackfin parts by modifying configuration bits. This approach is significantly faster
than explicitly flushing portions of the cache as was done on some Blackfin parts in previous

CCES 2.0.0 Release Notes
June 2015

23

releases. This performance improvement means that the caches can no longer be invalidated
individually, with the exception of BF70x parts where cache B can be invalidated without also
invalidating bank A. Any other options will invalidate both cache banks, the equivalent of calling
dcache_invalidate_both(). The behavior of instruction cache invalidation remains unchanged.

6.3.5 The %a conversion specifier

In this release, the support for the %a conversion specifier conforms to the description in the C99
standard (ISO/IEC 9899). Compared to previous releases, you may notice the following differences
in behavior when printing values using this specifier:

– If an application is built with the switch -double-size-64, then the %a conversion specifier will
output arguments as IEEE double precision values, regardless of whether the length modifier L has
been specified. Previously, if neither a precision nor the L length modifier was specified, the %a
conversion code would format arguments as a float and would display no more than 6 digits after
the decimal point.

For example:

 printf ("%a\n",0.1L);

According to the C99 standard, this statement would display the text , but 0x1.999999999999ap-4
previous releases would display instead.0x1.999999p-4

– A formatted value would not be rounded if the precision was specified as zero.

For example:

 printf ("%.0a\n",1.5);

According to the C99 standard, this statement would display the text , but previous releases 0x1p+1
would display .0x1p+0

Note

There shall be no different behavior if the %a conversion code is used to read a string
that represents a floating-point value and to convert it to binary.

6.3.6 INTR_TAPC0_KEYFAIL renamed

The ADSP-BF70x parts def-header include files have been changed to rename macro
 to . A definition of INTR_TAPC0_KEYFAIL INTR_TAPC_KEYFAIL INTR_TAPC0_KEYFAIL

will only be available if macro is defined before _INCLUDE_LEGACY_SYSREG_NAMES

including the def-header.

CCES 2.0.0 Release Notes
June 2015

24

6.3.7 Core-management functions for multi-core processors

The run-time libraries for Blackfin and SHARC processors include functions to identify the current
core, and to enable other cores. These functions are:

adi_core_enable()

adi_core_id()

For details, refer to the library manual for the respective processor:

C/C++ Library Manual for SHARC Processors

C/C++ Compiler and Library Manual for Blackfin Processors

6.4 LDF and Linking Related Changes

6.4.1 Implicit support for External memory sections in SHARC+ cores

In the LDFs for previous SHARC parts, implicit support was provided for some external memory
input sections (seg_ext_data, seg_sdram, seg_ext_code) when SDRAM was not enabled.
In SHARC+ LDF's these input memory sections are only available when SDRAM is enabled via
the "Use external memory" checkbox in the LDF configuration, or the USE_SDRAM macro in the
default non-generated LDFs.

6.4.2 32-bit SHARC+ PM data changes

The LDFs for SHARC+ cores make use of a linker feature that allows sections of different types
such as DM or PM to be mapped into a common byte-addressed memory segment, which means
that memory does not need to be manually partitioned into segments for the various types.
However, that feature has a limitation: it assumes that each section type corresponds to a particular
memory width, for example 32 bits for DM and 48 bits for PM. This contrasts with mapping a
section to a segment of the same type, where the section will assume the segment’s width. For
example, a PM segment can have width 32 or 48.

As a consequence, 'seg_pmda' sections with type PM, which were mapped to PM segments with
width 32 on previous SHARC parts, would wrongly end up with width 48 when mapped to a byte-
addressed segment. Therefore, for SHARC+ cores such as those in the ADSP-SC589, the compiler
and runtime libraries declare word-addressed 'seg_pmda' sections as type DM rather than PM to
ensure that they end up with width 32.

CCES 2.0.0 Release Notes
June 2015

25

6.4.3 SHARC+ Cache support (changes required for custom LDFs)

The CCES Run-Time Library now provides support for enabling instruction and data (DM/PM)
caches on SHARC+ cores, using LDF symbols for configuration. Corresponding support is
provided in the default generated and non-generated LDFs, by default each cache is enabled using
16KB of cache space

Custom LDF's will minimally need to define the following LDF symbols in order to link
successfully. This will leave the caches disabled, so no memory layout alterations are required.

 ___ldf_icachesize = 0xffffffff;

 ___ldf_dmcachesize = 0xffffffff;

 ___ldf_pmcachesize = 0xffffffff;

6.4.4 USE_L1_ONLY macro no longer has an effect

It is no longer possible to disable the use of any memory beyond L1 by defining the LDF macro
USE_L1_ONLY.

6.4.5 MEM_ASYNC sections renamed for ADSP-BF60x generated LDFs

The Startup/LDF addin for the ADSP-BF60x parts family will rename the four ASYNC memory
sections when the LDF is regenerated using CCES 2.0.0. The changes are to have the numbers
used match the published memory-map and the non-generated LDFs, they were in reverse order
previously. Any user custom additions in generated LDFs using these sections (MEM_ASYNC0,
MEM_ASYNC1, MEM_ASYNC2 and MEM_ASYNC3) may require corresponding changes to
maintain the same memory usage seen prior to the change.

6.5 Blackfin Assembler and Branch Instruction Encoding

Some inconsistencies in the Blackfin assembler and linker support for JUMP and CALL
instructions have been resolved. This may mean that some existing assembly code will receive
different encodings.

When building for ADSP-BF7xx processors, and instructions (without the .X JUMP CALL

suffix) that target labels will be expanded to 64-bit encodings with a 32-bit target if
necessary, instead of triggering an out-of-range linker error.

The linker switch is no longer needed to enable expansion to 64-bit branches. (It is -jcs2l

still needed to enable expansion to indirect branches via the register on ADSP-BF5xx P1

and ADSP-BF6xx processors.)

CCES 2.0.0 Release Notes
June 2015

26

A (without suffix) to a numeric offset in the -0x1000000..0xFFFFFE range JUMP JUMP.L

but outside the -0x1000..0xFFE JUMP.S range will be encoded as a 32-bit instruction,
whereas with prior releases of CCES it would have been encoded as a 64-bit instruction.

A instruction has been added to allow users to explicitly select the 32-bit encoding CALL.L

with 24-bit target (cf.). An out-of-range error results if the target is outside the -0JUMP.L

x1000000..0xFFFFFE range.

In disassembly output, relative branch instructions are now always printed with the
appropriate suffix: .S for 16-bit encodings, .L for 32-bit encoding, and .XL for 64-bit
encodings.

CCES 2.0.0 Release Notes
June 2015

27

7 Known Problems and Limitations

7.1 No System Reset

Currently only a core reset is supported on the ADSP-SC58x/ADSP-2158x (Rev 0.1 silicon or
older) and the ADSP-BF70x (Rev 0.0 silicon) processors, which has shown limitations when
peripherals are running at the time of a core reset. There may be cases where you run an example
and then reload to run the example a second time and you get exceptions. This could be due to the
peripheral interrupt being serviced at the wrong time causing an exception. In order to fix this,
identify the peripheral that is causing the issue and reset that peripheral in a pre-load file. See the

section of this document for more information on how to use them. The other Using Pre-load Files
option would be to use the hard reset on the target board in between running examples. Using
Engineer Zone or sending a private support request is also a good option so that we are aware of
the issue and can add it to the default pre-load files for the upcoming release.

The nature of the core-only resets on the ADSP-SC58x and ADSP-2158x processors means that a
core has to be running in order for the reset operation to take effect, when that reset is triggered by
another core - if a core is halted by the emulator during the reset operation, the reset operation has
no effect on the halted core. For this reason, the emulator sets all cores running after an application
is downloaded to the processor from the IDE.

Beginning with Rev 1.0 silicon, the ADSP-BF70x supports system reset so the issues associated
with a core reset on this processor will no longer be present.

7.2 ICE-2000 JTAG Frequencies limited on ADSP-BF70x Rev 1.0 silicon

On silicon revision 1.0 of the ADSP-BF70x processor, the ICE-2000 will only work up to 23 MHz.
The 46 MHz JTAG frequency will not work properly.

7.3 No SWD debug support for ADSP-SC58x/ADSP-2158x

Currently the Target Configurator allows a platform to be created to allow SWD debugging(instead
of JTAG) for ADSP-SC58x/ADSP-2158x processors but SWD debugging will not work. JTAG is
the only supported debug method for these processors.

CCES 2.0.0 Release Notes
June 2015

28

7.4 GDB with OpenOCD with ICE-1000 or ADSP-SC584

When using GDB with OpenOCD and the ICE-1000 emulator, ensure the ICE-1000 is selected in
the ‘Target’ tab when setting up a Debug Configuration. The configuration defaults to ICE-2000.

When using GDB with OpenOCD with the ADSP-SC584 EZ-Board, ensure ADSP-SC584 is
selected in the ‘Target’ tab when setting up a Debug Configuration. The configuration defaults to
ADSP-SC589 EZ-Board.

7.5 Access to Uninitialized External Memory on ADSP-SC58x/ADSP-2158x

Processors

Access to a disabled memory - including speculative accesses - can result in a hang of the system
and the only fix is to do a hard reset on the target board to recover from the hang.The following
memories are affected:

Memory Affected on
0.0, 0.1
silicon

Affected on
1.0 silicon

SMPU
Available

DMC0 Yes Yes Yes

DMC1 Yes Yes Yes

SMC Yes Yes Yes

PCIe Yes Yes Yes

SHARC+ L1 via multi-processor space Yes No No

Flash Yes No No

There are two workarounds for this problem:

Enable the memory: If the memory is enabled, the memory device will respond to the access and
the hang will not occur.

CCES 2.0.0 Release Notes
June 2015

29

Configure the Secure Memory Protection Unit: If you do not intend to use the memory, you can
configure the memory's corresponding SMPU (where available), to disable speculative reads, and
to disallow all access to the memory space. Accesses will be rejected by the SMPU and not passed
onto the disabled memory device, so no hang will occur.

Apply this configuration - whether enabling the memory, or configuring the SMPU - in the preload
and/or initcode of your project. This will ensure that the workaround is applied before your
application starts running, whether you are loading your application through the IDE, or booting it
from a peripheral. See in this document for further details.Using Pre-Load Files

7.6 Changing silicon revision on a ADSP-BF707 that contains SSL drivers

added as source from the UI may not work if the driver is in ROM

If an application for ADSP-BF707 contains the sources to the drivers that are in ROM (SPI,
SPORT, UART, TWI, RSI, HADC) which were added via the SSL plugin, changing silicon
revision in the project may cause errors because the UI might not define the appropriate macros to
indicate that the driver used is not in the ROM. It is recommended that applications remove the
driver sources, change silicon revision and then add the driver sources again.

7.7 OTP Programmer not visible through Examples Browser

The OTP Programmer example which is needed when using the Command Line Device
Programmer (CLDP.exe) with the "-device otp" switch is not visible through the Examples
Browser. A supplied dxe that can be used with CLDP.exe can be found in the CrossCore
Embedded Studio installation directory under SHARC/Examples/Device_Programmer. To view or
rebuild this project, "Import an existing CCES project" from the Welcome screen, then browse for
the directory.

7.8 Ensure the volatile type qualifier is used where necessary

Compiler updates and improvements included in any CCES release can expose latent bugs in
application software for the first time. For instance the MemCopyArrayMode example found in
many Blackfin BSP products failed for the first time when built with CCES 1.1.0 in release
configuration. The problem was tracked down to a pre-existing bug in the MemCopyArrayMode
example. The example had omitted a necessary use of a volatile type qualifier on a variable
declaration, necessary because the variable is updated in a callback ISR function.

Please review the CCES help topic "The volatile Type Qualifier" and ensure that your applications
make use of volatile where necessary.

CCES 2.0.0 Release Notes
June 2015

30

7.9 Passing data between SHARC+ and ARM cores

CrossCore Embedded Studio 2.0.0 provides MCAPI drivers to assist applications in passing data
between the cores of the processor. When passing data between the cores, be aware that that some
data types may vary in size between the ARM and SHARC+ cores. In particular, be aware of:

C enumerations. For the SHARC+ processor, an enumeration is declared to be of type . int

For bare metal ARM applications, the GNU GCC Compiler defaults to using the -short-
 switch. This uses the smallest possible data type to store the enumeration.enums

Bitfields. The layout of the fields of a bitfield within enclosing integer datatypes is
implementation-defined, and application developers may not rely on different toolchains
using the same arrangement for a given bitfield declaration.

It is recommended that datatypes of specific sizes, such as those defined by , are used stdint.h

to express data that must be accessed by heterogeneous cores.

7.10 No concurrent USB Host and Device stack capability for ADSP-

SC58x Processors

The USB stack supports the connection to any of the USB0 (USB OTG) or USB1 (USB HS) ports
provided on the ADSP-SC589 EZ-Board, but connection to both the ports at the same time is not
supported. However, you can switch between USB0(USB OTG) and USB1(USB HS) ports while
your application is running.

7.11 "Target not available"

When you launch a debug session on a multi-core processor, such as ADSP-SC58x, ADSP-2158x,
ADSP-BF561 or ADSP-BF60x processors, the debugger connects to each core separately. At any
given time, one of the cores has the focus, and this defaults to the booting core of the processor. On
occasion, the debugger may grant the focus to another core as the connections are created, and this
may lead to a "Target not available" message, and an inability to display assembly code in the
disassembly window. Simply select the booting core in the Debug pane to grant the focus to the
correct core.

7.12 Relaunching Debug Sessions with GDB with OpenOCD or QEMU

When using GDB with OpenOCD QEMU, it is important to 'Terminate and Remove' the session or
before launching another session. Failure to do so could result in unstable behavior.

CCES 2.0.0 Release Notes
June 2015

31

7.13 Stdio and Multithreaded Libraries in the GNU ARM Toolchain

The GNU ARM toolchain includes multithreaded libraries for use when building RTOS-based
applications. The following issues are outstanding, relating to stdio:

Semaphores for the standard streams , and are allocated on a per-stdin stdout stderr

thread basis, rather than globally. This means that applications will require an additional
three semaphores per thread.

If the use of one of these three standard streams is as a parameter to one of the printf() first
family of functions, a NULL-pointer-dereference error will occur.

7.14 QEMU Memory Limitations

In CCES 2.0.0, QEMU models the ADSP-SC58x memory only partially. It appears that this has a
greater impact on ADSP-SC582 and ADSP-SC584 than on ADSP-SC587 and ADSP-SC589 as
ARM programs built for these two processors are more likely to use memory space not supported
in QEMU. As a consequence, a program may fail to load in QEMU or may fail to execute when
code or data are being accessed from unsupported memory regions. This is addressed in future
releases.

7.15 Other Known Issues

For the latest anomalies, please consult our page.Software and Tools Anomalies Search

http://www.analog.com/processors/tools/anomalies

	Introduction
	Supported Operating Systems
	System Requirements

	New and Noteworthy
	ADSP-SC58x/ADSP-2158x Processor Support Added
	ADSP-BF70x Silicon Revision 1.0 Revised
	Upgraded Development Environment

	ADSP-SC58x and ADSP-2158x Processor Support
	Developing for ADSP-SC58x/ADSP-2158x Processors
	Drivers and Services for the ADSP-SC58x Processors
	Creating Projects for ADSP-SC58x
	Using Pre-load Files
	Supported Emulators
	Simulation of ADSP-21584 and ADSP-SC589 Processor cores
	Debugging Multiple Cores
	Core Option Settings in Debug Configurations

	Debugging Only a SHARC+ Core
	Creating Bootable LDR Files for ADSP-SC58x / ADSP-2158x

	ADSP-BF70x Processor Support
	ADSP-BF70x silicon revision 1.0
	Utility ROM Improvements for ADSP-BF70x revision 1.0

	Updated Silicon Anomaly Support
	Assembler detection for STI-CLI silicon anomaly 19000010
	Watchdog service workaround for silicon anomaly 19000011
	Branch Predictor cleared during application startup for silicon anomaly 19000047
	Branch Predictor disabled during ISRs for silicon anomaly 19000054

	IDE Changes
	Platform Changes Since 3.7
	C/C++ Development Tools (CDT) Changes Since 8.0
	New IDE Features Added Since CCES 1.2.0
	Eclipse Features Removed Since CCES 1.2.0
	Workspace Compatibility with Previous Versions of CCES
	IDE Workspace Default Changed for CCES 2.0.0

	Toolchain Updates
	SHARC Compiler
	Updated Language Standards Support
	Universal-character-names in narrow string literals
	Compiler error cc0137
	Inlining support in C99
	inline (with static storage class)
	inline (with no storage class specifier)
	inline (with extern storage class specifier)
	Treatment of double-precision floating-point denormal values

	cc21k SHARC compiler driver switch changes

	New Compiler Warnings
	cc1486: invalid section qualifier

	Run-Time Library Changes
	Library performance optimizations
	exit
	rand (SHARC only)
	Data cache invalidation (Blackfin only)
	The %a conversion specifier
	INTR_TAPC0_KEYFAIL renamed
	Core-management functions for multi-core processors

	LDF and Linking Related Changes
	Implicit support for External memory sections in SHARC+ cores
	32-bit SHARC+ PM data changes
	SHARC+ Cache support (changes required for custom LDFs)
	USE_L1_ONLY macro no longer has an effect
	MEM_ASYNC sections renamed for ADSP-BF60x generated LDFs

	Blackfin Assembler and Branch Instruction Encoding

	Known Problems and Limitations
	No System Reset
	ICE-2000 JTAG Frequencies limited on ADSP-BF70x Rev 1.0 silicon
	No SWD debug support for ADSP-SC58x/ADSP-2158x
	GDB with OpenOCD with ICE-1000 or ADSP-SC584
	Access to Uninitialized External Memory on ADSP-SC58x/ADSP-2158x Processors
	Changing silicon revision on a ADSP-BF707 that contains SSL drivers added as source from the UI may not work if the driver is in ROM
	OTP Programmer not visible through Examples Browser
	Ensure the volatile type qualifier is used where necessary
	Passing data between SHARC+ and ARM cores
	No concurrent USB Host and Device stack capability for ADSP-SC58x Processors
	"Target not available"
	Relaunching Debug Sessions with GDB with OpenOCD or QEMU
	Stdio and Multithreaded Libraries in the GNU ARM Toolchain
	QEMU Memory Limitations
	Other Known Issues

