
© 2017 Analog Devices, Inc.

http://www.analog.com

processor.tools.support@analog.com

Linux Add-in for CrossCore Embedded Studio User's Guide

Version 1.2.0, August 2017

Linux Add-in for CrossCore

Embedded Studio

http://analog.com

Contents

1 Introduction 9

2 Quick Start Guide 10

2.1 SC5xx EZ-Kit Linux Quick Start Guide 10

2.1.1 Introduction 10

2.1.2 Environment set up 10

2.1.3 Flashing U-Boot for the First Time 14

2.1.4 Booting Linux Overview 18

2.1.5 Boot method 1: Copying the Linux image across the network 18

2.1.6 Boot method 2: Booting flashed Linux with persistent file system on SD Card 26

2.1.7 Boot Method 3: Booting the kernel from the SD Card (Quicker Boot) 30

2.1.8 Troubleshooting 32

2.2 Configure and build from source code 33

2.2.1 Introduction 33

2.2.2 Extract the source code 33

2.2.3 Configure and build u-boot 34

2.2.4 Configure and build Buildroot and Linux kernel 34

2.2.5 Customize the Buildroot and Linux kernel 35

2.2.6 Generate Kernel Image for Booting From Non-Volatile Storage 36

2.2.7 More tips about buildroot 37

3 Das U-boot 38

3.1 Ethernet Driver in U-Boot on SC5xx-EZKIT 38

3.1.1 Overview 38

3.1.2 Hardware Setup 38

3.1.3 Build U-Boot with emac0 or emac1 38

3.1.4 Using EMAC Driver 38

3.2 Creating and Booting Linux Using the New U-Boot "fitImage" 40

3.2.1 Introduction 40

3.2.2 Hardware Setup 40

3.2.3 Builroot and kernel Configuration 40

3.2.4 U-Boot Configuration 41

3.2.5 Create fitImage device tree 42

3.2.6 Boot Linux 45

3.3 Loading file from USB storage in u-boot 48

3.3.1 Overview 48

3.3.2 Hardware Setup 48

3.3.3 Test method 49

3.4 Mobile Storage Interface (MSI) 55

3.4.1 Overview 55

3.4.2 Hardware Setup 55

3.4.3 Software Configuration 56

3.4.4 Build and Load Uboot 56

3.4.5 Usage of MSI Driver 57

4 Linux buildroot distribution and applications 58

4.1 Bluetooth and headset auido example 58

4.1.1 Introduction 58

4.1.2 Hardware setup 58

4.1.3 Software configuration 58

4.1.4 Run headset audio example 59

4.2 Build application outside the buildroot framework 61

4.2.1 Introduction 61

4.2.2 Build Application outside Buildroot Framework 61

4.3 OProfile for performance benchmark 62

4.3.1 Introduction 62

4.3.2 Hardware Setup 62

4.3.3 Software Configuration 63

4.3.4 Simple OProfile usage 63

4.3.5 Examples 65

4.4 FTP Server (ftpd) 68

4.4.1 Introduction 68

4.4.2 Operation 68

4.5 Touchscreen Library 69

4.5.1 Introduction 69

4.5.2 Hardware Setup 69

4.5.3 Software Configuration 70

4.5.4 Example 71

4.6 MPlayer 74

4.6.1 Hardware Setup 74

4.6.2 Software Configuration 75

4.6.3 Build and Load Buildroot 76

4.6.4 Run MPlayer 76

4.7 IEEE 1588 and Linux PTP 77

4.7.1 PTP Introduction 77

4.7.2 PTP Configuration 78

4.7.3 Build 79

4.7.4 Example 79

4.7.5 More information 81

4.8 QT example for GUI 82

4.8.1 Introduction 82

4.8.2 Hardware Setup 82

4.8.3 Software Configuration 82

4.8.4 Build and Load Buildroot 85

4.8.5 Example 85

4.9 SQLite example for database 87

4.9.1 Introduction 87

4.9.2 Build and Load Buildroot 87

4.9.3 Run SQLite 88

4.10 Watchdog 88

4.10.1 Introduction 88

4.10.2 Software Configuration 89

4.10.3 Build and Load Buildroot 90

4.10.4 Test 90

5 Linux kernel and drivers 94

5.1 CAN Bus Data Transaction 94

5.1.1 Introduction 94

5.1.2 Hardware Setup 94

5.1.3 Software Configuration 94

5.1.4 Test Example 95

5.2 CPU Frequency utility 96

5.2.1 Introduction 96

5.2.2 Hardware Setup 96

5.2.3 Enabling CPU Frequency Driver in Linux Kernel 96

5.2.4 How to Change the CPU cpufreq 97

5.2.5 Change Core Clock Frequency via cpufreq-utils 99

5.3 CRC Crypto Driver Guide 100

5.3.1 Introduction 100

5.3.2 Hardware Setup 101

5.3.3 Software Configuration 101

5.3.4 Example 101

5.3.5 Linux Kernel Crypto API 102

5.4 Ethernet driver and performance 102

5.4.1 Introduction 102

5.4.2 Hardware Requirement 102

5.4.3 Software Configuration 102

5.4.4 Performance Benchmark Example 104

5.5 Linux LCD device driver 105

5.5.1 Introduction 105

5.5.2 Hardware Setup 105

5.5.3 Software Configuration 106

5.5.4 Example 107

5.6 Linux Sound Driver 108

5.6.1 Introduction 108

5.6.2 Hardware Setup 108

5.6.3 Software Configuration 109

5.6.4 Example 111

5.7 GPIO operation 115

5.7.1 Introduction 115

5.7.2 Hardware 115

5.7.3 Application space GPIO support 116

5.7.4 Paths in Sysfs 116

5.7.5 Dump the GPIO configuration 118

5.8 I2C Bus 118

5.8.1 Introduction 118

5.8.2 I2C in the Linux Kernel 119

5.8.3 I2C in User Space 121

5.9 Link Port driver 123

5.9.1 Introduction 123

5.9.2 Hardware Setup 123

5.9.3 Software configuration 124

5.9.4 Test Example 124

5.10 USB interface 125

5.10.1 Introduction 125

5.10.2 Hardware Setup 125

5.10.3 Software Configuration 125

5.10.4 USB HOST Example 126

5.11 General Bluetooth Dongle via USB 133

5.11.1 Introduction 133

5.11.2 Hardware Setup 133

5.11.3 Software Configuration 133

5.11.4 Example 134

5.12 Kernel API for DMA operation 137

5.12.1 Introduction 137

5.12.2 Linux DMA Framework 137

5.13 Linux MTD Driver 143

5.13.1 Introduction 143

5.13.2 Hardware Required 144

5.13.3 Software Configuration 144

5.13.4 Example 146

5.14 Linux PCIE device driver 147

5.14.1 Introduction 147

5.14.2 Hardware Setup 147

5.14.3 Software Configuration 147

5.14.4 Example 149

5.15 Linux Video Driver 150

5.15.1 Introduction 150

5.15.2 Hardware Required 151

5.15.3 Software Configuration 154

5.15.4 Example 159

5.16 Rotary driver 163

5.16.1 Introduction 163

5.16.2 Hardware Setup 163

5.16.3 Software Configuration 163

5.16.4 Example 165

5.17 SPI Driver 167

5.17.1 Introduction 167

5.17.2 Hardware Setup 169

5.17.3 Software Configuration 169

5.17.4 Example 172

5.18 Mobile Storage Interface for MMC/SD 172

5.18.1 Hardware Setup 172

5.18.2 Software Configuration 173

5.18.3 Build and Load Buildroot 174

5.18.4 Usage of MSI 174

5.19 Real Time Clock on ADSP-SC58x 178

5.19.1 Introduction 178

5.19.2 Hardware Required 178

5.19.3 Software Configuration 178

5.19.4 Build and Load Buildroot 179

5.19.5 Example 179

5.20 UART hardware flow control 180

5.20.1 Introduction 180

5.20.2 Hardware Setup 180

5.20.3 Software Configuration 180

5.20.4 Build and Load Buildroot 181

5.20.5 Example 181

6 Multicore support 182

6.1 Multi-Core Communication 182

6.1.1 MCAPI Supported Functions 182

6.1.2 Multi-core Development 184

6.2 Run the MCAPI demo 184

6.2.1 Introduction 184

6.2.2 Hardware Requirement 185

6.2.3 Configure and build 185

6.2.4 Running MCAPI MSG Test Example 188

6.2.5 Troubleshooting 190

6.3 Enable and Disable SHARC Cores 191

6.3.1 Introduction 191

6.3.2 Method 1: Enable SHARC cores with u-boot ICC command 191

6.3.3 Method 2: Enable SHARC Cores with corecontrol Utility in Linux 192

6.4 Introduction of MCAPI examples 194

6.4.1 Introduction 194

6.4.2 Performance of MCAPI 196

6.5 Run Linux on ARM and bare-metal application on SHARC 197

6.5.1 Introduction 197

6.5.2 MCAPI Test Example 197

6.6 Reserve Pinmux Functions in Linux for SHARC Applications 205

6.6.1 Introduction 205

6.6.2 Linux Kernel Configuration 205

6.6.3 Pinmux Reservation Example 207

6.7 SEC driver and multicore development 211

6.7.1 Introduction 211

6.7.2 Linux kernel Configuration 211

6.7.3 Coordinate the SEC Initialization for multicore Development 212

7 Generic Linux Documents 215

7.1 Generic U-Boot Documents 215

7.2 Generic Linux Kernel Documents 215

7.3 Generic Buildroot Documents 215

8 Developing Linux Applications Using CrossCore Embedded Studio 216

8.1 Create and build a project using the Linux targeting toolchain 216

8.1.1 Install CCES and Linux Add-in on Linux host 216

8.1.2 Start CCES IDE on Linux Host 216

8.1.3 Creating a new project using CCES 216

8.2 Debug a Linux application from within the CCES IDE 220

9 Appendix A: Hardware Used During Testing 224

Linux Add-in for CrossCore Embedded Studio 8

Copyright Information

© 2017 Analog Devices, Inc., ALL RIGHTS RESERVED. This document may not be reproduced in
any form without prior, express written consent from Analog Devices, Inc.

Disclaimer

Analog Devices, Inc. reserves the right to change this product without prior notice. Information
furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is
assumed by Analog Devices for its use; nor for any infringement of patents or other rights of third
parties which may result from its use. No license is granted by implication or otherwise under the
patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice

The Analog Devices logo, CrossCore, A B, EngineerZone, EZ-Board, EZ-KIT Lite and VisualDSP++ 2

are registered trademarks of Analog Devices, Inc. Blackfin, Blackfin+, SHARC, SHARC+ and
SigmaStudio are trademarks of Analog Devices, Inc. All other brand and product names are
trademarks or service marks of their respective owners.

Linux Add-in for CrossCore Embedded Studio 9

1 Introduction

The Analog Devices ADSP-SC5xx family is a series of heterogeneous multi-core processors. These
systems-on-a-chip contain a single ARM Cortex-A5 processor core accompanied by one or two
Analog Devices SHARC+ digital signal processor cores and a wide variety of memory and peripheral
interfaces. The ADSP-SC5xx family provides ADI customers with rich and flexible software stacks
on ARM and high performance DSP audio processing codecs on SHARC. The Linux Add-In for
CrossCore Embedded Studio provides users with a full development environment allowing them to
target Linux running on the Cortex-A5 core of the ADSP-SC5xx processor.

The Linux Add-In is only available for Linux hosts. It is not available for Windows host systems.

The Linux Add-In provides the following features:

Analog Devices enhanced Linaro GCC compiler toolchain

GDB debugger for Linux applications

Eclipse-based CrossCore Embedded Studio integrated development and debugging
environment for Linux applications

Pre-configured Linux images including u-Boot, Kernel and filesystem for the ADSP-SC5xx
EZ-Kits(including ADSP-SC589, ADSP-SC584 and ADSP-SC573)

Sources and build environment for U-Boot bootloader

Sources and 'Buildroot' build environment for Linux kernel and filesystem

Documentation specific to Linux on the ADSP-SC5xx family

Linux Add-in for CrossCore Embedded Studio 10

2 Quick Start Guide

2.1 SC5xx EZ-Kit Linux Quick Start Guide

2.1.1 Introduction

The Analog Devices release of the Linux Add-In for CrossCore Embedded Studio provides both
sources and pre-built binaries for the u-Boot bootloader, linux kernel and filesystem.
This Getting Started Guide begins by providing instructions that allow users to quickly deploy pre-
built images on the ADSP-SC5xx EZ-Kits in order to quickly evaluate Linux on the ADSP-SC5xx.
The document then follows up by providing step-by-step instruction for building and installing u-Boot
and Linux from source.

It is strongly recommended that the audience has a basic grounding in embedded Linux system
development. Some useful background reading may be found at http://elinux.org/

2.1.2 Environment set up

Configure the Linux Host Machine

The Linux Add-In tools need to be installed on a host PC running a supported version of Linux. The
supported distribution is Ubuntu x86 32-bit, version 14.04, however experienced Linux users will find
few issues when installing on newer versions of Ubuntu.

Running via virtual machine

While it is possible to use this product when installed on a virtual machine running Linux, we
have encountered issues when connecting to some EZ-Kits when the developer is running on
a virtual machine. Problems can occur on a machine by machine basis and may not be
consistently reproducible.

We strongly recommend that this product is installed on a native PC rather than a virtual
machine.

Networking, both local and internet-wide will be required to complete the steps below.

Several packages are required on the host machine in order to complete. These can be installed on
your host system with the following command:

http://elinux.org/

Linux Add-in for CrossCore Embedded Studio 11

$ sudo apt-get install build-essential minicom tftpd-hpa git-all
subversion openssh-server ncurses-dev

Installing the Linux Add-In

Download and install the latest versions of the CrossCore Embedded Studio and Linux Add-In for
CrossCore Embedded Studio.
Both products are provided as Linux Debian (.deb) packages.
Both packages are available from http://www.analog.com/en/design-center/processors-and-dsp
/evaluation-and-development-software/LinuxAddin.html

Install the packages by executing the commands below. Note that the version numbers of the packages
may differ from those shown on the command lines below.

$ sudo dpkg -i adi-CrossCoreEmbeddedStudio-linux-x86-2.6.0.deb
$ sudo dpkg -i adi-LinuxAddinForCCES-linux-x86-1.2.0.deb

The products will be installed in the directory on your host system./opt/analog

Useful file locations

The files and directories below are required for the following sections:

Location Description

/opt/analog/cces/2.6.0/ARM/arm-none-eabi ARM bare-metal toolchain

/opt/analog/cces-linux-add-in/1.2.0/ARM/arm-linux-gnueabi ARM Linux-targeting toolchain

/opt/analog/cces-linux-add-in/1.2.0/uboot-sc5xx-1.2.0/bin/init-

sc589-ezkit.elf

Init ELF, needed for JTAG

loading

/opt/analog/cces-linux-add-in/1.2.0/uboot-sc5xx-1.2.0/bin/u-

boot-sc589-ezkit

U-Boot ELF, needed for JTAG

loading

/opt/analog/cces-linux-add-in/1.2.0/uboot-sc5xx-1.2.0/bin/u-

boot-sc589-ezkit.ldr

U-Boot LDR file, for SPI boot

http://www.analog.com/en/design-center/processors-and-dsp/evaluation-and-development-software/LinuxAddin.html
http://www.analog.com/en/design-center/processors-and-dsp/evaluation-and-development-software/LinuxAddin.html

Linux Add-in for CrossCore Embedded Studio 12

Location Description

/opt/analog/cces-linux-add-in/1.2.0/buildroot-sc5xx-1.2.0

/images/sc589-ezkit.dtb

Board DTB file for Linux

booting

/opt/analog/cces-linux-add-in/1.2.0/buildroot-sc5xx-1.2.0

/images/uImage-sc589-ezkit

Boot image file, including kernel

and RAM rootfs

/opt/analog/cces-linux-add-in/1.2.0/buildroot-sc5xx-1.2.0

/images/vmImage-sc589-ezkit

Linux kernel file

/opt/analog/cces-linux-add-in/1.2.0/buildroot-sc5xx-1.2.0

/images/rootfs.ext3

Root filesystem image

Here we take ADSP-SC589-EZKIT board (ADSP-SC589 EZ-Board) as our working example. For the
SC584-EZKIT board and SC573-EZKIT board the steps required are similar except for a different file
/dtb load address and different file names in some cases which are showing as follows.

Board File name File load address dtb name dtb load address

ADSP-SC589 EZKIT uImage-sc589-ezkit 0xC2000000 sc589-ezkit.dtb 0xC4000000

ADSP-SC584 EZKIT uImage-sc584-ezkit 0x89000000 sc584-ezkit.dtb 0x8b000000

ADSP-SC573 EZKIT uImage-sc573-ezkit 0x82000000 sc573-ezkit.dtb 0x84000000

We frequently use variables directly that u-boot console recognizes in following sections, for example
use ${loadaddr} instead of 0xC2000000 for ADSP-SC589 EZKIT.

Set Up the TFTP Server

The ADSP-SC5xx EZ-Kit do not ship with Linux or the u-Boot bootloader pre-installed.
In order to transfer files to the EZ-Kit we use TFTP. TFTP is a simplified file transfer protocol that is
supported by u-Boot.

The following commands will configure and start a TFTP server on your Linux host:

$ sudo mkdir /tftpboot
$ sudo chmod -R 777 /tftpboot

Linux Add-in for CrossCore Embedded Studio 13

Edit the file. Sudo is required to write the contents of the file. Change the /etc/default/tftpd-hpa
contents to be the following:

TFTP_USERNAME="tftp"
TFTP_DIRECTORY="/tftpboot"
TFTP_ADDRESS="0.0.0.0:69"
TFTP_OPTIONS="--secure"

Now restart the TFTPD service:

$ sudo service tftpd-hpa restart

Configure the Toolchains

Development for Linux requires the use of two toolchains.

The toolchain is provided as part of CrossCore Embedded Studio. It produces bare metal Bare Metal
applications that run directly on the hardware without an underlying operating system.
The bare metal toolcain is used to build the u-Boot bootloader.

The toolchain is provided as part of the Linux Add-In for CrossCore Embedded Linux Targeting
Studio. It produces applications that run under Linux on the ADSP-SC5xx EZ-Kits.

The following instructions in the User Guide assume that the directories for both toolchains are bin
included in your path.

To add the paths to your environment variable, add the following line to the end of the PATH ~/.

 file:bashrc

export PATH=$PATH:/opt/analog/cces-linux-add-in/1.2.0/ARM/arm-linux-
gnueabi/bin:/opt/analog/cces/2.6.0/ARM/arm-none-eabi/bin

Then run the following command, to update your path in your current shell:

$ source ~/.bashrc

Set Up Hardware

To complete this step you will require:

ADSP-SC5xx EZ-Kit: ADSP-SC589/SC584/SC573 EZ-Board, ICE1000 or ICE2000 emulator,
2x micro USB cable (as provided with the EZ-Kit), 1x ethernet cable

Linux Add-in for CrossCore Embedded Studio 14

Host PC running the supported version of Linux (Ubuntu 14.04 LTS, 32-Bit)

The EZ-Kit should have four connections:

Power cable

ICE-1000 or ICE-2000 connected to the Linux Host

MicroUSB-to-USB cable connected from the EZ-Kit's USB-to-UART port to the Linux Host

Ethernet cable connected to the 10/100/1000 Ethernet port of the board, another to the same
local network as Linux Host

2.1.3 Flashing U-Boot for the First Time

Before booting Linux we need to use the or to load the U-Boot bootloader on to ICE-1000 ICE-2000
the EZ-Kit.
Once U-Boot is loaded and running, we use it to write another copy of u-Boot into non-volatile SPI
Flash.

Run OpenOCD

$ cd /opt/analog/cces/2.6.0/ARM/openocd/share/openocd/scripts
$ sudo su
$ /opt/analog/cces/2.6.0/ARM/openocd/bin/openocd -f interface/ice1000.
cfg -f target/adspsc58x.cfg

When successful you should see a message similar to the console output below:

Linux Add-in for CrossCore Embedded Studio 15

1.

2.

3.

a.

b.

c.

d.

Open On-Chip Debugger (Analog Devices CCES 2.6.0 OpenOCD 0.9.0-
g6aca937) 0.9.0
Licensed under GNU GPL v2
Report bugs to <processor.tools.support@analog.com>
adapter speed: 1000 kHz
Info : auto-selecting first available session transport "jtag". To
override use 'transport select <transport>'.
halt and restart using CTI
trst_only separate trst_push_pull
Info : ICE-1000 firmware version is 1.0.2
Info : clock speed 1000 kHz
Info : JTAG tap: adspsc58x.adjc tap/device found: 0x228080cb (mfg: 0x06
5, part: 0x2808, ver: 0x2)
Info : JTAG tap: adspsc58x.dap enabled
Info : adspsc58x.dap: hardware has 3 breakpoints, 2 watchpoints
Info : adspsc58x.dap: but you can only set 1 watchpoint

If you are working from a virtual machine, make sure the ICE1000 or ICE2000 usb device on
your computer is passed-through to the virtual machine.

For example, if you are using VirtualBox, Select the option from the USB Devices Devices
menu. Ensure that the is checked.Analog Devices Inc. Blackfin USB Device

If you have problem with this step please refer to " " section of this chapter.Trouble Shooting

U-Boot Console Output

The output from u-Boot is transmitted to the host PC using the micro USB cable connected from the
Host PC to the USB-to-UART port of the EZ-Kit.
The following instructions in this guide use the application to interact with the serial port.minicom

Here we need set up to the ADSP-SC5xx serial console. Execute the following commands minicom
on the host PC:

sudo minicom -s

Within minicom: “Serial port setup”

Select Serial port setup

Set to Serial Device /dev/ttyUSB0

Set to Bps/Par/Bits 57600 8N1

Set to Hardware Flow Control No

Close the Serial port setup option

Linux Add-in for CrossCore Embedded Studio 16

4.

5.

Select Save setup as dfl

Select Exit

Once has been configured, launch the application:minicom

$ sudo minicom

If you are running your Host PC within a virtual machine you will need to configure the
virtual machine to allow access to USB-to-UART connection.

Loading U-Boot With GDB

Open a second terminal on the host PC and enter the following commands:

$ cd /opt/analog/cces-linux-add-in/1.2.0/uboot-sc5xx-1.2.0/bin
$ arm-none-eabi-gdb u-boot-sc589-ezkit
(gdb) target remote :3333

Next, load the . This is an application that initializes the CPU and DDR on the EZ-Kit:init stub

(gdb) load init-sc589-ezkit.elf
(gdb) c
<Ctrl + C>
(gdb)

Load u-boot and run:

(gdb) load u-boot-sc589-ezkit
(gdb) c

U-Boot will now be running in RAM on your target board. In the terminal running Minicom you will
see the output from the Mincom console.

Flash U-Boot to SPI Flash

Here we use the u-Boot console to TFTP a version of u-Boot into RAM, and then write this
application into SPI flash.

On the Host PC:

Linux Add-in for CrossCore Embedded Studio 17

$ cd /opt/analog/cces-linux-add-in/1.2.0/uboot-sc5xx-1.2.0/bin
$ cp u-boot-sc589-ezkit.ldr /tftpboot/u-boot.ldr

Ensure that the EZ-Kit board is connected to the same LAN network as your Host PC

Execute the following commands in the minicom terminal connected to the EZ-Kit:

$ dhcp
$ set serverip $your_host_ip
$ run update
$ save

It may take a few seconds to get the IP address with DHCP. Do not interrupt the request.
Writing the u-Boot image to SPI flash may also take some time.

Now you should have U-Boot flashed successfully to the on board SPI Flash chip. Switch the boot
mode to SPI Master boot (switch set to position 1).BMODE

From this point you do not need to use the ICE emulator unless u-Boot fails to boot. If it does repeat
the steps above to re-flash a new version of u-Boot.

Remove power from the EZ-Kit, and remove the ICE emulator from the board.

When you connect the power to the EZ-Kit, u-Boot should boot and the output should be visible in the
minicom:

U-Boot 2015.01 ADI-1.2.0-00103-ge854404-dirty (Jun 07 2017 - 07:43:07)
CPU: ADSP ADSP-SC589-0.1 (Detected Rev: 1.1) (spi flash boot)
VCO: 450 MHz, Cclk0: 450 MHz, Sclk0: 112.500 MHz, Sclk1: 112.500 MHz,
DCLK: 450 MHz
OCLK: 150 MHz
I2C: ready
DRAM: 224 MiB
MMC: SC5XX SDH: 0
SF: Detected W25Q128BV with page size 256 Bytes, erase size 4 KiB,
total 16 MiB
In: serial
Out: serial
Err: serial
other init
Net: dwmac.3100c000
Hit any key to stop autoboot

Linux Add-in for CrossCore Embedded Studio 18

1.

2.

3.

2.1.4 Booting Linux Overview

Supported methods for booting Linux

The Linux Add-In supports three methods for booting Linux:

u-Boot bootloader downloads the Linux kernel and filesystem from a local TFTP server and
then boots this image.
This is the version of Linux provided in the pre-built images provided in the Linux Add-In.

u-Boot copies a version of Linux out of SPI flash to RAM and then boots using a file system
located on an SD Card connected to the EZ-Kit

u-Boot boots Linux using a kernel located on the SD Card, along with a file system located on
the SD Card

The pre-built binary files that are shipped as part of the Linux Add-In support booting using
all these 3 boot methods. If you want to use your local binary from your own source, please
refer to .Configure and build from source code

2.1.5 Boot method 1: Copying the Linux image across the network

This method of booting Linux copies the kernel and filesystem from the Host PC to the target EZ-Kit
via Ethernet. This method of booting is useful for development as it is easy to set up. However, since
the filesystem is not permanently stored on the EZ-Kit, and it relies on connection to the TFTP server,
this method is not suitable for production.

First we copy the pre-built Linux image to the TFTP directory. We copy two files onto the board. The
Linux image itself (uImage) and a .dtb (device tree blob) file which contains information about the
hardware.

On the Host PC:

Linux Add-in for CrossCore Embedded Studio 19

$ cd /opt/analog/cces-linux-add-in/1.2.0/buildroot-sc5xx-1.2.0/images
$ cp uImage-sc589-ezkit /tftpboot/uImage
$ cp sc589-ezkit.dtb /tftpboot

Reset the EZ-Kit board. In the minicom terminal strike any key to stop in the U-Boot console, then
enter the follow commands where is the IP address of your Host PC:your host IP

$ dhcp
$ set serverip $your_host_ip
$ run ramboot

After a few seconds the output from the booting kernel will appear in the minicom terminal.

When a login prompt appears you can log in to the account using the following details:

Default Username Default Password

root root

The output from the boot process will be similar to the output below:

dwmac.3100c000 Waiting for PHY auto negotiation to complete. done
Speed: 100, full duplex
Using dwmac.3100c000 device
TFTP from server 10.100.4.174; our IP address is 10.100.4.50
Filename 'uImage'.
Load address: 0xc2000000
Loading:
###
 ##
###
 ##
###
 ##
###
 ##
###
 ##
###
 ##
###
 ##
###
 ##
###

Linux Add-in for CrossCore Embedded Studio 20

 ##
###
 ##
###
 ##
###
 ##
###
 ##
###
 ##
###
 ##
###
 ##
###
 ##
###
 ##
###
 ##
###
 ##
###
 ##
###
 ##
###
 ##
###
 ##
###
 ##
###
 ##
###
 ###########################
 3.6 MiB/s
done
Bytes transferred = 26154464 (18f15e0 hex)
Speed: 100, full duplex
Using dwmac.3100c000 device
TFTP from server 10.100.4.174; our IP address is 10.100.4.50
Filename 'sc589-ezkit.dtb'.
Load address: 0xc4000000
Loading: ##
 3.5 MiB/s
done
Bytes transferred = 18516 (4854 hex)
Booting kernel from Legacy Image at c2000000 ...
 Image Name: Linux-4.0.0-ADI-1.2.0-00059-g27e

Linux Add-in for CrossCore Embedded Studio 21

 Image Type: ARM Linux Kernel Image (uncompressed)
 Data Size: 26154400 Bytes = 24.9 MiB
 Load Address: c2008000
 Entry Point: c2008000
 Verifying Checksum ... OK
Flattened Device Tree blob at c4000000
 Booting using the fdt blob at 0xc4000000
 Loading Kernel Image ... OK
 Loading Device Tree to cfe5b000, end cfe62853 ... OK
Starting kernel ...
Booting Linux on physical CPU 0x0
Linux version 4.0.0-ADI-1.2.0-00059-g27e643c (test@cindy.ad.analog.
com) (gcc version 4.8.3 (Analog Devices Inc. ARM Tools
(d9f69c572e3368746d6d95caf93dae57c9a689d4). Distri7
CPU: ARMv7 Processor [410fc051] revision 1 (ARMv7), cr=10c53c7d
CPU: PIPT / VIPT nonaliasing data cache, VIPT aliasing instruction
cache
Machine model: ADI sc589-ezkit
bootconsole [earlycon0] enabled
Memory policy: Data cache writeback
dump init clock rate
CGU0_PLL 450 MHz
CGU0_SYSCLK 225 MHz
CGU0_CCLK 450 MHz
CGU0_SYS0 112 MHz
CGU0_DCLK 450 MHz
CGU0_OCLK 150 MHz
CGU0_SYS0 112 MHz
Built 1 zonelists in Zone order, mobility grouping on. Total pages: 56
896
Kernel command line: root=/dev/mtdblock2 rw rootfstype=jffs2 clkin_hz=(
25000000) earlyprintk=serial,uart0,57600 console=ttySC0,57600 mem=224M
ip=10.100.4.50:10.100.4.174:19f
PID hash table entries: 1024 (order: 0, 4096 bytes)
Dentry cache hash table entries: 32768 (order: 5, 131072 bytes)
Inode-cache hash table entries: 16384 (order: 4, 65536 bytes)
Memory: 201596K/229376K available (3820K kernel code, 125K rwdata,
1428K rodata, 20164K init, 88K bss, 27780K reserved, 0K cma-reserved)
Virtual kernel memory layout:
 vector : 0xffff0000 - 0xffff1000 (4 kB)
 fixmap : 0xffc00000 - 0xfff00000 (3072 kB)
 vmalloc : 0xce800000 - 0xff000000 (776 MB)
 lowmem : 0xc0000000 - 0xce000000 (224 MB)
 modules : 0xbf000000 - 0xc0000000 (16 MB)
 .text : 0xc0008000 - 0xc0528528 (5250 kB)
 .init : 0xc0529000 - 0xc18da000 (20164 kB)
 .data : 0xc18da000 - 0xc18f95a0 (126 kB)
 .bss : 0xc18f95a0 - 0xc190f92c (89 kB)
NR_IRQS:16 nr_irqs:16 16
GIC CPU mask not found - kernel will fail to boot.
GIC CPU mask not found - kernel will fail to boot.

Linux Add-in for CrossCore Embedded Studio 22

sched_clock: 32 bits at 112MHz, resolution 8ns, wraps every
38177486839ns
Console: colour dummy device 80x30
Calibrating delay loop... 297.98 BogoMIPS (lpj=595968)
pid_max: default: 32768 minimum: 301
Mount-cache hash table entries: 1024 (order: 0, 4096 bytes)
Mountpoint-cache hash table entries: 1024 (order: 0, 4096 bytes)
CPU: Testing write buffer coherency: ok
Setting up static identity map for 0xc23a2bd0 - 0xc23a2c04
devtmpfs: initialized
do_initcall_level level 0
do_initcall_level level 1
VFP support v0.3: implementor 41 architecture 2 part 30 variant 5 rev 1
pinctrl core: initialized pinctrl subsystem
NET: Registered protocol family 16
do_initcall_level level 2
DMA: preallocated 256 KiB pool for atomic coherent allocations
do_initcall_level level 3
L2C: device tree omits to specify unified cache
L2C-310 dynamic clock gating enabled, standby mode enabled
L2C-310 cache controller enabled, 8 ways, 256 kB
L2C-310: CACHE_ID 0x410000c9, AUX_CTRL 0x06040000
sc58x_init: registering device resources
sec init...
enabled
hw-breakpoint: Failed to enable monitor mode on CPU 0.
ADI DMA2 Controller
do_initcall_level level 4
vgaarb: loaded
SCSI subsystem initialized
usbcore: registered new interface driver usbfs
usbcore: registered new interface driver hub
usbcore: registered new device driver usb
i2c-bfin-twi 31001400.twi: Blackfin on-chip I2C TWI Contoller,
regs_base@f4001400
i2c-bfin-twi 31001500.twi: Blackfin on-chip I2C TWI Contoller,
regs_base@f4001500
i2c-bfin-twi 31001600.twi: Blackfin on-chip I2C TWI Contoller,
regs_base@f4001600
pps_core: LinuxPPS API ver. 1 registered
pps_core: Software ver. 5.3.6 - Copyright 2005-2007 Rodolfo Giometti
<giometti@linux.it>
PTP clock support registered
Advanced Linux Sound Architecture Driver Initialized.
do_initcall_level level 5
Switched to clocksource cs_gptimer
NET: Registered protocol family 2
TCP established hash table entries: 2048 (order: 1, 8192 bytes)
TCP bind hash table entries: 2048 (order: 1, 8192 bytes)
TCP: Hash tables configured (established 2048 bind 2048)
TCP: reno registered

Linux Add-in for CrossCore Embedded Studio 23

UDP hash table entries: 256 (order: 0, 4096 bytes)
UDP-Lite hash table entries: 256 (order: 0, 4096 bytes)
NET: Registered protocol family 1
do_initcall_level level 6
hw perfevents: enabled with armv7_cortex_a5 PMU driver, 3 counters
available
futex hash table entries: 256 (order: -1, 3072 bytes)
jffs2: version 2.2. (NAND) 2001-2006 Red Hat, Inc.
External imprecise Data abort at addr=0xb6f4c880, fsr=0x1c06 ignored.
io scheduler noop registered (default)
APP_STAT=0,RSCKPHY_STAT=20000,LINK_CTRL_STATUS_REG2=10001
sc58x-pcie 310b8000.pcie: Link training failed
sc58x-pcie 310b8000.pcie: PORT_LINK_DEBUG0 = 85c700, PORT_LINK_DEBUG1
= 8200000
sc58x-pcie: probe of 310b8000.pcie failed with error -110
ADI serial driver
adi-uart4.0: ttySC0 at MMIO 0x31003000 (irq = 20, base_baud = 7031250)
is a ADI-UART4
console [ttySC0] enabled
console [ttySC0] enabled
bootconsole [earlycon0] disabled
bootconsole [earlycon0] disabled
adi-uart4.2: ttySC2 at MMIO 0x31003800 (irq = 84, base_baud = 7031250)
is a ADI-UART4
loop: module loaded
adi-spi3 31042000.spi: registered ADI SPI controller spi0
adi-spi3 31043000.spi: registered ADI SPI controller spi1
m25p80 spi2.38: found w25q128, expected w25q32
m25p80 spi2.38: w25q128 (16384 Kbytes)
3 ofpart partitions found on MTD device spi2.38
Creating 3 MTD partitions on "spi2.38":
0x000000000000-0x000000080000 : "uboot (spi)"
0x000000080000-0x000000600000 : "kernel (spi)"
0x000000600000-0x000001000000 : "root file system (spi)"
adi-spi3 31044000.spi: registered ADI SPI controller spi2
libphy: Fixed MDIO Bus: probed
CAN device driver interface
bfin_can 31000200.can: bfin_can device registered(®_base=f4000200,
rx_irq=22, tx_irq=23, err_irq=24, sclk=112500000)
bfin_can 31000a00.can: bfin_can device registered(®_base=f4000a00,
rx_irq=93, tx_irq=94, err_irq=95, sclk=112500000)
adi-spi3 31042000.spi: chipselect 44 already in use
bfin_can 31000a00.can: Can't start can phy
Trying to free nonexistent resource <0000000031000a00-0000000031000ffe>
bfin_can: probe of 31000a00.can failed with error -22
stmmaceth 3100c000.ethernet: no reset control found
stmmac - user ID: 0x10, Synopsys ID: 0x37
 Ring mode enabled
 DMA HW capability register supported
 Enhanced/Alternate descriptors
 Enabled extended descriptors

Linux Add-in for CrossCore Embedded Studio 24

 RX Checksum Offload Engine supported (type 2)
 TX Checksum insertion supported
 Wake-Up On Lan supported
 Enable RX Mitigation via HW Watchdog Timer
libphy: stmmac: probed
eth0: PHY ID 20005c7a at 1 IRQ POLL (stmmac-0:01) active
force_sf_dma_mode is ignored if force_thresh_dma_mode is set.
stmmaceth 3100e000.ethernet: no reset control found
stmmac - user ID: 0x11, Synopsys ID: 0x37
 Ring mode enabled
 DMA HW capability register supported
 Enhanced/Alternate descriptors
 Enabled extended descriptors
 RX Checksum Offload Engine supported (type 2)
 Wake-Up On Lan supported
 Enable RX Mitigation via HW Watchdog Timer
libphy: stmmac: probed
eth1: PHY ID 20005c90 at 1 IRQ POLL (stmmac-1:01) active
usbcore: registered new interface driver usb-storage
musb-hdrc musb-hdrc.1.auto: MUSB HDRC host driver
musb-hdrc musb-hdrc.1.auto: new USB bus registered, assigned bus
number 1
hub 1-0:1.0: USB hub found
hub 1-0:1.0: 1 port detected
musb-hdrc musb-hdrc.3.auto: MUSB HDRC host driver
musb-hdrc musb-hdrc.3.auto: new USB bus registered, assigned bus
number 2
hub 2-0:1.0: USB hub found
hub 2-0:1.0: 1 port detected
mousedev: PS/2 mouse device common for all mice
rtc (null): invalid alarm value: 1900-1-15 0:0:0
rtc-adi2 310c8000.rtc: rtc core: registered 310c8000.rtc as rtc0
i2c /dev entries driver
adi_wdt: initialized: timeout=20 sec (nowayout=0)
Driver 'mmcblk' needs updating - please use bus_type methods
Synopsys Designware Multimedia Card Interface Driver
dwmmc_adi mmc.0: num-slots property not found, assuming 1 slot is
available
dwmmc_adi mmc.0: IDMAC supports 32-bit address mode.
dwmmc_adi mmc.0: Using internal DMA controller.
dwmmc_adi mmc.0: Version ID is 270a
dwmmc_adi mmc.0: DW MMC controller at irq 102, 32 bit host data width,
1024 deep fifo
dwmmc_adi mmc.0: No vmmc regulator found
dwmmc_adi mmc.0: No vqmmc regulator found
dwmmc_adi mmc.0: 1 slots initialized
Blackfin hardware CRC crypto driver
bfin-hmac-crc 31001200.crc: initialized
bfin-hmac-crc 31001300.crc: initialized
usbcore: registered new interface driver usbhid
usbhid: USB HID core driver

Linux Add-in for CrossCore Embedded Studio 25

icc 20080000.icc: initialized
adau1962 0-0004: busy to request reset-gpio 14
01,2a,a0,00
00,00,01,00
06,00,00,00
00,00,00,00
00,00,00,00
00,00,00,00
00,aa,aa,aa
sc5xx-i2s-dai 31002400.i2s: SPORT create success
snd-sc5xx scb:sound: adau1962-hifi <-> 31002400.i2s mapping ok
snd-sc5xx scb:sound: adau1977-hifi <-> 31002400.i2s mapping ok
TCP: cubic registered
NET: Registered protocol family 17
can: controller area network core (rev 20120528 abi 9)
NET: Registered protocol family 29
can: raw protocol (rev 20120528)
can: broadcast manager protocol (rev 20120528 t)
can: netlink gateway (rev 20130117) max_hops=1
do_initcall_level level 7
ThumbEE CPU extension supported.
console [netcon0] enabled
netconsole: network logging started
rtc-adi2 310c8000.rtc: setting system clock to 1970-09-14 00:05:06 UTC
(22118706)
IP-Config: Gateway not on directly connected network
ALSA device list:
 #0: sc5xx-asoc-card
Freeing unused kernel memory: 20164K (c0529000 - c18da000)
Starting logging: OK
Starting mdev...
Starting watchdog...
Initializing random number generator... random: dd urandom read with 50
 bits of entropy available
done.
Starting system message bus: done
Starting network...
/bin/sh: run-parts: not found
ssh-keygen: generating new host keys: ED25519
Starting sshd: OK
Starting inetd: OK
Welcome to Buildroot
buildroot login: stmmaceth 3100c000.ethernet eth0: Link is Up - 100Mbps
/Full - flow control rx/tx
root
Password:

 a8888b. / Welcome to the buildroot distribution \
 d888888b. / _ _ \
 8P"YP"Y88 / | | |_| __ __ (TM) |
 8|o||o|88 _____/ | | _ ____ _ _ \ \/ / |

Linux Add-in for CrossCore Embedded Studio 26

 8' .88 \ | | | | _ \| | | | \ / |
 8`._.' Y8. \ | |__ | | | | | |_| | / \ |
 d/ `8b. \ ____||_|_| |_|____|/_/_\ |
 dP . Y8b. \ For embedded processors including |
 d8:' " `::88b \ the Analog Devices ADSP-SC5xx /
 d8" 'Y88b _____________________________________/
 :8P ' :888
 8a. : _a88P For further information, check out:
 ._/"Yaa_: .| 88P|
 \ YP" `| 8P `.
 / \.___.d| .' - http://buildroot.org/
 `--..__)8888P`._.' jgs/a:f - http://www.analog.com/
Have a lot of fun...

#

Trouble shooting: Kernel failing to boot

If the kernel fails to boot reporting an error regarding (See below) this is typically Bad Data CRC
because you have attempted to boot a custom-built kernel which is larger than the default kernel size.

You can resolve this issue by setting the u-Boot environment to a larger value. This dtbaddrb
enlarges the memory space for loading the uImage file from the TFTP server.

 ## Booting kernel from Legacy Image at c2000000 ...
 Image Name: Linux-4.0.0-ADI-1.1.0
 Image Type: ARM Linux Kernel Image (uncompressed)
 Data Size: 22727136 Bytes = 21.7 MiB
 Load Address: c2008000
 Entry Point: c2008000
 Verifying Checksum ... Bad Data CRC
ERROR: can't get kernel image!

To set the larger value, in the minicom terminal connected to u-Boot:

$ set dtbaddr 0xc6000000
$ save

2.1.6 Boot method 2: Booting flashed Linux with persistent file system on SD
Card

This method of booting uses the flashed u-Boot bootloader to copy a version of the kernel stored in
SPI flash, into RAM. u-Boot then boots the kernel which is configured to use a persistent file system
which is stored on an SD Card.

Linux Add-in for CrossCore Embedded Studio 27

Formatting the SD Card

In order to use an SD Card with Linux we need to prepare it by formatting it and copying over the file
system contents, in the correct format.
The SD Card provided with the EZ-Kit has been tested and is suitable for use with Linux.

Danger! Disk Formatting!

This section of instructions requires you to correctly identify the SD Card and format the
card. If you select the wrong drive you may cause irreversible damage to you Host PC.
Please be confident in your actions before proceeding with this section.

To begin installing the file system, insert the SD Card into the host PC directly or via a USB card
reader and identify the device which refers to your SD Card.

Identifying the SD Card on the HOST PC

The easiest way to identify the SD Card is to view the latest information logged to the device
message log.

This can be done by executing the command: dmesg | tail

The output from the command should mention a newly connected device. The partition name
should be listed and should be of the format ./dev/sd[a-z][0-9]
For example the partition would be a partition on the device ./dev/sdb1 /dev/sdb

To double check that this is the correct device you can use the command to display fdisk
information regarding the device, including the size of partitions.

To view information on the device, issue the command: where device is fdisk -l <device>
some device, for example /dev/sdb.

Linux Add-in for CrossCore Embedded Studio 28

Unmount the SD Card before starting

By default, Ubuntu will auto-mount any SD Card that is inserted. Before formatting the SD
Card you will need to un-mount the card.

To check whether your SD Card has been mount, issue the command and search for mount
your device in the output of the command.

You can then un-mount the command using the unmount command. For example if the SD
Card was inserted and contained a /dev/sdb1 partition that was mount at /media/testuser
/sd_card, you can unmount it by issuing the command:

sudo unmount /media/testuser/sd_card

To format the SD Card, follow the commands below. The example code in this section assumes that
the SD Card device is reported to be /dev/sdb. Ensure that you change these commands to use your
device.

$ sudo fdisk /dev/sdb
/* Create primary partition 1, 256M size*/
Command (m for help): n
Select (default p): p
Partition number (1-4, default 1): 1
First sector (2048-3887103, default 2048): PRESS ENTER
Last sector, +sectors or +size{K,M,G} (2048-3887103, default 3887103):
PRESS ENTER

/* Save partition */
Command (m for help): w

Once fdisk is closed, your Host PC may mount the SD Card again. If it does, un-mount it following
the instructions above.

Writing the file system to the SD Card

Next, we need to copy the pre-built Linux file system to the SD Card. We install this on to the SD
Card by mounting the file system on to the local Host PC and copying the contents on to the SD Card.

Linux Add-in for CrossCore Embedded Studio 29

$ sudo mkfs.ext3 /dev/sdb1
$ sudo mount -t ext3 /dev/sdb1 /mnt
$ sudo mkdir ~/sc5xx_rootfs
$ sudo mount /opt/analog/cces-linux-add-in/1.2.0/buildroot-sc5xx-1.2.0/
images/rootfs.ext3 ~/sc5xx_rootfs
$ sudo cp ~/sc5xx_rootfs/* -fr /mnt
$ sudo umount /mnt

The file system is now installed on to the SD Card. The SD Card can now be safely removed from the
Host PC.

Loading and flashing the DTB File

Before proceeding ensure that u-Boot has been flashed into SPI Flash on the EZ-Kit as per the
instructions in the section . Ensure that the variable is Flashing U-Boot for the First Time serverip
correctly set in the u-Boot environment.

On the Host PC:

$ cp /opt/analog/cces-linux-add-in/1.2.0/buildroot-sc5xx-1.2.0/images
/sc589-ezkit.dtb /tftpboot/

Using the minicom terminal:

$ sf probe 2:1
$ tftp ${loadaddr} sc589-ezkit.dtb
$ sf erase 0x100000 0x40000
$ sf write ${loadaddr} 0x100000 ${filesize}

Loading and flashing the Linux kernel

On the Host PC:

$ cp /opt/analog/cces-linux-add-in/1.2.0/buildroot-sc5xx-1.2.0/images
/vmImage-sc589-ezkit /tftpboot/

Using the minicom terminal:

Linux Add-in for CrossCore Embedded Studio 30

$ tftp ${loadaddr} vmImage-sc589-ezkit
$ sf erase 0x800000 0x800000
$ sf write ${loadaddr} 0x800000 ${filesize}

Configure u-Boot to use the SD Card file system

Next we need to configure u-Boot to boot using the SD Card as our file system.

Issue the commands below to change the default boot behaviour of u-Boot to always boot using the
SPI flash kernel and SD Card file system.

$ set sdargs set bootargs root=/dev/mmcblk0p1 rw rootwait
rootfstype=ext3 clkin_hz=(25000000) earlyprintk console=ttySC0,57600
$ set sdboot 'run sdargs; sf probe 2:1;sf read ${dtbaddr} 0x100000
0x40000;sf read ${loadaddr} 0x800000 0x800000;bootm ${loadaddr} -
${dtbaddr}'
$ set bootcmd run sdboot
$ save

To complete the process press the button on the EZ-Kit.reset

Resorting to Ethernet booting

If for some reason you wish to revert to booting via Boot mode 1: Copying Linux over
Ethernet, you can issue the following commands in uBoot:

$ set bootcmd run ramboot

$ save

2.1.7 Boot Method 3: Booting the kernel from the SD Card (Quicker Boot)

The final boot method improves on by installing the Linux kernel image into the file Boot Method 2
system on the SD Card. This provides us with some performance improvement as the SD Card
provides better performance than the EZ-Kit SPI flash.

Linux Add-in for CrossCore Embedded Studio 31

Formatting the SD Card

Ensure that the SD Card has been formatted using the instructions in the section Formatting the SD
 from the chapter, above.Card Boot Method 2

Writing the file system and kernel to the SD Card

We then copy the file system to the SD Card along with the Linux kernel image. On the Host PC:

$ sudo mkfs.ext3 /dev/sdb1
$ sudo mount -t ext3 /dev/sdb1 /mnt
$ sudo mkdir ~/sc5xx_rootfs
$ sudo mount /opt/analog/cces-linux-add-in/1.2.0/buildroot-sc5xx-1.2.0/
images/rootfs.ext3 ~/sc5xx_rootfs
$ sudo cp ~/sc5xx_rootfs/* -fr /mnt
$ sudo cp /opt/analog/cces-linux-add-in/1.2.0/buildroot-sc5xx-1.2.0/ima
ges/vmImage-sc589-ezkit /mnt
$ sudo umount /mnt

Load and Flash the DTB File

We still need to flash the kernel DTB file to the EZ-Kit. On the Host PC:

$ cp /opt/analog/cces-linux-add-in/1.2.0/buildroot-sc5xx-1.2.0/images
/sc589-ezkit.dtb /tftpboot/

Using Minicom:

$ tftp ${loadaddr} sc589-ezkit.dtb
$ sf probe 2:1
$ sf erase 0x100000 0x40000
$ sf write ${loadaddr} 0x100000 ${filesize}

Linux Add-in for CrossCore Embedded Studio 32

Configure u-Boot to boot using Linux and the file system on the SD Card

$ set sdargs set bootargs root=/dev/mmcblk0p1 rw rootwait
rootfstype=ext3 clkin_hz=(25000000) earlyprintk console=ttySC0,57600
$ set sdboot 'run sdargs; sf probe 2:1;sf read ${dtbaddr} 0x100000
0x40000;ext2load mmc 0:1 ${loadaddr} vmImage-sc589-ezkit;bootm
${loadaddr} - ${dtbaddr}'
$ set bootcmd run sdboot
$ save

To complete the process press the button on the EZ-Kit.reset

Resorting to Ethernet booting

If for some reason you wish to revert to booting via Boot mode 1: Copying Linux over
Ethernet, you can issue the following commands in uBoot:

$ set bootcmd run ramboot

$ save

2.1.8 Troubleshooting

This document has been very carefully verified, yet we are trying to list some of the usual trouble that
we might encounter by following it.

Have problem GDB loading and run u-boot

The board you received may already have some bootable image in the on board SPI Flash, which may
run immediately after you power on. In this case, try to set the boot mode switch to position 0 before
performing the initial GDB loading and running of u-boot.

Get error message "bad format" when booting from Non-Volatile storage

When do flash erasing and flashing u-boot, dtb file and kernel file into SPI Flash, double confirm the
size of the actual files, and the space you reserve for them by command in the flash operation
commands, to make sure files do not get overwritten by each other. Meanwhile, double check whether
dtb file and kernel file have been wrote into SPI Flash successfully, from the prompt message on u-
boot console after you issue each command. In addition, you only need to do the "sf probe " only once
everytime you reset your board.

Linux Add-in for CrossCore Embedded Studio 33

2.2 Configure and build from source code

2.2.1 Introduction

We will need cutomized configuraiton and building in product development, this document describes
how to extract the source code for u-boot and for Linux and build each of them using the default
configuration. It also shows how to customize features of the Linux kernel, applications and libraries
in Buildroot.

At first follow the to set up the Ubuntu host environment and the quick start guide document
toolchain, and to install CCES and the CCES Linux add in. After that we will copy the source code
for u-boot and Buildroot to a working location.

2.2.2 Extract the source code

In this document we use ~/sc5xx_dev as the working path:

$ mkdir ~/sc5xx_dev

Extract the u-boot source code

Run the following commands in sequence to copy the u-boot source code tarfile to the working
directory and unpack it:

$ cd ~/sc5xx_dev
$ cp /opt/analog/cces-linux-add-in/1.2.0/uboot-sc5xx-1.2.0/src/uboot-
sc5xx-1.2.0.tar.gz ./
$ tar -zxvf uboot-sc5xx-1.2.0.tar.gz

Now you have the source code for u-boot in ~/sc5xx_dev/uboot.

Extract the buildroot and Linux kernel source code

Run the following commands in sequence to copy the Buildroot and Linux source code tarfile to the
working directory and unpack it:

$ cd ~/sc5xx_dev
$ cp /opt/analog/cces-linux-add-in/1.2.0/buildroot-sc5xx-1.2.0/src
/buildroot-sc5xx-1.2.0.tar.gz ./
$ tar -zxvf buildroot-sc5xx-1.2.0.tar.gz

Linux Add-in for CrossCore Embedded Studio 34

Now you have the source code for Buildroot and the Linux kernel in ~/sc5xx_dev/buildroot.

2.2.3 Configure and build u-boot

Follow the steps below to configure and build the u-boot, here we take the ADSP-SC589 EZ-KIT
Board as an example.

Configure the u-boot

$ cd ~/sc5xx_dev/uboot
$ make distclean
$ make sc589-ezkit_defconfig

Build the u-boot

$ make

List of generated files

File Description

u-boot.ldr bootable u-boot image

u-boot u-boot exectuable ELF

2.2.4 Configure and build Buildroot and Linux kernel

Follow below steps to use the default configuration to configure and build the buildroot and Linux
kernel, here we take the ADSP-SC589 EZ-KIT board as an example.

Default Configuration

$ cd ~/sc5xx_dev/buildroot
$ make distclean
$ make sc589-ezkit_defconfig

Linux Add-in for CrossCore Embedded Studio 35

Build

The final step is to make all changes in buildroot and linux-kernel.

$ cd ~/sc5xx_dev/buildroot
$ make

It may take many minutes to build for the first time, as buildroot will try to download all the source
code for packages from the internet in the initial building.

2.2.5 Customize the Buildroot and Linux kernel

Follow below steps to customize features of Linux kernel and Buildroot.

Customize the Linux kernel

$ cd ~/sc5xx_dev/buildroot
$ make linux-menuconfig

Above command will invoke Linux kernel configuration menu, which is exactly the same as the
general make menuconfig for Linux kernel. In this way you can navigate to different sections of the
kernel to enable/disable some features. But never try to go to the source of Linux to do make
menuconfig, this will lead to a mess of disaster.

$ make linux-rebuild

Above command will rebuild the whole buildroot with updated Linux kernel configuration.

Enable new packages in buildroot

Follow below steps if we want to enable new packages in Buildroot and build them into the generated
file system.

$ cd ~/sc5xx_dev/buildroot
$ make menuconfig

With command above you can navigate to different sections of the buildroot to enable/disable some
features for application and libraries integrated in it.

Linux Add-in for CrossCore Embedded Studio 36

1.

2.

$ make

List of generated files

Here is a list of generated files that are frequently used after building.

Location Description

output/images/uImage generated Linux boot image

output/images/vmImage Linux kernel image

output/images/sc589-ezkit.dtb compiled device tree data file

output/images/rootfs.ext3 ext3 format filesystemn image of the root filesystem

output/target/ contents of the rootfs

output/build/linux-custom/ build output of the Linux source tree

output/build/<pkg> build output of various packages

2.2.6 Generate Kernel Image for Booting From Non-Volatile Storage

In the quick start guide we introduced how to boot from SD card with prebuilt images, extra operation
is required, however, if you want to boot from SD card with your own built images, file uImage
generated with customized configuration as described bellow will be used as the kernel image file
instead of the vmImage.

Execute the command and then an interactive configuration application will be make menuconfig
launched. In the application:

Select Filesystem images

In the menu move the cursor down until Filesystem images initial RAM filesystem linked
 is highlightedinto linux kernel

Linux Add-in for CrossCore Embedded Studio 37

3.

4.

5.

6.

Ensure that the option is (Press space to toggle selection)not selected

Move the cursor across to and press Save Enter

Select and press Exit Enter

Again select and press to leave the interactive menuExit Enter

Now we can rebuild the kernel and file system:

$ make

2.2.7 More tips about buildroot

Read full document for Buildroot from . Here we are trying to http://buildroot.uclibc.org/docs.html
cover some frequently used tips during development.

Clean the buildroot

Sometimes we want to run or for a clean build from scratch, they will make clean make distclean
remove all the output during last build, as well as the dl folder, it's a good practice to backup the dl
folder since it takes long time to download them.

Rebuild an updated package

Sometimes we make changes on the configuration of a package, or source of a package from output
/package. It does not work if we simply run after the changes. Instead, we need to run make make
<pkg>-rebuild

http://buildroot.uclibc.org/docs.html

Linux Add-in for CrossCore Embedded Studio 38

3 Das U-boot

3.1 Ethernet Driver in U-Boot on SC5xx-EZKIT

3.1.1 Overview

Ethernet driver provides driver for the MAC controller present in ADI processors. The ethernet driver
package also has code to interface with the PHYs on the ADI released boards.

There are 2 network interfaces on ADSP- : EMAC0 and EMAC1SC5xx

EMAC0 is configurable as 10/100 Mbps, interfacing via RMII, or 10/100/1000 Mbps,
interfacing via RGMII. On the SC5xx-EZ-Board the RGMII interface is used, providing 10/100
/1000 Mbps (gigabit) capability

EMAC1 is a fixed 10/100 Mbps EMAC, interfacing via RMII.

3.1.2 Hardware Setup

An ADSP-SC5xx EZ-Kit: ADSP-SC589/SC584/SC573 EZ-Board

3.1.3 Build U-Boot with emac0 or emac1

U-Boot only supports one network port. You have to select one emac port in include/configs/sc589-
ezkit.h at build time.(For SC584/SC573 EZ-Board , we should do it in file sc584-ezkit.h or sc573-
ezkit.h)

#define CONFIG_DW_PORTS 1 // enable EMAC0
or
#define CONFIG_DW_PORTS 2 // enable EMAC1

3.1.4 Using EMAC Driver

U-boot provides a set of basic net commands:

dhcp - invoke a DHCP client request to obtain IP/boot params

ping - send a ICMP ECHO_REQUEST to the network host

tftpboot - boot an image via network using the TFTP protocol

For example:

Linux Add-in for CrossCore Embedded Studio 39

CPU: ADSP ADSP-SC589-0.0 (Detected Rev: 1.1) (spi flash boot)
VCO: 450 MHz, Cclk0: 450 MHz, Sclk0: 112.500 MHz, Sclk1: 112.500 MHz,
DCLK: 225 MHz
OCLK: 150 MHz
I2C: ready
DRAM: 112 MiB
MMC: SC5XX SDH: 0
SF: Detected W25Q128BV with page size 256 Bytes, erase size 4 KiB,
total 16 MiB
In: serial
Out: serial
Err: serial
other init
Net: dwmac.3100c000
Hit any key to stop autoboot: 0
sc #
sc # dhcp
Speed: 100, full duplex
BOOTP broadcast 1
BOOTP broadcast 2
DHCP client bound to address 10.99.24.200 (260 ms)
sc # ping 10.99.24.94
Speed: 100, full duplex
Using dwmac.3100c000 device
host 10.99.24.94 is alive
sc # tftp ${loadaddr} ${ramfile}
Speed: 100, full duplex
Using dwmac.3100c000 device
TFTP from server 10.99.24.94; our IP address is 10.99.24.200
Filename 'uImage'.
Load address: 0x89000000
Loading:
###
 ###
......
 #####################################
 2 MiB/s
done
Bytes transferred = 10502080 (a03fc0 hex)

Linux Add-in for CrossCore Embedded Studio 40

3.2 Creating and Booting Linux Using the New U-Boot "fitImage"

3.2.1 Introduction

Currently, the most common way of booting Linux through U-Boot is to create a uImage and dtb in
Buildroot and then supply these two images to the bootm command, eg. bootm ${loadaddr} -
${dtbaddr}. Recently, U-Boot has implemented a new image format modelled on the Linux kernel
device tree, the Flattened Image Tree or "fitImage". This new format allows for multiple
configurations of kernel, ramdisk and dtb images to be combined into a single image file. It also
provides a mechanism to easily specify authentication options, critical for implementing a chain of
trust while booting Linux. This page describes how to configure, implement and boot the new
fitImage format.

Before users start to try the fitImage, please make sure the following tools have already been installed.

CCES (for Linux) is installed on the host machine and the location is exported to $PATH

SC5xx ARM toolchains are installed and exported to $PATH

Buildroot and U-Boot sources are installed on the host machine

The host machine has already started a tftp service

Device Tree Compiler (DTC) is installed (from git) and added to $PATH

The 'serverip' U-Boot environment variable is set to the IP address of the tftp server

Run "sudo apt-get install libssl-dev" to install libssl

3.2.2 Hardware Setup

An ADSP-SC5xx EZ-Board: ADSP-SC589/SC584/SC573 EZ-Board

3.2.3 Builroot and kernel Configuration

For Buildroot, two changes to our current configuration are needed. Here we take SC589-EZKIT
board as example, for SC584 and SC573 EZ-Board the steps required are similar except for different
file names.

In Buildroot's menuconfig:

$ make clean
$ make sc589-ezkit_defconfig (For SC584 or SC573, it should be make
sc584-ezkit_defconfig/make sc573-ezkit_defconfig)
$ make menuconfig

Linux Add-in for CrossCore Embedded Studio 41

Change kernel format to vmlinux

Kernel --->
 Kernel binary format --->
 [*] vmlinux

Deselect the linked initial RAM filesystem

Filesystem images --->
 [] initial RAM filesystem linked into linux kernel

Compile Linux as usual with "make"

$ make

After the compiling is done, you need to compress the kernel binary and the rootfs using gzip.

Create compressed kernel binary

$ cd output/images/
$ arm-linux-gnueabi-objcopy -O binary vmlinux vmlinux.bin
$ gzip --best --force vmlinux.bin
$ gzip --best --force rootfs.cpio

Copy all images to common location (Use /tftpboot as the example)

$ cp vmlinux.bin.gz rootfs.cpio.gz sc589-ezkit.dtb /tftpboot

3.2.4 U-Boot Configuration

Enable fitImage Support

Compatibility for Flattened Image Tree must be added to U-Boot. In U-Boot's directory, set the
default config and :make menuconfig

$ make clean
$ make sc589-ezkit_defconfig
$ make menuconfig

Linux Add-in for CrossCore Embedded Studio 42

Select the following options:

Boot images --->
 [*] Support Flattened Image Tree
 [*] Display verbose messages on FIT boot
 [*] Enable signature verification of FIT uImage
Device Drivers --->
 [*] Enable Driver Model

Compile U-Boot like normal with "make" and then boot into U-Boot on the ezkit.

$ make

Don't forget to in your uboot console. For more information about how to boot from U-run update
Boot, please refer to .SC5xx ezkit Linux quick start guide

3.2.5 Create fitImage device tree

U-Boot's device tree is based on the Linux device tree, so the similarities aren't surprising. Images are
defined as nodes within an "images" block and can be anything from kernel images, dtb images,
ramdisk images to u-boot images, firmware images and standalone executables. Configurations are
also defined as nodes within a "configurations" block and a default configuration can be specified.
Below is a sample device tree using our previously built images:

In your U-Boot source directory, create a file named and add the following content:fitImage.its

Linux Add-in for CrossCore Embedded Studio 43

/dts-v1/;
 / {
 description = "SC5xx Linux Distribution";
 #address-cells = <1>;
 images {
 kernel@1 {
 description = "SC5xx Linux kernel";
 data = /incbin/("/tftpboot/vmlinux.
bin.gz");
 arch = "arm";
 os = "linux";
 type = "kernel";
 compression = "gzip";
 load = <0x89008000>;
 entry = <0x89008000>;
 };
 fdt@1 {
 description = "Flattened Device Tree blob";
 data = /incbin/("/tftpboot/sc589-ezkit.dtb");
 type = "flat_dt";
 arch = "arm";
 compression = "none";
 };
 ramdisk@1 {
 description = "SC5xx Linux Rootfs";
 data = /incbin/("/tftpboot/rootfs.cpio.gz");
 type = "ramdisk";
 arch = "arm";
 os = "linux";
 compression = "gzip";
 load = <0x8d000000>;
 entry = <0x8d000000>;
 };
 };
 configurations {
 default = "conf@1";
 conf@1 {
 description = "Boot Linux";
 kernel = "kernel@1";
 ramdisk = "ramdisk@1";
 fdt = "fdt@1";
 };
 };
};

Linux Add-in for CrossCore Embedded Studio 44

Don't forget to change the dtb file name and kernel/ramdisk load address according to your
board type (i.e. SC589-ezkit or SC584-ezkit or SC573-ezkit), otherwise the fitimage may not
boot properly.About the difference among these boards you could refer to SC5xx ezkit Linux

.quick start guide

Compile the device tree into a .itb "blob"

Please add the Linux kernel dtc script location to your PATH environment variable before building
the fitImage.For example:

$ export PATH=/home/test/workspace/buildroot/output/build/linux-custom
/scripts/dtc:$PATH

In your U-Boot source directory root:

$./tools/mkimage -f fitImage.its fitImage.itb

You will get a fitImage.itb file and see the the following output if the compile succeed.

Linux Add-in for CrossCore Embedded Studio 45

FIT description: SC5xx Linux Distribution
Created: Wed Mar 22 10:43:47 2017
 Image 0 (kernel@1)
 Description: SC5xx Linux kernel
 Created: Wed Mar 22 10:43:47 2017
 Type: Kernel Image
 Compression: gzip compressed
 Data Size: 2869587 Bytes = 2802.33 kB = 2.74 MB
 Architecture: ARM
 OS: Linux
 Load Address: 0xc2008000
 Entry Point: 0xc2008000
 Image 1 (fdt@1)
 Description: Flattened Device Tree blob
 Created: Wed Mar 22 10:43:47 2017
 Type: Flat Device Tree
 Compression: uncompressed
 Data Size: 18516 Bytes = 18.08 kB = 0.02 MB
 Architecture: ARM
 Image 2 (ramdisk@1)
 Description: SC5xx Linux Rootfs
 Created: Wed Mar 22 10:43:47 2017
 Type: RAMDisk Image
 Compression: gzip compressed
 Data Size: 17137994 Bytes = 16736.32 kB = 16.34 MB
 Architecture: ARM
 OS: Linux
 Load Address: 0xc6000000
 Entry Point: 0xc6000000
 Default Configuration: 'conf@1'
 Configuration 0 (conf@1)
 Description: Boot Linux
 Kernel: kernel@1
 Init Ramdisk: ramdisk@1
 FDT: fdt@1

Then also copy the fitImage.itb file to the common location. Still use /tftpboot as the example

$ cp fitImage.itb /tftpboot/

3.2.6 Boot Linux

Boot the ezkit into the newly compiled u-boot with fitImage support. Once booted, follow the steps
below to boot Linux:

Tftp the fitImage into RAM

Linux Add-in for CrossCore Embedded Studio 46

sc # tftp 0xc4000000 fitImage.itb

Here is the console output

Speed: 1000, full duplex
Using dwmac.3100c000 device
TFTP from server 10.100.4.174; our IP address is 10.100.4.50
Filename 'fitImage.itb'.
Load address: 0xc4000000
Loading:
###
 ##
###
 ##
###

 ##
###
 ##
###
 ##
###
 3 MiB/s
done
Bytes transferred = 20027491 (1319863 hex)

Run the boot args (assuming that they have already been flashed to your board)

sc # run ramargs; run addip;

Boot

sc # bootm

Here is the console output for booting Linux.

Loading kernel from FIT Image at c4000000 ...
 Using 'conf@1' configuration
 Verifying Hash Integrity ... OK
 Trying 'kernel@1' kernel subimage
 Description: SC5xx Linux kernel
 Type: Kernel Image

Linux Add-in for CrossCore Embedded Studio 47

 Compression: gzip compressed
 Data Start: 0xc40000d0
 Data Size: 2869587 Bytes = 2.7 MiB
 Architecture: ARM
 OS: Linux
 Load Address: 0xc2008000
 Entry Point: 0xc2008000
 Verifying Hash Integrity ... OK
Loading ramdisk from FIT Image at c4000000 ...
 Using 'conf@1' configuration
 Trying 'ramdisk@1' ramdisk subimage
 Description: SC5xx Linux Rootfs
 Type: RAMDisk Image
 Compression: gzip compressed
 Data Start: 0xc42c13a0
 Data Size: 17137994 Bytes = 16.3 MiB
 Architecture: ARM
 OS: Linux
 Load Address: 0xc6000000
 Entry Point: 0xc6000000
 Verifying Hash Integrity ... OK
 Loading ramdisk from 0xc42c13a0 to 0xc6000000
Loading fdt from FIT Image at c4000000 ...
 Using 'conf@1' configuration
 Trying 'fdt@1' fdt subimage
 Description: Flattened Device Tree blob
 Type: Flat Device Tree
 Compression: uncompressed
 Data Start: 0xc42bcad4
 Data Size: 18516 Bytes = 18.1 KiB
 Architecture: ARM
 Verifying Hash Integrity ... OK
 Booting using the fdt blob at 0xc42bcad4
 Uncompressing Kernel Image ... OK
 Loading Ramdisk to cee00000, end cfe5814a ... OK
 Loading Device Tree to cedf8000, end cedff853 ... OK
Starting kernel ...
Booting Linux on physical CPU 0x0
Linux version 4.0.0-ADI-1.1.0-00048-gd20cee5 (hfeng@hfeng) (gcc
version 4.8.3 (Analog Devices Inc. ARM Tools
(4972be04c874843c07fba1554f4271c8dae0b9fb). Dist7
CPU: ARMv7 Processor [410fc051] revision 1 (ARMv7), cr=10c53c7d
CPU: PIPT / VIPT nonaliasing data cache, VIPT aliasing instruction
cache
Machine model: ADI sc589-ezkit
bootconsole [earlycon0] enabled
Memory policy: Data cache writeback
.
.
.
Welcome to Buildroot

Linux Add-in for CrossCore Embedded Studio 48

buildroot login: root
Password:

 a8888b. / Welcome to the buildroot distribution \
 d888888b. / _ _ \
 8P"YP"Y88 / | | |_| __ __ (TM) |
 8|o||o|88 _____/ | | _ ____ _ _ \ \/ / |
 8' .88 \ | | | | _ \| | | | \ / |
 8`._.' Y8. \ | |__ | | | | | |_| | / \ |
 d/ `8b. \ ____||_|_| |_|____|/_/_\ |
 dP . Y8b. \ For embedded processors including |
 d8:' " `::88b \ the Analog Devices ADSP-SC5xx /
 d8" 'Y88b _____________________________________/
 :8P ' :888
 8a. : _a88P For further information, check out:
 ._/"Yaa_: .| 88P|
 \ YP" `| 8P `.
 / \.___.d| .' - http://buildroot.org/
 `--..__)8888P`._.' jgs/a:f - http://www.analog.com/
Have a lot of fun...
#

For more information on fitImage, please see the documentation in the UBoot directory tree at
$(UBOOT_DIR)/doc/uImage.FIT/

3.3 Loading file from USB storage in u-boot

3.3.1 Overview

This document talks about how we can load files on USB memory stick, into system RAM from u-
boot.Here we take ADSP-SC573 board as example.

3.3.2 Hardware Setup

An ADSP-SC5xx EZ-Board: ADSP-SC589/SC584/SC573 EZ-Board

A USB memory stick

A USB adapter cable (provided in the ezkit box)

Connect USB stick to the USB OTG port, via the USB adapter cable, as following, and reset the board

Linux Add-in for CrossCore Embedded Studio 49

3.3.3 Test method

Formatting the USB stick

Insert the USB memory stick into a Linux PC, you will see new items show up in /dev/sd*, as
following:

$ ls /dev/sd*
/dev/sda /dev/sda1 /dev/sda2 /dev/sda5 /dev/sdb /dev/sdb1

In this case the /dev/sdb is for the USB stick we just plugged in.

Caution : Please double check the device node newly created for your memory stick, otherwise
serious damage like system permanent crash down happens!

The format a vfat partiton on it:

$ sudo mkfs.vfat /dev/sdb1
[sudo] password for ...
mkfs.vfat 3.0.12 (29 Oct 2011)

Copy files in it

$ sudo mount /dev/sdb1 /mnt
$ cd /opt/analog/cces-linux-add-in/1.2.0/buildroot-sc5xx-1.2.0/images
$ sudo cp uImage-sc573-ezkit /mnt/uImage
$ sudo cp sc573-ezkit.dtb /mnt
$ sudo umount /mnt

Then plug the USB stick to the USB OTG port in board, via the USB adapter cable, and reset the
board

Linux Add-in for CrossCore Embedded Studio 50

Start the USB

Run "start usb" In the u-boot console:

sc # usb start
(Re)start USB...
USB0: scanning bus 0 for devices... 1 USB Device(s) found
 scanning usb for storage devices... 1 Storage Device(s) found

Run "fatls usb 0:1" In the u-boot console:

sc # fatls usb 0:1
 12452384 uimage
 10306 sc573-ezkit.dtb
2 file(s), 0 dir(s)

This shows the FAT files information in USB device 0 partition 1, with files we copied.

Load file into RAM

As example we load both the dtb and the uImage file into proper location.

Don't forget to change the file/dtb name and load address according to your board type (i.e.
SC589-ezkit or SC584-ezkit or SC573-ezkit), otherwise it may not boot properly.

sc # fatload usb 0:1 0x84000000 sc573-ezkit.dtb
reading sc573-ezkit.dtb
10306 bytes read in 30 ms (335 KiB/s)
sc # fatload usb 0:1 0x82000000 uImage
reading uImage
12452384 bytes read in 7772 ms (1.5 MiB/s)

Verify the read operation:

sc # bootm 0x82000000 - 0x84000000
Booting kernel from Legacy Image at 82000000 ...
 Image Name: Linux-4.0.0-ADI-1.1.0-00027-g5c7
 Image Type: ARM Linux Kernel Image (uncompressed)
 Data Size: 12452320 Bytes = 11.9 MiB
 Load Address: 82008000
 Entry Point: 82008000

Linux Add-in for CrossCore Embedded Studio 51

 Verifying Checksum ... OK
Flattened Device Tree blob at 84000000
 Booting using the fdt blob at 0x84000000
 Loading Kernel Image ... OK
 Loading Device Tree to 8fe5d000, end 8fe62841 ... OK
Starting kernel ...
Booting Linux on physical CPU 0x0
Linux version 4.0.0-ADI-1.1.0-00027-g5c77b60 (i7@i7-OptiPlex-9010)
(gcc version 4.8.3 (Analog Devices Inc. ARM Tools
(e596c0da91703b047df99f5513e6
CPU: ARMv7 Processor [410fc051] revision 1 (ARMv7), cr=10c53c7d
CPU: PIPT / VIPT nonaliasing data cache, VIPT aliasing instruction
cache
Machine model: ADI sc57x-ezkit
bootconsole [earlycon0] enabled
Memory policy: Data cache writeback
dump init clock rate
CGU0_PLL 450 MHz
CGU0_SYSCLK 225 MHz
CGU0_CCLK 450 MHz
CGU0_SYS0 112 MHz
CGU0_DCLK 225 MHz
CGU0_OCLK 150 MHz
CGU0_SYS0 112 MHz
Built 1 zonelists in Zone order, mobility grouping on. Total pages: 56
896
Kernel command line: root=/dev/mtdblock2 rw rootfstype=jffs2 clkin_hz=(
25000000) earlyprintk=serial,uart0,57600 console=ttySC0,57600 mem=224M
PID hash table entries: 1024 (order: 0, 4096 bytes)
Dentry cache hash table entries: 32768 (order: 5, 131072 bytes)
Inode-cache hash table entries: 16384 (order: 4, 65536 bytes)
Memory: 215024K/229376K available (3139K kernel code, 96K rwdata,
1184K rodata, 7736K init, 71K bss, 14352K reserved, 0K cma-reserved)
Virtual kernel memory layout:
 vector : 0xffff0000 - 0xffff1000 (4 kB)
 fixmap : 0xffc00000 - 0xfff00000 (3072 kB)
 vmalloc : 0xce800000 - 0xff000000 (776 MB)
 lowmem : 0xc0000000 - 0xce000000 (224 MB)
 modules : 0xbf000000 - 0xc0000000 (16 MB)
 .text : 0xc0008000 - 0xc044113c (4325 kB)
 .init : 0xc0442000 - 0xc0bd0000 (7736 kB)
 .data : 0xc0bd0000 - 0xc0be81e0 (97 kB)
 .bss : 0xc0be81e0 - 0xc0bfa098 (72 kB)
NR_IRQS:16 nr_irqs:16 16
GIC CPU mask not found - kernel will fail to boot.
GIC CPU mask not found - kernel will fail to boot.
sched_clock: 32 bits at 112MHz, resolution 8ns, wraps every
38177486839ns
Console: colour dummy device 80x30
Calibrating delay loop... 297.98 BogoMIPS (lpj=595968)
pid_max: default: 32768 minimum: 301

Linux Add-in for CrossCore Embedded Studio 52

Mount-cache hash table entries: 1024 (order: 0, 4096 bytes)
Mountpoint-cache hash table entries: 1024 (order: 0, 4096 bytes)
CPU: Testing write buffer coherency: ok
Setting up static identity map for 0x822fdd48 - 0x822fdd7c
devtmpfs: initialized
do_initcall_level level 0
do_initcall_level level 1
VFP support v0.3: implementor 41 architecture 2 part 30 variant 5 rev 1
pinctrl core: initialized pinctrl subsystem
NET: Registered protocol family 16
do_initcall_level level 2
DMA: preallocated 256 KiB pool for atomic coherent allocations
do_initcall_level level 3
L2C: device tree omits to specify unified cache
L2C-310 dynamic clock gating enabled, standby mode enabled
L2C-310 cache controller enabled, 8 ways, 256 kB
L2C-310: CACHE_ID 0x410000c9, AUX_CTRL 0x06040000
sc57x_init: registering device resources
sec init...
enabled
hw-breakpoint: Failed to enable monitor mode on CPU 0.
ADI DMA2 Controller
adi-dma2 31026180.dma: Invalid ADI DMA channel.
adi-dma2: probe of 31026180.dma failed with error -2
adi-dma2 31026100.dma: Invalid ADI DMA channel.
adi-dma2: probe of 31026100.dma failed with error -2
adi-dma2 30fff080.dma: Invalid ADI DMA channel.
adi-dma2: probe of 30fff080.dma failed with error -2
adi-dma2 31026280.dma: Invalid ADI DMA channel.
adi-dma2: probe of 31026280.dma failed with error -2
adi-dma2 31026200.dma: Invalid ADI DMA channel.
adi-dma2: probe of 31026200.dma failed with error -2
adi-dma2 3109a000.dma: Invalid ADI DMA channel.
adi-dma2: probe of 3109a000.dma failed with error -2
adi-dma2 3109a080.dma: Invalid ADI DMA channel.
adi-dma2: probe of 3109a080.dma failed with error -2
adi-dma2 3109b000.dma: Invalid ADI DMA channel.
adi-dma2: probe of 3109b000.dma failed with error -2
adi-dma2 3109b080.dma: Invalid ADI DMA channel.
adi-dma2: probe of 3109b080.dma failed with error -2
DMA channel 40 is not registed
DMA channel 39 is not registed
do_initcall_level level 4
SCSI subsystem initialized
i2c-bfin-twi 31001400.twi: Blackfin on-chip I2C TWI Contoller,
regs_base@f4001400
i2c-bfin-twi 31001500.twi: Blackfin on-chip I2C TWI Contoller,
regs_base@f4001500
i2c-bfin-twi 31001600.twi: Blackfin on-chip I2C TWI Contoller,
regs_base@f4001600
pps_core: LinuxPPS API ver. 1 registered

Linux Add-in for CrossCore Embedded Studio 53

pps_core: Software ver. 5.3.6 - Copyright 2005-2007 Rodolfo Giometti
<giometti@linux.it>
PTP clock support registered
do_initcall_level level 5
Switched to clocksource cs_gptimer
NET: Registered protocol family 2
TCP established hash table entries: 2048 (order: 1, 8192 bytes)
TCP bind hash table entries: 2048 (order: 1, 8192 bytes)
TCP: Hash tables configured (established 2048 bind 2048)
TCP: reno registered
UDP hash table entries: 256 (order: 0, 4096 bytes)
UDP-Lite hash table entries: 256 (order: 0, 4096 bytes)
NET: Registered protocol family 1
do_initcall_level level 6
hw perfevents: enabled with armv7_cortex_a5 PMU driver, 3 counters
available
futex hash table entries: 256 (order: -1, 3072 bytes)
jffs2: version 2.2. (NAND) © 2001-2006 Red Hat, Inc.
io scheduler noop registered (default)
ADI serial driver
adi-uart4.0: ttySC0 at MMIO 0x31003000 (irq = 20, base_baud = 7031250)
is a ADI-UART4
console [ttySC0] enabled
console [ttySC0] enabled
bootconsole [earlycon0] disabled
bootconsole [earlycon0] disabled
adi-uart4.2: ttySC2 at MMIO 0x31003800 (irq = 60, base_baud = 7031250)
is a ADI-UART4
loop: module loaded
adi-spi3 3102e000.spi: registered ADI SPI controller spi0
adi-spi3 3102f000.spi: registered ADI SPI controller spi1
adi-spi3 31044000.spi: registered ADI SPI controller spi2
stmmaceth 3100c000.ethernet: no reset control found
stmmac - user ID: 0x10, Synopsys ID: 0x37
 Ring mode enabled
 DMA HW capability register supported
 Enhanced/Alternate descriptors
 Enabled extended descriptors
 RX Checksum Offload Engine supported (type 2)
 TX Checksum insertion supported
 Wake-Up On Lan supported
 Enable RX Mitigation via HW Watchdog Timer
libphy: stmmac: probed
eth0: PHY ID 20005c7a at 1 IRQ POLL (stmmac-0:01) active
mousedev: PS/2 mouse device common for all mice
i2c /dev entries driver
adi_wdt: initialized: timeout=20 sec (nowayout=0)
TCP: cubic registered
NET: Registered protocol family 17
do_initcall_level level 7
ThumbEE CPU extension supported.

Linux Add-in for CrossCore Embedded Studio 54

Freeing unused kernel memory: 7736K (c0442000 - c0bd0000)
Starting logging: OK
Starting mdev...
Starting watchdog...
Initializing random number generator... random: dd urandom read with 8
bits of entropy available
done.
Starting network...
/bin/sh: run-parts: not found
ssh-keygen: generating new host keys: ED25519
Starting sshd: OK
Starting inetd: OK
Welcome to Buildroot

More information

There are more command available for USB in u-boot:

sc # usb info
1: Mass Storage, USB Revision 2.0
 - Generic USB Storage 000000009451
 - Class: (from Interface) Mass Storage
 - PacketSize: 64 Configurations: 1
 - Vendor: 0x05e3 Product 0x0723 Version 148.81
 Configuration: 1
 - Interfaces: 1 Bus Powered 500mA
 Interface: 0
 - Alternate Setting 0, Endpoints: 2
 - Class Mass Storage, Transp. SCSI, Bulk only
 - Endpoint 1 In Bulk MaxPacket 512
 - Endpoint 2 Out Bulk MaxPacket 512

sc # usb storage
 Device 0: Vendor: Generic Rev: 9451 Prod: STORAGE DEVICE
 Type: Removable Hard Disk
 Capacity: 1897.0 MB = 1.8 GB (3885056 x 512)

sc # usb tree
USB device tree:
 1 Mass Storage (12 Mb/s, 500mA)
 Generic USB Storage 000000009451

Linux Add-in for CrossCore Embedded Studio 55

sc # fatinfo usb 0:1
Interface: USB
 Device 0: Vendor: Generic Rev: 9451 Prod: STORAGE DEVICE
 Type: Removable Hard Disk
 Capacity: 1897.0 MB = 1.8 GB (3885056 x 512)
Filesystem: FAT32 " "

3.4 Mobile Storage Interface (MSI)

3.4.1 Overview

Some of the ADSP-SC5xx processors provide a mobile storage interface(MSI). MSI is a fast,
synchronous controller that uses various protocols to communicate with MMC, SD, and SDIO cards
to address the growing storage need in embedded systems, handheld and consumer electronics
applications requiring low power. The MSI is compatible with the following protocols.

MMC (Multimedia Card) bus protocol

SD (Secure Digital) bus protocol

SDIO (Secure Digital Input Output) bus protocol

All of these storage solutions use similar interface protocols. The main difference between MMC and
SD support is the initialization sequence. The main difference between SD and SDIO support is the
use of interrupt and read wait signals for SDIO.

3.4.2 Hardware Setup

An ADSP-SC5xx EZ-Board: ADSP-SC589/SC573 EZ-Board(the SC584 processor does not
include the MSI interface)

SD card

The SD/MMC card slot is on the SC589-EZKIT and SC573-EZKIT board. This slot accepts full-J18
size SD and MMC cards, or microSD cards with an adapter.

Linux Add-in for CrossCore Embedded Studio 56

3.4.3 Software Configuration

To enable the MSI driver add the following MSI-related config macros in include/configs/sc589-
or ezkit.h include/configs/sc573-ezkit.h

#define CONFIG_GENERIC_MMC
#define CONFIG_MMC
#define CONFIG_SC5XX_DWMMC
#define CONFIG_DWMMC
#define CONFIG_BOUNCE_BUFFER

3.4.4 Build and Load Uboot

A UBoot image can now be built and loaded onto the target board. See SC5xx ezkit Linux quick start
 for details.guide

Linux Add-in for CrossCore Embedded Studio 57

3.4.5 Usage of MSI Driver

Initialize MSI(MMC/SDIO) Sub-System

mmc info
Device: SC5XX SDH
Manufacturer ID: 3
OEM: 5344
Name: SD01G
Tran Speed: 25000000
Rd Block Len: 512
SD version 1.10
High Capacity: No
Capacity: 968.8 MiB
Bus Width: 4-bit

Get More MMC Command Usage

mmc help
or
help mmc

Linux Add-in for CrossCore Embedded Studio 58

4 Linux buildroot distribution and applications

4.1 Bluetooth and headset auido example

4.1.1 Introduction

Bluetooth is low-cost, low-power, short-range wireless technology. It was designed as a replacement
for cables and other short-range technologies like IrDA. Bluetooth operates in personal area range that
typically extends up to 10 meters. More information about Bluetooth can be found at www.bluetooth.

.com

The Linux Bluetooth subsystem consists of several layers:

Bluetooth Core (HCI device and connection manager, scheduler)

HCI Device drivers (interface to the hardware)

RFCOMM module (RFCOMM Protocol)

BNEP module (Bluetooth Network Encapsulation Protocol)

HIDP module (Human Interface Device Protocol)

The most common use of Bluetooth audio is to make a wireless connection to a cellphone. A special
transport, Synchronous Connection-Oriented, or SCO, was invented to provide this low-delay
monophonic audio. An ALSA plug-in library is designed to reroute the sound stream from ALSA
player to Bluetooth SCO device. Following example shows the steps to configure a Bluetooth SCO
headset through USB Bluetooth controller.

4.1.2 Hardware setup

An ADSP-SC5xx EZ-Board: ADSP-SC589/SC584/SC573 EZ-Board

A Bluetooth USB dongle

A Bluetooth headset

4.1.3 Software configuration

Linux Kernel Configuration

For the Linux Kernel, users need to configure the Bluetooth socket stack.

http://www.bluetooth.com/
http://www.bluetooth.com/

Linux Add-in for CrossCore Embedded Studio 59

[*] Networking support --->
 [*] Bluetooth subsystem support --->
 [*] Bluetooth Classic (BR/EDR) features
 <*> RFCOMM protocol support
 Bluetooth device drivers --->
 <*> HCI USB driver
 Device Drivers --->
 HID support --->
 [*] USB support --->
 MUSB Mode Selection (Host only mode)--->
 (X) Host only mode
 () Gadget only mode
 () Dual Role only mode

Buildroot Configuration

For Buildroot, user needs configure the following applications:

Target Packages --->
 Libraries --->
 Jason/XML --->
 -*- expact
 Audio/Sound --->
 -*- alsa-lib
 Hardware handling --->
 -*- dbus
 Audio and video applications --->
 [*] alsa-utils
 AlSA utils selection --->
 [*] amixer
 [*] aplay/arecord
 [*] play
 Networking application --->
 [*] bluez-utils
 [*] audio support

4.1.4 Run headset audio example

Boot the SC5xx EZkit board with the image just compiled (see SC5xx EZ-Kit Linux Quick Start
 for details) and plug in the Bluetooth USB dongle. By default USB works on HOST mode, the Guide

device should be detected automatically:

Linux Add-in for CrossCore Embedded Studio 60

usbhid: USB HID core driver
usb 1-1: new full-speed USB device number 2 using musb-hdrc

Scan Bluetooth devices and set up the headset address in asound.conf

Example

hciconfig hci0 up
hcitool scan
Scanning ...
 30:F9:ED:E1:9E:A9 DR-BT140Q
vi /etc/asound.conf

Add the following content to /etc/asound.conf

Example

##
pcm.bluetooth {
 type bluetooth
 device "30:F9:ED:E1:9E:A9"
}

Enable bluez Socket in audio.conf:

Example

vi /etc/bluetooth/audio.conf

The content of audio.conf is:

Example

[General]
Enable=Socket,Control

Start Bluetooth daemons and create devices

Linux Add-in for CrossCore Embedded Studio 61

Example

/etc/init.d/S30dbus start &
Starting system message bus: done
bluetoothd &
agent 0000 &
[1]- Done bluetoothd
export BTADAPTER=`dbus-send --system --dest=org.bluez --print-reply
/ org.bluez.Manager.DefaultAdapter | tail -n 1 | sed 's/^.*"\(.*\)".*$
/\1/'`
dbus-send --system --print-reply --dest=org.bluez $BTADAPTER org.
bluez.Adapter.CreateDevice string:30:F9:ED:E1:9E:A9
method return sender=:1.0 -> dest=:1.3 reply_serial=2
object path "/org/bluez/560/hci0/dev_30_F9_ED_E1_9E_A9"
dbus-send --system --print-reply --dest=org.bluez $BTADAPTER
/dev_30_F9_ED_E1_9E_A9 org.bluez.Audio.Connect
Pincode request for device /org/bluez/560/hci0/dev_30_F9_ED_E1_9E_A9
method return sender=:1.0 -> dest=:1.6 reply_serial=2

Now user can play the music file and hear the voice from the headset.

Example

aplay -D bluetooth test.wav
Playing WAVE 'test.wav' : Signed 16 bit Little Endian, Rate 44100 Hz,
Stereo

4.2 Build application outside the buildroot framework

4.2.1 Introduction

This page describes how to build application outside the buildroot framework. Buildroot will take care
the build options for components of the buildroot, such as Linux Kernel, and different kinds of
packages. For standalone applications which outside buildroot framework, developers should deal
with build options by themselves.

4.2.2 Build Application outside Buildroot Framework

The Buildroot framework appends many compilation and link options in the external toolchain
wrapper when building Buildroot packages.

Linux Add-in for CrossCore Embedded Studio 62

If you wish to build your application with the GNU Linux toolchain for ADSP-SC5xx, outside the
Buildroot framework, you have to add the following options to your Makefile or command line.
Analog Devices GNU Toolchain for ARM processors accepts switches to select the Analog Devices
processor (See) and silicon revision (See). Use of these switches will ensure -mproc -msi-revision
that the correct pre-processor macros and run-time libraries are used for the processor. The switches
will also ensure that any silicon anomaly workarounds relevant to the processor are enabled at
compile, assemble and link time. For more information about the switches, please see ARM®
Development Tools Documentation -> Cortex-A -> Analog Devices ARM Toolchain Manual -> GCC
C/C++ Compiler Additional Features -> Additional Compiler Switches on the CrossCore Embedded
Studio IDE Help, or provide the or options to the .--help --target-help arm-linux-gnueabi-gcc

For example to compile for the processor, with a silicon revision of 0.0:ADSP-SC589

-mabi=aapcs-linux -mproc=ADSP-SC589 -msi-revision=0.0 -marm -pipe -
mfloat-abi=hard -std=gnu99 -D_GNU_SOURCE -D_LARGEFILE_SOURCE -
D_LARGEFILE64_SOURCE -D_FILE_OFFSET_BITS=64

Take the package as an example to show the build process:version

$ arm-linux-gnueabi-gcc -mabi=aapcs-linux -mproc=ADSP-SC589 -msi-
revision=0.0 -marm -pipe -mfloat-abi=hard -std=gnu99 -D_GNU_SOURCE -
D_LARGEFILE_SOURCE -D_LARGEFILE64_SOURCE
-D_FILE_OFFSET_BITS=64 -Os -I/home/test/projects/buildroot/output/host
/usr/arm-buildroot-linux-gnueabihf/sysroot/usr/include/tirpc/ -o
version version.c stamp.c

4.3 OProfile for performance benchmark

4.3.1 Introduction

OProfile is one of the packages of the Buildroot distribution. This section will help guide you through
the process of compiling OProfile and running it on your target system. Please find more OProfile
details in its user manual at: .http://oprofile.sourceforge.net/

4.3.2 Hardware Setup

An ADSP-SC5xx EZ-Board: ADSP-SC589/SC584/SC573 EZ-Board

http://oprofile.sourceforge.net/

Linux Add-in for CrossCore Embedded Studio 63

4.3.3 Software Configuration

Configure Linux Kernel

First you have to enable OProfile support in Linux kernel.

General setup --->
 [*] Profiling support
 <*> OProfile system profiling

This will enable the system timer profiling. If you want to use the ARM PMU hardware monitor
feature, please enable following options as well.

Kernel Features --->
 [*] Enable hardware performance counter support for perf events

Configure Buildroot

At the top of your buildroot user configuration, you have to turn on the OProfile application and the
Whetstone bechmark.

Target packages --->
 Debugging, profiling and benchmark --->
 [*] oprofile
 [*] whetstone

4.3.4 Simple OProfile usage

Login to your target Linux serial console as root.Copy the kernel image “vmlinux” to your target file
file system via Ethernet and ssh:

$ scp vmlinux root@target:/

Linux Add-in for CrossCore Embedded Studio 64

Make sure that there are the following files under the /usr/bin directory:

opannotate -- output annotated source file with samples. The executable file needs to contain
debug information, the source file needs to be copied to the target system from the
development system.

oparchive -- backup the oprofiling data files.

opcontrol -- control the oprofile system, you need to use bfin_opcontrol for blackfin.

opgprof -- create gprof style report.

ophelp -- help.

opreport -- create summary report from data files.

oprofiled -- the oprofiling daemon.

It's important to note that " " and " " are no longer used in Oprofile 1.0.0 and later opcontrol oprofiled
version, please ingore the " " operations in the following examples if you are using Oprofile opcontrol
1.0.0 and later version.

If you ues the latest version Oprofile, please refer to the following "Profile Whetstone Only by OPerf
and ARM PMU Events " section as the example.

Export the OPDIR environment variable first:

export OPDIR=/usr/bin/

You can get the supported events by executing:

opcontrol --list-events

Use following commands to start OProfile:

opcontrol --vmlinux=kernel_image_path
opcontrol --event=EVENT_TYPE:MAX_COUNT:START_COUNT:PROF_KERNEL:
PROF_USER
opcontrol --start --kernel-range=start,end

This initiates the profiling. Please run any application you want to profile.

Then we can run the following to force a flush of the collected profiling data:

opcontrol --dump

Linux Add-in for CrossCore Embedded Studio 65

The sample data file will be generated in . Then we can run:/var/lib/oprofile/samples/

opreport -l

Some user-readable output is produced, as in the following example:

Using /var/lib/oprofile/samples/ for samples directory.
CPU: CPU with timer interrupt
Profiling through timer interrupt
warning: could not check that the binary file /vmlinux has not been
modified since the profile was.
samples % app name symbol name
411480 88.9696 vmlinux cpu_v7_name
195 0.0422 vmlinux sg_miter_get_next_page
136 0.0294 vmlinux zap_page_range
132 0.0285 vmlinux kill_pid_info_as_cred
118 0.0255 vmlinux try_to_free_buffers

You can stop profiling by:

opcontrol --shutdown

You can reset profiling data by:

opcontrol --reset

4.3.5 Examples

Profile Linux Kernel and Whetstone by OPControl and the Timer Interrupt

export OPDIR=/usr/bin/
opcontrol --vmlinux=/vmlinux
oprofile: hardware counters not available
oprofile: using timer interrupt.

opcontrol --start --kernel-range=0xc0000000,0xffffffff
Using 2.6+ OProfile kernel interface.
Reading module info.
Using log file /var/lib/oprofile/samples/oprofiled.log
Daemon started.
Profiler running.

Linux Add-in for CrossCore Embedded Studio 66

whetstone 50000
Loops: 50000, Iterations: 1, Duration: 24 sec.
C Converted Double Precision Whetstones: 208.3 MIPS
opcontrol --dump
opreport -l
Using /var/lib/oprofile/samples/ for samples directory.
CPU: CPU with timer interrupt
Profiling through timer interrupt
samples % app name symbol name
616 34.4134 whetstone /usr/bin/whetstone
580 32.4022 libm-2.18.so /lib/libm-2.18.so
558 31.1732 vmlinux set_memory_rw
8 0.4469 libc-2.18.so /lib/libc-2.18.so
6 0.3352 ld-2.18.so /lib/ld-2.18.so
2 0.1117 vmlinux bdi_dirty_limit
1 0.0559 busybox /bin/busybox
1 0.0559 vmlinux SyS_select
1 0.0559 vmlinux __d_lookup
1 0.0559 vmlinux __ptrace_unlink
1 0.0559 vmlinux allocate_resource
1 0.0559 vmlinux bdi_set_min_ratio
1 0.0559 vmlinux d_materialise_unique
1 0.0559 vmlinux d_prune_aliases
1 0.0559 vmlinux dentry_lru_isolate_shrink
1 0.0559 vmlinux dma_pool_alloc
1 0.0559 vmlinux do_sys_truncate
1 0.0559 vmlinux get_cmdline
1 0.0559 vmlinux rmap_walk
1 0.0559 vmlinux set_cpu_itimer
1 0.0559 vmlinux sg_miter_get_next_page
1 0.0559 vmlinux traverse
1 0.0559 vmlinux unlink_anon_vmas
1 0.0559 vmlinux vfs_fstatat
1 0.0559 vmlinux vsscanf
1 0.0559 vmlinux wait_consider_task

Profile Linux Kernel and Whetstone by OPcontrol and the ARM PMU Events

export OPDIR=/usr/bin/
opcontrol --vmlinux=/vmlinux
opcontrol --event=CPU_CYCLES:100000:0:1:1
opcontrol --start --kernel-range=0xc0000000,0xffffffff
ATTENTION: Use of opcontrol is discouraged. Please see the man page fo
r operf.
Using 2.6+ OProfile kernel interface.
Reading module info.
Using log file /var/lib/oprofile/samples/oprofiled.log

Linux Add-in for CrossCore Embedded Studio 67

Daemon started.
Profiler running.
whetstone 50000
Loops: 50000, Iterations: 1, Duration: 24 sec.
C Converted Double Precision Whetstones: 208.3 MIPS
opcontrol --dump
opreport -l
Using /var/lib/oprofile/samples/ for samples directory.
warning: /oprofile could not be found.
CPU: ARM Cortex-A5
Counted CPU_CYCLES events (CPU cycle) with a unit mask of 0x00 (No
unit mask) count 100000
samples % app name symbol name
4953 47.2705 whetstone /usr/bin/whetstone
4645 44.3310 libm-2.18.so /lib/libm-2.18.so
126 1.2025 vmlinux get_signal_to_deliver
39 0.3722 libc-2.18.so /lib/libc-2.18.so
35 0.3340 busybox /bin/busybox
34 0.3245 ld-2.18.so /lib/ld-2.18.so
30 0.2863 vmlinux print_prefix
29 0.2768 vmlinux input_handle_event
27 0.2577 vmlinux set_cpu_itimer
25 0.2386 vmlinux __bdi_update_bandwidth
22 0.2100 vmlinux kfifo_out_copy_r
21 0.2004 vmlinux vsscanf
20 0.1909 vmlinux evdev_handle_set_keycode_v2
19 0.1813 vmlinux allocate_resource
18 0.1718 vmlinux bdi_dirty_limit
15 0.1432 vmlinux ack_bad
14 0.1336 vmlinux __arm_dma_free.isra.23
14 0.1336 vmlinux bdi_set_min_ratio
14 0.1336 vmlinux flush_workqueue
14 0.1336 vmlinux unlink_anon_vmas
14 0.1336 vmlinux wait_consider_task
13 0.1241 vmlinux anon_vma_clone
13 0.1241 vmlinux vfs_fstatat
12 0.1145 vmlinux drain_workqueue
10 0.0954 oprofile /oprofile
 ...

Profile Whetstone Only by OPerf and ARM PMU Events

operf whetstone 10000
operf: Profiler started

Loops: 10000, Iterations: 1, Duration: 10 sec.

Linux Add-in for CrossCore Embedded Studio 68

C Converted Double Precision Whetstones: 100.0 MIPS

Profiling done.

opreport -l
Using //oprofile_data/samples/ for samples directory.
warning: /no-vmlinux could not be found.
CPU: ARM Cortex-A5
Counted CPU_CYCLES events (CPU cycle) with a unit mask of 0x00 (No
unit mask) count 100000
samples % image name symbol name
992 50.6639 whetstone /usr/bin/whetstone
944 48.2125 libm-2.18.so /lib/libm-2.18.so
18 0.9193 no-vmlinux /no-vmlinux
4 0.2043 ld-2.18.so /lib/ld-2.18.so

4.4 FTP Server (ftpd)

4.4.1 Introduction

This document describes how to enable the FTP server (ftpd) on Linux running on an ADSP-SC5xx
EZ-Kit.

4.4.2 Operation

Enable the FTPD Manually in Busybox

a) (in the Buildroot source root)make busybox-menuconfig

b) Select to enable "Networking utilities -> ftpd"

c) make

Test the FTP Server

You need to transfer the generated uImage to your target board, using the steps described in SC5xx
, and boot it. You should now be able to use the ftp server daemon EZ-Kit Linux Quick Start Guide

running on the SC5xx-ezkit to transfer data to or from a remote PC running Linux (or another OS).

Connect to the target board from the Linux host:

host:/> ftp $YOUR_BOARD_IP

Linux Add-in for CrossCore Embedded Studio 69

Upload a file from the Linux host to the target board

ftp:/> put $FILE

Check the uploaded file is there (on the sc5xx-ezkit):

root:/> ls /tmp

Download file from the target board

ftp:/> get $FILE

Run on the Linux host's console after this. You should see the file downloaded is present.ls

The ftp daemon (ftpd) is automatically launched on boot by the file on the target /etc/inetd.conf
SC5xx-ezkit board, with the following command:

root:/> ftp stream tcp nowait root /sbin/ftpd ftpd -w -S /tmp

4.5 Touchscreen Library

4.5.1 Introduction

The touchscreen library (tslib) is an abstraction layer for touchscreen panel events, as well as a filter
stack for the manipulation of those events (such as jitter smoothing and calibration transform). It
provides the user space API to interacting with touchscreens under Linux. It is the only method
supported anymore for accessing touchscreen devices under Linux on the SC58x EZ-kits. The
upstream homepage can be found at github.com/kergoth/tslib

4.5.2 Hardware Setup

An ADSP-SC58x EZ-Board: ADSP-SC589/SC584 EZ-Board

A WVGA/LCD EI3 LCD extender board (For more information about this board, you could
refer to the doc in ADI Web Site)http://www.analog.com/EX3-LCD

Connect the socket of EI3 LCD extender to the socket of the SC589-EZKIT board.J1 P1A

https://github.com/kergoth/tslib/
http://www.analog.com/EX3-LCD

Linux Add-in for CrossCore Embedded Studio 70

Note: This case does not apply to SC573 EZ-kit due board level compatibility issue between it and the
WVGA/LCD EI3 LCD extender board.

4.5.3 Software Configuration

Configure Buildroot

The tslib package can be enabled under your user/vendor settings in the buildroot distribution.

Target Packages --->
 Libraries --->
 Hardware Handling --->
 [*] tslib

You should also enable the event test program to assist if you're setting things up for the first time.

Target Packages ---->
 Miscellaneous --->
 [*] event test

Configure Linux Kernel

There are two things to enable in the Linux kernel. First, you need the common code for the event
interface. Then you need the specific driver for the touchscreen device you're using.

Device Drivers --->
 Input device support --->
 [*] Generic input layer (needed for keyboard, mouse, ...)
 <*> Event interface

The touchscreen drivers will be in the same place. Enable the driver for the device you're using.

Device Drivers --->
 Input device support --->

Linux Add-in for CrossCore Embedded Studio 71

 [*] Touchscreens --->
 <*> Analog Devices AD7879-1/AD7889-1 touchscreen interface
 <*> support SPI bus connection

Don't forget to enable LCD and disable CAN driver for touch screen calibration.

Device Drivers --->
 Graphics support --->
 Frame buffer Devices --->
 <*> Support for frame buffer devices --->
 <*> NEC NL8048HL WVGA LCD for BF609
[*] Networking support --->
 < > CAN bus subsystem support ----

4.5.4 Example

Runtime Config

Before you can use the touchscreen, you need to export a few environment variables. You may want
to put these into a file so you can easily source it at runtime.

cat /etc/tslib.env
export TSLIB_FBDEVICE=/dev/fb0
export TSLIB_CONSOLEDEVICE=none
export TSLIB_CONFFILE=/etc/ts.conf
export TSLIB_CALIBFILE=/etc/pointercal
export TSLIB_TSDEVICE=/dev/input/event0
. /etc/tslib.env

Enable LCD backlight

Set up GPIO 102 to enable the LCD backlight on the EI3 LCD expander

echo 102 > /sys/class/gpio/export
echo high > /sys/class/gpio/gpio102/direction

Linux Add-in for CrossCore Embedded Studio 72

Calibration

Before you start using the touchscreen, you should calibrate it. This can be easily accomplished with
the application on the EI3 LCD extender. Just follow the on-screen directions. ts_calibrate

ts_calibrate
xres = 800, yres = 480
Took 10 samples...
Top left : X = 661 Y = 392
Took 7 samples...
Top right : X = 654 Y = 3782
Took 6 samples...
Bot right : X = 3356 Y = 3801
Took 6 samples...
Bot left : X = 3409 Y = 412
Took 5 samples...
Center : X = 2100 Y = 2102
-30.183826 -0.001486 0.206507
-46.264732 0.139335 0.001229
Calibration constants: -1978127 -97 13533 -3032005 9131 80 65536

Testing

Once you're up and running and you've loaded all the right drivers, we can check to make sure things
are OK.

Device Nodes

Make sure you have some event input device nodes.

ls -al /dev/input/
drwxr-xr-x 2 root root 100 Jan 1 00:00 .
drwxr-xr-x 7 root root 2480 Jan 1 01:18 ..
crw-rw---- 1 root root 13, 64 Jan 1 00:00 event0
crw-rw---- 1 root root 13, 63 Jan 1 00:00 mice
crw-rw---- 1 root root 13, 32 Jan 1 00:00 mouse0

https://blackfin.uclinux.org/lib/exe/detail.php?id=uclinux-dist%3Atslib&media=linux-kernel:drivers:ts_calibrate.png

Linux Add-in for CrossCore Embedded Studio 73

Event Test

Assuming you enabled the input event test application, you can run it to test the hardware. After you
give it the right path to the event device, start using the touchscreen. The application should decode
the input immediately.

event_test /dev/input/event0
Input driver version is 1.0.1
Input device ID: bus 0x1c vendor 0x0 product 0x7a version 0x3
Input device name: "AD7879 Touchscreen"
Supported events:
 Event type 0 (Sync)
 Event type 1 (Key)
 Event code 330 (Touch)
 Event type 3 (Absolute)
 Event code 0 (X)
 Value 2077
 Min 0
 Max 4095
 Event code 1 (Y)
 Value 2090
 Min 0
 Max 4095
 Event code 24 (Pressure)
 Value 0
 Min 0
 Max 10000
Testing ... (interrupt to exit)
Event: time 5070.168834, type 1 (Key), code 330 (Touch), value 1
Event: time 5070.168834, type 3 (Absolute), code 0 (X), value 2491
Event: time 5070.168834, type 3 (Absolute), code 1 (Y), value 1422
Event: time 5070.168834, type 3 (Absolute), code 24 (Pressure), value 666
Event: time 5070.168834, -------------- Report Sync ------------
Event: time 5070.181232, type 3 (Absolute), code 0 (X), value 2514
Event: time 5070.181232, type 3 (Absolute), code 1 (Y), value 1401
Event: time 5070.181232, type 3 (Absolute), code 24 (Pressure), value 714
Event: time 5070.181232, -------------- Report Sync ------------
Event: time 5070.193622, type 3 (Absolute), code 0 (X), value 2531
Event: time 5070.193622, type 3 (Absolute), code 1 (Y), value 1383
Event: time 5070.193622, type 3 (Absolute), code 24 (Pressure), value 704
Event: time 5070.193622, -------------- Report Sync ------------
Event: time 5070.206022, type 3 (Absolute), code 0 (X), value 2554
Event: time 5070.206022, type 3 (Absolute), code 1 (Y), value 1369
Event: time 5070.206022, type 3 (Absolute), code 24 (Pressure), value 696
Event: time 5070.206022, -------------- Report Sync ------------
Event: time 5070.218426, type 3 (Absolute), code 0 (X), value 2560
Event: time 5070.218426, type 3 (Absolute), code 1 (Y), value 1368
Event: time 5070.218426, type 3 (Absolute), code 24 (Pressure), value 691
Event: time 5070.218426, -------------- Report Sync ------------

Linux Add-in for CrossCore Embedded Studio 74

Event: time 5070.230829, type 3 (Absolute), code 0 (X), value 2562
Event: time 5070.230829, type 3 (Absolute), code 1 (Y), value 1369
Event: time 5070.230829, type 3 (Absolute), code 24 (Pressure), value 685
Event: time 5070.230829, -------------- Report Sync ------------
Event: time 5070.243233, type 3 (Absolute), code 0 (X), value 2564
Event: time 5070.243233, type 3 (Absolute), code 1 (Y), value 1374
Event: time 5070.243233, type 3 (Absolute), code 24 (Pressure), value 669
Event: time 5070.243233, -------------- Report Sync ------------
Event: time 5070.255633, type 3 (Absolute), code 0 (X), value 2562
Event: time 5070.255633, type 3 (Absolute), code 1 (Y), value 1387
Event: time 5070.255633, -------------- Report Sync ------------
Event: time 5070.268030, type 3 (Absolute), code 0 (X), value 2549
Event: time 5070.268030, type 3 (Absolute), code 1 (Y), value 1405
Event: time 5070.268030, type 3 (Absolute), code 24 (Pressure), value 668
Event: time 5070.268030, -------------- Report Sync ------------
Event: time 5070.280430, type 3 (Absolute), code 0 (X), value 2537
Event: time 5070.280430, type 3 (Absolute), code 1 (Y), value 1423
Event: time 5070.280430, type 3 (Absolute), code 24 (Pressure), value 674
Event: time 5070.280430, -------------- Report Sync ------------
Event: time 5070.292829, type 3 (Absolute), code 0 (X), value 2531
Event: time 5070.292829, type 3 (Absolute), code 1 (Y), value 1443
Event: time 5070.292829, type 3 (Absolute), code 24 (Pressure), value 677
Event: time 5070.292829, -------------- Report Sync ------------
Event: time 5070.344532, type 3 (Absolute), code 24 (Pressure), value 0
Event: time 5070.344532, type 1 (Key), code 330 (Touch), value 0
Event: time 5070.344532, -------------- Report Sync ------------

4.6 MPlayer

This page describes the steps required to build and use MPlayer to play video files on Linux using an
ADSP-SC58x-EZKIT board.Here we take ADSP-SC589 EZKIT board as our example. Note this case
does not apply to SC573 EZ-kit due board level compatibility issue between it and the WVGA/LCD
EI3 LCD extender board. If you want to use mplayer command to play a specified sound, you can
refer to .Linux Sound Driver

4.6.1 Hardware Setup

An ADSP-SC58x EZ-Board: ADSP-SC589/SC584 EZ-Board

A WVGA/LCD EI3 Extender Board

Connect the connector on the LCD EI3 Extender Board to the connector on the SC589-J1 P1A
EZKIT.

Linux Add-in for CrossCore Embedded Studio 75

4.6.2 Software Configuration

All configuration operations are conducted within the Buildroot source directory.

Buildroot can be configured using the following command:

$ make menuconfig

The Linux kernel can be configured using the following command:

$ make linux-menuconfig

Default Config

For the SC589-EZKIT board, Buildroot must be configured using the default config file before further
customisation can be made:

$ make sc589-ezkit_defconfig

Configure Buildroot

1) Compile video test program into linux image

Target packages --->
 Miscellaneous --->
 [*] video test program

2) Compile mplayer into linux image

Target packages --->
 Audio and video applications --->
 [*] mplayer
 [*] Build and install mplayer

Linux Add-in for CrossCore Embedded Studio 76

Configure the Linux Kernel

1) Enable touchscreen and backlight

Device Drivers --->
 Input device support --->
 [*] Touchscreens --->
 <*> Analog Devices AD7879-1/AD7889-1 touchscreen interface
 <*> support SPI bus connection

2) Enable NL8048HL WVGA LCD for ADSP-SC589

Device Drivers --->
 Graphics support --->
 Frame buffer Devices --->
 <*> Support for frame buffer devices --->
 <*> NEC NL8048HL WVGA LCD for BF609

3) Avoid LCD driver probe failure by disabling CAN bus support

[*] Networking support --->
 < > CAN bus subsystem support ----

4.6.3 Build and Load Buildroot

A Buildroot image can now be built and loaded onto the target board. See SC5xx EZ-Kit Linux Quick
 for details.Start Guide

4.6.4 Run MPlayer

The following commands are executed on the target board.

Enable LCD Back-light

Configure soft switch to enable the back-light:

Linux Add-in for CrossCore Embedded Studio 77

echo 102 > /sys/class/gpio/export
echo high > /sys/class/gpio/gpio102/direction

Soft Switch Configuration

The settings in this section is only apply to ADSP-SC584 EZ-Board.

echo 484 > /sys/class/gpio/export
echo high > /sys/class/gpio/gpio484/direction
echo 491 > /sys/class/gpio/export
echo high > /sys/class/gpio/gpio491/direction

Play Video File

mplayer -nodouble -nosound video.avi

4.7 IEEE 1588 and Linux PTP

4.7.1 PTP Introduction

Precision Time Protocol(PTP)

The Precision Time Protocol (PTP) is a high-precision time synchronization protocol for networked
measurement and control systems. It is defined in the IEEE 1588 standard, which is designed for local
systems requiring very high accuracies - beyond those attainable using NTP (Network Time Protocol).
PTP makes it possible to synchronize distributed clocks with accuracy via Ethernet sub-microsecond
networks, with relatively low demands on the local clocks and the network and computing capacity.

ADSP-SC573, SC584 and SC589 all support PTP. But only EMAC0 (the 10/100/1000 Mbps port)
supports PTP, EMAC1 (the 10/100 Mbps port) is not capable of PTP operation.

Linux Add-in for CrossCore Embedded Studio 78

4.7.2 PTP Configuration

Device tree configuration

The timestamps that are the basis of PTP can be acquired with greater accuracy when they are
captured by the ethernet PHY hardware. The RMII PHY interface supports hardware timestamps but
the RGMII PHY interface does not. In order to obtain a higher accuracy of time synchronization the
RMII PHY is the better choice, even though this means being limited to 10/100 Mbps operation.

The can be changed to in the device tree header in the linux kernel source phy-mode "rmii" arch
or /arm/boot/dts/sc58x-ezkit.dts arch/arm/boot/dts/sc57x.dtsi

... : ellipsis, means other properties in EMAC0 node stay the same

- : minus, means delete this property

+ : plus, means add this property

emac0 : ethernet@0X3100c000{
...
- phy-mode = "rgmii";
+ phy-mode = "rmii";
...
};

Buildroot configuration

Buildroot can be configured using the following command, within the Buildroot source directory.:

$ make menuconfig

Target packages --->
 Networking applications --->
 [*] linuxptp

Linux Add-in for CrossCore Embedded Studio 79

Kernel Configuration

The Linux kernel can be configured using the following command, within the Buildroot source
directory.:

$ make linux-menuconfig

General Setup --->
 -*- Configure standard kernel features (expert users) --->
 [*] Enable eventpoll support
 [*] Enable timerfd() system call

[*] Networking support --->
 Networking options --->
 [*] Timestamping in PHY devices

Device Drivers --->
 PPS support --->
 PTP clock support --->
 [*] Network device support --->
 [*] Ethernet driver support --->
 [*] STMicroelectronics devices
 <*> STMicroelectronics 10/100/1000 Ethernet driver
 <*> STMMAC Platform bus support

4.7.3 Build

A Buildroot image can now be built, ready to be loaded onto the target board. See SC5xx EZ-Kit
 for details.Linux Quick Start Guide

4.7.4 Example

Preliminary work

1) Hardware Setup

Two ADSP-SC5xx boards are required. One board act as a master, and the other act as a slave. The
two boards are connected by their respective EMAC0 ports using a standard crossover network cable.

Linux Add-in for CrossCore Embedded Studio 80

2) Enable PTP in U-Boot

Add " " to the kernel boot arguments in U-Boot.stmmac.debug=11

Example

 $ set bootargs root=/dev/mtdblock0 rw stmmac.debug=11 console=ttyBF0,
57600

3) Master's MAC address must be different from slave's

In order to make the master's and the slave's MAC address different, change the slave's address in U-
.Boot

Example

$ set ethaddr 00:20:22:fe:85:29

4) Master's ip address must be different from slave ip

Reset IP address after linux boot up.

Example: master

 # ifconfig eth0 10.100.4.50 up

Example: slave

ifconfig eth0 10.100.4.51 up

Run Example

1) Master

Note: Master board should be configured first.

ifconfig eth0 10.100.4.51
date -s 2010.01.01-13:30

Linux Add-in for CrossCore Embedded Studio 81

Fri Jan 1 13:30:00 UTC 2010
testptp -g
clock time: 0.000000000 or Thu Jan 1 00:00:00 1970
testptp -s
set time okay
hwstamp_ctl -i eth0 -r 6 -t 1
tx_type 1
rx_filter 6
ptp4l -i eth0 &
date
Fri Jan 1 13:30:51 UTC 2010

Date on master board is 2010.1.1-13:30:51.

2) Slave

hwstamp_ctl -i eth0 -r 6 -t 1
tx_type 1
rx_filter 6
ptp4l -i eth0 -s &
date
Mon Jan 1 00:02:24 UTC 2007
phc2sys -s /dev/ptp0 -O 0 &
date
Mon Jan 1 00:02:24 UTC 2007
...
date
Fri Jan 1 13:30:58 UTC 2010

Date on the slave board is 2007.1.1-00:02:24 before synchronization, and changes to 2010.1.1-13:30:
58 after a few seconds of synchronization with the master.

4.7.5 More information

Linux PTP project

IEEE1588 standard

PTP User guide

http://linuxptp.sourceforge.net/
http://www.nist.gov/el/isd/ieee/ieee1588.cfm
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/ch-Configuring_PTP_Using_ptp4l.html

Linux Add-in for CrossCore Embedded Studio 82

4.8 QT example for GUI

4.8.1 Introduction

Qt is a cross-platform application framework created and maintained by Trolltech. Using Qt, you can
develop applications and user interfaces once and deploy them across many desktop and embedded
operating systems without rewriting the source code. Visit the QT homepage at www.qtsoftware.com
for more information.

Qt provides different licensing methods depending on your needs. For people whose project is open
source, they can use the free version. For people whose project is closed source, a commercial version
is available for you to license. See the QT licensing page for more details at www.qtsoftware.com

./products/licensing

The Qt documentation can be found at , and every Qt source tree includes full documentation doc.qt.io
as well. Simply browse to the sub directory in the QT distribution.doc/html/

This page describes the steps required to build and use qt with WVGA/LCD EI3 Extender Board on
Linux using an ADSP-SC589-EZKIT board.

4.8.2 Hardware Setup

An ADSP-SC589-EZKIT board

A WVGA/LCD EI3 Extender Board, an EZ-Extender product

Connect the connector on the LCD EI3 Extender Board to the connector on the SC589-J1 P1A
EZKIT.

Note this case does not apply to SC573 EZ-kit due board level compatibility issue between it and the
WVGA/LCD EI3 LCD extender board.

4.8.3 Software Configuration

All configuration operations are conducted within the Buildroot source directory.

Buildroot can be configured using the following command:

$ make menuconfig

The Linux kernel can be configured using the following command:

$ make linux-menuconfig

http://www.qtsoftware.com/
http://www.qtsoftware.com/products/licensing
http://www.qtsoftware.com/products/licensing
http://doc.qt.io/

Linux Add-in for CrossCore Embedded Studio 83

Default Configuration

For the SC589-EZKIT board, Buildroot must be configured using the default config file before further
customization can be made:

$ make sc589-ezkit_defconfig

Buildroot Configuration

1) Enable Video Test

Target packages --->
 Miscellaneous --->
 [*] video test program

2) Enable QT

Target packages --->
 Graphic libraries and applications (graphic/text) --->
 [*] Qt --->
 [*] Compile and install Qt demos (with code)
 [*] Compile and install Qt examples (with code)
 [*] Approve free license
 -*- Gui Module
 Pixel depths --->
 [*] 24 bpp, rgb 8-8-8
 [] 32 bpp, argb 8-8-8-8 and rgb 8-8-8
 Mouse drivers --->
 [*] linux input
 [*] tslib
 Keyboard drivers --->
 [*] linux input

Linux Add-in for CrossCore Embedded Studio 84

3) Enable Tslib Support

Target packages --->
 Libraries --->
 Hardware handling --->
 [*] tslib

Linux Kernel Configuration

1) Enable Touchscreen and Back-light

Device Drivers --->
 Input device support --->
 [*] Touchscreens --->
 <*> Analog Devices AD7879-1/AD7889-1 touchscreen interface
 <*> support SPI bus connection

2) Enable NL8048HL WVGA LCD for ADSP-SC589

Device Drivers --->
 Graphics support --->
 Frame buffer Devices --->
 <*> Support for frame buffer devices --->
 <*> NEC NL8048HL WVGA LCD for BF609

3) Avoid LCD driver probe failure by disabling CAN bus support

[*] Networking support --->
 < > CAN bus subsystem support ----

Linux Add-in for CrossCore Embedded Studio 85

4) Input Configuration

Device Drivers --->
 Input device support --->
 -*- Generic input layer (needed for keyboard, mouse, ...)
 <*> Mouse interface
 (800) Horizontal screen resolution
 (480) Vertical screen resolution
 <*> Event interface
 [*] Keyboards --->
 [*] Mice --->
 HID support --->
 USB HID support --->
 <*> USB HID transport layer

5) USB Configuration

In order to use USB mouse and keyboard, configure USB to HOST mode or OTG mode. Please refer "
" for details.USB interface

4.8.4 Build and Load Buildroot

After the configuration, user can make and boot the image on SC589. Please refer "SC5xx EZ-Kit
" for details.Linux Quick Start Guide

4.8.5 Example

The following commands are executed on the target board.

This example shows a qt calendar demo running on Linux on SC589-EZKIT board.

Enable LCD Back-light

echo 102 > /sys/class/gpio/export
echo high > /sys/class/gpio/gpio102/direction

Runtime Configuration for QT

The selected event device in /dev/input must corresponds to selected input device.

Linux Add-in for CrossCore Embedded Studio 86

1) USB Mouse

export QWS_MOUSE_PROTO=USB:/dev/input/event0

2) USB Keyboard

export QWS_KEYBOARD=USB:/dev/input/event0

3) Touchscreen

export QWS_MOUSE_PROTO=tslib
export TSLIB_FBDEVICE=/dev/fb0
export TSLIB_CONSOLEDEVICE=none
export TSLIB_CONFFILE=/etc/ts.conf
export TSLIB_CALIBFILE=/etc/pointercal
export TSLIB_TSDEVICE=/dev/input/event0

Touchscreen calibration

ts_calibrate

The calibration program will displayed on LCD after executing ts_calibrate program. Before you start
using the touchscreen, you should calibrate it.

Run Qt Example

/usr/share/qt/examples/widgets/calendarwidget/calendarwidget -qws

User can operate a calendar widget displayed on LCD through the selected device.

Linux Add-in for CrossCore Embedded Studio 87

4.9 SQLite example for database

4.9.1 Introduction

SQLite is a powerful, embedded relational database management system in a compact C library. It
offers support for multiple tables and indexes, transactions, views, triggers and a wide array of client
interfaces and drivers. The library is self-contained and implemented in less than 25,000 lines of
ANSI C, which is free to use for any purpose. It is fast, efficient and scalable, and it runs on a wide
variety of platforms and hardware architectures. Its database format is binary-compatible between

machines with different byte orders and scales up to 2 terabytes (2 bytes) in size.41

SQLite Configuration

In order to use SQLite database, the user needs to select the SQLite package (in Buildroot) and also
enable command-line editing for SQLite.

Target packages --->
 Libraries --->
 Database --->
 [*] sqlite
 [*] Command-line editing

The user can optionally also select the SQLite test as an example.

(Optional)
Target packages --->
 Miscellaneous --->
 [*] sqlite test

4.9.2 Build and Load Buildroot

After the configuration, user can make and boot the image on SC5xx. See SC5xx EZ-Kit Linux Quick
 for details.Start Guide

Linux Add-in for CrossCore Embedded Studio 88

4.9.3 Run SQLite

Please refer to for detailed information about how to use SQLite on SQLite Embedded Database
embedded Linux.

Here we give an example on how to run an SQLite test on SC5xx.

After selecting the "sqlite test", an SQL file is built into the /usr directory.wishlist.sql

The user can create a database using this file:

cd /usr
sqlite3 wishlist.db < wishlist.sql
sqlite3 wishlist.db ".dump"
sqlite_test "foo"

After configuring the database, run the following command to check the result.

sqlite_test "foo"

If you see output as follows, the test passed.

 +----------------+
 W I S H L I S T
 +----------------+
 * foo <foo@test> *

4.10 Watchdog

4.10.1 Introduction

This page describes how watchdog is used in Linux on ADSP-SC5xx board, and we can test it
manually.

A watchdog timer is a hardware device that will reset the system when certain fault conditions are
met, we set a time out period , for example T seconds, when initially setup and enable the watchdog,
this means after a time period of T, it will time out and the system get reset by hardware. If we clear
the counter from software before time of T, it will never get time out and the system don't reset.

http://www.yolinux.com/TUTORIALS/SQLite.html

Linux Add-in for CrossCore Embedded Studio 89

In Linux, the counter clearing job is done by a daemon process. In normal condition, the daemon will
clear the counter every a few seconds before the timer out happens, so the system never get reset, if
something bad happens on the system, software including the watchdog daemon stops working
normally, time out will be triggered and system get reset.

Watchdog also is supported in Uboot, the counter clearing job is done in many parts of uboot by
calling "WATCHDOG_RESET()", such as "putc", nand w/r, etc.

4.10.2 Software Configuration

To enable the watchdog feature in Linux, we need to configure Buildroot and Linux kernel properly.

Configure Buildroot

Target packages --->
 [*] Install the watchdog daemon startup script

After enabling the following option, a script entry will be added to the inittab file in the target board
root file system, which will start and run the watchdog daemon automatically after the board is up,
this daemon writes to watchdog device fd every 5 seconds to keep the system from resetting.

Configure Linux Kernel

Device Drivers --->
 [*] Watchdog Timer Support --->
 -*- Watchdog Timer Driver Core
 [] Disable watchdog shutdown on close
 [*] adi watchdog

To enable the watchdog feature in Uboot, we need to configure Uboot properly.

Configure Uboot

Please refer to following patch to enable and configure hardware watchdog in the uboot source code.

diff --git a/include/configs/sc_adi_common.h b/include/configs
/sc_adi_common.h

Linux Add-in for CrossCore Embedded Studio 90

index cfb5bd4..4cfc0b3 100644
--- a/include/configs/sc_adi_common.h
+++ b/include/configs/sc_adi_common.h
@@ -287,11 +287,9 @@
 # endif
 #endif

-/*
 #define CONFIG_HW_WATCHDOG
 #define CONFIG_ADI_WATCHDOG
 #define CONFIG_WATCHDOG_TIMEOUT_MSECS 10000
-*/

 #define CONFIG_RSA

4.10.3 Build and Load Buildroot

A Buildroot image can now be built and loaded onto the target board. See SC5xx EZ-Kit Linux Quick
 for details.Start Guide

4.10.4 Test

Test in Linux

If we run "ps -a" on the target console, we will see something like following:

This means a default watchdog daemon is running, kill the daemon and set the reset timeout time(-T)
less than the reset time(-t), the system will reboot soon.

Linux Add-in for CrossCore Embedded Studio 91

Test in Uboot

If we configure uboot as the configuration section, we will find watchdog enabled information after
booting uboot.

Linux Add-in for CrossCore Embedded Studio 92

Then we can check the watchdog feature in uboot by accessing address illegally, and there will be
data-abort exception which will cause system error, after the time you set to init the watchdog counter
(refer to CONFIG_WATCHDOG_TIMEOUT_MSECS in configuration section), the watchdog
timeout interrupt happens, and watchdog will reboot the CPU automatically.

Linux Add-in for CrossCore Embedded Studio 93

Linux Add-in for CrossCore Embedded Studio 94

5 Linux kernel and drivers

5.1 CAN Bus Data Transaction

5.1.1 Introduction

This document describes how to do a data transaction test via CAN bus on SC5xx EZ-Board.

5.1.2 Hardware Setup

An ADSP-SC5xx EZ-Board: ADSP-SC589/SC584/SC573 EZ-Board

Another ADSP-SC5xx EZ-Board: ADSP-SC589/SC584/SC573 EZ-Board

An RJ-11 crossover cable

Connect the RJ-11 port labelled "CAN0" on each board together with the crossover cable. Note only
CAN0 is verified in this test, CAN1 is not.

Connect a serial cable for each of the board to PC so we have a serial console for each of the boards.

5.1.3 Software Configuration

Configure Linux Kernel

Run and configure the kernel as follows:make linux-menuconfig

Networking support --->
 <*> CAN bus subsystem support --->
 <*> Raw CAN Protocol (raw access with CAN-ID filtering)
 <*> Broadcast Manager CAN Protocol (with content filtering)
 CAN Device Drivers --->
 <*> Platform CAN drivers with Netlink support
 [*] CAN bit-timing calculation
 <M> Analog Devices on-chip CAN

Note: For SC573-ezkit, we also need to disable the spidev by from the device tree file arch/arm/boot
/dts/sc573-ezkit.dts, due to SPI chip select line conflict. Please refer to .SPI Driver

Configure Buildroot

Run , configure the application as followingmake menuconfig

Linux Add-in for CrossCore Embedded Studio 95

Network Applications --->
 [*] can-utils
 [*] iproute2 --->

Build buildroot

Firstly rebuild linux kernel with the command and then rebuild buildroot withmake linux-rebuild
make.

5.1.4 Test Example

Power Up and Boot The Boards

Power up and boot both boards with the same Buildroot image generated above

Bring Up CAN0 Interface On Both Boards

Run the following command on both of the boards:

root:/> modprobe bfin-can
bfin_can bfin_can.0: bfin_can device registered (reg_base=ffc02a00,
rx_irq=22, tx_irq=23, err_irq=43, sclk=125000000)
root:/> ip link set can0 type can bitrate 125000
bfin_can bfin_can.0: setting can bitrate:125000 brp:125 prop_seg:3
phase_seg1:3 phase_seg2:1
root:/> ifconfig can0 up

Data Send & Receive Test

Run the data receiving program on one of the boards:

root:/> candump can0

Run the data sending program on the other board:

root:/> cansend can0 123#AABBCCDD
root:/> cansend can0 123#R
root:/> cansend can0 1F334455#1122334455667788
root:/> cansend can0 1F334455#R

You should now see the transmitted data printing on the console of the receiving board:

Linux Add-in for CrossCore Embedded Studio 96

can0 123 [4] AA BB CC DD
can0 123 [0] remote request
can0 1F334455 [8] 11 22 33 44 55 66 77 88
can0 1F334455 [0] remote request

5.2 CPU Frequency utility

5.2.1 Introduction

CPU frequency scaling enables the operating system to scale the CPU frequency up or down in order
to save power. Clock scaling allows you to change the clock speed of the CPUs on the fly.

5.2.2 Hardware Setup

ADSP-SC589 Ezkit v1.1 and above, or, ADSP-SC584 Ezkit v1.0 and above, or, ADSP-SC573
Ezkit v0.1 and above

The ADSP-SC5xx processors have Clock Generation Unit (CGU) support. The CGU allows program
to change the PLL clock frequency and the CCLKn, SYSCLK, SCLKn, and OUTCLK clock scaling.

5.2.3 Enabling CPU Frequency Driver in Linux Kernel

Run and configure the kernel as follows:make linux-menuconfig

CPU Power Management --->
 CPU Frequency scaling --->
 [*] CPU Frequency scaling
 <*> CPU frequency translation statistics
 [*] CPU frequency translation statistics details
 Default CPUFreq governor (performance) --->
 -*- 'performance' governor
 < > 'powersave' governor
 <*> 'userspace' governor for userspace frequency scaling
 < > 'ondemand' cpufreq policy governor
 < > 'conservative' cpufreq governor
 *** CPU frequency scaling drivers ***
 < > Generic DT based cpufreq driver
 [*] SC58X CPUFreq support

Linux Add-in for CrossCore Embedded Studio 97

5.2.4 How to Change the CPU cpufreq

Preferred Interface: sysfs

The preferred interface is located in the sysfs filesystem. If you mounted it at /sys, the cpufreq
interface is located in a subdirectory “cpufreq” within the cpu-device directory (e.g. /sys/devices
/system/cpu/cpu0/cpufreq/ for the first CPU).

cpuinfo_min_freq : This file shows the minimum operating
frequency the processor can run at (in kHz)

cpuinfo_max_freq : This file shows the maximum operating
frequency the processor can run at (in kHz)

scaling_driver : This file shows what cpufreq driver is used to
set the frequency on this CPU

scaling_available_governors :
 This file shows the CPUfreq governors available in this
 kernel. You can see the
 currently activated governor inscaling_governor, and
by "echoing" the name of another
 governor you can change it. Please note that some
governors won't load - they only
 work on some specific architectures or processors.

scaling_min_freq and scaling_max_freq :
 These files show the current "policy limits" (in kHz).
By echoing new values into these
 files, you can change these limits. NOTE: when
setting a policy you need to
 first set scaling_max_freq, then scaling_min_freq.

scaling_setspeed :
 By "echoing" a new frequency into this file you can
change the speed of the CPU,
 but only within the limits of scaling_min_freq and
scaling_max_freq.

What Is A CPUFreq Governor?

Governors In the Linux Kernel

Linux Add-in for CrossCore Embedded Studio 98

Performance

The CPUfreq governor “performance” sets the CPU statically to the highest frequency within the
borders of scaling_min_freq and scaling_max_freq.

Powersave

The CPUfreq governor “powersave” sets the CPU statically to the lowest frequency within the borders
of scaling_min_freq and scaling_max_freq.

Userspace

The CPUfreq governor “userspace” allows the user, or any userspace program running with UID
“root”, to set the CPU to a specific frequency by making a sysfs file “scaling_setspeed” available in
the CPU-device directory.

Ondemand

The CPUfreq governor “ondemand” sets the CPU depending on the current usage. To do this the CPU
must have the capability to switch the frequency very quickly. There are a number of sysfs file
accessible parameters:

sampling_rate: Measured in uS (10^-6 seconds), this is how often you want the kernel to look at the
CPU usage and to make decisions on what to do about the frequency. Typically this is set to values of
around '10000' or more.

show_sampling_rate_(min|max): The minimum and maximum sampling rates available that you may
set 'sampling_rate' to.

up_threshold: Defines what the average CPU usage between the samplings of 'sampling_rate' needs to
be for the kernel to make a decision on whether it should increase the frequency. For example when it
is set to its default value of '80' it means that between the checking intervals the CPU needs to be on
average more than 80% in use to then decide that the CPU frequency needs to be increased.

sampling_down_factor: This parameter controls the rate that the CPU makes a decision on when to
decrease the frequency. When set to its default value of '5' it means that at 1/5 the sampling_rate the
kernel makes a decision to lower the frequency. Five “lower rate” decisions have to be made in a row
before the CPU frequency is actually lowered. If set to '1' then the frequency decreases as quickly as it
increases, if set to '2' it decreases at half the rate of the increase.

Linux Add-in for CrossCore Embedded Studio 99

ignore_nice_load: This parameter takes a value of '0' or '1'. When set to '0' (its default), all processes
are counted towards the 'cpu utilisation' value. When set to '1', the processes that are run with a 'nice'
value will not count (and thus are ignored) in the overall usage calculation. This is useful if you are
running a CPU intensive calculation on your laptop that you do not care how long it takes to
complete, as you can 'nice' it and prevent it from taking part in the deciding process of whether to
increase your CPU frequency.

Conservative

The CPUfreq governor “conservative”, much like the “ondemand” governor, sets the CPU depending
on the current usage. It differs in behaviour in that it gracefully increases and decreases the CPU
speed rather than jumping to max speed the moment there is any load on the CPU. This behaviour is
more suitable in a battery powered environment. The governor is tweaked in the same manner as the
“ondemand” governor through sysfs with the addition of:

freq_step: This describes what percentage steps the cpu freq should be increased and decreased
smoothly by. By default the cpu frequency will increase in 5% chunks of your maximum CPU
frequency. You can change this value to anywhere between 0 and 100 where '0' will effectively lock
your CPU at a speed regardless of its load whilst '100' will, in theory, make it behave identically to the
“ondemand” governor.

down_threshold: Same as the 'up_threshold' found for the “ondemand” governor but for the opposite
direction. For example when set to its default value of '20' it means that if the CPU usage needs to be
below 20% between samples to have the frequency decreased.

5.2.5 Change Core Clock Frequency via cpufreq-utils

 In order to modify frequency settings with cpufreq-utils, you need to have the userspace
governor enabled.

cpufreq-info
cpufrequtils 005: cpufreq-info (C) Dominik Brodowski 2004-2006
Report errors and bugs to cpufreq@vger.kernel.org, please.
analyzing CPU 0:
 driver: sc58x cpufreq
 CPUs which need to switch frequency at the same time: 0
 hardware limits: 113 MHz - 450 MHz
 available frequency steps: 450 MHz, 225 MHz, 113 MHz
 available cpufreq governors: performance
 current policy: frequency should be within 113 MHz and 450 MHz.
 The governor "performance" may decide which speed to
use

Linux Add-in for CrossCore Embedded Studio 100

 within this range.
 current CPU frequency is 450 MHz (asserted by call to hardware).
 cpufreq stats: 450 MHz:0.00%, 225 MHz:0.00%, 113 MHz:0.00%

cpufreq-set -f 225000
cpufreq-info
cpufrequtils 005: cpufreq-info (C) Dominik Brodowski 2004-2006
Report errors and bugs to cpufreq@vger.kernel.org, please.
analyzing CPU 0:
 driver: sc58x cpufreq
 CPUs which need to switch frequency at the same time: 0
 hardware limits: 113 MHz - 450 MHz
 available frequency steps: 450 MHz, 225 MHz, 113 MHz
 available cpufreq governors: userspace, performance
 current policy: frequency should be within 113 MHz and 450 MHz.
 The governor "userspace" may decide which speed to
use
 within this range.
 current CPU frequency is 225 MHz (asserted by call to hardware).
 cpufreq stats: 450 MHz:0.00%, 225 MHz:0.00%, 113 MHz:0.00% (1)

5.3 CRC Crypto Driver Guide

5.3.1 Introduction

The CRC peripheral in ADSP-SC5xx processors is a hardware block used to compute the CRC of a
block of data. It is a CRC32 engine which computes the CRC value of 32-bit data words presented to
it. For data words of < 32-bit in size, it is the responsibility of application to pack the data into 32-bit
data units.

The main features of the CRC peripheral are:

Memory Scan mode

Memory Transfer mode

Data Verify mode

Data Fill mode

32b CRC polynomial (Programmable polynomials)

Bit/Byte Mirroring option

Fault/Error interrupt mechanisms

Linux Add-in for CrossCore Embedded Studio 101

The Linux CRC driver is based on the Linux crypto driver framework. The Scatterlist Crypto API
takes page vectors (scatterlists) as arguments, and works directly on memory pages. The CRC driver
implements the asynchronous hash interface. The CRC results are calculated via array-descriptor-
based DMA operation, which is generated at run time. If the input buffer length is not a multiple of 32
bits this driver appends zeroes automatically. The framework only supports Memory Scan mode. This
driver can be found at . The SC5xx and the BF609 share the Linux-kernel/drivers/crypto/bfin_crc.c
same Linux CRC driver because the same CRC peripheral IP is used in both processors, the only
difference is that the driver platform data is defined in the board file for BF609 but in the device tree
file for SC5xx.

5.3.2 Hardware Setup

An ADSP-SC5xx EZ-Board: ADSP-SC589/SC584/SC573 EZ-Board

5.3.3 Software Configuration

Configure Linux Kernel

Run and configure the kernel as follows:make linux-menuconfig

Cryptographic API --->
 -*- Cryptographic algorithm manager
 <*> HMAC support
 [*] Hardware crypto devices --->
 <*> Support for Blackfin CRC hareware accelerator

To include a CRC test suite module in the kernel:

Cryptographic API --->
 [] Disable run-time self tests
 <*> Testing module

5.3.4 Example

When the kernel is booting up on SC5xx, you can check if the Crypto CRC driver probes devices
correctly by looking for the following two lines of output:

Linux Add-in for CrossCore Embedded Studio 102

Blackfin hardware CRC crypto driver
bfin-hmac-crc bfin-hmac-crc.0: initialized

You can also run a full test with kernel module. This test module always exits with the warning tcrypt
"can't load module tcrypt" no mater whether the test passes or fails. However, if any test error occurs,
“tcrypt: one or more tests failed” is printed out.

root:/> modprobe tcrypt mode=110
modprobe: can't load module tcrypt (kernel/crypto/tcrypt.ko): Resource
temporarily unavailable

5.3.5 Linux Kernel Crypto API

If you want to use this CRC driver via the Linux kernel crypto API, please refer to the generic Linux
 .Kernel Crypto API document

5.4 Ethernet driver and performance

5.4.1 Introduction

This document describes how to enable the gigabit and 10/100 Ethernet devices on the ADSP-SC5xx
Ezkit board in Linux. The performance benchmark data of the gigabit Ethernet device are provided for
reference. The data is collected when running testing with an Ubuntu host PC.netperf

5.4.2 Hardware Requirement

ADSP-SC589 Ezkit v1.1 and above, or,

ADSP-SC584 Ezkit v1.0 and above, or,

ADSP-SC573 Ezkit v0.1 and above

1 Ubuntu PC with Gigabit Ethernet port

1 Gigabit Ethernet switch

5.4.3 Software Configuration

Configure Buildroot

The test utility is optional. You can build it for both the target board and your host Linux netperf
system.

http://www.chronox.de/crypto-API/
http://www.chronox.de/crypto-API/

Linux Add-in for CrossCore Embedded Studio 103

Target packages --->
 Debugging, profiling and benchmark --->
 [*] netperf
Host utilities --->
 [*] host netperf

Configure Linux Kernel

The on-chip Ethernet devices on the ADSP-SC5xx serial processors can be enabled in the Linux
kernel configuration system using .make linux-menuconfig

Device Drivers --->
 [*] Network device support --->
 [*] Ethernet driver support --->
 [*] STMicroelectronics devices
 <*> STMicroelectronics 10/100/1000 Ethernet driver
 <*> STMMAC Platform bus support

Configure Device Tree

Gigabit Ethernet

The GMAC device is based on the STM MAC IP. MAC specific features can be tuned in the device
tree Ethernet node. Node properties start with "snps" can be configured according to the requirement
of the customer. See the document in the Linux Documentation/devicetree/bindings/net/stmmac.txt
sources for details.

 emac0: ethernet@0x3100C000 {
 compatible = "snps,dwmac", "snps,dwmac-3.710";
 reg = <0x3100C000 0x2000>;
 interrupt-parent = <&gic>;
 interrupts = <0 148 0>;
 interrupt-names = "macirq";
 snps,reset-gpio = <&gpb 14 0>;
 snps,fixed-burst;
 snps,burst_len = <0x8>; /* BLEN16 */
 snps,pbl = <2>;
 snps,force_sf_dma_mode;

Linux Add-in for CrossCore Embedded Studio 104

 phy-mode = "rgmii";
 clock-names = "stmmaceth";
 pinctrl-names = "default";
 pinctrl-0 = <ð0_default>;
 };

100M Ethernet

The 100M EMAC device is based on the STM MAC IP. MAC specific features start with "snps" in
device node can be configured according to the Documentation/devicetree/bindings/net/stmmac.txt
document in the Linux sources.

 emac1: ethernet@0x3100E000 {
 compatible = "snps,dwmac", "snps,dwmac-3.710";
 reg = <0x3100E000 0x2000>;
 interrupt-parent = <&gic>;
 interrupts = <0 149 0>;
 interrupt-names = "macirq";
 snps,fixed-burst;
 snps,burst_len = <0x4>; /* BLEN8 */
 snps,pbl = <1>;
 snps,force_thresh_dma_mode;
 phy-mode = "rmii";
 clock-names = "stmmaceth";
 pinctrl-names = "default";
 pinctrl-0 = <ð1_default>;
 };

5.4.4 Performance Benchmark Example

The Ethernet performance is tested with the utility running on a Linux host on one end, and netperf
on the ADSP-SC5xx EZKIT board on the other end. Please select package in Buildroot for netperf
both target and host.

Linux Add-in for CrossCore Embedded Studio 105

GMAC Ethernet Result

Test case No

Preemption

Client

(250HZ)

No Preemption

Server

(250HZ)

Voluntary

Preemption Client

(250HZ)

Voluntary

Preemption Server

(250HZ)

Preemptible

Client

(250HZ)

Preemptible

Server

(250HZ)

TCP_STREAM 306.95 Mbps 200.38 Mbps 285.79 Mbps 195.34 Mbps 289.40

Mbps

176.93

Mbps

TCP_RR 1300.05 rps 1305.18rps 1266.92 rps 1293.63 rps 1273.37

rps

1275.15 rps

UDP_STREAM 304.04 Mbps 604.73 Mbps 304.40 Mbps 601.08 Mbps 277.51

Mbps

597.69

Mbps

UDP_RR 1323.08 rps 1341.38 rps 1321.42 rps 1338.78 rps 1298.85

rps

1297.38 rps

Client means the netperf tool is running as a test client on the ADSP-SC5xx EZKIT, while
 means it is running as a test server on the ADSP-SC5xx EZKIT.Server

No Preemption, Voluntary Preemption and Preemptible are 3 different kernel schedule
policies.

The ARM A5 core runs at 450M clock while the DDR is at 225M clock during the test.

5.5 Linux LCD device driver

5.5.1 Introduction

This section describes the steps required to build and use LCD device driver on Linux using an ADSP-
SC58x board and a WVGA/LCD EI3 extender board.

WVGA/LCD EI3 Extender LCD board is not supported on the ADSP-SC573 EZ-KIT due to some
board level hardawre confilict, the SC573 processor itself is capable of doing this.

5.5.2 Hardware Setup

ADSP-SC58x EZ-KIT: ADSP-SC589/SC584 EZ-Board

A WVGA/LCD EI3 Extender Board

Linux Add-in for CrossCore Embedded Studio 106

Connect the connector on the LCD EI3 Extender Board to the connector on the SC58x-J1 P1A
EZKIT

5.5.3 Software Configuration

The following configuration should be done on top of the sc589-ezkit/sc584-ezkit default
configuration.

Configure Buildroot

Run and enable video test program in the Linux image:make menuconfig

Target packages --->
 Miscellaneous --->
 [*] video test program

Configure Linux Kernel

Run and configure the kernel as follows:make linux-menuconfig

Enable touchscreen and backlight

Device Drivers --->
 Input device support --->
 [*] Touchscreens --->
 <*> Analog Devices AD7879-1/AD7889-1 touchscreen interface
 <*> support SPI bus connection

Enable NL8048HL WVGA LCD for ADSP-SC58x

Device Drivers --->
 Graphics support --->
 Frame buffer Devices --->
 <*> Support for frame buffer devices --->
 <*> NEC NL8048HL WVGA LCD for BF609

Avoid LCD driver probe failure by disabling CAN bus support

[*] Networking support --->

Linux Add-in for CrossCore Embedded Studio 107

 < > CAN bus subsystem support ----

5.5.4 Example

Enable LCD Back-light

echo 102 > /sys/class/gpio/export
echo high > /sys/class/gpio/gpio102/direction

Make sure your LCD screen becomes white at this point.

Soft Switch Configuration

The settings in this section is only apply to ADSP-SC584 EZ-Board.

echo 484 > /sys/class/gpio/export
echo high > /sys/class/gpio/gpio484/direction
echo 491 > /sys/class/gpio/export
echo high > /sys/class/gpio/gpio491/direction

Run video_test Program

You will see a crossing curve like an "8" in the LCD window.

video_test

How to Install Modules

Select these drivers as modules:

<M> Analog Devices AD7879-1/AD7889-1 touchscreen interface
<M> support SPI bus connection

<M> Support for frame buffer devices --->
<M> NEC NL8048HL WVGA LCD for BF609

If AD7879 module has already been installed, removed it first:

Linux Add-in for CrossCore Embedded Studio 108

lsmod
Module Size Used by
ad7879_spi 2222 0
ad7879 3763 1 ad7879_spi
modprobe -r ad7879_spi
lsmod
Module Size Used by

Then install the modules as follows:

modprobe bf609_nl8048
bf609_nl8048 31040000.lcd: LCD fb0 registered@f4040000,dma=28,irq=34,
cs=39
modprobe ad7879_spi
input: AD7879 Touchscreen as /devices/platform/scb/31042000.spi
/spi_master/spi0/spi0.32/input/input1

Now you can run LCD test as above.

5.6 Linux Sound Driver

5.6.1 Introduction

This section describes the steps required to build and use sound driver to record and play audio files
on Linux using an ADSP-SC5xx board.

The Advanced Linux Sound Architecture (ALSA) provides audio and MIDI functionality to the Linux
operating system.

For more information about the Advanced Linux Sound Architecture (ALSA), please refer to
.http://www.alsa-project.org/main/index.php/Main_Page

5.6.2 Hardware Setup

An ADSP-SC5xx EZ-Board: ADSP-SC589/SC584/SC573 EZ-Board

Two line cables, a line-in and line-out cables

Take the ADSP-SC573 EZ-Board as an example, connect line-in cables to J3 and line-out cables to
J11, or you can plug one headphone into the Headphone JACK directly for DAC.

http://www.alsa-project.org/main/index.php/Main_Page

Linux Add-in for CrossCore Embedded Studio 109

5.6.3 Software Configuration

The following configuration should be done on top of the SC589-ezkit/SC584-ezkit/SC573-ezkit
default configuration.

Configure Buildroot

Run and configure the image as follows:make menuconfig

Enable alsa-lib support

Target packages --->
 Libraries --->
 Audio/Sound --->
 -*- alsa-lib

Linux Add-in for CrossCore Embedded Studio 110

Compile alsa-utils into Linux image

The ALSA utility provides many simple and powerful tools for testing the ALSA drivers to make sure
they are working correctly, such as , , , , etc. is a command-arecord aplay amixer speaker-test arecord
line soundfile recorder for the ALSA soundcard driver, it supports several file formats and multiple
soundcards with multiple devices, is much the same, only it plays instead of recording; aplay amixer
allows command-line control of the mixer for the ALSA soundcard driver; is a speaker-test
command-line speaker test tone generator for ALSA, it can be used to test the speakers of a device.

Target packages --->
 Audio and video applications --->
 [*] alsa-utils
 ALSA utils selection --->
 [*] amixer
 [*] aplay/arecord
 [*] speaker-test
 [*] mplayer
 [*] Build and install mplayer (NEW)

Configure Linux Kernel

Run and configure the kernel as follows:make linux-menuconfig

Enable ADAU1962 sound card driver

Device Drivers --->
 <*> Sound card support --->
 <*> Advanced Linux Sound Architecture --->
 <*> ALSA for SoC audio support --->
 <*> SoC Audio for the ADI SC5XX chip
 <*> Support for the ADAU1962 board on
SC5XX ezkit board

Enable ADAU1979 sound card driver

Device Drivers --->
 <*> Sound card support --->
 <*> Advanced Linux Sound Architecture --->
 <*> ALSA for SoC audio support --->

Linux Add-in for CrossCore Embedded Studio 111

 <*> SoC Audio for the ADI SC5XX chip
 <*> Support for the ADAU1979 board on SC5XX
ezkit board

5.6.4 Example

Find the device

After the configuration in above steps, you are able to find the audio device information in boot log:

You are able to use and to find the card number.arecord -l aplay -l

arecord -l
**** List of CAPTURE Hardware Devices ****
card 0: sc5xxasoccard [sc5xx-asoc-card], device 1: ADAU1979 adau1977-
hifi-1 []
 Subdevices: 1/1
 Subdevice #0: subdevice #0
aplay -l
**** List of PLAYBACK Hardware Devices ****

Linux Add-in for CrossCore Embedded Studio 112

card 0: sc5xxasoccard [sc5xx-asoc-card], device 0: ADAU1962 adau1962-
hifi-0 []
 Subdevices: 1/1
 Subdevice #0: subdevice #0

In case, you can find "0" is the , and "1" is the ;capture card number device number

In case, you can find "0" is the , and "0" is the .playback card number device number

Amixer setting

If you want to unmute the ADC and DAC or adjust the volume, you can use the tool.amixer

amixer -c 0 controls
numid=41,iface=MIXER,name='ADC1 Capture Volume'
numid=49,iface=MIXER,name='ADC1 DC Substraction Capture Switch'
numid=45,iface=MIXER,name='ADC1 Highpass-Filter Capture Switch'
numid=42,iface=MIXER,name='ADC2 Capture Volume'
numid=50,iface=MIXER,name='ADC2 DC Substraction Capture Switch'
numid=46,iface=MIXER,name='ADC2 Highpass-Filter Capture Switch'
numid=43,iface=MIXER,name='ADC3 Capture Volume'
numid=51,iface=MIXER,name='ADC3 DC Substraction Capture Switch'
numid=47,iface=MIXER,name='ADC3 Highpass-Filter Capture Switch'
numid=44,iface=MIXER,name='ADC4 Capture Volume'
numid=52,iface=MIXER,name='ADC4 DC Substraction Capture Switch'
numid=48,iface=MIXER,name='ADC4 Highpass-Filter Capture Switch'
numid=3,iface=MIXER,name='DAC Deemphasis Switch'
numid=40,iface=MIXER,name='DAC Oversampling Rate'
numid=2,iface=MIXER,name='DAC Playback Switch'
numid=1,iface=MIXER,name='DAC Playback Volume'
numid=5,iface=MIXER,name='DAC1 Playback Switch'
numid=4,iface=MIXER,name='DAC1 Playback Volume'
numid=6,iface=MIXER,name='DAC1 Power Adjust'
numid=32,iface=MIXER,name='DAC10 Playback Switch'
numid=31,iface=MIXER,name='DAC10 Playback Volume'
numid=33,iface=MIXER,name='DAC10 Power Adjust'
numid=35,iface=MIXER,name='DAC11 Playback Switch'
numid=34,iface=MIXER,name='DAC11 Playback Volume'
numid=36,iface=MIXER,name='DAC11 Power Adjust'
numid=38,iface=MIXER,name='DAC12 Playback Switch'
numid=37,iface=MIXER,name='DAC12 Playback Volume'
numid=39,iface=MIXER,name='DAC12 Power Adjust'
numid=8,iface=MIXER,name='DAC2 Playback Switch'
numid=7,iface=MIXER,name='DAC2 Playback Volume'
numid=9,iface=MIXER,name='DAC2 Power Adjust'
numid=11,iface=MIXER,name='DAC3 Playback Switch'
numid=10,iface=MIXER,name='DAC3 Playback Volume'
numid=12,iface=MIXER,name='DAC3 Power Adjust'
numid=14,iface=MIXER,name='DAC4 Playback Switch'

Linux Add-in for CrossCore Embedded Studio 113

numid=13,iface=MIXER,name='DAC4 Playback Volume'
numid=15,iface=MIXER,name='DAC4 Power Adjust'
numid=17,iface=MIXER,name='DAC5 Playback Switch'
numid=16,iface=MIXER,name='DAC5 Playback Volume'
numid=18,iface=MIXER,name='DAC5 Power Adjust'
numid=20,iface=MIXER,name='DAC6 Playback Switch'
numid=19,iface=MIXER,name='DAC6 Playback Volume'
numid=21,iface=MIXER,name='DAC6 Power Adjust'
numid=23,iface=MIXER,name='DAC7 Playback Switch'
numid=22,iface=MIXER,name='DAC7 Playback Volume'
numid=24,iface=MIXER,name='DAC7 Power Adjust'
numid=26,iface=MIXER,name='DAC8 Playback Switch'
numid=25,iface=MIXER,name='DAC8 Playback Volume'
numid=27,iface=MIXER,name='DAC8 Power Adjust'
numid=29,iface=MIXER,name='DAC9 Playback Switch'
numid=28,iface=MIXER,name='DAC9 Playback Volume'
numid=30,iface=MIXER,name='DAC9 Power Adjust'

If you want to increase the volume of ADC1, you can set a bigger value.

amixer -c 0 cget numid=41
numid=41,iface=MIXER,name='ADC1 Capture Volume'
 ; type=INTEGER,access=rw—R–,values=1,min=0,max=255,step=0
 : values=95
 | dBminmaxmute-min=-35.62dB,max=60.00dB

amixer -c 0 cset numid=41 200
numid=41,iface=MIXER,name='ADC1 Capture Volume'
 ; type=INTEGER,access=rw---R–,values=1,min=0,max=255,step=0
 : values=200
 | dBminmaxmute-min=-35.62dB,max=60.00dB

'DAC Playback Switch' is the DAC master mute.

'DAC Playback Volume' is the master volume control.

'DAC1 Playback Switch' is the DAC channel 1 mute control.

amixer -c 0 -cget numid=5
numid=5,iface=MIXER,name='DAC1 Playback Switch'
 ; type=BOOLEAN,access=rw------,values=1
 : values=on

You can set 0 or 1 to mute or unmute DAC channel 1.

'DAC1 Playback Volume' is the DAC channel 1 volume control.

Linux Add-in for CrossCore Embedded Studio 114

amixer -c 0 cget numid=4
numid=4,iface=MIXER,name='DAC1 Playback Volume'
 ; type=INTEGER,access=rw---R–,values=1,min=0,max=255,step=0
 : values=255
 | dBminmaxmute-min=-95.62dB,max=0.00dB

You can set value 0 - 255. The range is from -95.625 dB to 0 dB. Each 1-bit step corresponds to a
0.375dB change in volume.

'DAC1 Power Adjust' is the DAC channel 1 power adjust control.

amixer -c 0 cget numid=6
numid=6,iface=MIXER,name='DAC1 Power Adjust'
 ; type=ENUMERATED,access=rw------,values=1,items=4
 ; Item #0 'Low Power'
 ; Item #1 'Lowest Power'
 ; Item #2 'Best Performance'
 ; Item #3 'Good Performance'
 : values=2

You can choose a power state for this DAC channel.

Record audio file

You can use arecord tool to record audio stream, and we already know "0" is the card number, "1" is
the device number for capture case in "Find the device" section, so you can use "-D hw:<card
number>, <device number>" to select the pcm device.

For example, record stereo 48KHz 32bits stream:

arecord -D hw:0,1 -c 2 -r 48000 -f S32_LE -t wav 1.wav

Play audio file

If you have a sample wav file, you can use tool or tool or tool to test the aplay speaker-test mplayer
playback, and we already know "0" is the card number, "0" is the device number for playback case, so
you can use to select the pcm device. Also you can use "-D hw:<card number>, <device number>"

 for dmix plugin to test the playback."-D plug:dmix:<card number>"

aplay -D hw:0,0 sample.wav
aplay -D plug:dmix:0 sample.wav

Linux Add-in for CrossCore Embedded Studio 115

Or you can use tool:speaker-test

speaker-test -D hw:0,0 -c 2 -t sine -F S32_LE
speaker-test -D plug:dmix:0 -c 2 -t sine -f 1000 -r 4800

Or you can use tool:mplayer

mplayer sample.wav

Loopback

If you want to hear the audio at the ADC input, you can use following command:

arecord -D hw:0,1 -c 2 -r 48000 -f S32_LE | aplay -D hw:0,0

5.7 GPIO operation

5.7.1 Introduction

A General Purpose Input/Output (GPIO) is a flexible software-controlled digital signal. They are
provided from many kinds of chip, and are familiar to Linux developers working with embedded and
custom hardware. Each GPIO represents a bit connected to a particular pin, or “ball” on Ball Grid
Array (BGA) packages. Board schematics show which external hardware connects to which GPIOs.
Drivers can be written generically, so that board setup code passes such pin configuration data to
drivers.

Often different aspects of the GPIO need to be controlled, such as:

direction: input or output

value: set or unset

polarity: high or low

edge: rising or falling

5.7.2 Hardware

ADSP-SC5xx EZKIT Board: ADSP-SC589/SC584/SC573 EZKIT Board

Linux Add-in for CrossCore Embedded Studio 116

In the ADSP-SC58x processors there are 7 gpio blocks, called PORTA..PORTG. Each PORTx
interface has 16 GPIO pins. PORT(A-G) pins are brought out on the 110 pins of SC589-EZKIT(PA0-
PG13) and 80 pins of SC584-EZKIT(PA0-PD16). While in the ADSP-SC573 processors there are
only 6 gpio blocks, called PORTA..PORTF.

5.7.3 Application space GPIO support

Standard Linux kernel have inside a special interface allow to access to GPIO pins. You can use
kernel menuconfig (linux-menuconfig) to verify that these interfaces are active in your kernel and, if
necessary, enable them.

The kernel tree path is the following:

Symbol: GPIO_SYSFS [=y]
 Prompt: /sys/class/gpio/... (sysfs interface)
 Defined at drivers/gpio/Kconfig:51
 Depends on: GPIOLIB && SYSFS && EXPERIMENTAL
 Location:
 -> Kernel configuration
 -> Device Drivers
 -> GPIO Support (GPIOLIB [=y])

5.7.4 Paths in Sysfs

There are three kinds of entry in /sys/class/gpio:

Control interfaces used to get userspace control over GPIOs

GPIOs themselves

GPIO controllers ("gpio_chip" instances)

This is in addition to standard files including the "device" symlink.

The control interfaces are write-only:

 /sys/class/gpio/

 "export" ... Userspace may ask the kernel to export control of

 a GPIO to userspace by writing its number to this file.

 Example: "echo 19 > export" will create a "gpio19" node

 for GPIO #19, if that's not requested by kernel code.

 "unexport" ... Reverses the effect of exporting to userspace.

Linux Add-in for CrossCore Embedded Studio 117

 Example: "echo 19 > unexport" will remove a "gpio19"

 node exported using the "export" file.

GPIO signals have paths like /sys/class/gpio/gpio42/ (for GPIO #42)

and have the following read/write attributes:

 /sys/class/gpio/gpioN/

 "direction" ... reads as either "in" or "out". This value may

 normally be written. Writing as "out" defaults to

 initializing the value as low. To ensure glitch free

 operation, values "low" and "high" may be written to

 configure the GPIO as an output with that initial value.

 Note that this attribute *will not exist* if the kernel

 doesn't support changing the direction of a GPIO, or

 it was exported by kernel code that didn't explicitly

 allow userspace to reconfigure this GPIO's direction.

 "value" ... reads as either 0 (low) or 1 (high). If the GPIO

 is configured as an output, this value may be written;

 any nonzero value is treated as high.

 If the pin can be configured as interrupt-generating interrupt

 and if it has been configured to generate interrupts (see the

 description of "edge"), you can poll(2) on that file and

 poll(2) will return whenever the interrupt was triggered. If

 you use poll(2), set the events POLLPRI and POLLERR. If you

 use select(2), set the file descriptor in exceptfds. After

 poll(2) returns, either lseek(2) to the beginning of the sysfs

 file and read the new value or close the file and re-open it

 to read the value.

 "edge" ... reads as either "none", "rising", "falling", or

 "both". Write these strings to select the signal edge(s)

 that will make poll(2) on the "value" file return.

 This file exists only if the pin can be configured as an

 interrupt generating input pin.

 "active_low" ... reads as either 0 (false) or 1 (true). Write

 any nonzero value to invert the value attribute both

 for reading and writing. Existing and subsequent

Linux Add-in for CrossCore Embedded Studio 118

 poll(2) support configuration via the edge attribute

 for "rising" and "falling" edges will follow this

 setting.

GPIO controllers have paths like /sys/class/gpio/gpiochip42/ (for the

controller implementing GPIOs starting at #42) and have the following

read-only attributes:

 /sys/class/gpio/gpiochipN/

 "base" ... same as N, the first GPIO managed by this chip

 "label" ... provided for diagnostics (not always unique)

 "ngpio" ... how many GPIOs this manges (N to N + ngpio - 1)

5.7.5 Dump the GPIO configuration

cat /sys/kernel/debug/gpio
GPIOs 0-15, platform/31004000.gport, adi-gpio:
GPIOs 16-31, platform/31004080.gport, adi-gpio:
 gpio-30 (mdio-reset) out hi
GPIOs 32-47, platform/31004100.gport, adi-gpio:
GPIOs 48-63, platform/31004180.gport, adi-gpio:
GPIOs 64-79, platform/31004200.gport, adi-gpio:
GPIOs 80-95, platform/31004280.gport, adi-gpio:
GPIOs 96-101, platform/31004300.gport, adi-gpio:
GPIOs 480-495, i2c/0-0022, mcp23017, can sleep:
GPIOs 496-511, i2c/0-0021, mcp23017, can sleep:

5.8 I2C Bus

5.8.1 Introduction

The Inter-Integrated Circuit (I C) bus is a two wire multi-master/slave low speed serial bus. Multiple 2

slave devices may be accessed over the same bus, using a unique 7-bit addresses for each slave.
Communication on the bus is half-duplex, and slaves do not transmit any data unless a master has
addressed it first.

Linux Add-in for CrossCore Embedded Studio 119

From the Linux point of view the driver for I2C hardware controller is the adapter driver, while
drivers for the peripheral I2C devices are the client drivers. The adapter driver is provided by ADI,
and most of the work that a product developer needs to do is in implementing the client driver to
connect a specific I2C slave device to applications running under Linux on the SC5xx processor.

This document focuses on explaining the programming interface for the I2C client driver, it talks
about how to create the client driver from both kernel and user space, to guide the audience to develop
the client driver of their own.

5.8.2 I2C in the Linux Kernel

This section talks about the I2C kernel driver framework and how to implement the client I2C driver
from kernel space.

I2C Kernel Driver

The main source code for the SC5xx I2C adapter driver is in drivers/i2c/busses/i2c-bfin-twi.c. The
"Blackfin" name is used here because the ADSP-SC5xx processors use the same hardware IP for the
I2C interface as the ADSP-BFxxx series. The device tree description for the 3 controllers, i2c0, i2c1
and i2c2 is in file arch/arm/boot/dts/sc58x.dtsi or arch/arm/boot/dts/sc57x.dtsi. Select from the
following options to enable the I2C adapter driver, and you can set the clock speed from there:

Linux Kernel Configuration
 Device Drivers --->
 I2C support --->
 I2C Hardware Bus support --->
 <*> Blackfin TWI I2C support
 (50) Blackfin TWI I2C clock (kHz)

I2C Client Driver Example

In this section we take audio codec driver for ADAU1977 as an example to show the typical code
structure for the I2C client driver, demonstrating how users normally initialize a client's driver,
register it to the system, then use the registered method to do data read/write via the I2C bus. The
main source code file for this example includes sound/soc/codecs/adau1977-i2c.c, sound/soc/codecs
/adau1977.c, drivers/base/regmap/regmap-i2c.c and device tree file arch/arm/boot/dts/sc589-ezkit.dts.

Client driver instance

The following C code defines a client driver instance, which is later registered to the Linux I2C sub-
system. See the source code for details on the implementation of each method.

static struct i2c_driver adau1977_i2c_driver = {

Linux Add-in for CrossCore Embedded Studio 120

 .driver = {
 .name = "adau1977",
 .owner = THIS_MODULE,
 .of_match_table = of_match_ptr(adau1977_dt_ids),
 },
 .probe = adau1977_i2c_probe,
 .remove = adau1977_i2c_remove,
 .id_table = adau1977_i2c_ids,
};

Register

The following C code registers the above client driver to the Linux I2C sub-system

module_i2c_driver(adau1977_i2c_driver);

Data read/write method

This audio codec driver uses the regmap programming interface, which is built upon the lower level
of the I2C data read/write interface, to do the data read/write immediately with code of the following
style in the file sound/soc/codecs/adau1977.c

ret = regmap_read(adau1977->regmap, ADAU1977_REG_PLL, &val);

ret = regmap_write(adau1977->regmap, ADAU1977_REG_POWER,
 ADAU1977_POWER_RESET);

This regmap interface for the I2C bus is implemented in file drivers/base/regmap/regmap-i2c.c. In this
file, we can see the I2C bus data read/write is carried out via either the raw I2C transfer interface or
the SMBus interface. Take the SMBus for example:

Read data:

static int regmap_smbus_byte_reg_read(void *context, unsigned int reg,
 unsigned int *val)
{
 struct device *dev = context;
 struct i2c_client *i2c = to_i2c_client(dev);
 int ret;
 if (reg > 0xff)
 return -EINVAL;
 ret = i2c_smbus_read_byte_data(i2c, reg);
 if (ret < 0)

Linux Add-in for CrossCore Embedded Studio 121

 return ret;
 *val = ret;
 return 0;
}

Write data:

static int regmap_smbus_byte_reg_write(void *context, unsigned int reg,
 unsigned int val)
{
 struct device *dev = context;
 struct i2c_client *i2c = to_i2c_client(dev);
 if (val > 0xff || reg > 0xff)
 return -EINVAL;
 return i2c_smbus_write_byte_data(i2c, reg, val);
}

SMBus protocol and its APIs is a subset of the I2C protocol and is widely used for the I2C device
driver in Linux, get more details on the SMBus protocol from the kernel source: Documentation/i2c
/smbus-protocol.

5.8.3 I2C in User Space

Usually I2C devices are controlled by the device driver in kernel space, but we can also implement
this from user space.

Kernel configuration

Linux kernel introduced an i2c-dev layer. It exports the adapter driver for the I2C controller as device
nodes to user space, so we can implement the driver for a specific I2C client in user space. To take
advantage of this feature, we need to enable the i2c-dev interface from the kernel menu configuration

Linux Kernel Configuration
 Device Drivers --->
 I2C support --->
 <*> I2C device interface

Get more details about i2c-dev interface from Documentation/i2c/dev-interface.

Example

The TWI LCD I2C driver code is a good example for an I2C user space driver. Enable the following
package in Buildroot:

Linux Add-in for CrossCore Embedded Studio 122

Buildroot Configuration
 Target packages --->
 Miscellaneous --->
 [*] twi lcd test

Once rebuilt, we will have the source code in output/build/twi_lcd_test. The file twilcd_userspace_test.
c is the main source code for this example. We can see the general steps for implementing a user
space I2C client driver in function , code skeleton as follows:main

int main (int argc, char *argv[])
{
 int file;
 int adapter_nr = 2; /* probably dynamically determined */
 char filename[20];
 snprintf(filename, 19, "/dev/i2c-%d", adapter_nr);

 /** Open the I2C controller device node **/
 file = open(filename, O_RDWR);

 if (file < 0) {
 /* ERROR HANDLING; you can check errno to see what went
wrong */
 exit(1);
 }

 int addr = 0x40; /* The I2C address */

 /** Set the address for the I2C peripheral device **/
 if (ioctl(file, I2C_SLAVE, addr) < 0) {
 /* ERROR HANDLING; you can check errno to see what went
wrong */
 exit(1);
 }
 /* Using SMBus commands for data transaction*/
 res = i2c_smbus_read_word_data(file, reg);
 if (res < 0) {
 /* ERROR HANDLING: i2c transaction failed */
 } else {
 /* res contains the read word */
 }

}

Linux Add-in for CrossCore Embedded Studio 123

5.9 Link Port driver

5.9.1 Introduction

Link ports allow the processor to connect to other processors or peripheral link ports using a simple
communication protocol for high-speed parallel data transfer. This peripheral allows a variety of I/O
peripheral interconnection schemes to I/O peripheral devices as well as co-processing and
multiprocessing schemes.This document describes how to do a data transaction test via link ports on
SC5xx EZ-Board.

5.9.2 Hardware Setup

An ADSP-SC5xx EZ-Board: ADSP-SC589/SC584/SC573 EZ-Board

A linkport cable

Connect the LINK PORT 0 and LINK PORT 1 with the matched cable in the target board.

Note: You need to run this test on a board version 1.1 or above version if you are using ADSP-SC584
EZ-Kit Board.

Linux Add-in for CrossCore Embedded Studio 124

5.9.3 Software configuration

The following configuration should be done on top of the SC589-ezkit/SC584-ezkit/SC573-ezkit
default configuration.

Buildroot configuration

Target packages --->
 Miscellaneous --->
 [*] bfin linkport test

Linux kernel configuration

[*] Networking support --->
 <N> CAN bus subsystem support ----
Device Drivers --->
 <N> Memory Technology Device (MTD) support ----
 [N] SPI support ----
 Character devices --->
 <*> Blackfin LINKPORT driver

Build and Load Buildroot

Now build the buildroot and load the image onto the target board. See SC5xx EZ-Kit Linux Quick
 for more details.Start Guide

5.9.4 Test Example

linkport_test will send data to linkport1, and receive data from linkport0, then verify the data.

linkport_test
linkport test passed

Linux Add-in for CrossCore Embedded Studio 125

5.10 USB interface

5.10.1 Introduction

This document introduces usage of USB interface under Linux. This document apply to ADSP-
SC573, SC584 and SC589. Take ADSP-SC589 as example in following sections.

5.10.2 Hardware Setup

An ADSP-SC5xx EZ-Board: ADSP-SC589/SC584/SC573 EZ-Board.

The SC5xx-EZKIT boards each have the following two USB connectors:

USB OTG HOST/DEVICE port: can act as host and deivce, supports USB host mode, USB
gadget mode, and USB On-The-Go (dynamic mode switching)

USB to UART port: for serial console support. This connector is not part of the discussion
below.

The SC589-EZKIT board has an additional USB connector:

USB HS DEVICE port: can act as device, supports USB gadget mode only

The connector receptacle (socket type) used by all of the above is USB Micro-A/B. The cable types
which may be used with each are as follows:

Host mode and On-The-Go: USB Micro-A male plug

Device mode (and USB to UART): USB Micro-B male plug

5.10.3 Software Configuration

All configuration operations are conducted within the Buildroot source directory.

Buildroot can be configured using the following command:

make menuconfig

The Linux kernel can be configured using the following command:

make linux-menuconfig

Default Config

The following configuration should be done on top of the SC589-ezkit/SC584-ezkit/SC573-ezkit
default configuration.

Linux Add-in for CrossCore Embedded Studio 126

make sc589-ezkit_defconfig (for SC584/SC573,it should be "make sc584-
ezkit_defconfig/sc573-ezkit_defconfig")

Build and Load Buildroot

After the configuration, users can make and boot the image on SC5xx. Please refer SC5xx EZ-Kit
 for details.Linux Quick Start Guide

5.10.4 USB HOST Example

Take usage of USB memory stick as example. ADSP_SC5xx acts as HOST in this example.

Supported Port: USB OTG port.

Supported USB Mode: OTG and Host.

Supported Cable: USB Micro-A male plug.

1) Config as HOST

Please select in order:

Device Drivers --->
 [*] USB support --->
 <*> Support for Host-side USB
 USB Physical Layer drivers --->
 <*> NOP USB Transceiver Driver
 <*> USB Gadget Support --->

ADI USB specific configuration depends on selection of the "Support for Host-side USB" and "USB
Gadget Support" options. ADI USB specific configuration will not appear until "Support for Host-side
USB" and "USB Gadget Support" options are selected at the same time:

 Device Drivers --->
 [*] USB support --->
 <*> Inventra Highspeed Dual Role Controller (TI, ADI, ...)
 <*> ADI
 MUSB DMA mode (Inventra) --->

Linux Add-in for CrossCore Embedded Studio 127

Device Drivers --->
 [*] USB support --->
 <*> Inventra Highspeed Dual Role Controller (TI, ADI, ...)
 MUSB Mode Selection (Host only mode) --->

2) Mass Storage Support Configuration

Device Drivers
 SCSI device support --->
 <*> SCSI device support
 <*> SCSI disk support
Device Drivers --->
 USB support
 <*> USB Mass Storage support

If USB interface is configured as Dual-Role, don't forget to enable a USB gadget driver, such as
g_serial. Gadget serial driver can be compiled as a module:

Device Drivers --->
 [*] USB support --->
 <*> USB Gadget Support --->
 <M> Serial Gadget (with CDC ACM and CDC OBEX support)

After Linux boot up, plug a USB memory stick into USB OTG HOST/DEVICE port.

If USB interface is configured Dual-Role, make sure that the gadget serial driver is loaded first.

modprobe g_serial

Kernel outputs messages like shown below:

usb 1-1: new high-speed USB device number 8 using musb-hdrc
usb-storage 1-1:1.0: USB Mass Storage device detected
scsi2 : usb-storage 1-1:1.0
scsi 2:0:0:0: Direct-Access SanDisk Cruzer Blade 1.27 PQ: 0
ANSI:
sd 2:0:0:0: [sda] 15633408 512-byte logical blocks: (8.00 GB/7.45 GiB)
sd 2:0:0:0: [sda] Write Protect is off

Linux Add-in for CrossCore Embedded Studio 128

sd 2:0:0:0: [sda] Write cache: disabled, read cache: enabled, doesn't
support DPO or FUA
 sda:
sd 2:0:0:0: [sda] Attached SCSI removable disk

At this point you are ready to mount the file system on USB Flash Disk. This is done as follows:

mount -t vfat /dev/sda /mnt
EXT2-fs (sda): warning: mounting unchecked fs, running e2fsck is
recommended

You can check the file in USB Flash Disk by accessing the /mnt directory.

USB Device Example

This example shows how to use ram of ADSP-SC5xx boards as a mass storage device to HOST PC.
In this example, ADSP_SC5xx acts as DEVICE and PC as HOST.

Supported Port: USB OTG Port and USB HS Port.

Support USB Mode: OTG and gadget.

Supported Cable: Micro-B male plug.

1) Configure as Device

Please select in order:

Device Drivers --->
 [*] USB support --->
 <*> Support for Host-side USB
 USB Physical Layer drivers --->
 <*> NOP USB Transceiver Driver
 <*> USB Gadget Support --->

ADI USB specific configuration depends on selection of the "Support for Host-side USB" and "USB
Gadget Support" options. ADI USB specific configuration will not appear until "Support for Host-side
USB" and "USB Gadget Support" options are selected at the same time:

 Device Drivers --->
 [*] USB support --->
 <*> Inventra Highspeed Dual Role Controller (TI, ADI, ...)
 MUSB Mode Selection (Gadget only mode) --->
 *** Platform Glue Layer ***

Linux Add-in for CrossCore Embedded Studio 129

 <*> ADI
 MUSB DMA mode (Inventra) --->

2) Enable Mass Storage Gadget support

Device Drivers --->
 [*] USB support --->
 <*> USB Gadget Support --->
 <M> Mass Storage Gadget

3) Build and Boot to Linux

4) Create mount directory on HOST PC

$ mkdir -p /mnt/usb

5) Insmod mass storage gadget driver on DEVICE board

When plugged into your host pc by USB cable (the plug connects with the board musb by Micro-
B type), the kernel outputs messages as shown below:

dd if=/dev/zero of=fsg.block bs=1M count=16
16+0 records in
16+0 records out
modprobe g_mass_storage file=/fsg.block stall=0
Number of LUNs=8
Mass Storage Function, version: 2009/09/11
LUN: removable file: (no medium)
Number of LUNs=1
LUN: file: /fsg.block
Number of LUNs=1
g_mass_storage gadget: Mass Storage Gadget, version: 2009/09/11
g_mass_storage gadget: userspace failed to provide iSerialNumber
g_mass_storage gadget: g_mass_storage ready

When plugged into your host pc by USB cable (the plug connects with the board musb by Micro-B
type), the kernel outputs messages as shown below:

g_mass_storage gadget: high-speed config #1: Linux File-Backed
Storage

Linux Add-in for CrossCore Embedded Studio 130

At the same time, HOST PC will create a new /dev/sdb(not fixed, just a example) device for DEVICE
board automaticlly.

6) Partition mass storage device which is actually an ADSP-SC5xx board on HOST PC

Please input commands which was shown in below:

$ time fdisk /dev/sdb
Device contains neither a valid DOS partition table, nor Sun, SGI or
OSF disklabel
Building a new DOS disklabel with disk identifier 0x5926a9e1.
Changes will remain in memory only, until you decide to write them.

After that, of course, the previous content won't be recoverable.
Warning: invalid flag 0x0000 of partition table 4 will be corrected by
w(rite)

Command (m for help): n
Partition type:
 p primary (0 primary, 0 extended, 4 free)
 e extended
Select (default p): p
Partition number (1-4, default 1): 1
First sector (2048-32767, default 2048):
Using default value 2048
Last sector, +sectors or +size{K,M,G} (2048-32767, default 32767):
Using default value 32767

Command (m for help): w
The partition table has been altered!

Calling ioctl() to re-read partition table.
Syncing disks.
0.00user 0.09system 0:31.02elapsed 0%CPU (0avgtext+0avgdata
2576maxresident)k
144inputs+8outputs
(0major+111minor)pagefaults 0swaps

Then a new device /dev/sdb1 will be created.

7) Format mass storage device to ext2 type on HOST PC

$ mke2fs /dev/sdb1
mke2fs 1.42.9 (4-Feb-2014)
Filesystem label= OS
type: Linux
Block size=1024 (log=0)
Fragment size=1024 (log=0)

Linux Add-in for CrossCore Embedded Studio 131

Stride=0 blocks, Stripe width=0 blocks
3840 inodes, 15360 blocks
768 blocks (5.00%) reserved for the super user
First data block=1 Maximum filesystem blocks=15728640
2 block groups
8192 blocks per group, 8192 fragments per grou
1920 inodes per group Superblock backups stored on blocks:
 8193
Allocating group tables: done

Writing inode tables: done
Writing superblocks and filesystem accounting information: done

8) Mount formatted /dev/sdb1 to /mnt/usb

$ mount -t ext2 -o sync /dev/sdb1 /mnt/usb

lost+found folder can be found in /mnt/usb if mount successfully.

Then more operations can be done to this mass storage device which was actually the ram of ADSP-
SC5xx board as wanted.

9) Last, don't forget to umount the mass storage device before unplug the USB cabel.

$ umount /mnt/usb

USB Dual-Role Example

Dual-Role(Only apply to USB OTG HOST/DEVICE port, known as On-The-Go) means Linux kernel
can support ADSP-SC573, SC584 and SC589 based EZ-KIT boards act as both HOST and DEVICE
roles. Role can be switched by cable types, USB Micro-A male plug will turn this port to HOST role
and USB Micro-B male plug will turn this port to DEVICE role.

This section will shows how USB OTG HOST/DEVICE port acts in Dual-Role mode. It will includes
USB mass storage example and USB mass storage device example. ADSP-SC5xx acts as Dual-Role
(OTG) device in this example.

Supported Port: USB OTG port.

Supported USB Mode: OTG and Host.

Supported Cable: Micro-A male plug.

In order to use the USB port in OTG mode, one of gadget drivers must be select.

The USB port won't work until the gadget driver has been loaded (via insmod).

Linux Add-in for CrossCore Embedded Studio 132

1) Dual-Role configration

Device Drivers --->
 [*] USB support --->
 <*> Support for Host-side USB
 USB Physical Layer drivers --->
 <*> NOP USB Transceiver Driver
 <*> USB Gadget Support --->

ADI USB specific configuration depends on selection of the "Support for Host-side USB" and "USB
Gadget Support" options. ADI USB specific configuration will not appear until "Support for Host-side
USB" and "USB Gadget Support" options are selected at the same time:

 Device Drivers --->
 [*] USB support --->
 <*> Inventra Highspeed Dual Role Controller (TI, ADI, ...)
 MUSB Mode Selection (Dual Role mode) --->
 *** Platform Glue Layer ***
 <*> ADI
 MUSB DMA mode (Inventra) --->

2) Mass storage configuration

Refer to configuration in "USB HOST Example".

3) Mass storage device configuration

Refer to configuration in "USB DEVICE Example".

4) Test Dual-Role

Board can act as a HOST or a DEVICE depends on the type of USB connect are pluged in.

If plug in the USB memory stick to USB OTG HOST/DEVICE port, board can act as HOST, more
details please refer to "USB HOST Example" section.

If plug in USB Micro-B male plug which was connect to HOST PC, board can act as DEVICE, more
details please refer to "USB DEVICE Example" section.

Linux Add-in for CrossCore Embedded Studio 133

USB HS DEVICE Port Usage

A secondary USB HS port is available on the SC589-EZKIT, and this port only supports the device
(DEVICE mode) function. This port is only available when the USB OTG HOST/DEVICE port is in
Dual-Role or DEVICE mode.

Each port has its own gadget driver, so make sure the two different gadget drivers are loaded after
kernel boot up. The first loaded driver is adopted by the USB OTG HOST/DEVICE port, and second
loaded driver is adopted by HS DEVICE port.

5.11 General Bluetooth Dongle via USB

5.11.1 Introduction

Bluetooth is a low-cost, low-power, short-range wireless technology. It was designed as a replacement
for cables and other short-range technologies like IrDA. Bluetooth operates in "personal area" range,
that typically extends up to 10 meters. More information about Bluetooth can be found at <http://www.

>.bluetooth.com/

Linux has support for almost any Bluetooth USB dongle. This document will guide users on how to
set up a Bluetooth USB dongle on Linux.

5.11.2 Hardware Setup

An ADSP-SC5xx EZ-Board: ADSP-SC589/SC584/SC573 EZ-Board

A Bluetooth USB dongle

5.11.3 Software Configuration

Configure Linux Kernel

Please enable Bluetooth Support and the HCI USB driver.

[*] Networking support --->
 <*> Bluetooth subsystem support --->
 [*] Bluetooth Classic (BR/EDR) features --->
 <*> RFCOMM protocol support --->
 [*] RFCOMM TTY support --->
 <*> BNEP protocol support
 [*] Multicast filter support
 [*] Protocol filter support

http://www.bluetooth.com/
http://www.bluetooth.com/

Linux Add-in for CrossCore Embedded Studio 134

 <*> HIDP protocol support
 [*] Bluetooth device drivers
 <*> HCI USB driver

Note that by the default configuration, the USB port works on OTG mode. Users need to probe the
USB Bluetooth dongle before it can work.

Otherwise users can select USB host mode for the USB dongle. For detailed information about how to
configure USB, please refer to User manual for usb in linux kernel

(Optional)
Device Drivers --->
 HID support --->
 [*] USB support --->
 MUSB Mode Selection (Host only mode)--->
 (X) Host only mode
 () Gadget only mode
 () Dual Role only mode

Configure Buildroot

Users need to select bluez-utilities to set up the Bluetooth devices.

Target packages --->
 Networking applications --->
 [*] bluez-utils

5.11.4 Example

Plug in the USB dongle. If the USB interface is in host mode the device should be detected
automatically:

usbhid: USB HID core driver
usb 1-1: new full-speed USB device number 2 using musb-hdrc

If the USB interface is in OTG mode then the device must be probed first:

http://labrea.ad.analog.com/confluence/display/DOCLINUX/.User+manual+for+usb+in+linux+kernel+v1.0.0

Linux Add-in for CrossCore Embedded Studio 135

modprobe g_serial

Bring up the interface:

hciconfig hci0 up
hciconfig
hci0: Type: BR/EDR Bus: USB
 BD Address: 00:18:E4:08:CC:30 ACL MTU: 192:8 SCO MTU: 64:8
 UP RUNNING PSCAN
 RX bytes:383 acl:0 sco:0 events:16 errors:0
 TX bytes:300 acl:0 sco:0 commands:15 errors:0

Users can use "hcitool" to set the configuration of Bluetooth connections.

hcitool

hcitool - HCI Tool ver 4.101
Usage:
 hcitool [options] <command> [command parameters]
Options:
 --help Display help
 -i dev HCI device
Commands:
 dev Display local devices
 inq Inquire remote devices
 scan Scan for remote devices
 name Get name from remote device
 info Get information from remote device
 spinq Start periodic inquiry
 epinq Exit periodic inquiry
 cmd Submit arbitrary HCI commands
 con Display active connections
 cc Create connection to remote device
 dc Disconnect from remote device
 sr Switch master/slave role
 cpt Change connection packet type
 rssi Display connection RSSI
 lq Display link quality
 tpl Display transmit power level
 afh Display AFH channel map
 lp Set/display link policy settings
 lst Set/display link supervision timeout
 auth Request authentication
 enc Set connection encryption
 key Change connection link key
 clkoff Read clock offset
 clock Read local or remote clock

Linux Add-in for CrossCore Embedded Studio 136

 lescan Start LE scan
 lewladd Add device to LE White List
 lewlrm Remove device from LE White List
 lewlsz Read size of LE White List
 lewlclr Clear LE White list
 lecc Create a LE Connection
 ledc Disconnect a LE Connection
 lecup LE Connection Update
For more information on the usage of each command use:
 hcitool <command> --help

For more information on the usage of each command use:

hcitool <command> --help

Take some commands as example, such as show HCI devices

hcitool -i hci0 dev
Devices:
 hci0 00:18:E4:08:CC:30

Scan and inquire for Bluetooth devices in the area:

hcitool -i hci0 scan
Scanning ...
 30:F9:ED:E1:9E:A9 DR-BT140Q
 34:80:B3:4D:5F:5A mi4
hcitool -i hci0 inq
Inquiring ...
 34:80:B3:4D:5F:5A clock offset: 0x2555 class: 0x5a020c
 30:F9:ED:E1:9E:A9 clock offset: 0x57f5 class: 0x240408

Get some information from these devices:

hcitool -i hci0 info 30:F9:ED:E1:9E:A9
Requesting information ...
 BD Address: 30:F9:ED:E1:9E:A9
 Device Name: DR-BT140Q
 LMP Version: 2.0 (0x3) LMP Subversion: 0x1225
 Manufacturer: Cambridge Silicon Radio (10)
 Features: 0xff 0xff 0x8f 0x7e 0x98 0x19 0x00 0x80
 <3-slot packets> <5-slot packets> <encryption> <slot
offset>

Linux Add-in for CrossCore Embedded Studio 137

 <timing accuracy> <role switch> <hold mode> <sniff
mode>
 <park state> <RSSI> <channel quality> <SCO link> <HV2
packets>
 <HV3 packets> <u-law log> <A-law log> <CVSD> <paging
scheme>
 <power control> <transparent SCO> <broadcast encrypt>
 <EDR ACL 2 Mbps> <EDR ACL 3 Mbps> <enhanced iscan>
 <interlaced iscan> <interlaced pscan> <inquiry with
RSSI>
 <AFH cap. slave> <AFH class. slave> <3-slot EDR ACL>
 <5-slot EDR ACL> <AFH cap. master> <AFH class. master>
 <extended features>

Ping a device:

l2ping -i hci0 -f 30:F9:ED:E1:9E:A9
Ping: 30:F9:ED:E1:9E:A9 from 00:18:E4:08:CC:30 (data size 44) ...
4 bytes from 30:F9:ED:E1:9E:A9 id 0 time 30.38ms
4 bytes from 30:F9:ED:E1:9E:A9 id 1 time 8.70ms
4 bytes from 30:F9:ED:E1:9E:A9 id 2 time 8.48ms
4 bytes from 30:F9:ED:E1:9E:A9 id 3 time 8.90ms
4 bytes from 30:F9:ED:E1:9E:A9 id 4 time 8.51ms

5.12 Kernel API for DMA operation

5.12.1 Introduction

The Direct Memory Access (DMA) controller in the ADSP-SC5xx processor allows automated data
transfers with minimal overhead for the core. DMA transfers can occur between any of the DMA
capable peripherals (such as the SPORT or PPI) and the memory in L2 SRAM or external DDR.

5.12.2 Linux DMA Framework

There are two aspects of the Linux DMA framework.

The generic Linux DMA mapping API

The DMA API for the SC5xx onchip DMA controller

Linux DMA Mapping API

Document: , linux-kernel/Documentation/DMA-API-HOWTO.txt Linux Device Driver
.(3rd) - chapter 15

Linux Add-in for CrossCore Embedded Studio 138

API definition: linux-kernel/include/linux/dma-mapping.h, linux-kernel/arch/arm/include
/asm/dma-mapping.h

DMA operations allocate a buffer and pass bus addresses to your device. A DMA mapping is a
combination of allocating a DMA buffer and generating an address for that buffer that is accessible by
the device.

DMA mappings must also address the issue of cache coherency. Modern processors keep copies of
recently accessed memory areas in a fast, local cache. Without this cache, reasonable performance is
not possible. If your device changes an area of main memory it is imperative that any processor
caches covering that area be invalidated. Otherwise the processor may work with an incorrect image
of main memory and data corruption may result. Similarly, when your device uses DMA to read data
from main memory any changes to that memory residing in processor caches must be flushed out first.

On SC5xx, DMA mapping is done in the same way as other ARM processors. dma_alloc_coherent()
can be called to allocate a DMA buffer in the drivers. A block of 256k bytes DDR pool is reserved for
DMA atomic, coherent usage while the normal coherent DMA memory is reserved from DDR
without a size limit. New VM areas and page table entries of the allocated page structures are created
with the uncacheable page attribute before the area address pointer is returned.

If you are writing a portable device driver, make sure to use the generic DMA APIs (for a full list
please refer to the documentation):

void *dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t
*dma_handle, gfp_t gfp);

void dma_free_coherent(struct device *dev, size_t size, void *vaddr,
dma_addr_t dma_handle);

dma_addr_t dma_map_single(struct device *dev, void *ptr, size_t size, e
num dma_data_direction dir)

dma_addr_t dma_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size, enum dma_data_direction dir)

int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents, e
num dma_data_direction dir);

What is a bus address

When the CPU (say with the MMU turned off) wants to access physical memory it puts that address
on its output pins. This a .physical Address

When a peripheral device wants to access the same physical memory (as in a DMA function) it may
have to use a different address to get to the same physical location. This is a .bus bddress

So a is the address used by a peripheral to access a certain .bus address physical address

Linux Add-in for CrossCore Embedded Studio 139

Generic DMA mapping guide

Please refer to the Linux kernel document for details.DMA API HOWTO

DMA APIs for SC5xx

The SC5xx processor offers a wide array of DMA capabilities.

44 Different DMA channels

Memory to Memory and IO to Memory Channel transfers

Dual X and Y indexing Address counters

Register base configuration

Flexible Descriptor Based Configuration

Memory interface supporting 8, 16, 32, 64, 128 and 256 bit data transfers

Peripheral interface supports 8, 16 and 32 bit data transfers

Interrupt on each DMA packet completion

Flexible DMA Priority

Flow Types and Descriptor

There are 6 different ways the DMA controller can be set up. These are called Flow types

FLOW_STOP - Stop after the current job

FLOW_AUTO - Autobuffer, Repeat the current transfer until stopped

FLOW_LIST - Use a linked list of descriptors

FLOW_ARRAY - Use a sequential list of descriptors

FLOW_LIST_DEMAND - Use a linked list of descriptors and fetch the next only after the
DMA channel detects an incoming trigger event

FLOW_ARRAY_DEMAND - Use a sequential list of descriptors and fetch next only after the
DMA channel detects an incoming trigger event

The flow type can be defined in a CONFIG word in a descriptor so the modes can be mixed and the
operation quite complex.

Descriptors are used to control the DMA channel and allow a complex stream of data packets to be
assembled if required.

Array Descriptor - Simple Sequential array of descriptors in memory

List Descriptor - Descriptors chained via address word in memory

https://www.kernel.org/doc/Documentation/DMA-API-HOWTO.txt

Linux Add-in for CrossCore Embedded Studio 140

For descriptor list mode, at a minimum the DMA_DSCPTR_NXT register must be written prior to
write to the DMA_CFG register, which is the special action required to start the DMA channel. For
descriptor array mode, at a minimum the DMA_DSCPTR_CUR register must be written prior to
writing to the DMA_CFG register, which is the special action required to start the DMA channel.

One other slight complexity in the descriptor is the fact the DMA controller does not have to read
ALL of the words in the descriptor array. The NDSIZE part of the CONFIG Register contains the
number of elements to read into the DMA controller for this operation.

Descriptor Memory Layout

List Descriptor:

struct dmasg {
 void *next_desc_addr;
 unsigned long start_addr;
 unsigned long cfg;
 unsigned long x_count;
 long x_modify;
 unsigned long y_count;
 long y_modify;
} __packed;

Array Descriptor:

struct dma_desc_array {
 unsigned long start_addr;
 unsigned long cfg;
 unsigned long x_count;
 long x_modify;
} __packed;

2-D DMA

2-D DMA can be roughly viewed as:

/* Correct me if the boundary check is wrong */
for (; Y_COUNT > 1; Y_COUNT--)
{
 for (; X_COUNT > 1; X_COUNT--)
 DMAx_CURR_ADDR += X_MODIFY;
 DMAx_CURR_ADDR += Y_MODIFY;
}

Linux Add-in for CrossCore Embedded Studio 141

In some video application, 2-D DMA is more convenient to use than 1-D DMA.

MDMA Copy Wrapper for Linux Drivers

As an altrenative to setting up MDMA by yourself there exist APIs to use MDMA. See API
implementation in or arch/arm/mach-sc58x/dma.c arch/arm/mach-sc57x/dma.c .

void *dma_memcpy(void *dest, const void *src, size_t count)
void *dma_memcpy_nocache(void *dest, const void *src, size_t count)
void *safe_dma_memcpy(void *dest, const void *src, size_t count)
void early_dma_memcpy(void *dest, const void *src, size_t count)
void early_dma_memcpy_done(void);

DMA Operation for Linux Drivers

Please refer to: , and or arch/arm/mach-sc58x/include/mach/dma.h arch/arm/mach-sc58x/dma.c
, and .arch/arm/mach-sc57x/include/mach/dma.h arch/arm/mach-sc57x/dma.c

The DMA channel management API:

int request_dma(unsigned int channel, const char *device_id)
void free_dma(unsigned int channel)
void enable_dma(int channel)
void disable_dma(int channel)

The extended DMA manipulation API allows for increased flexibility in SC5xx:

unsigned long gen_dma_config2(char direction, char flow_mode, char
intr_mode, char dma_mode, char mem_width, char syncmode, char
peri_width)
unsigned long gen_dma_config(char direction, char flow_mode, char
intr_mode, char dma_mode, char mem_width, char syncmode)
void set_dma_start_addr(unsigned int channel, unsigned long addr)
void set_dma_next_desc_addr(unsigned int channel, unsigned long addr)
void set_dma_x_count(unsigned int channel, unsigned short x_count)
void set_dma_x_modify(unsigned int channel, short x_modify)
void set_dma_y_count(unsigned int channel, unsigned short y_count)
void set_dma_y_modify(unsigned int channel, short y_modify)
void set_dma_config(unsigned int channel, unsigned short config)
unsigned short set_bfin_dma_config(char direction, char flow_mode, char
 intr_mode, char dma_mode, char width)
unsigned short get_dma_curr_irqstat(unsigned int channel)
unsigned short get_dma_curr_xcount(unsigned int channel)
unsigned short get_dma_curr_ycount(unsigned int channel)

Linux Add-in for CrossCore Embedded Studio 142

void set_dma_sg(unsigned int channel, struct dmasg_t *sg, int nr_sg)
void dma_disable_irq(unsigned int channel)
void dma_disable_irq_nosync(unsigned int channel)
void dma_enable_irq(unsigned int channel)
void clear_dma_irqstat(unsigned int channel)
int set_dma_callback(unsigned int channel, dma_interrupt_t callback, vo
id *data)

DMA Example

This is a simple DMA example taken from the driver. This is getting 8-bit data adsp-spidac.c

from the SPI device int mybuffer.

#define SPI0_RX_DMA_CH 23
#define BUF_SIZE 1024 * 32
static usigned char mybuffer[BUF_SIZE];

int mydmatest(struct device *dev)
{
 int ret;
 dma_addr_t dma_addr;

 // Ask for the DMA channel
 ret = request_dma(SPI0_RX_DMA_CH,"SPI RX Test");
 if (ret < 0) {
 printk(" Unable to get SPI0 RX DMA channel\n");
 return 1;
 }

 // Turn off the DMA channel
 disable_dma(SPI0_RX_DMA_CH);

 // Set the IRQ callback
 set_dma_callback(SPI0_RX_DMA_CH, myirq, mydata);

 // Map the memory for DMA device access
 dma_addr = dma_map_single(dev, mybuffer, BUF_SIZE,
DMA_FROM_DEVICE);
 if (dma_mapping_error(dev, dma_handle)) {
 free_dma(SPI0_RX_DMA_CH);
 printk(" Unable to map DMA region\n");
 return 1;
 }

 // Set up the dma config
 // WNR We are going to write to memory
 // RESTART throw away any old data in the fifo
 // Enable Interrupts

Linux Add-in for CrossCore Embedded Studio 143

 set_dma_config(SPI0_RX_DMA_CH, (WNR | RESTART | DI_EN));

 // Set address to drop data into
 set_dma_start_address(SPI0_RX_DMA_CH, dma_addr);

 // Set the transfer size in bytes
 set_dma_x_count(SPI0_RX_DMA_CH,size);

 // Set the X modify (dont worry about Y for this one)
 set_dma_x_modify(SPI0_RX_DMA_CH,1);

 // Off we go
 enable_dma(SPI0_RX_DMA_CH);
}

The IRQ routine could look like this. It simply clears the IRQ status.

static irqreturn_t myirq(int irq, void *data)
{
 unsigend short mystat;
 struct device *dev = (struct device*)data;

 mystat = get_dma_curr_irqstat(SPI0_RX_DMA_CH);
 clear_dma_irqstat(SPI0_RX_DMA_CH);

 // Unmap the DMA memory for processor access
 dma_unmap_single(dev, mybuffer, BUF_SIZE, DMA_TO_DEVICE);
 free_dma(SPI0_RX_DMA_CH);

 wake_up_interruptible(&mywaiting_task);

 return IRQ_HANDLED;
}

5.13 Linux MTD Driver

5.13.1 Introduction

This section describes the steps required to build and use MTD(Memory Technology Device)
subsystem on Linux using an ADSP-SC5xx board.

The MTD software stack looks like below:

Linux Add-in for CrossCore Embedded Studio 144

 MTD

 SPI NOR framework

 m25p80

 SPI bus driver

 SPI NOR chip

5.13.2 Hardware Required

An ADSP-SC5xx EZ-Board: ADSP-SC589/SC584/SC573 EZ-Board

5.13.3 Software Configuration

The following configuration should be done on top of the SC589-ezkit/SC584-ezkit/SC573-ezkit
default configuration.

Configure Buildroot

Enable MTD tools.

Target packages --->
 Filesystem and flash utilities --->
 [*] mtd, jffs2 and ubi/ubifs tools
 [*] flashcp
 [*] flash_erase
 [*] mtd_debug
 [*] mtdinfo
 [*] mkfs.jffs2

Configure Linux Kernel

Enable MTD and SPI NOR flash w25x driver.

Device Drivers --->
 <*> Memory Technology Device (MTD) support --->

Linux Add-in for CrossCore Embedded Studio 145

 <*> Command line partition table parsing
 <*> Caching block device access to MTD devices
 <*> SPI-NOR device support --->
 Self-contained MTD device drivers --->
 <*> Support most SPI Flash chips (AT26DF, M25P, W25X, ...)

Enable JFFS2 filesystem support.

File systems --->
 [*] Miscellaneous filesystems --->
 <*> Journalling Flash File System v2 (JFFS2) support

Configure Device Tree

Add a child device node under spi master node for spi flash. As our current release, SC5xx boards
have added spi flash as default, you could easily have a check.

spi_2: spi@0x31044000 {
 #address-cells = <1>;
 #size-cells = <0>;
 compatible = "adi,spi3";
 reg = <0x31044000 0xFF>;

 flash: w25q32@0 {
 #address-cells = <1>;
 #size-cells = <1>;
 compatible = "winbond,w25q32";
 spi-max-frequency = <5000000>;
 reg = <38>;
 spi-cpol;
 spi-cpha;

 partition@0 {
 label = "uboot (spi)";
 reg = <0x0 0x80000>;
 };
 partition@1 {
 label = "kernel (spi)";
 reg = <0x80000 0x580000>;
 };
 partition@2 {
 label = "root file system (spi)";

Linux Add-in for CrossCore Embedded Studio 146

 reg = <0x600000 0xa00000>;
 };
 };
};

5.13.4 Example

Get the MTD device info.

cat /proc/mtd
dev: size erasesize name
mtd0: 00080000 00001000 "uboot (spi)"
mtd1: 00580000 00001000 "kernel (spi)"
mtd2: 00a00000 00001000 "root file system (spi)"
mtdinfo
Count of MTD devices: 3
Present MTD devices: mtd0, mtd1, mtd2
Sysfs interface supported: yes
mtdinfo /dev/mtd0
mtd0
Name: uboot (spi)
Type: nor
Eraseblock size: 4096 bytes, 4.0 KiB
Amount of eraseblocks: 128 (524288 bytes, 512.0 KiB)
Minimum input/output unit size: 1 byte
Sub-page size: 1 byte
Character device major/minor: 90:0
Bad blocks are allowed: false
Device is writable: true

Erase the MTD device.

flash_erase -j -q /dev/mtd1 0 0

Mount the MTD device.

mount -t jffs2 /dev/mtdblock1 /mnt

Linux Add-in for CrossCore Embedded Studio 147

Read and Write data to the MTD device.

echo hello > /mnt/test
cat /mnt/test
hello

Unmount the MTD device.

umount /mnt

5.14 Linux PCIE device driver

5.14.1 Introduction

This section describes the steps required to build and use PCIE device driver on Linux using two
ADSP-SC589 boards. ADSP-SC584/ADSP-SC573 does not support PCIE in hardware.

5.14.2 Hardware Setup

One ADSP-SC589 EZ-KIT v1.0 board configured as Root Complex

One ADSP-SC589 EZ-KIT v1.1 board configured as Endpoint

One SAMTEC PCIE cable

Connect J5 PCI Express 1x Connector with SAMTEC PCIE cable on two SC589-EZKIT boards.

5.14.3 Software Configuration

The following configuration should be done on top of the SC589-ezkit default configuration.

Configure Linux Kernel

Enable PCIE Bus driver

For both boards:

Linux Add-in for CrossCore Embedded Studio 148

Bus support --->
 [*] PCI support
 [*] Message Signaled Interrupts (MSI and MSI-X)
 PCI host controller drivers --->
 [*] ADI SC58X PCIe controller

Enable PCIE Root Complex Controller driver

For the Root Complex (RC) board:

Device Drivers --->
 Character devices --->
 <*> SC58X PCIE Device Driver

Enable PCIE Endpoint driver

For the Endpoint (EP) board:

Device Drivers --->
 Character devices --->
 <*> SC58X PCIE Endpoint Driver

Configure u-boot

The PCIE EP/RC soft switch PIN should be pulled up for the SC589 EZ-Kit v1.1 board in the PCIE
EP mode. Please edit the software configuration array in u-boot file board/adi/sc589-ezkit/soft_switch.
h , and change U48 PORTB array value1 from 0 to 0x80.

 {
 .dir0 = 0x0,
 .dir1 = 0x0,
 .value0 = 0x0,
 .value1 = 0x80, /* 0x0 -> 0x80 */
 },
};

Linux Add-in for CrossCore Embedded Studio 149

Don't forget to flash the new built u-boot.ldr to the SPI flash. No change is needed for the SC589 EZ-
Kit v1.0 board in the PCIE RC mode.

5.14.4 Example

Bring up Endpoint board

You will see below kernel log. "start link training..." means Endpoint is waiting for Root Complex to
start link initialization and training.

console [ttySC0] enabled
console [ttySC0] enabled
bootconsole [earlycon0] disabled
bootconsole [earlycon0] disabled
adi-uart4.2: ttySC2 at MMIO 0x31003800 (irq = 91, base_baud = 7031250) is a ADI-UART4
start link training...
random: nonblocking pool is initialized

Bring up Root Complex board

You will see below kernel log on Root Complex board.

sc58x-pcie 310b8000.pcie: 2.5 GT/s : Width x1
sc58x-pcie 310b8000.pcie: PCI host bridge to bus 0000:00
pci_bus 0000:00: root bus resource [mem 0x50000000-0x5effffff]
pci_bus 0000:00: root bus resource [mem 0x60000000-0x7fffffff pref]
pci_bus 0000:00: root bus resource [bus 00-ff]
pci_bus 0000:00: root bus resource [io 0x1000-0xffff]
PCI: bus0: Fast back to back transfers disabled
pci 0000:00:00.0: BAR 0: assigned [mem 0x60000000-0x6fffffff pref]
...
bar[0]=60000000@10000000
bar[1]=0@0
bar[2]=0@0
bar[3]=0@0
bar[4]=0@0
bar[5]=0@0
...
receive msi 0
receive msi 0
receive msi 0

Linux Add-in for CrossCore Embedded Studio 150

inbound write finish 1234abcd
receive msi 0
inbound read finish

At the same time, you will see below kernel log on Endpoint board.

PCIE link is up
waiting rc enable device...
BAR0 = 60000008
send msi 0
out of reset: 8c988000
send msi 0
inbound write 4 bytes to 8c988010
send msi 0
inbound read 1234abcd[55aaaa55]
send msi 0

5.15 Linux Video Driver

5.15.1 Introduction

This section describes the steps required to build and use video driver to capture or display video
images on Linux using an ADSP-SC5xx board, a Video Decoder EI3 Extender Board and a Video
Encoder EI3 Extender Board.

The Linux Kernel Media Subsystems provides support for devices like webcams, streaming capture
and output, analog TV, digital TV, AM/FM radio, Sofware Digital Radio (SDR) and remote
controllers.

The Linux Media Infrastructure API converges the kernel to userspace APIs used on media drivers. It
has 4 parts:

Part I: The V4L2 API

Part II: The Linux DVB API

Part III: The Remote Controller API

Part IV: The Media Controller API

For more information about the Linux Kernel Media Subsystems, please refer to .http://linuxtv.org/

http://linuxtv.org/

Linux Add-in for CrossCore Embedded Studio 151

5.15.2 Hardware Required

An ADSP-SC5XX EZ-Board (ADSP-SC589 EZ-Board / ADSP-SC573 EZ-Board)

A Video Decoder EI3 Extender Board

A Video Encoder EI3 Extender Board

HDMI Cable and 3RCA Cable

EPPI on ADSP-SC5XX EZ-Board

The Enhanced Parallel Peripheral Interface (EPPI) is a half-duplex, bidirectional port with a dedicated
clock pin and three frame sync (FS) pins directly output from the processor. It can support direct
connections to active TFT LCDs, parallel A/D and D/A converters, video encoders and decoders,
image sensor modules and other general-purpose peripherals. We can find EPPI port from P1A
connector on the back of ADSP-SC5XX EZ-Board.

Video Decoder EI3 Extender Board

The Video Decoder EI3 Extender Board is a separately daughter board that plugs onto the EI3 of an
EZ-KIT LITE/EZ-Board, it extends the capabilities of the EZ-KIT LITE/EZ-Board by providing a
connection between the enhanced parallel peripheral interface (EPPI) of the processor and the
ADV7842 video decoder. For more information about the ADV7842 or Video Decoder EI3 Extender
Board, go to and search for ADV7842 or Video Decoder EI3 Extender Board.www.analog.com

http://www.analog.com

Linux Add-in for CrossCore Embedded Studio 152

Connect the Video Decoder EI3 Extender Board board to the connector on the ADSP-SC5XX P1A
EZ-Board.

The following formats are supported:

720p60 (HD)

NTSC (480i60)

PAL (576i50)

When using 720p60, connect an HDMI cable from your source (e.g. a video player) to the HDMI A
port and ensure the video source's resolution is set to 720p.

For SD video, connect video cables to CVBS, S-Video or Component port.

Linux Add-in for CrossCore Embedded Studio 153

Video Encoder EI3 Extender Board

The Video Encoder EI3 Extender Board is a separately daughter board that plugs onto the EI3 of an
EZ-KIT LITE/EZ-Board, it extends the capabilities of the EZ-KIT LITE/EZ-Board by providing a
connection between the enhanced parallel peripheral interface (EPPI) of the processor and the
ADV7511 and ADV7341 video encoder. For more information about the ADV7511, ADV7341 or
Video Encoder EI3 Extender Board, go to and search for ADV7511 or ADV7341 or www.analog.com
Video Encoder EI3 Extender Board.

Connect the Video Encoder EI3 Extender Board board to the connector on the ADSP-SC5XX P1A
EZ-Board.

Only HD format is supported for ADV7511, so connect an HDMI cable to a TV to display captured
HD yuv file (720p).

ADV7341 supports NTSC and PAL format video. Connect the Composite port on the adapter board to
TV video port using 3RCA cable.

http://www.analog.com/

Linux Add-in for CrossCore Embedded Studio 154

5.15.3 Software Configuration

The following configuration should be done on top of the sc589-ezkit/sc573-ezkit default
configuration.

Buildroot

Compile V4L2 video test program into Linux image

Package Selection for the target --->
 Miscellaneous --->
 [*] V4L2 video test program

Linux Add-in for CrossCore Embedded Studio 155

Kernel

Enable I2C support

Device Drivers --->
 I2C support --->
 I2C Hardware Bus support --->
 <*> Blackfin TWI I2C support
 (50) Blackfin TWI I2C clock (kHz)

Enable Microchip MCP23xxx I/O expander support

Device Drivers --->
 -*- GPIO support --->
 <*> Microchip MCP23xxx I/O expander

Enable V4L2 capture platform driver and ADV7842 video decoder driver

Device Drivers --->
 <*> Multimedia support --->
 [*] Cameras/video grabbers support
 [*] Media Controller API (EXPERIMENTAL)
 [*] V4L platform devices --->
 <*> Blackfin Video Capture Driver
 Encoders, decoders, sensors and other helper chips --->
 <*> Analog Devices ADV7842 decoder

Enable V4L2 display platform driver and ADV7343 video encoder drivers

As there is only one PPI on the ADSP-SC5xx board, please don't select V4L2 capture and display
platform driver at the same time. You can't select ADV7511 and ADV7343 either. If you want to
display HD video, please select ADV7511 HDMI transmitter driver. For SD video you should choose
ADV7343 video encoder driver, it should be noted that driver for ADV7343 works for ADV7341 as
well.

Linux Add-in for CrossCore Embedded Studio 156

Device Drivers --->
 <*> Multimedia support --->
 [*] Cameras/video grabbers support
 [*] Media Controller API (EXPERIMENTAL)
 [*] V4L platform devices --->
 <*> Blackfin Video Display Driver
 Encoders, decoders, sensors and other helper chips --->
 <*> Analog Devices ADV7511 HDMI transmitter
 <*> ADV7343 video encoder

As the PPI hardware pin conflicts with SPI on the ADSP-SC573 EZ-Board, you should disable SPI
before using ppi, otherwise you will get a pin request error message from pinctrl. So extra
configuration only for ADSP-SC573 EZ-Board:

Device Drivers --->
 [*] SPI support --->
 <> SPI controller v3 for ADI

Device Tree

Device node for soft switch on Video Decoder EI3 Extender Board

Please add following child node ssw2 to i2c0 master node in the device tree(sc589-ezkit.dts/sc573-
ezkit.dts). We need to setup soft switch before we start capture streaming.

i2c0: twi@31001400 {
...
ssw1: gpio@0x22 {
 compatible = "microchip,mcp23017";
 gpio-controller;
 #gpio-cells = <2>;
 reg = <0x22>;
};
+ssw2: gpio@0x26 {
+ compatible = "microchip,mcp23017";
+ gpio-controller;
+ #gpio-cells = <2>;
+ reg = <0x26>;
+};
adau1979@0x11 {

Linux Add-in for CrossCore Embedded Studio 157

 compatible = "adi,adau1977";
 reg = <0x11>;
};

Device node for adi video capture driver

Please add following node video_decoder in the device tree to support adi video capture driver.

For ADSP-SC573 EZ-Board(sc573-ezkit.dts):

+video_decoder: cap {
+ compatible = "adi,cap";
+ card-name = "SC57X";
+ type = <2>;
+ dma-channel = <28>;
+ interrupts = <0 83 0>;
+ reg = <0x3102D000 0xfff>;
+ spu_securep_id = <68>;
+ i2c_bus_id = <0>;
+ pinctrl-names = "8bit", "16bit";
+ pinctrl-0 = <&ppi0_8b>;
+ pinctrl-1 = <&ppi0_16b>;
+};

For ADSP-SC589 EZ-Board(sc589-ezkit.dts):

+video_decoder: cap {
+ compatible = "adi,cap";
+ card-name = "SC58X";
+ type = <2>;
+ dma-channel = <28>;
+ interrupts = <0 83 0>;
+ reg = <0x31040000 0xfff>;
+ spu_securep_id = <95>;
+ i2c_bus_id = <0>;
+ pinctrl-names = "8bit", "16bit", "24bit";
+ pinctrl-0 = <&ppi0_8b>;
+ pinctrl-1 = <&ppi0_16b>;
+ pinctrl-2 = <&ppi0_24b>;
+};

Linux Add-in for CrossCore Embedded Studio 158

Device node for soft switch on Video Encoder EI3 Extender Board

Please add following child node ssw2 to i2c0 master node in the device tree(sc589-ezkit.dts/sc573-
ezkit.dts). We need to setup soft switch before we start display streaming.

i2c0: twi@31001400 {
...
ssw1: gpio@0x22 {
 compatible = "microchip,mcp23017";
 gpio-controller;
 #gpio-cells = <2>;
 reg = <0x22>;
};
+ssw2: gpio@0x25 {
+ compatible = "microchip,mcp23017";
+ gpio-controller;
+ #gpio-cells = <2>;
+ reg = <0x25>;
+};
adau1979@0x11 {
 compatible = "adi,adau1977";
 reg = <0x11>;
};

Device node for adi video display driver

Please add following node video_encoder in the device tree to support adi video display driver.

For ADSP-SC573 EZ-Board(sc573-ezkit.dts):

+video_encoder: disp {
+ compatible = "adi,disp";
+ card-name = "SC57X";
+ type = <2>;
+ dma-channel = <28>;
+ interrupts = <0 83 0>;
+ reg = <0x3102D000 0xfff>;
+ spu_securep_id = <68>;
+ i2c_bus_id = <0>;
+ pinctrl-names = "8bit", "16bit";
+ pinctrl-0 = <&ppi0_8b>;
+ pinctrl-1 = <&ppi0_16b>;
+};

Linux Add-in for CrossCore Embedded Studio 159

For ADSP-SC589 EZ-Board(sc589-ezkit.dts):

+ video_encoder: disp {
+ compatible = "adi,disp";
+ card-name = "SC58X";
+ type = <2>;
+ dma-channel = <28>;
+ interrupts = <0 83 0>;
+ reg = <0x31040000 0xfff>;
+ spu_securep_id = <95>;
+ i2c_bus_id = <0>;
+ pinctrl-names = "8bit", "16bit", "24bit";
+ pinctrl-0 = <&ppi0_8b>;
+ pinctrl-1 = <&ppi0_16b>;
+ pinctrl-2 = <&ppi0_24b>;
+};

5.15.4 Example

The state of pins from IO expander is "uncertain" after we enable Soft Switch on the ADSP-SC573
EZ-Board, some pins are also the OE pins (active low) of modules, as the PPI signal pins are reused
by many modules, you should disable related modules by setting Soft Switch first, otherwise the
signals from ppi will be interfered. So extra configuration only for ADSP-SC573 EZ-Board:

echo 482 > /sys/class/gpio/export
echo high > /sys/class/gpio/gpio482/direction
echo 485 > /sys/class/gpio/export
echo high > /sys/class/gpio/gpio485/direction
echo 505 > /sys/class/gpio/export
echo high > /sys/class/gpio/gpio505/direction

Linux Add-in for CrossCore Embedded Studio 160

Video Decoder EI3 Extender Board

Setup Soft Switch

echo 464 > /sys/class/gpio/export
echo low > /sys/class/gpio/gpio464/direction
echo 466 > /sys/class/gpio/export
echo low > /sys/class/gpio/gpio466/direction

Capture Video Stream

You can use "v4l2_video_capture" provided by Buildroot to test video capture function for
ADV7842, it shows the decoding of HD signal input and YCbCr pixel output in this example:

v4l2_video_capture -I 4 -F adv7842.yuv

The 720p yuv file can be played by a raw video sequence player, for example pYUV. Or it can be
saved as the input of the ADV7511. PYUV must be configured as below:

Resolution -> HD720
Color space -> YCbCr
Subsampling -> 4:2:2
Ordering -> UYVY
And select Interleaved option.

Linux Add-in for CrossCore Embedded Studio 161

Video Encoder EI3 Extender Board

ADV7511 HDMI transmitter

One thing to note here is that the ADSP-SC573 can support up to 56.25MHz ppi clock when
transmitting data or frame sync, however, ADSP-SC589 can support up to 75MHz ppi clock, and
there are two different ppi clock generators on Video Encoder EI3 Extender Board: 27MHz and
74MHz, so we can enable 27MHz clock both for ADSP-SC573 EZ-Board and ADSP-SC589 EZ-
Board, and 74MHz clock only for ADSP-SC589 EZ-Board. For more information, please refer to the
data sheets of ADSP-SC573/ADSP-SC589 and the Video Encoder EI3 Extender Board Manual.

Setup Soft Switch

Only for ADSP-SC589 EZ-Board (74MHz PPI clock):

echo 466 > /sys/class/gpio/export
echo low > /sys/class/gpio/gpio466/direction

Linux Add-in for CrossCore Embedded Studio 162

echo 469 > /sys/class/gpio/export
echo low > /sys/class/gpio/gpio469/direction

Both for ADSP-SC573 EZ-Board and ADSP-SC589 EZ-Board (27MHz PPI clock):

echo 466 > /sys/class/gpio/export
echo low > /sys/class/gpio/gpio466/direction
echo 468 > /sys/class/gpio/export
echo low > /sys/class/gpio/gpio468/direction

Display Video Images

You can use "v4l2_video_display" provided by Buildroot to play HD yuv file and output the HD
signal via ADV7511, the HD signal will be transmitted to TV, then you will see the image on TV.

v4l2_video_display -F 720p60.yuv

ADV7341 Video Encoder

Setup Soft Switch

echo 468 > /sys/class/gpio/export
echo low > /sys/class/gpio/gpio468/direction
echo 470 > /sys/class/gpio/export
echo low > /sys/class/gpio/gpio470/direction

Display Video Images

You can use "v4l2_video_display" provided by Buildroot to play pal yuv file and output the
component analog signal via ADV7341, the analog signal will be transmitted to TV by 3RCA cable,
then you will see the image on TV.

v4l2_video_display -F pal.yuv

Linux Add-in for CrossCore Embedded Studio 163

5.16 Rotary driver

5.16.1 Introduction

SC5xx processors feature an up/down counter and thumbwheel interface.

A 32-bit up/down counter is provided that can sense 2-bit quadrature or binary codes as typically
emitted by industrial drives or manual thumb wheels. The counter can also operate in general-purpose
up/down count modes, in which case count direction is either controlled by a level sensitive input pin
or by two edge detectors. A third input can provide flexible zero marker support and can alternatively
be used to input the push-button signal of thumb wheels. All three pins have a programmable
debouncing circuit.

5.16.2 Hardware Setup

An ADSP-SC584/SC573 EZKIT board
The SC589-EZKIT board does not include the rotary input hardware.

5.16.3 Software Configuration

Configure Linux kernel

You need to enable the ADI rotary driver in Linux kernel.

Linux Add-in for CrossCore Embedded Studio 164

Device Drivers --->
 Input device support --->
 <*> Event interface
 [*] Miscellaneous devices --->
 <*> ADI Rotary support

Configure Buildroot

You should also enable the event test program to assist with testing.

Target Packages ---->
 Miscellaneous --->
 [*] event test

Customization

The driver can be customized via the device tree node, take the SC573-ezkit board as an example, add
rotary device and pinctrl node in linux_kernel_source/arch/arm/boot/dts/sc573-ezkit.dts:

... : ellipsis, means other properties in i2c node stay the same

- : minus, means delete this property

+ : plus, means add this property

 +rotary@0x3100B000 {
 + #address-cells = <1>;
 + #size-cells = <0>;
 + compatible = "adi,rotary";
 + reg = <0x3100B000 0xFF>;
 + pinctrl-names = "default";
 + pinctrl-0 = <&rotary0_default>;
 + interrupts = <0 118 0>;
 + rotary_rel_code = <0x08>; /* REL_WHEEL */
 + rotary_button_key = <28>; /* KEY_ENTER */
 + debounce = /bits/ 16 <10>; /* 0..17 */
 + debounce_en = /bits/ 16 <1>;
 + cnt_mode = /bits/ 16 <0>; /* CNTMODE_QUADENC */
 + boundary_mode = /bits/ 16 <0>; /* BNDMODE_COMP */
 + invert_czm = /bits/ 16 <0>;

Linux Add-in for CrossCore Embedded Studio 165

 + invert_cud = /bits/ 16 <0>;
 + invert_cdg = /bits/ 16 <0>;
 +};

 pinctrl@0 {
 ...
 mmc {
 ...
 +rotary {
 + rotary0_default: rotary0@0 {
 + adi,group = "rotary0grp";
 + adi,function = "rotary0";
 + };
 +};
 };

The driver provides two options. It can either send Key (KEY) or Relative (REL) events.

Option 1 – send Key events: Provide two KEY Codes for:

rotary_up_key = KEY_PLUS

rotary_down_key = KEY_MINUS

Option 2 – send REL events: Provide one REL event type:

rotary_rel_code = REL_WHEEL

In case your CZM input is connected (push-button signal of thumb wheels) Specify the KEY event –
this will enable the CZM input. See include/linux/input.h for a full list of supported events.

rotary_button_key = KEY_ENTER

The debounce prescale value is used to select the noise filtering characteristic of the input pins. Must
be in the range of 0..17

debounce = 10

The driver supports various Counter types

cnt_mode = CNTMODE_QUADENC

5.16.4 Example

You will get following information when the rotary hardware device is turned left, right or pushed.

Linux Add-in for CrossCore Embedded Studio 166

event_test /dev/input/event0
Input driver version is 1.0.0
Input device ID: bus 0x19 vendor 0x1 product 0x1 version 0x100
Input device name: "bfin-rotary"
Supported events:
 Event type 0 (Reset)
 Event code 0 (Reset)
 Event code 1 (Key)
 Event code 2 (Relative)
 Event type 1 (Key)
 Event code 28 (Enter)
 Event type 2 (Relative)
 Event code 8 (Wheel)
Testing ... (interrupt to exit)
Event: time 21755.740000, type 2 (Relative), code 8 (Wheel), value 1
Event: time 21755.740000, type 0 (Reset), code 0 (Reset), value 0
Event: time 21755.780000, type 2 (Relative), code 8 (Wheel), value 1
Event: time 21755.780000, type 0 (Reset), code 0 (Reset), value 0
Event: time 21755.808000, type 2 (Relative), code 8 (Wheel), value 1
Event: time 21755.808000, type 0 (Reset), code 0 (Reset), value 0
Event: time 21755.812000, type 2 (Relative), code 8 (Wheel), value 1
Event: time 21755.812000, type 0 (Reset), code 0 (Reset), value 0
Event: time 21756.040000, type 2 (Relative), code 8 (Wheel), value 1
Event: time 21756.040000, type 0 (Reset), code 0 (Reset), value 0
Event: time 21756.208000, type 2 (Relative), code 8 (Wheel), value -1
Event: time 21756.208000, type 0 (Reset), code 0 (Reset), value 0
Event: time 21757.152000, type 2 (Relative), code 8 (Wheel), value -1
Event: time 21757.152000, type 0 (Reset), code 0 (Reset), value 0
Event: time 21757.176000, type 2 (Relative), code 8 (Wheel), value -1
Event: time 21757.176000, type 0 (Reset), code 0 (Reset), value 0
Event: time 21757.184000, type 2 (Relative), code 8 (Wheel), value -1
Event: time 21757.184000, type 0 (Reset), code 0 (Reset), value 0
Event: time 21757.188000, type 2 (Relative), code 8 (Wheel), value -1
Event: time 21757.188000, type 0 (Reset), code 0 (Reset), value 0
Event: time 21757.380000, type 2 (Relative), code 8 (Wheel), value -1
Event: time 21757.380000, type 0 (Reset), code 0 (Reset), value 0
Event: time 21760.336000, type 1 (Key), code 28 (Enter), value 1
Event: time 21760.336000, type 0 (Reset), code 0 (Reset), value 0
Event: time 21760.336000, type 1 (Key), code 28 (Enter), value 0
Event: time 21760.336000, type 0 (Reset), code 0 (Reset), value 0

Linux Add-in for CrossCore Embedded Studio 167

5.17 SPI Driver

5.17.1 Introduction

This section describes the steps required to build and use the SPI bus on Linux using an ADSP-SC5xx
board.

The Serial Peripheral Interface (SPI) bus is a four wire master/slave full duplex synchronous bus. You
can hook up multiple slave devices by utilizing chip select lines.

The bus is composed of two data pins, one clock pin, and one chip select pin:

SCLK - Serial Peripheral Interface Clock Signal (generated by the master) (also referred to as
SCK)

MOSI - Master Out Slave In data (output from the master)

MISO - Master In Slave Out (output from the slave)

CS - Chip Select (also referred to as Slave Select (SS))

It is not uncommon to use the bus with just one master and one slave, but it is certainly possible to use
it as a real bus with many devices on it.

Linux Add-in for CrossCore Embedded Studio 168

Each slave may operate at different clock frequencies as well as different clock polarities and clock
phases with respect to the data. The permutations of polarities and phases are referred to as SPI
modes. Below you can see the relationship between modes and the polarity/phase of the clock.

Mode Polarity Phase

SPI_MODE_0 0 0

SPI_MODE_1 0 1

SPI_MODE_2 1 0

SPI_MODE_3 1 1

Chip specifications won't always say "uses SPI mode X" in as many words, but their timing diagrams
will make the CPOL and CPHA modes clear.

The figures below demonstrate the two basic transfer formats as defined by the CPHA bit. Two
waveforms are shown for SPI_CLK—one for SPI_CTL.CPOL=0 and the other for SPI_CTL.
CPOL=1.

Linux Add-in for CrossCore Embedded Studio 169

5.17.2 Hardware Setup

An ADSP-SC5xx EZ-Board: ADSP-SC589/SC584/SC573 EZ-Board

5.17.3 Software Configuration

The following configuration should be done on top of the SC589-ezkit/SC584-ezkit/SC573-ezkit
default configuration.

Configure Buildroot

Enable spidev_test program if you want to use user space SPI test utility.

Target packages --->
 Debugging, profiling and benchmark --->
 [*] spidev_test

Linux Add-in for CrossCore Embedded Studio 170

Configure Linux Kernel

Enable SPI controller driver for ADSP-SC5xx

Device Drivers --->
 [*] SPI support --->
 <*> SPI controller v3 for ADI

Enable SPI slave driver (for example spi flash w25q128)

Device Drivers --->
 <*> Memory Technology Device (MTD) support --->
 <*> SPI-NOR device support --->
 Self-contained MTD device drivers --->
 <*> Support most SPI Flash chips (AT26DF, M25P, W25X, ...)

Enable spidev driver if you want to use user space API.

Device Drivers --->
 [*] SPI support --->
 <*> User mode SPI device driver support

Configure Device tree

SPI slave node properties

SPI busses can be described with a node for the SPI master device and a set of child nodes for each
SPI slave on the bus.

Below is the child node for SPI flash of SPI master2 node.

Linux Add-in for CrossCore Embedded Studio 171

flash: w25q32@0 {
 #address-cells = <1>;
 #size-cells = <1>;
 compatible = "winbond,w25q32";
 spi-max-frequency = <500000>;
 reg = <38>;
 spi-cpol;
 spi-cpha;
 spi-rx-bus-width = <4>;
 dma-mode;
}

SPI slave nodes must be children of the SPI master node and can contain the following properties.

reg - (required) Chip select address of device.

compatible - (required) Name of SPI device following generic names recommended practice

spi-max-frequency - (required) Maximum SPI clocking speed of device in Hz

spi-cpol - (optional) Empty property indicating device requires inverse clock polarity (CPOL) mode

spi-cpha - (optional) Empty property indicating device requires shifted clock phase (CPHA) mode

spi-cs-high - (optional) Empty property indicating device requires chip select active high

spi-rx-bus-width - (optional) A value of 4 indicates to setup the SPI controller to receive data in Quad
SPI mode.

dma-mode - (optional) Empty property indicating device requires DMA mode transfer

spidev device node

If you want to use spidev, please add following SPI slave node to SPI master0 node.

spidev {
 #address-cells = <1>;
 #size-cells = <1>;
 compatible = "rohm,dh2228fv";
 spi-max-frequency = <5000000>;
 reg = <44>;
};

Linux Add-in for CrossCore Embedded Studio 172

5.17.4 Example

spidev_test -D /dev/spidev0.44 -b 8 -H -O
spi mode: 0x3
bits per word: 8
max speed: 500000 Hz (500 KHz)
FF 80 00 00 3F FF
40 00 00 00 02 00
3F FF FF FF FF 80
00 00 3F FF FF FF
FF 80 00 00 3F FF
DE AD BE 80 00 00
30 0D

5.18 Mobile Storage Interface for MMC/SD

The ADSP-SC5xx processors provide a mobile storage interface (MSI). MSI is a fast, synchronous
controller that uses various protocols to communicate with MMC, SD, and SDIO cards to address the
growing storage need in embedded systems, handheld and consumer electronics applications requiring
low power. The MSI is compatible with the following protocols.

MMC (Multimedia Card) bus protocol

SD (Secure Digital) bus protocol

SDIO (Secure Digital Input Output) bus protocol

All of these storage solutions use similar interface protocols. The main difference between MMC and
SD support is the initialization sequence. The main difference between SD and SDIO support is the
use of interrupt and read wait signals for SDIO.

5.18.1 Hardware Setup

An ADSP-SC5xx EZ-Board: ADSP-SC589/SC573 EZ-Board (SC584 processor does not
include MMC/SD controller)

The SD/MMC card slot is J18 on the SC589/SC573 EZKIT board . This slot accepts full-size SD and
MMC cards, or microSD cards with an adapter.

Linux Add-in for CrossCore Embedded Studio 173

5.18.2 Software Configuration

Configure Linux Kernel

1) MSI Support

Device Drivers
 MMC/SD/SDIO card support --->
 [*] Synopsys DesignWare Memory Card Interface
 [*] Internal DMAC interface
 [*] Synopsys Designware MCI Support as platform device
 [*] ADI specific extensions for Synopsys DW Memory Card
Interface

This configuration has been added in sc589-ezkit_defconfig/sc573-ezkit_defconfig as the default
configuration.

2) File System Support

if you want to mount an SD card in a particular format, you should compile the Linux kernel with the
corresponding file-system first.

Example1FAT32 SD card, corresponding filesystem is VFAT. Configuration is shown below

File systems --->
 -> DOS/FAT/NT Filesystems
 [*] VFAT (Windows-95) fs support
 (437) Default codepage for FAT
 (iso8859-1) Default iocharset for FAT

Linux Add-in for CrossCore Embedded Studio 174

Example2 : ext2 SD card, corresponding filesystem is ext2. Configuration is shown below

File systems --->
 <*> Second extended fs support
 [*] Ext2 extended attributes
 [*] Ext2 POSIX Access Control Lists
 [*] Ext2 Security Labels

Configure Buildroot

Add Bonnie++ to the Buildroot configuration. Bonnie++ is a program for testing filesystem
throughput, see for details.www.coker.com.au/bonnie++

Target packages --->
 Debugging, profiling and benchmark --->
 [*] bonnie++

5.18.3 Build and Load Buildroot

A Buildroot image can now be built and loaded onto the target board. See SC5xx EZ-Kit Linux Quick
 for details.Start Guide

5.18.4 Usage of MSI

Mount

The most typical use of an SD Card in embedded applications is as a removable storage device (disk)
that can be easily taken from the embedded target board. In such contexts, the SD Card installed to the
embedded target board is typically already formatted with an MS-DOS file system. The Linux kernel
must be specially configured to allow mounting the MS-DOS file system. See part 2 in section 2.1 for
details. The utility is also needed. Typically, mount will already be enabled in your busybox mount
configuration.

Insert a pre-formatted card with an MS-DOS (FAT) file system to the SD Card slot on the ADSP-
SC5xx. When you boot the uImage on the ADSP-SC5xx, there should be messages similar to the ones
shown below. In the below example, Linux has detected an SD Card with a single partition on it:

http://www.coker.com.au/bonnie++/

Linux Add-in for CrossCore Embedded Studio 175

mmc_host mmc0: Bus speed (slot 0) = 50000000Hz (slot req 25000000Hz,
actual 25000000HZ div = 1)
mmc0: new SD card at address b368
mmcblk0: mmc0:b368 FFFFF 1.85 GiB

At this point you are ready to mount the MS-DOS file system on the SD Card. This is done as
follows:

mount -t vfat -o sync /dev/mmcblk0p1 /mnt

Check that the file system has indeed been mounted (refer to the last line in the below output):

mount
rootfs on / type rootfs (rw)
devtmpfs on /dev type devtmpfs (rw,relatime,size=42740k,nr_inodes=10685
,mode=755)
proc on /proc type proc (rw,relatime)
devpts on /dev/pts type devpts (rw,relatime,gid=5,mode=620)
tmpfs on /dev/shm type tmpfs (rw,relatime,mode=777)
tmpfs on /tmp type tmpfs (rw,relatime,mode=777)
sysfs on /sys type sysfs (rw,relatime)
debugfs on /sys/kernel/debug type
debugfs (rw,relatime)
/dev/mmcblk0p1 on /mnt type vfat (rw,sync,relatime,fmask=0022,dmask=002
2,codepage=437,iocharset=iso8859-1,shortname=mixed,errors=remount-ro)

Now you can write something to the SD Card. In the below example, we store the current date and
time to a log file, although in real-life applications you will probably want to do something more
meaningful:

date > /mnt/log.file

Verify the written content by reading the log file back:

cat /mnt/log.file
Wed Aug 12 10:29:00 UTC 2015

Now you can remove the card the from the embedded target board. Unmount the file system and then
extract the card from the SD card slot:

umount /mnt

Linux Add-in for CrossCore Embedded Studio 176

mmc0: card b368 removed

Test MSI Performance with Bonnie++

1) Test Case 1: Bonnie++ on Ext2

Input the following command on the target board console

root:/> mkfs.ext2 /dev/mmcblk0p1
root:/> mount /dev/mmcblk0p1 /mnt/
root:/> bonnie++ -u root -d /mnt/

Result

Using uid:0, gid:0.
Writing with putc()...done
Writing intelligently...done
Rewriting...done Reading with getc()...done
Reading intelligently...done
start 'em...done...done...done...
Create files in sequential order...done.
Stat files in sequential order...done.
Delete files in sequential order...done.
Create files in random order...done.
Stat files in random order...done.
Delete files in random order...done.
Version 1.03e ------Sequential Output------ --Sequential Input-
--Random-
 -Per Chr- --Block-- -Rewrite- -Per Chr- --Block-- --
Seeks--
Machine Size K/sec %CP K/sec %CP K/sec %CP K/sec %CP K/sec %CP
/sec %CP
buildroot 300M 2568 70 2780 2 4212 6 3734 97 18000 11
1169 16
 ------Sequential Create------ --------Random
Create--------
 -Create-- --Read--- -Delete-- -Create-- --Read---
-Delete--
 files /sec %CP /sec %CP /sec %CP /sec %CP /sec %
CP /sec %CP
 16 958 98 +++++ +++ +++++ +++ 1032 98 +++++
+++ 2449 99 buildroot,300M,2568,70,2780,2,4212,6,3734,97,18000,11,116
9.2,16,16,958,98,+++++,+++,+++++,+++,1032,98,+++++,+++,2449,99

Linux Add-in for CrossCore Embedded Studio 177

2) Test Case 2: Bonnie++ on FAT32

Input the following command on the target board console

root:/> mkfs.vfat -F 32 /dev/mmcblk0p1
root:/> mount /dev/mmcblk0p1 /mnt/
root:/> bonnie++ -u root -d /mnt/

Result

Using uid:0, gid:0. Writing with putc()...done
Writing intelligently...done
Rewriting...done
Reading with getc()...done
Reading intelligently...done
start 'em...done...done...done...
Create files in sequential order...done
Stat files in sequential order...done.
Delete files in sequential order...done.
Create files in random order...done.
Stat files in random order...done.
Delete files in random order...done.
Version 1.03e ------Sequential Output------ --Sequential Input-
--Random-
 -Per Chr- --Block-- -Rewrite- -Per Chr- --Block--
--Seeks--
Machine Size K/sec %CP K/sec %CP K/sec %CP K/sec %CP K/sec %CP
/sec %CP
buildroot 300M 2414 64 5529 8 4502 8 3715 96 17941 12
92.0 1
 ------Sequential Create------ --------Random
Create--------
 -Create-- --Read--- -Delete-- -Create-- --Read--- -
Delete--
 files /sec %CP /sec %CP /sec %CP /sec %CP /sec %CP
/sec %CP
 16 12 99 29536 100 156 99 18 99 +++++
+++ 41 97
buildroot,300M,2414,64,5529,8,4502,8,3715,96,17941,12,92.0,1,16,12,99,2
9536,100,156,99,18,99,+++++,+++,41,97

Linux Add-in for CrossCore Embedded Studio 178

5.19 Real Time Clock on ADSP-SC58x

5.19.1 Introduction

This page describes the steps required to build and use the RTC on the ADSP-SC589 EZ-board
(ADSP-SC584 and ADSP-SC573 don't support RTC).

The Real Time Clock (RTC) serves two purposes: to keep accurate time/date information and to
provide wake up alarms (both during runtime and while sleeping). Since the RTC can be externally
powered and clocked independently of the processor it can remain running even when the rest of the
system is turned off.

5.19.2 Hardware Required

An ADSP-SC589 EZ-Board

5.19.3 Software Configuration

Configure Buildroot

Enable RTC test:

Target packages --->
 Miscellaneous --->
 [*] rtc test

Configure Linux Kernel

Enable RTC support:

Device Drivers --->
 [*] Real Time Clock --->
 <*> ADI On-Chip RTC v2

Linux Add-in for CrossCore Embedded Studio 179

5.19.4 Build and Load Buildroot

After configuration, users can make and boot the image on SC589 EZ-Board. Please refer SC5xx EZ-
 for details.Kit Linux Quick Start Guide

5.19.5 Example

Users just need to run rtc_test command on board to test rtc.

Results as shown below:

rtc_test
0. open and release
opened '/dev/rtc0': fd = 3
1. ioctl RTC_UIE_ON
2. RTC read 5 times
RTC read 1
RTC read 2
RTC read 3
RTC read 4
RTC read 5
3. ioctl RTC_UIE_OFF
4. Get RTC Time
Current RTC date/time is 24-4-76, 22:48:15
5. Set RTC Time
Set Current RTC date/time to 31-5-104, 02:30:00
Get RTC time
Current RTC date/time is 31-5-104, 02:30:00
6. Set alarm Time
7. Get alarm Time
Alarm time now set to 02:30:50
Waiting 50 seconds for alarm...
random: nonblocking pool is initialized
 Okay. Alarm rang.
Current RTC date/time is 31-5-104, 02:30:50
8. ioctl RTC_AIE_OFF
8.5 test sleep 10
Current RTC date/time is 31-5-104, 02:31:00
Current RTC date/time is 31-5-104, 02:31:00
RTC Tests done !

Linux Add-in for CrossCore Embedded Studio 180

5.20 UART hardware flow control

5.20.1 Introduction

This section describes the steps required to enable UART hardware flow control on ADSP-SC5xx
board.

5.20.2 Hardware Setup

An ADSP-SC5xx EZ-Board: ADSP-SC589/SC584/SC573 EZ-Board

The UART interface is the port on the ADSP-SC5xx EZ-board.USB to UART

5.20.3 Software Configuration

Configure Linux kernel

Device Drivers --->
 Character devices --->
 Serial drivers --->
 <*> ADI uart4 serial port support
 [*] Console on ADI uart4 serial port

Configure Buildroot

Target packages --->
 Miscellaneous --->
 [*] UART flow control test utility

Configure Device tree

Add in uart0 node of or'linux source code directory'/arch/arm/boot/dts/sc58x.dtsi 'linux source
code directory'/arch/arm/boot/dts/sc57x.dtsi

uart0: uart@0x31003000 {
...

Linux Add-in for CrossCore Embedded Studio 181

adi,uart-has-rtscts;
...
};

5.20.4 Build and Load Buildroot

A Buildroot image can now be built and loaded onto the target board. See SC5xx EZ-Kit Linux Quick
 for details.Start Guide

5.20.5 Example

Preliminary setup

Setting serial port parameter

minicom -s
Select "Serial port setup"
Select "F - Hardware Flow Control: Yes"

Test

1) Input invalid before Linux boot up

After powering-off and restarting the board you will find that UBoot doesn't accept the input from the
serial console. Instead it automatically boot up kernel according to its predefined parameters. Once the
Linux kernel has been booted it will accept input..

2) run rtscts_test case

rtscts_test ttySC0 -t

In the above command the serial device is given as an example, and will not necessarily be
ttySC0.

Linux Add-in for CrossCore Embedded Studio 182

6 Multicore support

6.1 Multi-Core Communication

The CrossCore Embedded Studio Linux Add-In provides user space APIs that allow applications to
easily communicate with the SHARC cores of the ADSP-SC5xx processor.

Communication is performed using the Multi-core Communications API (MCAPI) specification
which defines an API and a semantics for communication and synchronization between processing
cores in embedded systems. MCAPI is supported on the SHARC cores of the ADSP-SC5xx
processors in both bare-metal and RTOS using CrossCore Embedded Studio.
For more information about MCAPI, please refer to the MCAPI Specification document from MCAPI.

.org

6.1.1 MCAPI Supported Functions

The Linux Add-In supports a subset of the APIs stated in the MCAPI specification, version 2.0.15.

Inter-core communication is only supported using mode. Communication using messaging
packet and scalar types is supported.not

Communication can be performed using blocking and non-blocking methods.

The following table summarizes the APIs supported in this release of the Linux Add-In.

Function Supported APIs Un-supported APIs

General Functions

Initialize MCAPI Environment mcapi_initialize

Finalize MCAPI Environment mcapi_finalize

Get Domain ID mcapi_domain_id_get

Get Node ID mcapi_node_id_get

Initialize Structure Values mcapi_node_init_attributes

http://www.multicore-association.org/workgroup/mcapi.php
http://www.multicore-association.org/workgroup/mcapi.php

Linux Add-in for CrossCore Embedded Studio 183

Change Default Values mcapi_node_set_attribute

Query Node Attributes mcapi_node_get_attribute

Endpoint Functions

Create Endpoint mcapi_endpoint_create

Delete Endpoint mcapi_endpoint_delete

Get Endpoint Identifier mcapi_endpoint_get_i

mcapi_endpoint_get

Query Endpoint Attribute mcapi_endpoint_get_attribute

Assign Endpoint Attribute mcapi_endpoint_set_attribute

Message Functions

Send message mcapi_msg_send_i

mcapi_msg_send

Receive message mcapi_msg_recv_i

mcapi_msg_recv

Check Message Availability mcapi_msg_available

Non-Blocking, Connectionless Message, Packet, and Channel Functions

Wait for Completion of Operation mcapi_wait

Check for Non-blocking Ops

Completion

mcapi_test

Linux Add-in for CrossCore Embedded Studio 184

Cancel Non-blocking Ops mcapi_cancel

Wait for Completion of Ops List mcapi_wait_any

Support Functions

Display MCAPI Status Message mcapi_display_status

6.1.2 Multi-core Development

Following Documents covers how to run the dual core data transaction demo with MCAPI, as well as
some general multi-core development/debugging introduction.

Run the MCAPI demo

Run the MCAPI demo

Debugging multi-core application in general

Run Linux on ARM and bare-metal application on SHARC

In a multi-core system such as the ADSP-SC5xx, there are lots of resources that are shared between
the ARM and SHARC cores. This guide will introduce two shared resources (pins and SEC). It is
important to understand how to avoid inter-core conflicts in these devices. For more information
about using these devices in Linux, please refer to:

Reserve Pinmux Functions in Linux for SHARC Applications

SEC driver and multicore development

6.2 Run the MCAPI demo

6.2.1 Introduction

This document shows how to run the MCAPI demo on ADSP-SC5xx EZ-Kit board.

One method of loading applications to multiple cores of the ADSP-SC5xx processor is to use the
loader functionality in the processor BootROM.

Linux Add-in for CrossCore Embedded Studio 185

The BootROM supports the loading of multiple binary files onto separate cores from one LDR image
which is stored in the SPI flash. In order to achieve this a loader image must be created using the
proprietary ELF loader, that is provided in the windows version of CrossCore elfloader.exe
Embedded Studio.
For more information on the elfloader.exe application see the CrossCore Embedded Studio IDE Help,
or provide the option to the application.-help elfloader.exe

No GNU ARM Loader support

The GNU ARM loader utility provided with Linux does not currently support the linking of
SHARC binary images into a loader image.

6.2.2 Hardware Requirement

ADSP-SC589 EZ-Kit v1.0 and above, or

ADSP-SC584 EZ-Kit v1.0 and above, or

ADSP-SC573 EZ-Kit v1.0 and above

ICE1000 or ICE2000 JTAG board

Here we take ADSP-SC589 EZ-kit as our example.

6.2.3 Configure and build

This section shows how to configure, build the source code, and generate the dual core combined
bootloader.

Generate Linux Kernel image

Configure Linux kernel

MCAPI lib is built on top of the ICC (Inter-Core Communications) device driver. You should run
in Linux kernel to enable the ICC driver in Linux kernel first:make linux-menuconfig

Device Drivers --->
 [*] Staging drivers --->
 [*] icc driver --->
 --- icc driver
 [*] icc protocol
 [] icc debug

Linux Add-in for CrossCore Embedded Studio 186

Configure Buildroot

Then you need to run in buildroot to enable libmcapi in Buildroot: make menuconfig

Target packages --->
 Libraries --->
 Other --->
 [*] libmcapi

Two methods to control SHARC cores are described in the document Enable and Disable SHARC
. Here we use corecontrol tool in Linux to enable and disable SHARC cores.Cores

Target packages --->
 Miscellaneous --->
 [*] sc5xx corecontrol tool

Build

Finally, build the buildroot to generate the linux kernel image.

$ make

Copy the file to folder.uImage /tftpboot

Generate Combined u-boot LDR image

Note there is a known issue, check details in "trouble shooting". The elfloader.exe tool in CCES
installation directory in windows supports a large number of parameters. In order to generate a
combined u-boot LDR image with both the u-boot and SHARC code, you have to use many
parameters. Required steps should be done follow the following parts.

Step1: Copy files from Linux host to Windows host

We should first customize a default u-boot according to your board.

Linux Add-in for CrossCore Embedded Studio 187

1.

2.

3.

1.

2.

3.

4.

5.

$ cd u-boot/
$ make sc589-ezkit_defconfig
$ make

Then copy three files we need from the Linux Add-In to the Windows host.

Copy the example which is located in the cces_mcapi_test /opt/analog/cces-linux-add-in/1.2.0
 folder as part of the Linux Add-In to a Windows host PC ./examples/cces_mcapi_test

Copy your file that is located at the top level of your u-boot sources to the u-boot $CCES_DIR
in Windows host PC.

Copy the u-boot file that is located in the directory of your u-init arch/arm/cpu/armv7/sc58x
boot sources file to the in Windows host PC.$CCES_DIR

$CCES_DIR is the installation directory of CCES which is often in "C:\Analog
Devices\CrossCore Embedded Studio 2.6.0".

Step2: Build project on the Windows host in CrossCore Embedded Studio

Here we build the SHARC core project within CrossCore Embedded Studio

From the menu select File Import...

From the Import dialog expand the entry, select General Existing Projects Into Workspace
and click Next

Browse to the location where you copied the project to the Windows mcapi_send_recv_Core1
PC, and select the project for your EZ-Kit, then click mcapi_send_recv_Core1 Import

In the right click on the project and select Project Explorer mcapi_send_recv_Core_sc589
the optionBuild Project

Copy in $your_project_folder/Debug to the mcapi_send_recv_Core1_sc589.dxe $CCES_DIR

Step3: Generate a combined u-boot LDR using a command line Shell

Here we use the command line CrossCore Embedded Studio utility to produce a single elfloader
loader image containing u-boot and the SHARC executable.

Before creating the loader image, ensure that command line shell is in the directory where the output
executable from the CrossCore Embedded Studio project resides.
Also ensure that the and binaries have been copied to the same directory.uBoot init

1. Run following command to generate u-boot-mcapi.ldr, replacing the $CCES_DIR with the
installation directory for CrossCore Embedded Studio:

Linux Add-in for CrossCore Embedded Studio 188

$CCES_DIR\elfloader.exe -proc ADSP-SC589 -si-revision 1.0 -b spimaster
-f binary -width 8 -bcode 1 -init init -core0=u-boot -
core1=mcapi_send_recv_Core1_sc589.dxe -NoFinalTag=u-boot -o u-boot.ldr

2. Copy the resultant file to the Linux Host PC as the file u-boot.ldr /tftpboot/u-boot.ldr

Step 4: Flash your new uboot to the SPI flash

sc# run update

6.2.4 Running MCAPI MSG Test Example

After flashing a combined u-boot, hit the button on the ezkit board, boot the Linux to the serial reset
console

Then start the sharc core 1

$ corecontrol --start 1
Test core 1 start
Test core 1 end: 0

Test the MCAPI protocol in Linux

arm_sharc_msg_demo
CHECK_STATUS---init_node_attr: MCAPI_SUCCESS
semget
CHECK_STATUS---initialize: MCAPI_SUCCESS
 node=0, port=101
CHECK_STATUS---create_ep: MCAPI_SUCCESS
ep1 65
CHECK_STATUS---get_ep_i: MCAPI_PENDING
 node=1, port=5
CHECK_STATUS---wait: MCAPI_SUCCESS
ep2 10005
send() start......
CHECK_STATUS---send_i: MCAPI_PENDING
CHECK_STATUS---test: MCAPI_SUCCESS
CHECK_STATUS---wait: MCAPI_SUCCESS
end of send() - endpoint=101 has sent: [HELLO_MCAPI core0 0]

Linux Add-in for CrossCore Embedded Studio 189

coreA: mode(0) message send. The 0 time sending
recv() start......
session_idx 0
 node=1, port=31
CHECK_STATUS---recv_i: MCAPI_SUCCESS
CHECK_STATUS---wait: MCAPI_SUCCESS
end of recv() - endpoint=101 size 0x9ca8 has received: [hello mcapi
core1]
CoreA: mode(0) message recv. The 0 time receiving
send() start......
CHECK_STATUS---send_i: MCAPI_PENDING
CHECK_STATUS---test: MCAPI_SUCCESS
CHECK_STATUS---wait: MCAPI_SUCCESS
end of send() - endpoint=101 has sent: [HELLO_MCAPI core0 1]
coreA: mode(0) message send. The 1 time sending
recv() start......
session_idx 0
 node=1, port=31
CHECK_STATUS---recv_i: MCAPI_SUCCESS
CHECK_STATUS---wait: MCAPI_SUCCESS
end of recv() - endpoint=101 size 0x9ca8 has received: [hello mcapi
core1]
CoreA: mode(0) message recv. The 1 time receiving
....
send() start......
CHECK_STATUS---send_i: MCAPI_PENDING
CHECK_STATUS---test: MCAPI_SUCCESS
CHECK_STATUS---wait: MCAPI_SUCCESS
end of send() - endpoint=101 has sent: [HELLO_MCAPI core0 99]
coreA: mode(0) message send. The 99 time sending
recv() start......
session_idx 0
 node=1, port=31
CHECK_STATUS---recv_i: MCAPI_SUCCESS
CHECK_STATUS---wait: MCAPI_SUCCESS
end of recv() - endpoint=101 size 0x9ca8 has received: [hello mcapi
core1]
CoreA: mode(0) message recv. The 99 time receiving
CHECK_STATUS---del_ep: MCAPI_SUCCESS
mcapi_finalize 322
CHECK_STATUS---finalize: MCAPI_SUCCESS
CoreA 100 rounds mode(0) demo Test PASSED!!

More details of the introduction of MCAPI examples, please refer to Introduction of MCAPI examples
.

Linux Add-in for CrossCore Embedded Studio 190

6.2.5 Troubleshooting

After flashing a which is combined with mcapi_send_recv_Core1_sc589.dxe multi-core uboot.ldr
and u-boot and init file , the console gives out a message "Warning – bad CRC , using default

", the board will not boot on next power on or reset.environment

This issue is mostly because elfloader.exe does not support the "punchit" feature as of now, save
command will write into Flash and break the dual core u-boot.ldr image on it. For users prefer to use
save command to change the environment on fly in dual core application, we recommend a
workaround as following:

Change the u-boot source file as following, note in this example the location for saving environment
variable on Flash will start from 0x70000, you will need to increase it more if the size of your
combined u-boot.ldr is larger than that, but make sure to update your usage of MTD table in Linux
kernel accordingly so that your MTD partion does not get overwritten by accident.

diff --git a/arch/arm/cpu/armv7/sc58x/config.mk b/arch/arm/cpu/armv7
/sc58x/config.mk
index 2717269..a506a68 100644
--- a/arch/arm/cpu/armv7/sc58x/config.mk
+++ b/arch/arm/cpu/armv7/sc58x/config.mk
@@ -29,7 +29,7 @@ endif

 ifneq ($(CONFIG_SC_BOOT_MODE),SC_BOOT_UART)
 ifneq ($(CONFIG_SC58X_CHAIN_BOOT),y)
-LDR_FLAGS-$(CONFIG_ENV_IS_EMBEDDED_IN_LDR) += --punchit
$$(($(CONFIG_ENV_OFFSET))):$$(($(CONFIG_ENV_SIZE))):env-ldr.o
+LDR_FLAGS-$(CONFIG_ENV_IS_EMBEDDED_IN_LDR) :=
 endif
 endif

diff --git a/arch/arm/cpu/armv7/sc58x/init b/arch/arm/cpu/armv7/sc58x
/init
index 46a7d1f..a127bb0 100755
Binary files a/arch/arm/cpu/armv7/sc58x/init and b/arch/arm/cpu/armv7
/sc58x/init differ
diff --git a/include/configs/sc589-ezkit.h b/include/configs/sc589-
ezkit.h
index adde83a..ac99137 100644
--- a/include/configs/sc589-ezkit.h
+++ b/include/configs/sc589-ezkit.h
@@ -169,7 +169,7 @@
 * Env Storage Settings
 */
 #define CONFIG_ENV_IS_IN_SPI_FLASH
-#define CONFIG_ENV_OFFSET 0x10000
+#define CONFIG_ENV_OFFSET 0x70000

Linux Add-in for CrossCore Embedded Studio 191

 #define CONFIG_ENV_SIZE 0x2000
 #define CONFIG_ENV_SECT_SIZE 0x10000
 #define CONFIG_ENV_IS_EMBEDDED_IN_LDR
diff --git a/include/configs/sc_adi_common.h b/include/configs
/sc_adi_common.h
index da3599c..d2aef92 100644
--- a/include/configs/sc_adi_common.h
+++ b/include/configs/sc_adi_common.h
@@ -258,7 +258,7 @@
 /*
 * Env Storage Settings
 */
-#define CONFIG_ENV_OFFSET 0x10000
+#define CONFIG_ENV_OFFSET 0x70000
 #define CONFIG_ENV_SIZE 0x2000
 #define CONFIG_ENV_SECT_SIZE 0x10000
 /* We need envcrc to embed the env into LDRs */

Then run make, and continue with section “ ”.Generate Combined u-boot LDR image

.

6.3 Enable and Disable SHARC Cores

6.3.1 Introduction

This document introduces two kind of core control solutions which support ADSP-SC573, SC584 and
SC589 EZ-Kits. One method is to control SHARC Cores with u-boot ICC command. Other way
includes a kernel device driver and a command-line utility, for enabling and disabling the SHARC
cores (Core 1 & 2) from the ARM core (Core 0), which have been added to the Buildroot Linux
distribution for ADSP-SC573, SC584 and SC589.

6.3.2 Method 1: Enable SHARC cores with u-boot ICC command

Configure u-boot to Enable Slave Cores

The slave SHARC core 0 and 1 in SC5xx silicon can be enabled and disabled in u-boot command
console. In order to include this ICC command into u-boot, you need to select it in u-boot
configuration.

$ cd u-boot/
$ make sc589-ezkit_defconfig
$ make menuconfig

Linux Add-in for CrossCore Embedded Studio 192

ARM architecture --->
 [*] ICC command to enable and disable slave cores

After saving the configuration in u-boot, rebuild the u-boot ldr image for SC58x-EZKIT.

$ make

Finally, flash the u-boot LDR image into the SPI flash of SC5xx-EZKIT.

U-boot ICC command usage

The ICC command can enable or disable a specific slave core. The SHARC core ids accepted by this
command for SC5xx are 1 and 2, any other id value is ignored. The ICC message queue at the
beginning of L2 SRAM is reset before enabling the SHARC cores.

sc # icc
icc - Inter core communication interface
Usage:
icc icc enable <coreid>
 - enable coreid
icc disable <coreid>
 - disable coreid

6.3.3 Method 2: Enable SHARC Cores with corecontrol Utility in Linux

Linux Core Control Driver

The corectrl Device

A new corectrl device has been created to allow Linux user to enable and disable the SHARC cores.
See icc.h for macro values.

The device, /dev/corectrl, supports the following ioctl requests:

Linux Add-in for CrossCore Embedded Studio 193

Request Description Format

CMD_CORE_START Start the specified core running from the programmed

SVECT address.

int ioctl(<FD>, CMD_CORE_START,

<COREID>);

CMD_CORE_STOP Stop the specified core by putting it back in reset. int ioctl(<FD>, CMD_CORE_STOP,

<COREID>);

<FD> - File descriptor of /dev/corectrl

<COREID> - The number of the core to start or stop. Values accepted are CCTRL_CORE1 and
CCTRL_CORE2.

Both requests return 0 on success and -1 on failure.

Usage Example

An example to enable both cores is as follows:

#include <icc.h>
...
int fd = open("/dev/corectrl", O_RDWR);
if (fd < 0) {
 perror("Unable to open /dev/corectrl");
 exit(1);
}
...
if (ioctl(fd, CMD_CORE_START, CCTRL_CORE1)) {
 perror("Unable to start Core 1");
 exit(2);
}
if (ioctl(fd, CMD_CORE_START, CCTRL_CORE2)) {
 perror("Unable to start Core 2");
 exit(3);
}

Configuration

The SHARC cores can be controlled from the Linux command line using the corecontrol utility. To
use corecontrol, first enable it in Buildroot:

[*] sc5xx corecontrol tool
Prompt: sc5xx corecontrol tool

Linux Add-in for CrossCore Embedded Studio 194

Location:
-> Target packages
 -> Miscellaneous

With the corecontrol utility, sharc cores can be controlled to start or stop.

Usage Example

corecontrol -h
Valid options
--start CORE_NUM
--stop CORE_NUM
corecontrol --start 1
corecontrol --stop 1

6.4 Introduction of MCAPI examples

6.4.1 Introduction

This document gives a more detailed introduction of MCAPI examples.

This example involves two following parts:

Baremetal: MCAPI Baremetal CCES projects run on SHARC 1 core

Linux: Linux MCAPI demo examples run on ARM core

There are 3 MCAPI inter-operability demos included in the libmcapi tests, currently we only
:support msg demo

msg (unconnected message protocol) – supported

sclchan (connected scalar channel protocol) – unsupported

pktchan (connected packet channel protocol) – unsupported

There are 2 ways to load the MCAPI baremetal project: loaded by ROM code and loaded by ICE1000
in CCES.

For more information about "loaded by ROM code", please refer to Run the MCAPI demo

For more information about "loaded by ICE1000 in CCES", please refer to Run Linux on ARM and
bare-metal application on SHARC

Linux Add-in for CrossCore Embedded Studio 195

MCAPI Baremetal test examples

You can get the MCAPI Baremetal test examples code after installing the linux kit, and the examples
code in "/opt/analog/cces-linux-add-in/1.2.0/examples/cces_mcapi_test/". You'll find three folders
which are for msg, sclchan and pktchan, each folder contains the baremetal mcapi cces projects for
sc589, sc584 and sc573 boards, "Mcapi_Test_Core1.c" is the main application c file. You should use
CCES to open and build the project, since we only support msg test example, we'll take the MCAPI
Baremetal MSG test as the example in the next section.

MCAPI Linux demos

After buildroot has been compiled, source files of MCAPI-lib, demos can be found in "buildroot
/output/build/libmcapi-HEAD/", "arm_sharc_msg_demo.c" is the main application c file.

Once the linux boot finished, one command for MCAPI demo test can be found in linux, you are able
to use "arm_sharc_msg_demo -h" to get more information about the command:

arm_sharc_msg_demo -h
Usage: arm_sharc_msg_demo <options>
Available options:
 -h,--help this help
 -m,--mode select the mode:
 0 --- nonblocking mode0(default)

 1 --- nonblocking mode1
 2 --- nonblocking mode2
 3 --- blocking mode
 -t,--timeout timeout value in jiffies(default:5000)
 -r,--round number of test round(default:100)

" " shows the example use of blocking/nonblocking message send/receive arm_sharc_msg_demo
between two different endpoints on different nodes, the endpoint of ARM sends a message then
receives a message from another endpoint of CORE1 in one round, after comparing the receive data
with the data you expect, the number of passed rounds will be increased, only when the passed rounds
and the test rounds are equal, it'll give demo passed log.

Each mode means the different ways to do message transaction between two endpoints using different
MCAPI APIs we supported(), and you can choose the way by "-m":Multi-Core Communication

options Descrition

-m,--

mode

mode 0 nonblocking send mcapi_test() / mcapi_msg_available() nonblocking recv

Linux Add-in for CrossCore Embedded Studio 196

options Descrition

 mode 1 nonblocking send mcapi_test() nonblocking recv

 mode 2 nonblocking send mcapi_wait() nonblocking recv

 mode 3 blocking send blocking recv

-t,--

timeout

Timeout value is used to set the maximum wait time for wait and blocking function

-r,--

round

Round is the number of rounds you want to test, since the total number of check round in MCAPI baremetal

test example is 100, we should also make sure that the total number of check round in linux is less than or

equal to 100, if number equals 100, passed log will be output in CCES.

6.4.2 Performance of MCAPI

The test method of the performance data of MCAPI is to measure the time required of doing message
transactions about 1000 rounds between 2 endpoints on ARM and SHARC, and one round includes
sending and receiving one message for each endpoint, that's what the MCAPI demo example does, so
we'll measure the interval time by running the MCAPI demo example. For more information about the
message transaction, please refer to .Multi-Core Communication

Dependencies

There are many influences in measuring the MCAPI performance:

Different platform We'll test on all sc5xx boards(SC589, SC584, SC573)

System load We assume that the system load should be normal, and can be ingored, we disable
all logs of MCAPI(both Linux and Baremetal)

MCAPI operation mode

Result

Below table is the interval time of 1000 rounds message transaction under different conditions:

Board Mode 0 Mode 1 Mode 2 Mode3

sc589-ezkit 190.98ms 186.48ms 174.34ms 150.49ms

sc584-ezkit 188.72ms 180.95ms 176.29ms 145.65ms

https://labrea.ad.analog.com/confluence/display/DOCLINUX/.MCAPI+inter-operability+test+between+arm+and+sharc+v1.2.0

Linux Add-in for CrossCore Embedded Studio 197

Board Mode 0 Mode 1 Mode 2 Mode3

sc573-ezkit 191.28ms 184.99ms 178.85ms 147.92ms

6.5 Run Linux on ARM and bare-metal application on SHARC

6.5.1 Introduction

This document introduces steps to run Linux on ARM core and SHARC baremetal application on
SHARC cores(Core 1 & 2) by CCES. Take the Linux MCAPI inter-operability demo example as a
SHARC baremetal application.

6.5.2 MCAPI Test Example

You can get the MCAPI Baremetal test examples code after installing the linux kit, and the examples
code in "/opt/analog/cces-linux-add-in/1.2.0/examples/cces_mcapi_test/". You'll find three folders
which are for msg, sclchan and pktchan, each folder contains the baremetal mcapi cces projects for
sc589, sc584 and sc573 boards, "Mcapi_Test_Core1.c" is the main application c file. You should use
CCES to open and build the project, since we only support msg test example, we'll take the MCAPI
Baremetal MSG test as the example.

Hardware Requirement

ADSP-SC589 EZ-Kit v1.0 and above, or

ADSP-SC584 EZ-Kit v1.0 and above, or

ADSP-SC573 EZ-Kit v1.0 and above

ICE1000 or ICE2000 JTAG board

Here we take ADSP-SC589 EZ-kit as our example.

Software Configuration

This section shows how to config Linux to prepare for this test.

Configure Linux kernel

MCAPI lib is built on top of the ICC (Inter-Core Communications) device driver. You should run
in Linux kernel to enable the ICC driver in Linux kernel first:make linux-menuconfig

Linux Add-in for CrossCore Embedded Studio 198

1.

2.

Device Drivers --->
 [*] Staging drivers --->
 [*] icc driver --->
 --- icc driver
 [*] icc protocol
 [] icc debug

Configure Buildroot

Then you need to run in buildroot to enable libmcapi and corecontrol in Buildroot: make menuconfig

Target packages --->
 Libraries --->
 Other --->
 [*] libmcapi

Refer to , you can enable SHARC cores with ICC command in u-Enable and Disable SHARC Cores
boot or with corecontrol utility in Linux. Here we use corecontrol tool in Linux to enable and disable
SHARC cores.

Target packages --->
 Miscellaneous --->
 [*] sc5xx corecontrol tool

Build

Finally, build the buildroot to generate the linux kernel image.

$ make

Load Linux on ARM and SHARC applications on SHARC by CCES

A brief step to run multicore on the EZ-Kit board is showing as follows:

Boot u-boot to console and stop at u-boot;

Linux Add-in for CrossCore Embedded Studio 199

2.

a.

b.

c.

d.

e.

3.

4.

1.

2.

Start CCES to load application to SHARC cores and wait;

Build baremetal example in CCES;

Remove the program of Device 0[Core 0];

Uncheck automaticlly setted breakpoints and disable semihosting in "Automatic
Breakpoints" view of debug configuration;

Uncheck " Halt core after connecting to target" for ARM core in debug configuration and
start debug;

Click the debug button, it will load the dxe file then waiting for linux to start Core 1 & 2;

Enable SHARC cores in Linux

Resume Core 1 & 2 Application running in CCES

Step1: Boot u-boot to Console

U-Boot 2015.01 ADI-1.2.0-00105-g33e00dd-dirty (Jul 21 2017 - 15:38:12)
CPU: ADSP ADSP-SC589-0.1 (Detected Rev: 1.1) (spi flash boot)
VCO: 450 MHz, Cclk0: 450 MHz, Sclk0: 112.500 MHz, Sclk1: 112.500 MHz,
DCLK: 450 MHz
OCLK: 150 MHz
I2C: ready
DRAM: 224 MiB
MMC: SC5XX SDH: 0
SF: Detected W25Q128BV with page size 256 Bytes, erase size 4 KiB,
total 16 MiB
In: serial
Out: serial
Err: serial
other init
Net: dwmac.3100c000
Hit any key to stop autoboot: 0
sc #

Step2: CCES Debug Configuration

Before running the application we need to first config CCES debug configuration.

Connect ICE-1000/2000 JTAG emulator between the SC589-EZKIT and your PC

Linux Add-in for CrossCore Embedded Studio 200

2.

3.

4.

Start CCES (2.6.0 or later) and open the application project, build it and enter into the debug
configuration.

Remove the ARM core project from the debug configuration, only load core1 and core2,
MCAPI test example only need to load core 1.

Linux Add-in for CrossCore Embedded Studio 201

4.

5.

6.

Uncheck automaticlly setted breakpoints and disable semihosting in "Automatic Breakpoints"
view of debug configuration.

Uncheck the debug target option "Halt core after connecting to target" for ARM core.

Linux Add-in for CrossCore Embedded Studio 202

6. Start debug and wait for Linux to start core1.

Step3: Enable SHARC cores in Linux

In u-boot, enable SHARC core then boot linux

sc # icc enable 1

Or boot Linux, and then in Linux use the corecontrol utility to start the SHARC core:

corecontrol --start 1

After running SHARC core, CCES halts in the first line of the application code on SHARC core 1.

Linux Add-in for CrossCore Embedded Studio 203

Step4: Resume Core 1 & 2 Application running in CCES

Resume(F5) core 1 and continue running the application in CCES.

Now Linux is running on ARM core 0 while SHARC baremetal application is running on core 1.

Run Linux MCAPI MSG Demo Test

Run "arm_sharc_msg_demo" command in Linux and the passed log in linux is showing as the picture.

Linux Add-in for CrossCore Embedded Studio 204

arm_sharc_msg_demo

The output on CCES console:

Linux Add-in for CrossCore Embedded Studio 205

More details about the introduction of MCAPI examples, please refer to Introduction of MCAPI
.examples

Reset the board then follow the above steps if you want to restart the demo test. Relaunching
or restarting the MCAPI application in CCES without resetting the board is not
recommended.

6.6 Reserve Pinmux Functions in Linux for SHARC Applications

6.6.1 Introduction

For ADSP-SC573, SC584 and SC589, most of on-chip peripherals are shared between the ARM core
and the SHARC cores. When a peripheral is used in a SHARC application it can't be used by Linux
on the ARM core. This can be ensured by compiling configuration statically in both the SHARC
application and the Linux kernel. However, different peripherals used on different cores may still
share some pins, which are configured through the pinmux controller. In order to avoid Linux drivers
altering the pinmux functions set in SHARC applications by mistake, the Linux ICC driver allows
developers to reserve the pinmux functions for peripherals used by the SHARC application. Take
ADSP-SC589 as example in following sections.

6.6.2 Linux Kernel Configuration

Set Up ICC Device Tree Node

In order to reserve the pinmux function, it should be defined as a pinctrl configuration node first in the
device tree file.

pinctrl0: pinctrl@0 {
 compatible = "adi,adi2-pinctrl";
 #address-cells = <1>;
 #size-cells = <1>;
 #interrupt-cells = <2>;
 interrupt-controller;
 reg = <0 0>;
 icc {
 icc_default: icc0@0 {
 adi,group = "ppi0_16bgrp", "lp0grp";
 adi,function = "ppi0", "lp0";

Linux Add-in for CrossCore Embedded Studio 206

 };
 };
};

The pinmux node should be referenced in the ICC node if you want the reservation to icc_default
take effect. You can now rebuild the device tree binary using the make linux-rebuild; make;
command in Buildroot.

icc@0 {
 compatible = "adi,icc";
 reg = <0x20080000 0x1000>;
 interrupt-parent = <&gic>;
 interrupts = <0 251 0>;
 peerinfo = <1 97>,
 <2 98>;
 pinctrl-names = "default";
 pinctrl-0 = <&icc_default>;
};

Peripheral Group and Function Definition

The group and function properties are string arrays of the same length. The elements of the same array
ID should be corresponding and are defined in file linux/drivers/pinctrl/pinctrl-adi-sc58x.c

static const struct adi_pin_group adi_pin_groups[] = {
 ADI_PIN_GROUP("uart0grp", uart0_pins, uart0_mux),
 ADI_PIN_GROUP("uart0_hwflowgrp", uart0_hwflow_pins, uart0_hwflow_mux),
 ADI_PIN_GROUP("uart1grp", uart1_pins, uart1_mux),
 ADI_PIN_GROUP("uart1_hwflowgrp", uart1_hwflow_pins, uart1_hwflow_mux),
 ADI_PIN_GROUP("uart2grp", uart2_pins, uart2_mux),
 ADI_PIN_GROUP("uart2_hwflowgrp", uart2_hwflow_pins, uart2_hwflow_mux),
 ADI_PIN_GROUP("eth0grp", eth0_pins, eth0_mux),
 ADI_PIN_GROUP("eth0ptpgrp", eth0_ptp_pins, eth0_ptp_mux),
 ADI_PIN_GROUP("eth1grp", eth1_pins, eth1_mux),
 ADI_PIN_GROUP("spi0grp", spi0_pins, spi0_mux),
 ADI_PIN_GROUP("spi1grp", spi1_pins, spi1_mux),
 ADI_PIN_GROUP("spi2grp", spi2_pins, spi2_mux),
 ADI_PIN_GROUP("can0grp", can0_pins, can0_mux),
 ADI_PIN_GROUP("can1grp", can1_pins, can1_mux),
 ADI_PIN_GROUP("smc0grp", smc0_pins, smc0_mux),
 ADI_PIN_GROUP("lp0grp", lp0_pins, lp0_mux),
 ADI_PIN_GROUP("lp1grp", lp1_pins, lp1_mux),
 ADI_PIN_GROUP("ppi0_8bgrp", ppi0_8b_pins, ppi0_8b_mux),
 ADI_PIN_GROUP("ppi0_16bgrp", ppi0_16b_pins, ppi0_16b_mux),

Linux Add-in for CrossCore Embedded Studio 207

 ADI_PIN_GROUP("ppi0_24bgrp", ppi0_24b_pins, ppi0_24b_mux),
 ADI_PIN_GROUP("mmc0grp", mmc0_pins, mmc0_mux),
};

static const struct adi_pmx_func adi_pmx_functions[] = {
 ADI_PMX_FUNCTION("uart0", uart0grp),
 ADI_PMX_FUNCTION("uart1", uart1grp),
 ADI_PMX_FUNCTION("uart2", uart2grp),
 ADI_PMX_FUNCTION("spi0", spi0grp),
 ADI_PMX_FUNCTION("spi1", spi1grp),
 ADI_PMX_FUNCTION("spi2", spi2grp),
 ADI_PMX_FUNCTION("can0", can0grp),
 ADI_PMX_FUNCTION("can1", can1grp),
 ADI_PMX_FUNCTION("smc0", smc0grp),
 ADI_PMX_FUNCTION("lp0", lp0grp),
 ADI_PMX_FUNCTION("lp1", lp1grp),
 ADI_PMX_FUNCTION("eth0", eth0grp),
 ADI_PMX_FUNCTION("eth1", eth1grp),
 ADI_PMX_FUNCTION("mmc0", mmc0grp),
 ADI_PMX_FUNCTION("ppi0", ppi0grp),
};

6.6.3 Pinmux Reservation Example

After Linux boots up with the new device tree binary file, you can find the specified PPI0 and LP0
pinmux functions reservation information from the sysfs.

ls /dev/icc
/dev/icc

cd /sys/kernel/debug/pinctrl/pinctrl-adi2.0/
cat
gpio-ranges pinmux-functions pins
pingroups pinmux-pins
cat pinmux-pins
Pinmux settings per pin
Format: pin (name): mux_owner gpio_owner hog?
pin 0 (PA0): 3100c000.ethernet (GPIO UNCLAIMED) function eth0 group
eth0grp
pin 1 (PA1): 3100c000.ethernet (GPIO UNCLAIMED) function eth0 group
eth0grp
pin 2 (PA2): 3100c000.ethernet (GPIO UNCLAIMED) function eth0 group
eth0grp
pin 3 (PG3): 3100c000.ethernet (GPIO UNCLAIMED) function eth0 group
eth0grp
pin 4 (PA4): 3100c000.ethernet (GPIO UNCLAIMED) function eth0 group
eth0grp

Linux Add-in for CrossCore Embedded Studio 208

pin 5 (PA5): 3100c000.ethernet (GPIO UNCLAIMED) function eth0 group
eth0grp
pin 6 (PA6): 3100c000.ethernet (GPIO UNCLAIMED) function eth0 group
eth0grp
pin 7 (PA7): 3100c000.ethernet (GPIO UNCLAIMED) function eth0 group
eth0grp
pin 8 (PA8): 3100c000.ethernet (GPIO UNCLAIMED) function eth0 group
eth0grp
pin 9 (PA9): 3100c000.ethernet (GPIO UNCLAIMED) function eth0 group
eth0grp
pin 10 (PA10): 3100c000.ethernet (GPIO UNCLAIMED) function eth0 group
eth0grp
pin 11 (PA11): 3100c000.ethernet (GPIO UNCLAIMED) function eth0 group
eth0grp
pin 12 (PA12): 3100c000.ethernet (GPIO UNCLAIMED) function eth0 group
eth0grp
pin 13 (PA13): 3100c000.ethernet (GPIO UNCLAIMED) function eth0 group
eth0grp
pin 14 (PA14): (MUX UNCLAIMED) adi-gpio:14
pin 15 (PA15): (MUX UNCLAIMED) (GPIO UNCLAIMED)
pin 16 (PB0): 20080000.icc (GPIO UNCLAIMED) function ppi0 group
ppi0_16bgrp
pin 17 (PB1): 20080000.icc (GPIO UNCLAIMED) function ppi0 group
ppi0_16bgrp
pin 18 (PB2): (MUX UNCLAIMED) adi-gpio:18
pin 19 (PB3): (MUX UNCLAIMED) (GPIO UNCLAIMED)
pin 20 (PB4): 20080000.icc (GPIO UNCLAIMED) function ppi0 group
ppi0_16bgrp
pin 21 (PB5): 20080000.icc (GPIO UNCLAIMED) function ppi0 group
ppi0_16bgrp
pin 22 (PB6): (MUX UNCLAIMED) (GPIO UNCLAIMED)
pin 23 (PB7): (MUX UNCLAIMED) (GPIO UNCLAIMED)
pin 24 (PB8): (MUX UNCLAIMED) adi-gpio:24
pin 25 (PB9): 31000a00.can (GPIO UNCLAIMED) function can1 group can1grp
pin 26 (PB10): 31000a00.can (GPIO UNCLAIMED) function can1 group
can1grp
pin 27 (PB11): (MUX UNCLAIMED) (GPIO UNCLAIMED)
pin 28 (PB12): (MUX UNCLAIMED) (GPIO UNCLAIMED)
pin 29 (PB13): (MUX UNCLAIMED) (GPIO UNCLAIMED)
pin 30 (PB14): (MUX UNCLAIMED) adi-gpio:30
pin 31 (PB15): (MUX UNCLAIMED) (GPIO UNCLAIMED)
pin 32 (PC0): (MUX UNCLAIMED) adi-gpio:32
pin 33 (PC1): 31044000.spi (GPIO UNCLAIMED) function spi2 group spi2grp
pin 34 (PC2): 31044000.spi (GPIO UNCLAIMED) function spi2 group spi2grp
pin 35 (PC3): 31044000.spi (GPIO UNCLAIMED) function spi2 group spi2grp
pin 36 (PC4): (MUX UNCLAIMED) (GPIO UNCLAIMED)
pin 37 (PC5): (MUX UNCLAIMED) (GPIO UNCLAIMED)
pin 38 (PC6): (MUX UNCLAIMED) adi-gpio:38
pin 39 (PC7): 31000200.can (GPIO UNCLAIMED) function can0 group can0grp
pin 40 (PC8): 31000200.can (GPIO UNCLAIMED) function can0 group can0grp
pin 41 (PC9): 31042000.spi (GPIO UNCLAIMED) function spi0 group spi0grp

Linux Add-in for CrossCore Embedded Studio 209

pin 42 (PC10): 31042000.spi (GPIO UNCLAIMED) function spi0 group
spi0grp
pin 43 (PC11): 31042000.spi (GPIO UNCLAIMED) function spi0 group
spi0grp
pin 44 (PC12): (MUX UNCLAIMED) adi-gpio:44
pin 45 (PC13): adi-uart4.0 (GPIO UNCLAIMED) function uart0 group
uart0grp
pin 46 (PC14): adi-uart4.0 (GPIO UNCLAIMED) function uart0 group
uart0grp
pin 47 (PC15): 20080000.icc (GPIO UNCLAIMED) function ppi0 group
ppi0_16bgrp
pin 48 (PD0): (MUX UNCLAIMED) (GPIO UNCLAIMED)
pin 49 (PD1): (MUX UNCLAIMED) (GPIO UNCLAIMED)
pin 50 (PD2): 20080000.icc (GPIO UNCLAIMED) function lp0 group lp0grp
pin 51 (PD3): 20080000.icc (GPIO UNCLAIMED) function lp0 group lp0grp
pin 52 (PD4): 20080000.icc (GPIO UNCLAIMED) function lp0 group lp0grp
pin 53 (PD5): 20080000.icc (GPIO UNCLAIMED) function lp0 group lp0grp
pin 54 (PD6): 20080000.icc (GPIO UNCLAIMED) function lp0 group lp0grp
pin 55 (PD7): 20080000.icc (GPIO UNCLAIMED) function lp0 group lp0grp
pin 56 (PD8): 20080000.icc (GPIO UNCLAIMED) function lp0 group lp0grp
pin 57 (PD9): 20080000.icc (GPIO UNCLAIMED) function lp0 group lp0grp
pin 58 (PD10): 20080000.icc (GPIO UNCLAIMED) function lp0 group lp0grp
pin 59 (PD11): 20080000.icc (GPIO UNCLAIMED) function lp0 group lp0grp
pin 60 (PD12): adi-uart4.2 (GPIO UNCLAIMED) function uart2 group
uart2grp
pin 61 (PD13): adi-uart4.2 (GPIO UNCLAIMED) function uart2 group
uart2grp
pin 62 (PD14): 20080000.icc (GPIO UNCLAIMED) function ppi0 group
ppi0_16bgrp
pin 63 (PD15): 20080000.icc (GPIO UNCLAIMED) function ppi0 group
ppi0_16bgrp
pin 64 (PE0): 20080000.icc (GPIO UNCLAIMED) function ppi0 group
ppi0_16bgrp
pin 65 (PE1): 20080000.icc (GPIO UNCLAIMED) function ppi0 group
ppi0_16bgrp
pin 66 (PE2): 20080000.icc (GPIO UNCLAIMED) function ppi0 group
ppi0_16bgrp
pin 67 (PE3): 20080000.icc (GPIO UNCLAIMED) function ppi0 group
ppi0_16bgrp
pin 68 (PE4): 20080000.icc (GPIO UNCLAIMED) function ppi0 group
ppi0_16bgrp
pin 69 (PE5): 20080000.icc (GPIO UNCLAIMED) function ppi0 group
ppi0_16bgrp
pin 70 (PE6): 20080000.icc (GPIO UNCLAIMED) function ppi0 group
ppi0_16bgrp
pin 71 (PE7): 20080000.icc (GPIO UNCLAIMED) function ppi0 group
ppi0_16bgrp
pin 72 (PE8): 20080000.icc (GPIO UNCLAIMED) function ppi0 group
ppi0_16bgrp
pin 73 (PE9): 20080000.icc (GPIO UNCLAIMED) function ppi0 group
ppi0_16bgrp

Linux Add-in for CrossCore Embedded Studio 210

pin 74 (PE10): 20080000.icc (GPIO UNCLAIMED) function ppi0 group
ppi0_16bgrp
pin 75 (PE11): 20080000.icc (GPIO UNCLAIMED) function ppi0 group
ppi0_16bgrp
pin 76 (PE12): 20080000.icc (GPIO UNCLAIMED) function ppi0 group
ppi0_16bgrp
pin 77 (PE13): 31043000.spi (GPIO UNCLAIMED) function spi1 group
spi1grp
pin 78 (PE14): 31043000.spi (GPIO UNCLAIMED) function spi1 group
spi1grp
pin 79 (PE15): 31043000.spi (GPIO UNCLAIMED) function spi1 group
spi1grp
pin 80 (PF0): (MUX UNCLAIMED) (GPIO UNCLAIMED)
pin 81 (PF1): (MUX UNCLAIMED) (GPIO UNCLAIMED)
pin 82 (PF2): mmc.0 (GPIO UNCLAIMED) function mmc0 group mmc0grp
pin 83 (PF3): mmc.0 (GPIO UNCLAIMED) function mmc0 group mmc0grp
pin 84 (PF4): mmc.0 (GPIO UNCLAIMED) function mmc0 group mmc0grp
pin 85 (PF5): mmc.0 (GPIO UNCLAIMED) function mmc0 group mmc0grp
pin 86 (PF6): mmc.0 (GPIO UNCLAIMED) function mmc0 group mmc0grp
pin 87 (PF7): mmc.0 (GPIO UNCLAIMED) function mmc0 group mmc0grp
pin 88 (PF8): mmc.0 (GPIO UNCLAIMED) function mmc0 group mmc0grp
pin 89 (PF9): mmc.0 (GPIO UNCLAIMED) function mmc0 group mmc0grp
pin 90 (PF10): mmc.0 (GPIO UNCLAIMED) function mmc0 group mmc0grp
pin 91 (PF11): mmc.0 (GPIO UNCLAIMED) function mmc0 group mmc0grp
pin 92 (PF12): mmc.0 (GPIO UNCLAIMED) function mmc0 group mmc0grp
pin 93 (PF13): 3100e000.ethernet (GPIO UNCLAIMED) function eth1 group
eth1grp
pin 94 (PF14): 3100e000.ethernet (GPIO UNCLAIMED) function eth1 group
eth1grp
pin 95 (PF15): 3100e000.ethernet (GPIO UNCLAIMED) function eth1 group
eth1grp
pin 96 (PG0): 3100e000.ethernet (GPIO UNCLAIMED) function eth1 group
eth1grp
pin 97 (PG1): 3100e000.ethernet (GPIO UNCLAIMED) function eth1 group
eth1grp
pin 98 (PG2): 3100e000.ethernet (GPIO UNCLAIMED) function eth1 group
eth1grp
pin 99 (PG3): 3100e000.ethernet (GPIO UNCLAIMED) function eth1 group
eth1grp
pin 100 (PG4): 3100e000.ethernet (GPIO UNCLAIMED) function eth1 group
eth1grp
pin 101 (PG5): 3100e000.ethernet (GPIO UNCLAIMED) function eth1 group
eth1grp

Linux Add-in for CrossCore Embedded Studio 211

6.7 SEC driver and multicore development

6.7.1 Introduction

There are two Interrupt Controllers on the ADSP-SC573, SC584 and SC589. The GIC (Generic
Interrupt Controller) for the ARM core and the SEC (System Event Controller) for the SHARC cores.
The SEC manages the configuration of all system event sources, and also manages the propagation of
system events to all connected SHARC cores and the system fault interface.

Linux, running on the ARM core, manages all of its interrupts via the GIC. However, if any Linux
driver wants to trigger an interrupt to the SHARC cores directly it should raise an SSI source event in
the SEC. In addition, the watchdog device can only reset the cores via the system fault interface. The
Linux watchdog driver has to set up its event route in the SEC as well. All of these interactions with
the SSI depend on proper initialization of the SEC controller. Because, the SEC controller can be
initialized by code on either the ARM core or the SHARC cores, there must be a way to avoid
conflicting initialization on different cores. This guide apply to both ADSP-SC573, SC584 and
SC589. Take ADSP-SC589 as example in following sections.

6.7.2 Linux kernel Configuration

The SHARC slave core number in the ADSP-SC58x serial processors differs among models. So, the
slave core count should be set up accordingly in the Linux kernel. The Linux SEC driver initializes
the proper SCIs in the SEC controller according to this setting. However, the SEC driver is built into
the Linux kernel no matter how many slave cores are configured.

System Type --->
 sc58x platform type --->
 (2) Slave core count in sc58x

The valid slave core count is 0, 1 or 2.

When the Linux kernel is booting up, following message is printed out.

sec init...
enabled

Linux Add-in for CrossCore Embedded Studio 212

6.7.3 Coordinate the SEC Initialization for multicore Development

If both Linux SEC driver and the SHARC SEC code initialize the SEC controller independently, the
SEC may be in an unknown and wrong state. In multicore development, if the SHARC applications
start executing earlier than Linux, the Linux SEC driver should skip the SEC initialization.
Meanwhile, if the SHARC applications start executing after Linux boots up, the SHARC SEC driver
should not initialize the controller.

Allow Linux to skip the SEC initialization

A Linux kernel early parameter " " is defined in the SEC driver to get the instruction from enable_sec
user. This parameter should be provided in the kernel boot-up command line either via the U-Boot
environment or via the device tree property.

In u-boot console

sc# set ramargs bootargs=root=/dev/mtdblock0 rw console=ttySC0,
115200n8 earlyprintk enable_sec=no

In Linux device tree file

chosen {
 bootargs = "=/dev/mtdblock0 rw console=ttySC0,115200n8 earlyprintk
enable_sec=no";
};

With parameter set, the Linux kernel prints out the following message during boot.enable_sec=no

sec init...
skipped

Allow SHARC SEC Code to Skip the SEC Reset

By default, the sc5xx SEC library for SHARC cores always resets the SEC registers in function
 and . To skip resetting the SEC registers on SHARC core, the adi_sec_Reset() adi_sec_ResetSFI()

API should be revised to accept a skip flag.ADI_SEC_RESULT adi_sec_Init(void)

file:SHARC\lib\src\services\Source\int\adi_int.c

Linux Add-in for CrossCore Embedded Studio 213

ADI_SEC_RESULT adi_sec_Init(bool skip_reset) {
...
 if (!skip_reset)
 adi_sec_Reset();
 /* Initialize SEC data structure */
 gSECData.pfHandler = &DefaultErrorHandler;
 gSECData.pCBParam = NULL;
 /* Register the SEC error handler */
 if(adi_int_InstallHandler((uint32_t)ADI_SEC_ERR_INTR,
 adi_SEC_ErrorHandler,
 NULL, true) !=
ADI_INT_SUCCESS)
 {
 return ADI_SEC_REGISTRATION_FAILED;
 }
 /* Reset fault interface */
 if (!skip_reset)
 adi_sec_ResetSFI();
...
}

The API should be revised to support no SEC reset as well.adi_initComponents(void)

file:system\adi_initialize.c

 int32_t _adi_initComponents(bool skip_reset)
{
 int32_t result = 0;
 result = adi_sec_Init(skip_reset);

 if (result == 0) {
 result = adi_initpinmux(); /* auto-generated code (order:0) */
 }
 if (result == 0) {
 result = adi_SRU_Init(); /* auto-generated code (order:0) */
 }
 if (result == 0) {
 result = adi_mcapi_Init(); /* auto-generated code (order:6) */
 }
 return result;
}

int32_t adi_initComponents(void)
{
 _adi_initComponents(false);
}

int32_t adi_initComponents_no_sec_reset(void)
{
 _adi_initComponents(true);

Linux Add-in for CrossCore Embedded Studio 214

}

Linux Add-in for CrossCore Embedded Studio 215

7 Generic Linux Documents

7.1 Generic U-Boot Documents

U-Boot Frequently Asked Questions

U-Boot User Manual

Subscribe U-Boot Development Mailing List

7.2 Generic Linux Kernel Documents

Linux Kernel Device Tree Specification

Understanding the Linux Kernel, 3rd Edition

Linux Device Drivers, 3rd Edition

Subscribe To Development Mailing Lists for Linux Kernel and Driver Frameworks

7.3 Generic Buildroot Documents

Buildroot User Manual

Subscribe to Buildroot Development Mailing Lists

http://www.denx.de/wiki/DULG/Faq
http://www.denx.de/wiki/DULG/Manual
http://lists.denx.de/mailman/listinfo/u-boot
http://www.devicetree.org/specifications/
http://shop.oreilly.com/product/9780596005658.do
https://lwn.net/Kernel/LDD3/
http://vger.kernel.org/
http://buildroot.uclibc.org/downloads/manual/manual.html
http://lists.busybox.net/mailman/listinfo/buildroot

Linux Add-in for CrossCore Embedded Studio 216

8 Developing Linux Applications Using CrossCore Embedded

Studio

8.1 Create and build a project using the Linux targeting toolchain

8.1.1 Install CCES and Linux Add-in on Linux host

Firstly we need get CCES and Linux Add-in latest deb package ready and install the debian kits on
Linux machine with Ubuntu 14.04 distribution(32 bit).

a. To install Linux Add-in for CCES, run the following command:

sudo dpkg -i adi-LinuxAddinForCCES-linux-x86-1.2.0.deb

b. If you need reinstall Linux Add-in for CCES later, please remove it completely with the following
command before starting installation:

sudo dpkg -P adi-LinuxAddinForCCES-linux-x86-1.2.0.deb

8.1.2 Start CCES IDE on Linux Host

 // start CCES IDE
 cd /opt/analog/cces/2.6.0/Eclipse
 ./cces

There would be "Workspace Launcher", use the default directory(e.g /home/test/cces/2.6.0), click OK.
Here comes the Welcome page!

Move the mouse to the top of the screen, there shows up the menu bar of CCES IDE.

8.1.3 Creating a new project using CCES

To create a new project:

Linux Add-in for CrossCore Embedded Studio 217

1.

2.

3.

4.

Select from the main menu.File | New | CrossCore Project

Give your project a name (e.g. HelloWorld). Click Next.

Choose your Processor family(e.g SHARC), Processor type(e.g ADSP-SC589) and Silicon
revision(e.g 1.0). Click Next.

Choose the "CrossCore ARM Linux Toolchain" from the Toolchain drop-down list and click
Finish.

Here we see our "HelloWorld" project generated!

In the left-handed window, there lists various component of this projects, like include paths, source
files, etc, unfold the Project Name "HelloWorld", you can see all of them.

You can also add your own lines in src/HelloWorld.c to realize desired function.

In our example, we write a simple printf command for demostration:

Linux Add-in for CrossCore Embedded Studio 218

1.

2.

 printf("Hello World\n");

To build your new project:

Select from the main menu.Project | Build All

or Click the hammer icon on the toolbar.

We can see that this building process is carried out by ARM Linux toolchain (arm-linux-gnueabi-gcc)
combined with several other params, dynamically linked with -lm.

Surely we can change the setting by right clicking at the HelloWorld project and selecting Properties,
the following window comes out.

After modification, build the project again. Finally the building process says: "Build Finished (took
xxx ms)".

The generated HelloWorld binary is put under your workspace(e.g /home/test/cces/2.6.0)/HelloWorld
/Debug/HelloWorld

Linux Add-in for CrossCore Embedded Studio 219

This HelloWorld binary file can be copied over to SC589 board which is booted up with Linux and
executed.

 // copy this file to target board, replace ipaddr 10.100.4.50 with your ipaddr
 scp /home/test/cces/2.6.0/HelloWorld/Debug/HelloWorld root@10.100.4.50:/

Boot up SC589-EZKIT board with Linux:

Please refer to : SC5xx ezkit Linux quick start guide v1.2.0

After Linux is booted up on SC58X-EZKIT board, you can run this HelloWorld binary directly on the
Linux shell prompt:

Now we can see the HelloWorld binary is executed, and the expected "Hello World!" message is
printed on the console.

Linux Add-in for CrossCore Embedded Studio 220

1.

2.

a.

i.

b.

i.

c.

i.

8.2 Debug a Linux application from within the CCES IDE

Create a new Linux application from within the CCES IDE

After you create a new Linux application(e.g sum) from within the CCES IDE by following the previous

page:

, we can now start to debug the application Create and build a project using the Linux targeting toolchain

if we want to know how the binary executes or root cause bugs.

Copy your newly built application to your Linux target and set-up debugging

To debug your newly built application, you need to copy the binary from your CCES workspace
to your Linux target.

scp (Secure Copy) you sum application to your Linux target.

scp ~/cces/2.6.0/sum/Debug/sum root@10.100.4.50:/

If you did not opt to build your Linux Image with gdbserver included, then you need copy
it from the Linux Add-in installation directory (/opt/analog/cces-linux-add-in/1.2.0/ARM
/arm-linux-gnueabi/sysroot/usr/bin) to your Linux target.

scp /opt/analog/cces-linux-add-in/1.2.0/ARM/arm-linux-gnueabi/sysroot/usr/bin/gdbserver root@10.100.4.50:/

In order to debug using CCES, you should run gdbserver on Linux target and listen on an
IP and port.

gdbserver 10.100.4.174:10000 sum

https://labrea.ad.analog.com/confluence/display/STG/Create+and+build+a+project+using+the+Linux+targeting+toolchain

Linux Add-in for CrossCore Embedded Studio 221

2.

c.

i.

d.

3.

a.

b.

c.

d.

i.

ii.

You're now set-up to connect to gdbserver via the CCES IDE.

Launch CCES and create a Debug configuration

Select ... from the main menu.Run | Debug configurations

Or click the Debug Beetle icon on the toolbar

On the Main tab, select the project and application that we would like to debug. For
example, project is sum and the C/C++ application is called Debug/sum.

Switch to the Debugger tab

Enter the IP address for your Linux target. For example, 10.100.4.50.

Enter the Port number on which gdbserver is listening. For example, 10000.

Linux Add-in for CrossCore Embedded Studio 222

3.

d.

ii.

e.

4.

a.

b.

c.

Click Apply and then Debug

Debugging your application with CCES

After clicking Debug button in the above pop-up window , CCES will launch GDB and
connect to your gdbserver.

Or right clicking on the vertical bar of the code window, select Add Breakpoint..., you
can add breakpoint and stop at the desired code segament.

You are now able to debug your Linux application from within the CCES IDE.
In this example, we set up breakpoint at variables assignment, then click "Step into/over"
icon continously on the toolbar:

Linux Add-in for CrossCore Embedded Studio 223

4.

c.

d.

e.

You can see in the variable window the value of variables(a,b,c) changing as the binary
goes on.
The bottom "Debugger console" window shows the output of the running process.

When you terminate your debug session, gdbserver on the Linux target will also
terminate.

To relaunch a debug session, you will also need to relaunch gdbserver on the Linux
target.

Linux Add-in for CrossCore Embedded Studio 224

9 Appendix A: Hardware Used During Testing

The following hardware was used during validation of the ADSP-SC5xx EZ-Kit by Analog Devices.
Analog Devices does not recommend specific hardware to use with the ADSP-SC5xx Ez-Kit, but the
following hardware has been proven to work in a testing environment.

Device Model ManufacturerPicture

Bluetooth ALSA/usb

Bluetooth
headset

DR-
BT140Q

SONY

USB
Bluetooth
Dongle

CN-512v1
001

SITECOM

Wireless network
driver USB dongle

Wifi dongle DWL-G122 D-Link

USB camera test Camera PID:
LZ115SR

Logitech

ADV7842 video
decoder driver

Set - top box H7 HIMEDIA

	Introduction
	Quick Start Guide
	SC5xx EZ-Kit Linux Quick Start Guide
	Introduction
	Environment set up
	Configure the Linux Host Machine
	Installing the Linux Add-In
	Useful file locations

	Set Up the TFTP Server
	Configure the Toolchains
	Set Up Hardware

	Flashing U-Boot for the First Time
	Run OpenOCD
	U-Boot Console Output
	Flash U-Boot to SPI Flash

	Booting Linux Overview
	Supported methods for booting Linux

	Boot method 1: Copying the Linux image across the network
	Trouble shooting: Kernel failing to boot

	Boot method 2: Booting flashed Linux with persistent file system on SD Card
	Formatting the SD Card
	Writing the file system to the SD Card
	Loading and flashing the DTB File
	Loading and flashing the Linux kernel
	Configure u-Boot to use the SD Card file system

	Boot Method 3: Booting the kernel from the SD Card (Quicker Boot)
	Formatting the SD Card
	Writing the file system and kernel to the SD Card
	Load and Flash the DTB File
	Configure u-Boot to boot using Linux and the file system on the SD Card

	Troubleshooting
	Have problem GDB loading and run u-boot
	Get error message "bad format" when booting from Non-Volatile storage

	Configure and build from source code
	Introduction
	Extract the source code
	Extract the u-boot source code
	Extract the buildroot and Linux kernel source code

	Configure and build u-boot
	Configure the u-boot
	Build the u-boot
	List of generated files

	Configure and build Buildroot and Linux kernel
	Default Configuration
	Build

	Customize the Buildroot and Linux kernel
	Customize the Linux kernel
	Enable new packages in buildroot
	List of generated files

	Generate Kernel Image for Booting From Non-Volatile Storage
	More tips about buildroot
	Clean the buildroot
	Rebuild an updated package

	Das U-boot
	Ethernet Driver in U-Boot on SC5xx-EZKIT
	Overview
	Hardware Setup
	Build U-Boot with emac0 or emac1
	Using EMAC Driver

	Creating and Booting Linux Using the New U-Boot "fitImage"
	Introduction
	Hardware Setup
	Builroot and kernel Configuration
	U-Boot Configuration
	Enable fitImage Support

	Create fitImage device tree
	Boot Linux

	Loading file from USB storage in u-boot
	Overview
	Hardware Setup
	Test method
	Formatting the USB stick
	Copy files in it
	Start the USB
	Load file into RAM
	More information

	Mobile Storage Interface (MSI)
	Overview
	Hardware Setup
	Software Configuration
	Build and Load Uboot
	Usage of MSI Driver
	Initialize MSI(MMC/SDIO) Sub-System
	Get More MMC Command Usage

	Linux buildroot distribution and applications
	Bluetooth and headset auido example
	Introduction
	Hardware setup
	Software configuration
	Linux Kernel Configuration
	Buildroot Configuration

	Run headset audio example

	Build application outside the buildroot framework
	Introduction
	Build Application outside Buildroot Framework

	OProfile for performance benchmark
	Introduction
	Hardware Setup
	Software Configuration
	Configure Linux Kernel
	Configure Buildroot

	Simple OProfile usage
	Examples
	Profile Linux Kernel and Whetstone by OPControl and the Timer Interrupt
	Profile Linux Kernel and Whetstone by OPcontrol and the ARM PMU Events
	Profile Whetstone Only by OPerf and ARM PMU Events

	FTP Server (ftpd)
	Introduction
	Operation
	Enable the FTPD Manually in Busybox
	Test the FTP Server
	Connect to the target board from the Linux host:
	Upload a file from the Linux host to the target board
	Check the uploaded file is there (on the sc5xx-ezkit):
	Download file from the target board

	Touchscreen Library
	Introduction
	Hardware Setup
	Software Configuration
	Configure Buildroot
	Configure Linux Kernel

	Example
	Runtime Config
	Enable LCD backlight
	Calibration
	Testing
	Device Nodes
	Event Test

	MPlayer
	Hardware Setup
	Software Configuration
	Default Config
	Configure Buildroot
	1) Compile video test program into linux image
	2) Compile mplayer into linux image

	Configure the Linux Kernel
	1) Enable touchscreen and backlight
	2) Enable NL8048HL WVGA LCD for ADSP-SC589
	3) Avoid LCD driver probe failure by disabling CAN bus support

	Build and Load Buildroot
	Run MPlayer
	Enable LCD Back-light
	Soft Switch Configuration
	Play Video File

	IEEE 1588 and Linux PTP
	PTP Introduction
	Precision Time Protocol(PTP)

	PTP Configuration
	Device tree configuration
	Buildroot configuration
	Kernel Configuration

	Build
	Example
	Preliminary work
	1) Hardware Setup
	2) Enable PTP in U-Boot
	3) Master's MAC address must be different from slave's
	4) Master's ip address must be different from slave ip

	Run Example
	1) Master
	2) Slave

	More information

	QT example for GUI
	Introduction
	Hardware Setup
	Software Configuration
	Default Configuration
	Buildroot Configuration
	1) Enable Video Test
	2) Enable QT
	3) Enable Tslib Support

	Linux Kernel Configuration
	1) Enable Touchscreen and Back-light
	2) Enable NL8048HL WVGA LCD for ADSP-SC589
	3) Avoid LCD driver probe failure by disabling CAN bus support
	4) Input Configuration
	5) USB Configuration

	Build and Load Buildroot
	Example
	Enable LCD Back-light
	Runtime Configuration for QT
	1) USB Mouse
	2) USB Keyboard
	3) Touchscreen

	Run Qt Example

	SQLite example for database
	Introduction
	SQLite Configuration

	Build and Load Buildroot
	Run SQLite

	Watchdog
	Introduction
	Software Configuration
	Configure Buildroot
	Configure Linux Kernel
	Configure Uboot

	Build and Load Buildroot
	Test
	Test in Linux
	Test in Uboot

	Linux kernel and drivers
	CAN Bus Data Transaction
	Introduction
	Hardware Setup
	Software Configuration
	Configure Linux Kernel
	Configure Buildroot
	Build buildroot

	Test Example
	Power Up and Boot The Boards
	Bring Up CAN0 Interface On Both Boards
	Data Send & Receive Test

	CPU Frequency utility
	Introduction
	Hardware Setup
	Enabling CPU Frequency Driver in Linux Kernel
	How to Change the CPU cpufreq
	Preferred Interface: sysfs
	What Is A CPUFreq Governor?
	Governors In the Linux Kernel
	Performance
	Powersave
	Userspace
	Ondemand
	Conservative

	Change Core Clock Frequency via cpufreq-utils

	CRC Crypto Driver Guide
	Introduction
	Hardware Setup
	Software Configuration
	Configure Linux Kernel

	Example
	Linux Kernel Crypto API

	Ethernet driver and performance
	Introduction
	Hardware Requirement
	Software Configuration
	Configure Buildroot
	Configure Linux Kernel
	Configure Device Tree
	Gigabit Ethernet
	100M Ethernet

	Performance Benchmark Example
	GMAC Ethernet Result

	Linux LCD device driver
	Introduction
	Hardware Setup
	Software Configuration
	Configure Buildroot
	Configure Linux Kernel
	Enable touchscreen and backlight
	Enable NL8048HL WVGA LCD for ADSP-SC58x
	Avoid LCD driver probe failure by disabling CAN bus support

	Example
	Enable LCD Back-light
	Soft Switch Configuration
	Run video_test Program
	How to Install Modules

	Linux Sound Driver
	Introduction
	Hardware Setup
	Software Configuration
	Configure Buildroot
	Enable alsa-lib support
	Compile alsa-utils into Linux image

	Configure Linux Kernel
	Enable ADAU1962 sound card driver
	Enable ADAU1979 sound card driver

	Example
	Find the device
	Amixer setting
	Record audio file
	Play audio file
	Loopback

	GPIO operation
	Introduction
	Hardware
	Application space GPIO support
	Paths in Sysfs
	Dump the GPIO configuration

	I2C Bus
	Introduction
	I2C in the Linux Kernel
	I2C Kernel Driver
	I2C Client Driver Example
	Client driver instance
	Register
	Data read/write method

	I2C in User Space
	Kernel configuration
	Example

	Link Port driver
	Introduction
	Hardware Setup
	Software configuration
	Buildroot configuration
	Linux kernel configuration
	Build and Load Buildroot

	Test Example

	USB interface
	Introduction
	Hardware Setup
	Software Configuration
	Default Config
	Build and Load Buildroot

	USB HOST Example
	1) Config as HOST
	2) Mass Storage Support Configuration
	USB Device Example
	6) Partition mass storage device which is actually an ADSP-SC5xx board on HOST PC

	USB Dual-Role Example
	1) Dual-Role configration
	2) Mass storage configuration
	3) Mass storage device configuration
	4) Test Dual-Role

	USB HS DEVICE Port Usage

	General Bluetooth Dongle via USB
	Introduction
	Hardware Setup
	Software Configuration
	Configure Linux Kernel
	Configure Buildroot

	Example

	Kernel API for DMA operation
	Introduction
	Linux DMA Framework
	Linux DMA Mapping API
	What is a bus address
	Generic DMA mapping guide

	DMA APIs for SC5xx
	Flow Types and Descriptor
	Descriptor Memory Layout
	2-D DMA
	MDMA Copy Wrapper for Linux Drivers
	DMA Operation for Linux Drivers

	DMA Example

	Linux MTD Driver
	Introduction
	Hardware Required
	Software Configuration
	Configure Buildroot
	Configure Linux Kernel
	Enable MTD and SPI NOR flash w25x driver.
	Enable JFFS2 filesystem support.

	Configure Device Tree

	Example
	Get the MTD device info.
	Erase the MTD device.
	Mount the MTD device.
	Read and Write data to the MTD device.
	Unmount the MTD device.

	Linux PCIE device driver
	Introduction
	Hardware Setup
	Software Configuration
	Configure Linux Kernel
	Enable PCIE Bus driver
	Enable PCIE Root Complex Controller driver
	Enable PCIE Endpoint driver

	Configure u-boot

	Example
	Bring up Endpoint board
	Bring up Root Complex board

	Linux Video Driver
	Introduction
	Hardware Required
	EPPI on ADSP-SC5XX EZ-Board
	Video Decoder EI3 Extender Board
	Video Encoder EI3 Extender Board

	Software Configuration
	Buildroot
	Kernel
	Enable I2C support
	Enable Microchip MCP23xxx I/O expander support
	Enable V4L2 capture platform driver and ADV7842 video decoder driver
	Enable V4L2 display platform driver and ADV7343 video encoder drivers
	Device Tree
	Device node for soft switch on Video Decoder EI3 Extender Board
	Device node for adi video capture driver
	Device node for soft switch on Video Encoder EI3 Extender Board
	Device node for adi video display driver

	Example
	Video Decoder EI3 Extender Board
	Setup Soft Switch
	Capture Video Stream

	Video Encoder EI3 Extender Board
	ADV7511 HDMI transmitter
	Setup Soft Switch
	Display Video Images

	ADV7341 Video Encoder
	Setup Soft Switch
	Display Video Images

	Rotary driver
	Introduction
	Hardware Setup
	Software Configuration
	Configure Linux kernel
	Configure Buildroot
	Customization

	Example

	SPI Driver
	Introduction
	Hardware Setup
	Software Configuration
	Configure Buildroot
	Configure Linux Kernel
	Enable SPI controller driver for ADSP-SC5xx
	Enable SPI slave driver (for example spi flash w25q128)
	Enable spidev driver if you want to use user space API.

	Configure Device tree
	SPI slave node properties
	spidev device node

	Example

	Mobile Storage Interface for MMC/SD
	Hardware Setup
	Software Configuration
	Configure Linux Kernel
	1) MSI Support
	2) File System Support

	Configure Buildroot

	Build and Load Buildroot
	Usage of MSI
	Mount
	Test MSI Performance with Bonnie++
	1) Test Case 1: Bonnie++ on Ext2
	2) Test Case 2: Bonnie++ on FAT32

	Real Time Clock on ADSP-SC58x
	Introduction
	Hardware Required
	Software Configuration
	Configure Buildroot
	Configure Linux Kernel

	Build and Load Buildroot
	Example

	UART hardware flow control
	Introduction
	Hardware Setup
	Software Configuration
	Configure Linux kernel
	Configure Buildroot
	Configure Device tree

	Build and Load Buildroot
	Example
	Preliminary setup
	Test
	1) Input invalid before Linux boot up
	2) run rtscts_test case

	Multicore support
	Multi-Core Communication
	MCAPI Supported Functions
	Multi-core Development

	Run the MCAPI demo
	Introduction
	Hardware Requirement
	Configure and build
	Generate Linux Kernel image
	Configure Linux kernel
	Configure Buildroot
	Build

	Generate Combined u-boot LDR image
	Step1: Copy files from Linux host to Windows host
	Step2: Build project on the Windows host in CrossCore Embedded Studio
	Step3: Generate a combined u-boot LDR using a command line Shell
	Step 4: Flash your new uboot to the SPI flash

	Running MCAPI MSG Test Example
	Troubleshooting

	Enable and Disable SHARC Cores
	Introduction
	Method 1: Enable SHARC cores with u-boot ICC command
	Configure u-boot to Enable Slave Cores
	U-boot ICC command usage

	Method 2: Enable SHARC Cores with corecontrol Utility in Linux
	Linux Core Control Driver
	The corectrl Device
	Usage Example

	Configuration
	Usage Example

	Introduction of MCAPI examples
	Introduction
	MCAPI Baremetal test examples
	MCAPI Linux demos

	Performance of MCAPI
	Dependencies
	Result

	Run Linux on ARM and bare-metal application on SHARC
	Introduction
	MCAPI Test Example
	Hardware Requirement
	Software Configuration
	Configure Linux kernel
	Configure Buildroot
	Build

	Load Linux on ARM and SHARC applications on SHARC by CCES
	Step1: Boot u-boot to Console
	Step2: CCES Debug Configuration
	Step3: Enable SHARC cores in Linux
	Step4: Resume Core 1 & 2 Application running in CCES

	Run Linux MCAPI MSG Demo Test

	Reserve Pinmux Functions in Linux for SHARC Applications
	Introduction
	Linux Kernel Configuration
	Set Up ICC Device Tree Node
	Peripheral Group and Function Definition

	Pinmux Reservation Example

	SEC driver and multicore development
	Introduction
	Linux kernel Configuration
	Coordinate the SEC Initialization for multicore Development
	Allow Linux to skip the SEC initialization
	Allow SHARC SEC Code to Skip the SEC Reset

	Generic Linux Documents
	Generic U-Boot Documents
	Generic Linux Kernel Documents
	Generic Buildroot Documents

	Developing Linux Applications Using CrossCore Embedded Studio
	Create and build a project using the Linux targeting toolchain
	Install CCES and Linux Add-in on Linux host
	Start CCES IDE on Linux Host
	Creating a new project using CCES

	Debug a Linux application from within the CCES IDE

	Appendix A: Hardware Used During Testing

