
Release Notes for VisualDSP++ 5.1.0
VisualDSP++® 5.1.0 Release Notes

Revision 1.0

September 2013

Nomenclature

VisualDSP++ is upgraded from 5.0 to 5.1.0 to reflect support for Windows 8, along with other important updates.

Release Notes

Cumulative release notes for previous updates to VisualDSP++ 5.0 can be found at www.analog.com/VDSPUpdate in the section Update 10.1 -
.August 2012

Identifying Your VisualDSP++ Version

The VisualDSP++ release and update number can be found in 2 locations:

1. In the Control Panel, open the Add/Remove Programs applet.

2. In the VisualDSP++ Integrated Development and Debug Environment (IDDE), select Help About VisualDSP++.

Definitions
This section provides definitions for terminology relating to VisualDSP++ and this document.

TAR – Tools Anomaly Report

Tools Anomaly Report, or TAR, has been the terminology used for a defect report for VisualDSP++. Each TAR is automatically assigned a
unique number upon creation, aiding in the logging, tracking and closure of the anomaly.

Analog Devices have renamed the TAR designation, to more clearly identify the affected product family. Accordingly, TARs that affect
VisualDSP++ are now renamed and renumbered with a VDSP- prefix. For example, TAR-xxxxx would now be VDSP-yyyyy.

New Silicon Support

VisualDSP++ updates often include support for new processors, new silicon revisions for existing processors and new EZ-KIT Lite®, EZ-Board®
and EZ-Extender® evaluation systems. In order to support these, minor revisions are made to the tool chain and additional system services and
device drivers need to be added. This section describes the new support available in this update.

No new processors are supported in this release.

New Silicon Revisions

There are no new revisions for generally available silicon supported by this revision.

http://www.analog.com/VDSPUpdate

Silicon Anomaly Workarounds

Anomaly workaround information is available in the online help: Select Help > Contents> Graphical Environment > Silicon Anomaly Support >
Silicon Anomalies Tools Support and then click the appropriate processor series.

The following table lists new silicon anomaly workaround support.

Silicon Errata Parts Workaround Support Added Further information

15000023: A three column data
access over DM bus
immediately following an indirect
delayed branch (db)
may not work as expected in
VISA mode

All SHARC 214xx
parts and revisions.

The compiler will work around
the issue.

The assembler will detect and
warn
about potential issues.

Run-time libraries have been
rebuilt with
the workaround enabled

See System\ArchDef\SHARC-

2146X-anomaly.xml

New Evaluation Board Support

Support has been added for the following new evaluation boards and evaluation board revisions.

No new evaluation boards are supported in this release.

What’s New in VisualDSP++ 5.1.0?

Several enhancements have been added to VisualDSP++ 5.1.0. This section provides an overview for the new features.

Windows 8 Support

The list of supported Windows 8 editions are:

Windows 8 (32-bit and 64-bit)
Windows 8 Professional (32-bit and 64-bit)
Windows 8 Enterprise (32-bit and 64-bit)

New Features in the Loaders / Loader Collateral

ADSP-21371 Specific Loader Kernels

The ADSP-21371 is now supported by 371 specific kernels installed to:

 213xx/ldr/371_prom.dxe
 213xx/ldr/371_spi.dxe

with sources and projects available:

 213xx/ldr/371_prom
 213xx/ldr/371_spi

The Loader Property Page has been updated to present the 371 specific kernels as the default for the ADSP-21371.

Likewise the loader has been updated to default the ADSP-21371 to a 371 kernel DXE file if it encounters a command-line that requires a default
kernel.

Note that this is a change in default for the ADSP-21371 from the VisualDSP++ 5.0 updates. If you have an existing build that relied on the

previous default, you may need to update your project.

The ADSP-21375 boot kernel fails when used with a ADSP-21371 application that uses external memory. The ADSP-21371 supports 32-bit
external port whereas the ADSP-21375 supports 16-bit external interface.

Byte Format for ADSP-214xx Non-Bootable Loader Files

An additional format is available in the SHARC loader when creating non-bootable loader files for the ADSP-214xx.

Byte format is provided for use with the switch. It can be set via Additional Options on the Loader Property Page. -splitter SectionName

The new switches are and .-fBYTE -u value

-fBYTE

 Specify format BYTE (for -splitter only)

-u value

Specify a value for the content of the user flag field in a BYTE format header.
Value range is 0x0 - 0xFF. If no switch, user flag field is zero.-u
For use with -fBYTE and -splitter switches only.

-splitter SectionName

Extracts content of section named “SectionName” and generates a LDR file in raw format.

• The section name is a required argument for . It specifies what section the loader is to extract content from. All other sections–splitter
are ignored.

• The -splitter switch results in a "raw format" LDR file containing the content of the section.

Since this is LDR output that will not be processed by the kernel, the loader prevents inclusion of the kernel and zero block creation
by setting the following:

-NoKernel [0,0]

-NoZeroBlock

• The switch is available for the ADSP-214xx processor family for short-word or normal-word sections.

BYTE File Format Example

The non-bootable file in BYTE format has these characteristics:

• A one-line header

• A block of one or more lines of section data from the .dxe file

• A zero header that signals the end of the file

The following table shows an example utility.of a -format file created by the loaderbyte

The Additional Options on the Loader Property Page for this example:

-splitter my_seg_swco -f -u 0xABBYTE

Field Purpose

200688AB0012435D00000768 Example header record (the first line of file)

20 Width of address and length fields (in bits)
Addresses are 32-bit width in this example.

06 Reserved field in use by ADI for versioning.
The SHARC loader is currently setting this to Version 6.

 The utility is currently setting this to Version 5 for fiNote: elfspl21k .stf
les

88 Flags (88 = SW, 80 = PM, 00 = DM)
This shows a build with that is a SW section.-splitter SectionName

AB User-defined flags (loaded with switch). -u value
This build shows the result of a build with .-u 0xAB
If no switch is present, the user-defined flag field is .-u 00

0012435D Start address of the data block

00000768 Number of s of data that followbyte

0f14
000b
2001
0fb4
0000
…

Lines of section data.
The -hostwidth [8|16|32] switch determines the number of s perbyte
line.
This example shows the content from a SW section for a build using -

.hostwidth 16

000000000000000000000000 Example header record (footer) that signals end-of-file

Changed Functionality

2146x / 2147x / 2148x Loader Kernels
The ADSP-2146x / 2147x/ 2148x loader kernels were updated to workaround PLL anomaly 15000020.

Critical Fixes / Changes

This section highlights significant changes due to software anomaly fixes or functional changes.

"PEyRegs" is now a supported register set for "pragma regs_clobbered", the "-section" command line
switch and inline "asm" statements

The register set "PEyRegs" (covering S0 -> S15 on SHARC SIMD processors) can now be used with "pragma regs_clobbered", the "-section"
command line switch and in the clobber field of inline asm statements.Note that when "-reserve PEyRegs" is used, SIMD code generation will be
disabled. Using the compiler switch "-no-simd" will not automatically reserve the PEy registers.

The Blackfin sqrtf function now returns (Not-A-Number) NaN for negative inputs

The three floating-point square root functions sqrtf, sqrtd, and sqrt return 0.0 whenever the input argument is not a positive value. This behavior is
in accordance with their description in the "C/C++ Compiler and Library Manual" which states that "The sqrt functions return a zero if the input
argument is negative." However the IEEE floating-point standard ANSI/IEEE Std 754-1985 defines the square root of a negative number as an
invalid operation and the result therefore should be a NaN.

As the run-time libraries conform to the IEEE standard, the floating-point square root functions should return a NaN whenever the input argument
is invalid.

The coherence functions implement an approximation of the correct formula which may lead to
misleading results

The coherence functions either compute the coherence of an input signal with itself (auto-coherence) or they compute the coherence between two

http://labrea/confluence/Loader_cces_mn_2136x_1-2.10.43.html#4368275

input signals (cross-coherence). The implementations of these functions are based on an approximation of the correct formula, which could lead
to misleading or incorrect results.

Taking the cross-coherence functions as an example, their implementation is based on the formula:

coherence[k] = (1/n) * Sum(i=0 to n-k-1) (x[i]*y[i+k]) - (x * y)

 where k = 0 to lags-1

 n = samples

 _

 and x is the mean value of x

 _

 y is the mean value of y

The divisor is n and the computed means of the input signals x and y have n terms, but the summation only has n-k terms. This means that the
formula used may lead to misleading or wrong answers if the number of lags is not significantly smaller than the number of samples.

The correct formula for cross-coherence is:

coherence[k] = ((1/(n-k)) * Sum(i=0 to n-k-1) (x[i] * y[i+k])) -
 (((1/(n-k)) * Sum(i=0 to n-k-1) (x[i])) *
 ((1/(n-k)) * Sum(i=k to n-1) (y[i])))

 where k = 0 to lags-1
 n = samples

There is a similar issue with the auto-coherence functions. They have been implemented using the formula:

coherence[k] = (1/n) * Sum(i=0 to n-k-1) (x[i]*x[i+k]) - (x * x)

 where k = 0 to lags-1

 n = samples

 _

 and x is the mean value of x

But they should be based on the following formula:

coherence[k] = ((1/(n-k)) * Sum(i=0 to n-k-1) (x[i] * x[i+k])) -
 (((1/(n-k)) * Sum(i=0 to n-k-1) (x[i])) *
 ((1/(n-k)) * Sum(i=k to n-1) (x[i])))

 where k = 0 to lags-1

 n = samples

The DSP run-time library provides the following coherence functions:

autocohf
autocoh
autocohd
autocoh_fr16 ()Blackfin only
autocoh_fr32 ()Blackfin only
crosscohf
crosscoh
crosscohd
crosscoh_fr16 ()Blackfin only
crosscoh_fr32 ()Blackfin only

DLLEN must be set to 0 in DDR2CTL3 register on SHARC 2146x processors

The DDR2CTL3 register controls the memory setting. To enable the memory's DLL (delay locked loop) bit 0 of the DDR2CTL3 register should be
cleared. Previously, the macro definition to control the DLL enable/disable is as follows:

#define DDR2DLLEN (BIT_0) /* DLL enable */

where BIT_0 is defined as (0x00000001). This definition was confusing as it suggested that enabling DLL is achieved by setting bit 0 of the
register, rather than clearing it.

New 2146x DDR2 macros

The following new bit position macros have been added to def21469.h:

Register Macro Description

DDR2PADCTL0 DATA_PWD Data Pad Receiver Power Down

DDR2PADCTL0 DQS_PWD DQS Pad Receiver Power Down

DDR2PADCTL0 DDR2CLK_PWD Clock Pad Receiver Power Down

DDR2PADCTL1 ADDR_PWD Address Pad Receiver Power Down

DDR2PADCTL1 CMD_PWD Command Pad Receiver Power Down

Changes to the behavior of SHARC compiler builtin functions __builtin_llleftz and __builtin_lllefto

In previous releases of VisualDSP++, the compiler builtin function "__builtin_llleftz" generated code that used the SHARC processor's "lefto"
instruction, and "__builtin_lllefto" generated code that used the "leftz" instruction. This issue has been addressed, and any code that relies on the
previous behavior should be changed.

1 of 2

Key Family Component/s Summary
VDSP-10058 SHARC - ADSP-2136x Assembler Certain sequences incorrectly cause

warnings for anomalies 07000009
(ea2501) and/or 07000010 (ea2504)

VDSP-24952 Blackfin - All Compiler ccompose_fr16 composes operands in
the wrong order

VDSP-21735 SHARC - All Compiler Compiler does not honour "pragma
no_vectorization" when compiling main()

VDSP-17089 SHARC - ADSP-2116x, SHARC - ADSP-
2126x, SHARC - ADSP-2136x, SHARC -
ADSP-2137x, SHARC - ADSP-2146x,
SHARC - ADSP-2147x, SHARC - ADSP-
2148x

Compiler Compiler can use PEy registers when -
no-simd is used

VDSP-20348 Blackfin - All Compiler Registers can be corrupted by the
exceptions handling mechanism

VDSP-17341 SHARC - All Compiler -extra-precision switch should be
deprecated

VDSP-21609 SHARC - All Compiler Compiler builtin functions __builtin_llleftz
and __builtin_lllefto generate wrong code

VDSP-24938 SHARC - ADSP-2136x, SHARC - ADSP-
2137x, SHARC - ADSP-2146x, SHARC -
ADSP-2147x, SHARC - ADSP-2148x

Emulator External bus hang conditions are not
detected by emulator

VDSP-24931 SHARC - ADSP-2146x, SHARC - ADSP-
2147x, SHARC - ADSP-2148x

Emulator 214xx disassembly window does not
display instructions correctly for external
memory

VDSP-20424 Blackfin - All IDDE Long thread names may cause VDK
History window crash

VDSP-21983 SHARC - ADSP-2137x, SHARC - ADSP-
2146x, SHARC - ADSP-2147x, SHARC -
ADSP-2148x

Loader Newer SHARC parts have incorrect
default kernel settings in absence of -l
option

VDSP-21908 SHARC - ADSP-2146x, SHARC - ADSP-
2147x, SHARC - ADSP-2148x

Loader PLL anomaly workaround 15000020
needed in 2146x / 2147x / 2148x kernels

VDSP-25107 Blackfin - All Run Time Libraries tolower and toupper may return the
wrong result

VDSP-22886 Blackfin - All Run Time Libraries modff does not handle a NaN correctly

2 of 2

VDSP-9183 SHARC - All Run Time Libraries CLONE - favgd is not safe against NaNs
or Infs

VDSP-25546 SHARC - All Run Time Libraries favgd() can return a wrong result
VDSP-21406 SHARC - ADSP-2146x Run Time Libraries ADSP-21469 - DLLEN must be set to 0

in DDR2CTL3 register
VDSP-9469 Blackfin - All Run Time Libraries sqrtf, sqrtd, and sqrt return zero when

their argument is negative
VDSP-10207 SHARC - All Run Time Libraries For some data the powf library function

may return Infinity instead of 0.0

VDSP-14201 Blackfin - All Run Time Libraries The floating-point sqrt functions do not
calculate the square root of Infinity as
Infinity

VDSP-25076 SHARC - All Run Time Libraries CB7 isn't being set on startup so latched
stack overflow interrupts won't get
handled

VDSP-15997 SHARC - All Run Time Libraries The coherence functions implement an
approximation of the correct formula
which may lead to misleading results

VDSP-14558 Blackfin - All Run Time Libraries CLONE - The coherence functions
implement an approximation of the
correct formula which may lead to
misleading results

VDSP-13203 TigerSHARC - All Run Time Libraries CLONE - The coherence functions
implement an approximation of the
correct formula which may lead to
misleading results

VDSP-18898 SHARC - All, SHARC - ADSP-2146x,
SHARC - ADSP-2147x, SHARC - ADSP-
2148x

Run Time Libraries Interrupt set-up functions can trigger
hardware ADSP-214xx anomaly
15000024

VDSP-24980 SHARC - All Run Time Libraries Code compiled with Update 9 and
containing calls to memcpy() may not
work with Update 10

VDSP-25032 SHARC - ADSP-2106x Run Time Libraries heaps mistakenly identified as PM for
non SIMD-SHARCs

VDSP-13798 Blackfin - ADSP-BF53x Run Time Libraries ADSP-BF535 USE_L2_STACK support
is problematic with CPLBs enabled

	Release Notes for VisualDSP++ 5.1.0
	5.1.0 Release Notes Fix Table.pdf
	general_report

	5.1.0 Release Notes Fix Table.pdf
	general_report

	5.1.0 Release Notes Fix Table.pdf
	general_report

