
VisualDSP++ 4.5 (Update 9) Release Notes

The following release note concerns Update 9 to the VisualDSP++ 4.5 release. This release is inclusive
of previous Updates. The release notes for previous VisualDSP++ 4.5 Updates are appended to the end
of this release note.

Identifying Which Update Is Currently Installed on Your System

The Update level is identified in three places:

1. The Add/Remove Programs Control Panel entry for VisualDSP++ 4.5.
2. The VisualDSP++ GUI’s About box, located at “Help” > “About VisualDSP++”.
3. In the file …\System\VisualDSP.ini, in the ProductName key.

Installing an Update

The procedure for installing an Update to VisualDSP++ is described below. Note that with
VisualDSP++’s support for installing multiple instances of itself, it is possible to “trial” an Update in a
new directory before switching over your “golden” tools installation to the Update.

1. Use the Start Menu to navigate to VisualDSP++’s “Maintain this Installation” item.
2. Select “Go to the Analog Devices website” and click “Next”. This will launch your web browser

and navigate it to the proper URL to download Updates from.
3. Download the VisualDSP++ Update file (.VDU) of interest to your hard disk. Note that these

files have a .VDU file extension and cannot be executed directly.
4. Navigate to “Maintain this Installation” again. If you have multiple installations of VisualDSP++

on your computer, be doubly sure you are navigating to the installation you wish to Update.
5. Select “Apply a downloaded Update” and click “Next”. Click the “…” browser button and

navigate to the .VDU file that you downloaded in step 3. Click “OK”, then “Next”.
6. Follow the on-screen prompts to complete the installation of the Update.

Cloning VisualDSP++

VisualDSP++ supports cloning of an existing installation. A clone of an installation creates a new
instance of a product from an existing installation, rather than from a CD or web software distribution.
The use of clones allows you to maintain multiple versions of VisualDSP++ on the same PC at different
update levels, and provides a risk-free way to "test" new updates or patches.

To clone your existing installation of VisualDSP++:

1. Go to Start->Programs->Analog Devices->VisualDSP++ 4.5 (or equivalent)->Maintain this
Installation

2. Select "Clone this Installation" and click Next.
3. Optionally click Advanced to set the Start menu path.
4. Enter the Clone install path and click Next.

New Hardware Support

VisualDSP++ updates often include support for new silicon revisions for existing processors and new
EZ-KIT Lite® evaluation systems. This section describes the new support available in this update.

New Processors and Revisions Support

The Product Bulletin contains the list of new processors available with VisualDSP++ 4.5. Refer to the
processor’s data sheet and hardware reference manuals for information on system configuration,
peripherals, registers, and operating modes.

There is no new support for new silicon revisions to existing Blackfin®, SHARC® or TigerSHARC®
processors with Update 9.

New Features

VisualDSP++ updates occasionally include new features. This section describes the new support
available in this update.

TAR 31872: New Loader Switch –NoInitCode

The new loader switch, -NoInitCode, has been added to suppress the following warning which may
occur when creating loader files:

"You may need to specify an initialization file (.dxe) to set up the registers for external

memory initialization."

To use this switch, open the Project – Project Options (Alt-F7), set Type to “Loader file” on the Project
property page and add –NoInitCode to the Additional Options on the Loader: Options property page.

Critical Fixes/Changes

When addressing issues, we attempt to make any changes backward compatible with existing projects.
However, depending on the nature of the issue, compatibility cannot always be maintained. This
section highlights any changes in the Update that may require the modification of “working” projects
or otherwise influence existing behavior.

New DCPLB_DATAx and ICPLB_DATAx bit position macros (Blackfin)

The defblackfin.h and def_LPBlackfin.h include files have had new bit position macros added for the
DCPLB_DATAx and ICPLB_DATAx registers. The new macros added to defblackfin.h for use by the
ADSP-BF535 part are:

#define CPLB_USER_WR_P 3 /* 0=no write access, 0=write access allowed (user mode) */

#define CPLB_SUPV_WR_P 4 /* 0=no write access, 0=write access allowed (supervisor mode) */

#define CPLB_L1SRAM_P 5 /* 0=SRAM mapped in L1, 0=SRAM not mapped to L1 */

#define CPLB_DA0ACC_P 6 /* 0=access allowed from either DAG, 1=access from DAG0 only */

#define CPLB_DIRTY_P 7 /* 1=dirty, 0=clean */

#define CPLB_L1_CHBL_P 12 /* 0=non-cacheable in L1, 1=cacheable in L1 */

#define CPLB_WT_P 14 /* 0=write-back, 1=write-through */

The new macros added to def_LPblackfin.h for use by all other Blackfin processors are:
#define CPLB_PORTPRIO_P 9 /* 0=low priority port, 1= high priority port */

#define CPLB_LRUPRIO_P 8 /* 0=can be replaced by any line, 1=priority for non-replacement */

#define CPLB_USER_WR_P 3 /* 0=no write access, 0=write access allowed (user mode) */

#define CPLB_SUPV_WR_P 4 /* 0=no write access, 0=write access allowed (supervisor mode) */

#define CPLB_DIRTY_P 7 /* 1=dirty, 0=clean */

#define CPLB_L1_CHBL_P 12 /* 0=non-cacheable in L1, 1=cacheable in L1 */

#define CPLB_WT_P 14 /* 0=write-back, 1=write-through */

#define CPLB_L1_AOW_P 15 /* 0=do not allocate cache lines on write-through writes, 1=

allocate cache lines on write-through writes. */

Applications that contain their own local definitions of these macros may encounter compiler warning
"cc0047: {D} warning: incompatible redefinition of macro" if the definition does not match the
ones given above. Presuming that the application’s local definitions are for the same purpose as the
new VisualDSP++ 4.5 Update 9 ones they can be deleted. Otherwise the local definitions and uses of
the local definitions will need to be renamed.

Removal of the ENIM macro for IMEM_CONTROL in def_LPBlackfin.h (Blackfin)

The definition of the ENIM macro has been removed from the def_LPBlackfin.h header. This macro was
incorrectly defined and should not be used.

Active CPLBs (Blackfin)

All locked CPLBs will be loaded into the CPLB registers before any unlocked CPLBs, instead of just the
first 16 as done previously. Error labels too_many_locked_data_cplbs and
too_many_locked_instruction_cplbs will indicate that there are at least 16 locked data or instruction
cplbs, respectively, and additional cplbs will be locked out.

Silicon Anomaly Workarounds

This section describes any new or modified silicon anomaly workarounds in VisualDSP++.

Silicon Anomaly 05000412 (ADSP-BF561)

"TESTSET Instruction Causes Data Corruption with Writeback Data Cache Enabled"

The anomaly occurs when a TESTSET instruction is used to operate on L2 memory and there is data in
external memory that is cached using write-back mode. The result is that data in L2 and/or external
memory may become corrupted.

Runtime library workarounds and assembler detection warnings support for this anomaly were added
in VisualDSP++ 4.5 Update 8. In Update 9 compiler support has been added. The Update 9 compiler
issues the required workaround sequence of code to avoid the errata for calls to the testset compiler
built-in function when the workaround is enabled. This workaround is automatically enabled when
building for parts and revisions impacted by the 05000412 anomaly or when "-workaround 05000412"
is passed to the compiler. The macro __WORKAROUND_05000412 is defined when the workaround is
enabled.

Silicon Anomaly 05000248 (ADSP-BF561)

"TESTSET Operation Forces Stall on the Other Core"

The ADSP-BF561 silicon anomaly 05000248 compiler workaround for uses of the TESTSET instruction
has changed in Update 9 because it is now deemed necessary to have interrupts disabled around the
workaround.

The compiler has workarounds for the 05000412 and 05000248 TESTSET instruction anomalies that are
issued for calls of the compiler builtin function __builtin_testset as used in ccblkfn.h defined functions
adi_acquire_lock and adi_try_lock. The 05000248 workaround is automatically enabled for ADSP-
BF561 revisions 0.2, 0.3 and 'any'. The 05000412 workaround is automatically enabled when building
for 0.2. 0.3, 0.5 and 'any'.

Here is an example of what the compiler produces for a call to __buitin_testset when both the
05000248 and 05000412 workarounds are enabled:

 P2.L = ___var_wa_06000047; P2.H = ___var_wa_06000047;

// this is a library defined L2 variable address loaded to P2

 cli R1; nop; nop; testset(P1); W[P2] = R1; sti R1;

Here is the 05000412 only workaround code:

 cli R0; R1 = [P1]; nop; nop; ssync; testset(P1); sti R0;

Here is the 05000248 only workaround:

 P2.L = ___var_wa_06000047; P2.H = ___var_wa_06000047;

 cli R0; R1 = [P1]; nop; nop; ssync; testset(P1); W[P2] = R0; sti R0;

One known issue with these changes is that the assembler anomaly detection for anomaly 05000312
warns for the uses of SSYNC when it is actually safe. The assembler detection for anomaly 05000312
(enabled using -anomaly-warn 05000312) is not actually enabled by default so this should not be a
problem. The next revision of the compiler will suppress this warning for these TESTSET anomaly code
sequences.

Tools Anomalies Addressed

The following table is a list of the tools anomalies addressed in this Update. Details on any particular
anomaly can be found on the Tools Anomaly web page. The URL is:

http://www.analog.com/processors/tools/anomalies

Processor
Family

Tools
Anomaly
Report #

Tool Description

Blackfin 40293 Assembler Remove anomaly 05-00-0209 detection warnings for safe code.

Blackfin 40294 Assembler Add anomaly 05000209 detection warnings for multi-issued
instructions.

Blackfin 39847 Compiler Prevent asm volatile statements from being moved in code.

Blackfin 40170 Compiler Add help for -icplbs and -cplbs and fix help for –dcplb.

Blackfin 40623 Run Time Libraries Make memcpy_l1.asm and l1_memcpy.asm safe from anomaly
05-00-0312

Blackfin 41377 Run Time Libraries convolve_fr16 function may fail if intermediate results overflow

SHARC 40146 Compiler C++ exceptions run-time fails in external memory

SHARC 40196 Compiler Anomaly 07-00-0010 and 08-00-0002 workarounds are not
working when the compiler is optimised

SHARC 40165 Run Time Libraries cfftN, ifftN, rfftN in LIBDSP are not safe from anomaly 07-00-0010

SHARC 40250 Run Time Libraries strncat() return incorrect for size argument of zero

SHARC 40575 Run Time Libraries strncmp fails when second string is longer than the first

SHARC 40136 Run Time Libraries Passing a 1-element matrix to matsmltf() may return a bad result

SHARC 40557 Simulator TRUNC incorrect for negative underflow when TRUNC bit is set

http://www.analog.com/processors/tools/anomalies

VisualDSP++ 4.5 (Update 8) Release Notes

The following release note concerns Update 8 to the VisualDSP++ 4.5 release. This
release is inclusive of previous Updates. The release notes for previous VisualDSP++ 4.5
Updates are appended to the end of this release note.

Identifying Which Update Is Currently Installed on Your System

The Update level is identified in three places:

4. The Add/Remove Programs Control Panel entry for VisualDSP++ 4.5.
5. The VisualDSP++ GUI’s About box, located at “Help” > “About VisualDSP++”.
6. In the file …\System\VisualDSP.ini, in the ProductName key.

Installing an Update

The procedure for installing an Update to VisualDSP++ is described below. Note that
with VisualDSP++’s support for installing multiple instances of itself, it is possible to
“trial” an Update in a new directory before switching over your “golden” tools
installation to the Update.

7. Use the Start Menu to navigate to VisualDSP++’s “Maintain this Installation”
item.

8. Select “Go to the Analog Devices website” and click “Next”. This will launch your
web browser and navigate it to the proper URL to download Updates from.

9. Download the VisualDSP++ Update file (.VDU) of interest to your hard disk. Note
that these files have a .VDU file extension and cannot be executed directly.

10. Navigate to “Maintain this Installation” again. If you have multiple installations
of VisualDSP++ on your computer, be doubly sure you are navigating to the
installation you wish to Update.

11. Select “Apply a downloaded Update” and click “Next”. Click the “…” browser
button and navigate to the .VDU file that you downloaded in step 3. Click “OK”,
then “Next”.

12. Follow the on-screen prompts to complete the installation of the Update.

Cloning VisualDSP++

VisualDSP++ supports cloning of an existing installation. A clone of an installation
creates a new instance of a product from an existing installation, rather than from a CD
or web software distribution. The use of clones allows you to maintain multiple versions
of VisualDSP++ on the same PC at different update levels, and provides a risk-free way
to "test" new updates or patches.

To clone your existing installation of VisualDSP++:

5. Go to Start->Programs->Analog Devices->VisualDSP++ 4.5 (or equivalent)-

>Maintain this Installation
6. Select "Clone this Installation" and click Next.
7. Optionally click Advanced to set the Start menu path.
8. Enter the Clone install path and click Next.

New Hardware Support

VisualDSP++ updates often include support for new silicon revisions for existing
processors and new EZ-KIT Lite® evaluation systems. This section describes the new
support available in this update.

New Processors and Revisions Support

The Product Bulletin contains the list of new processors available with VisualDSP++ 4.5.
Refer to the processor’s data sheet and hardware reference manuals for information on
system configuration, peripherals, registers, and operating modes.

There are no new silicon revisions to existing Blackfin®, SHARC® or TigerSHARC®
processors with Update 8.

New Features

VisualDSP++ updates occasionally include new features. This section describes the new
support available in this update.

Implicit Push STS Handler

The following new pragma was added so that the SHARC compiler does not generate an
explicit PUSH and POP of STS for interrupt handler functions.

#pragma implicit_push_sts_handler

Critical Fixes/Changes

When addressing issues, we attempt to make any changes backward compatible with
existing projects. However, depending on the nature of the issue, compatibility cannot
always be maintained. This section highlights any changes in the Update that may
require the modification of “working” projects or otherwise influence existing behavior.

Silicon Anomaly Workarounds

Silicon Anomaly 09000014 (ADSP-2137x)

"Incorrect Execution of Conditional External data accesses in a delayed branch (DB) slot"

The SHARC C/C++ compiler, assembler, VDK and runtime libraries have been enhanced
to include workarounds for anomaly 09000014.

The anomaly occurs when a conditional external data access instruction is in the delayed
slots of a branch instruction (such as JUMP/CALL/RTS/RTI). The result is that the access
can be incorrectly executed because the evaluation of the condition maybe wrong. This
applies to both internal as well as external memory execution.

The compiler workaround for this anomaly avoids having conditional data accesses in
delayed branch slots. To enable this compiler workaround manually the "-workaround
09000014" switch can be used. When the workaround is enabled the macro
__WORKAROUND_09000014 is defined at compile, assemble and link stages.

The SHARC assembler has been modified to issue a warning (ea2521) for code that may
hit the anomaly and require a workaround to be inserted. An example of this new
warning is:

[Warning ea2521] "wa_09000014.s":13 Potential Hardware Anomaly 09000014

due to conditional memory access by one of the two instructions

following a delayed branch.

The assembler detection warning is enabled manually using the "-anomaly-warn
09000014" switch. The assembler defines macro __ASM_DETECT_09000014__ when
detection for this anomaly is enabled.

The compiler and assembler workarounds are enabled automatically when building for
ADSP-21371 and ADSP-21375 revisions 0.0 and any.

The runtime libraries and VDK support that is linked in when building for impacted parts
and silicon revisions have been modified to avoid the anomaly.

Silicon Anomaly 09000015 (ADSP-2137x)

"Incorrect Popping of stacks possible when exiting IRQx/Timer Interrupts with DB
modifiers"

A new SHARC compiler pragma, #pragma no_db_return has been added. This pragma is
used immediately before a function definition and will cause the compiler to ensure that
non-delayed-branch instructions are used to return from the function. The pragma may
be applied to both interrupt and non-interrupt function definitions. Applying the
pragma to an interrupt function can be used as a workaround for ADSP-2137x silicon
anomaly 09000015 "Incorrect Popping of stacks possible when exiting IRQx/Timer
Interrupts with DB modifiers".

Silicon Anomaly 09000018 (ADSP-2137x)

"Specific Multiplier operations must not be part of the same Instruction as an External
Memory access"

The SHARC C/C++ compiler, assembler, VDK and runtime libraries have been enhanced
to include workarounds for anomaly 09000018.

The anomaly occurs when specific multiplier operations where multiplier results
registers (MRF/MRB) are used as a destination as part of the same instruction as an
external memory access. The result is that the multiplier results registers (MRF/MRB)
are not correctly updated.

The compiler workaround for this anomaly avoids parallel issue of data accesses and
instructions with results in MR*F or MR*B. To enable this compiler workaround
manually the "-workaround 09000018" switch can be used. When the workaround is
enabled the macro __WORKAROUND_09000018 is defined at compile, assemble and
link stages.

The SHARC assembler has been modified to issue a warning (ea2523) for code that may
hit the anomaly and require a workaround to be inserted. An example of this new
warning is:

[Warning ea2523] "wa_09000018.s":27 Potential Hardware Anomaly 09000018

due to combining a multiply operation into multiplier result register

with a data access operation.

The assembler detection warning is enabled manually using the "-anomaly-warn
09000018" switch. The assembler defines macro __ASM_DETECT_09000018__ when
detection for this anomaly is enabled.

The compiler and assembler workarounds are enabled automatically when building for
ADSP-21371 and ADSP-21375 revisions 0.0 and any.

The runtime libraries and VDK support that is linked in when building for impacted parts
and silicon revisions have been modified to avoid the anomaly.

Silicon Anomaly 05000412 (ADSP-BF561)

“TESTSET Instruction Causes Data Corruption with Writeback Data Cache Enabled”

The Blackfin runtime libraries have been enhanced to include workarounds for anomaly
05000412.

The anomaly occurs when a TESTSET instruction is used to operate on L2 memory and
there is data in external memory that is cached using writeback mode. The result is that
data in L2 and/or external memory can become corrupted.

The runtime libraries that are linked in when building for impacted parts and silicon
revisions have been modified to avoid the anomaly. The workaround involves preceding
TESTSET instructions with a dummy read and an SSYNC instruction.

Assembler detection and modifications to the compiler's testset built-in function will be
provided in a future update.

Silicon Anomaly 05000426 (ADSP-BF5xx)

“Speculative Instruction Fetches Can Cause Spurious Hardware Errors”

The Blackfin C/C++ compiler, VDK and runtime libraries have been enhanced to include
workarounds for anomaly 05000426.

The anomaly occurs when there is an indirect jump or call through a pointer which may
point to an invalid address on the opposite control flow of a conditional jump to the
predicted taken path and ICPLBS are disabled. The result of this is potentially spurious
hardware errors.

The compiler works around this anomaly by not generating indirect call or jump
instructions in the 2 instruction slots following a conditional jump for impacted parts,
unless either the "-icplbs" or “-cplbs” switches are used.

The runtime libraries and VDK support that is linked in when building for impacted parts
and silicon revisions have been modified to avoid the anomaly.

Assembler detection for this anomaly will be provided in a future update.

Silicon Anomaly 05000428 (ADSP-BF561)

“Lost Write to L2 Memory Following Speculative Read from L2 Memory”

The Blackfin C/C++ compiler, assembler, VDK and runtime libraries have been enhanced
to include workarounds for anomaly 05000428.

The anomaly occurs when a write to L2 memory is followed by a speculative read from
L2 memory in the shadow of a branch executed on core B. This results in the write
being lost or corrupted.

The compiler works around this anomaly by not generating potentially problematic
reads in the 3 slots following a conditional jump for any impacted parts. The compiler
will allow reads from MMR's or external memory, if they can be identified as such, to
remain in the 3 slots following the conditional jump. The compiler also avoids the
placement of potentially problematic reads in the instruction at the target of a predicted
taken branch.

The runtime libraries, system services and VDK support that is linked in when building
for impacted parts and silicon revisions have been modified to avoid the anomaly.

The assembler detection warning is enabled manually using the "-anomaly-warn
05000428" switch. The assembler defines macro __ASM_DETECT_05000428__ when
detection for this anomaly is enabled.

The support for this anomaly workaround is incomplete. The ADI components affected
are:

Compiler

 The compiler will not ensure that the targets of predicted jumps are safe against
the anomaly.

Runtime Libraries

 The source code for memcpy does not work around the anomaly. To solve this
you can edit the code provided in the VisualDSP install in the file
Blackfin\lib\src\libc\memcpy.asm. For more information see tools anomaly
39636.

VDK

 The code for the API PostMessage does not work around the anomaly. To avoid
hitting the anomaly, place the variable tmk in L1 memory. For more information
see tools anomaly 39641.

Warning

The assembler detection warning (ea5517) for anomaly 05000428 will be triggered by
code that contains the prescribed workaround for anomaly 05000283 (System MMR
Write Is Stalled Indefinitely when Killed in a Particular Stage). This case of this warning
can be safely ignored and the warning may be suppressed using the .MESSAGE directive
as the code will not cause the 05000428 anomaly.

Tools Anomalies Addressed

The following table is a list of the tools anomalies addressed in this Update. Details on
any particular anomaly can be found on the Tools Anomaly web page. The URL is:

http://www.analog.com/processors/tools/anomalies

Processor
Family

Tools
Anomaly
Report #

Tool Description

Blackfin 39864 ADspCommon XML
Files

Workaround for 05-00-283 not enabled for ADSP-
BF561 rev 0.5

Blackfin 36441 Compiler typedef'ed bit fields can be incorrectly packed
with #pragma pack

Blackfin 39362 Run Time Libraries fopen may fail to open FOPEN_MAX files with -
full-io

SHARC 36597 Compiler Compiler resets reserved L registers if they are
used in an asm

SHARC 39466 Compiler function return sequence not interrupt safe with -
no-db

SHARC 36537 Run Time Libraries using saturate.h will result in errors

SHARC 37841 Run Time Libraries double precision addition incorrect for small
(denormal) results

SHARC 37903 Run Time Libraries Some run-time library functions use dual-data
move instructions

TigerSharc 36918 Run Time Libraries FFT functions read beyond the end of an array

http://www.analog.com/processors/tools/anomalies

VisualDSP++ 4.5 (Update 7) Release Notes

The following release note concerns Update 7 to the VisualDSP++ 4.5 release. This
release is inclusive of previous Updates. The release notes for past Updates are
appended to the end of this release note.

Identifying Which Update Is Currently Installed on Your System

The Update level is identified in three places:

7. The Add/Remove Programs Control Panel entry for VisualDSP++ 4.5.
8. The VisualDSP++ GUI’s About box, located at “Help” > “About VisualDSP++”.
9. In the file …\System\VisualDSP.ini, in the ProductName key.

Installing an Update

The procedure for installing an Update to VisualDSP++ is described below. Note that
with VisualDSP++’s support for installing multiple instances of itself, it is possible to
“trial” an Update in a new directory before switching over your “golden” tools
installation to the Update.

13. Use the Start Menu to navigate to VisualDSP++’s “Maintain this Installation”
item.

14. Select “Go to the Analog Devices website” and click “Next”. This will launch your
web browser and navigate it to the proper URL to download Updates from.

15. Download the VisualDSP++ Update file (.VDU) of interest to your hard disk. Note
that these files have a .VDU file extension and cannot be executed directly.

16. Navigate to “Maintain this Installation” again. If you have multiple installations
of VisualDSP++ on your computer, be doubly sure you are navigating to the
installation you wish to Update.

17. Select “Apply a downloaded Update” and click “Next”. Click the “…” browser
button and navigate to the .VDU file that you downloaded in step 3. Click “OK”,
then “Next”.

18. Follow the on-screen prompts to complete the installation of the Update.

New Hardware Support

VisualDSP++ updates often include support for new silicon revisions for existing
processors and new EZ-KIT Lite® evaluation systems. This section describes the new
support available in this update.

New Processors and Revisions Support

The Product Bulletin contains the list of new processors available with VisualDSP++ 4.5.
Refer to the processor’s data sheet and hardware reference manuals for information on
system configuration, peripherals, registers, and operating modes.

Support will be provided for the following silicon revisions to existing Blackfin®
processors with Update 7:

 ADSP-BF531 silicon revision 0.6
 ADSP-BF532 silicon revision 0.6
 ADSP-BF533 silicon revision 0.6

 ADSP-BF538 silicon revision 0.5
 ADSP-BF539 silicon revision 0.5

There are no new silicon revisions to existing SHARC® or TigerSHARC® processors with
Update 7.

New Features

VisualDSP++ updates occasionally include new features. This section describes the new
support available in this update.

Upgrade to lwIP 1.3

The lwIP Ethernet stack has been upgraded from revision 1.2 to 1.3. Please refer to lwIP
homepage for more information (http://savannah.nongnu.org/projects/lwip/) and the
associated Wiki (http://lwip.scribblewiki.com/LwIP_Main_Page).

Add Multicast Support to Ethernet Drivers

Multicast support has been added to the Ethernet drivers.

http://savannah.nongnu.org/projects/lwip/
http://lwip.scribblewiki.com/LwIP_Main_Page

Critical Fixes/Changes

When addressing issues, we attempt to make any changes backward compatible with
existing projects. However, depending on the nature of the issue, compatibility cannot
always be maintained. This section highlights any changes in the Update that may
require the modification of “working” projects or otherwise influence existing behavior.

Deprecate Support for ADSP-BF52x and ADSP-BF54x Processor Families

The initial support on VisualDSP++ 4.5 for the new ADSP-BF52x and ADSP-BF54x
processor families has long since been superseded by the VisualDSP++ 5.0 support for
these processor families. Support for these processor families on VisualDSP++ 4.5 will
be discontinued. All projects using any of the ADSP-BF52x or ADSP-BF54x should be
migrated to the latest update of VisualDSP++ 5.0 as soon as possible.

Use Linker Elimination Options for ADSP-21371/ADSP-21375

The workaround for silicon anomaly 09000011 generates unused assembly code. To
avoid linking this unused assembly code, turn on linker elimination:

1. Select Project – Project Options from the VisualDSP++ menu.
2. Select Link – Elimination
3. Check the box Eliminate unused objects
4. Click OK

Customized Linker Definition Files (LDFs) Change for ADSP-21371/ADSP-21375

Customers using the ADSP-21371 and ADSP-21375 that have non-default customized
LDFs may need to make a modification to their LDFs. If the workaround for silicon
anomaly 09000011 is required, trampoline code (see definition in Silicon Anomaly
Workarounds) is placed in section seg_int_code. If not already done, the section
seg_int_code should be mapped to internal memory code.

VDK Internal Memory Code Size Increase for ADSP-21371/ADSP-21375

As part of the workaround for silicon anomaly 09000011, the time-critical part of VDK
has been mapped to seg_int_code instead of seg_pmco. Customers using VDK with the
ADSP-21371 and ADSP-21375 will see an increase in the size of the code that is required
to be in internal memory.

VDK LDF Change for ADSP-21371/ADSP-21375

Customers that use VDK with the ADSP-21371 and ADSP-21375 must change their LDFs
to link TMK-2137x.dlb instead of TMK-213xx.dlb.

TAR 35198 - VDK Thread Stack Space Reduced on TigerSHARC

An anomaly has been identified in VisualDSP++ for TigerSHARC where the VDK thread
stack pointers are not configured correctly during thread creation (TAR 35194). Thread
stack space is allocated and the stack pointers are configured so that they point to the
end of the stack allocation spaces, as the stacks grow from high to low memory. The
issue is that the stack pointers are placed too close to the end of each stack allocation,
resulting in up to 8 words of data being corrupted before the start of each thread stack
space (higher memory). The fix correctly configures the stack pointers so that they are
further into the thread stack allocation space on creation, 8 words further-in for the J
stack and 4 for the K stack. This effectively means that the stacks for each thread will
reach their maximum limit slightly sooner than with previous releases.

Silicon Anomaly Workarounds

Silicon Anomaly 09000011 (ADSP-2137x)

 “Indirect Branches from External to Internal Memory may corrupt the Instruction
Cache."

Workarounds for this anomaly have been implemented in the assembler; the default
behavior is to apply a workaround. The compiler relies upon the default behavior of the
assembler to apply the workarounds. The runtime libraries and VDK have been rebuilt to
avoid the anomaly or apply the workarounds, except for code that must be mapped to
internal memory. One of the workarounds used by the assembler generates new code in
section “seg_int_code” that must be mapped to internal memory. The default Linker
Description File (LDF) provided in VisualDSP++ does this already; projects with individual
LDFs may require modification to map this section.

The assembler will provide informational messages for each instance of an applied
workaround and to notify the user about code generated to seg_int_code. When some
condition prevents the assembler from applying the workaround, the assembler will
produce a descriptive error message instead. The compiler driver will suppress the
informational messages generated by the assembler about the workarounds. The
assembler will not apply workarounds to code defined in a section named
“seg_int_code”.

If a user prefers to adjust their code to avoid the anomaly, specifying “-anomaly-warn
09000011” will cause the assembler to instead produce a warning for each instance of a
problematic branch instruction. Specifying “-no-anomaly-workaround 09000011” will
suppress all assembler activity for this anomaly.

The assembler will apply one of two identified workarounds depending upon the
specific instruction containing an indirect branch. One form of workaround avoids the
anomaly by inserting a PC-relative branch around the potentially improperly cached
location and inserting a NOP instruction at that location, thus preventing execution of
an instruction at the location that could be improperly cached due to the anomaly, at
the cost of two words of memory and a branch execution. Each instance of the
workaround will produce a message ea2517:

[Informational ea2517] ".\BranchAroundCache.asm":24 Applied Workaround

for Hardware Anomaly 09000011

Inserted "JUMP(PC,2); nop;" after the instruction following the indirect

branch.

The second workaround replaces the problematic indirect branch with an indirect
branch to a “trampoline” (see definition below) JUMP instruction which will use the
same index and modify register as the replaced branch to jump to the original

destination of that replaced instruction. To avoid the anomaly, the trampoline JUMP
must execute from internal memory. For the simplest type 9 instructions, this
workaround avoids the cache corruption at the cost in execution of an additional branch
and a maximum of one word of memory per index and modify register pair used in
branch instructions. Each instance of the trampoline workaround will produce a
message ea2518:

[Informational ea2518] ".\myFile.asm":43 Applied Workaround for Hardware

Anomaly 09000011

converted the indirect branch to a direct branch to trampoline at label

__JUMP_m08i08__

The assembler will add the trampoline instructions to the section “seg_int_code’; it will
generate that section if necessary. The assembler will emit message ea2519 identifying
the trampolines generated. For the message below, the source code contained indirect
branch instructions using only I8 and m8:

[Informational ea2519] Trampolines generated for Hardware Anomaly

09000011

section name: seg_int_code;

trampolines:

__JUMP_m08i08__

Each object file in which trampoline workarounds have been applied will contain a
section seg_int_code providing the trampolines for the code in that object. Where
different objects each contain the same trampoline, the linker will resolve all references
to a single instance of the trampoline.

When the assembler fails to apply the workaround, it will produce message 2516. The
following series of instructions illustrates one case that will produce this message:

CALL (M14,I12) (DB);

i14 = DM(i6,m7);

m7 = PM(i12, m14); // postmodify.

When the file is assembled with the workaround enabled, the assembler will produce
the following message specifying why neither workaround could be applied:

[Error ea2516] ".\trampolineDBerrors.asm":69 Workaround for Hardware

Anomaly 09000011 not applied:

Trampoline cannot be used because a delay slot instruction modifies a DAG

register used in the branch instruction.

Branch around improperly cached location cannot be used because delayed

branch call: cannot insert jump around third location after the call.

For more information about this silicon anomaly, please refer to the latest ADSP-
21371/ADSP-21375 Silicon Anomaly List.

Trampoline

A trampoline solution is replacing a problematic branch instruction with a direct branch
to a location in internal memory containing a branch that uses the index and modify
registers of the original, replaced branch instruction.

Tools Anomalies Addressed

The following table is a list of the tools anomalies addressed in this Update. Details on
any particular anomaly can be found on the Tools Anomaly web page. The URL is:

http://www.analog.com/processors/tools/anomalies

Processor
Family

Tools
Anomaly
Report #

Tool Description

Blackfin 36094 ADspCommon
XML Files

compiler XML enables workaround for 05-00-0283
when unnecessary

Blackfin 34208 Compiler Compiler can generate bad debug information for
virtual functions

Blackfin 35464 Compiler shl() instr being replaced with non-saturated folded
value -O

Blackfin 34799 Run Time
Libraries

LIBDSP functions rsqrtf, rsqrtd incorrect for input
power of 4

Blackfin 34851 Run Time
Libraries

disable_data_cache() does not work

Blackfin 36111 Run Time
Libraries

default multi-thread CRT objects may result in CPLB
misses

Blackfin 35001 System
Services

adi_pwr_Init hangs when data cache is enabled

Blackfin 36095 VDK VDK::Yield() does not reset timeslice

SHARC 35278 Compiler #pragma interrupt_complete_nesting causes unsafe
code

SHARC 34918 Emulator VisualDSP++ disconnects if Sport DMA Addressing
register window opened

SHARC 35012 Emulator Cannot load 16-bit external memory on 2126x

SHARC 34697 Run Time
Libraries

sinf may return poor results for inputs close to a 2*PI
multiple

TigerSHARC 34842 Compiler Compiler incorrectly omits jump over loop

http://www.analog.com/processors/tools/anomalies

VisualDSP++ 4.5 (Update 6) Release Notes

The following release note concerns Update 6 to the VisualDSP++ 4.5 release. This release is inclusive of

previous Updates. The release notes for past Updates are appended to the end of this release note.

Update Name Change

Consistent with the VisualDSP++ 5.0 release, updates are now specified by the number of the update. This

change helps users and our support team easily identify the installed update. As the June 2007 Update was

the 5th update to VisualDSP++ 4.5, this is the 6th Update or Update 6.

Identifying Which Update Is Currently Installed on Your System

The Update level is identified in three places:

10. The Add/Remove Programs Control Panel entry for VisualDSP++ 4.5.

11. The VisualDSP++ GUI’s About box, located at “Help” > “About VisualDSP++”.

12. In the file …\System\VisualDSP.ini, in the ProductName key.

Installing an Update

The procedure for installing an Update to VisualDSP++ is described below. Note that with VisualDSP++’s

support for installing multiple instances of itself, it is possible to “trial” an Update in a new directory before

switching over your “golden” tools installation to the Update.

19. Use the Start Menu to navigate to VisualDSP++’s “Maintain this Installation” item.

20. Select “Go to the Analog Devices website” and click “Next”. This will launch your web browser

and navigate it to the proper URL to download Updates from.

21. Download the VisualDSP++ Update file (.VDU) of interest to your hard disk. Note that these files

have a .VDU file extension and cannot be executed directly.

22. Navigate to “Maintain this Installation” again. If you have multiple installations of VisualDSP++

on your computer, be doubly sure you are navigating to the installation you wish to Update.

23. Select “Apply a downloaded Update” and click “Next”. Click the “…” browser button and

navigate to the .VDU file that you downloaded in step 3. Click “OK”, then “Next”.

24. Follow the on-screen prompts to complete the installation of the Update.

Significant Additions

The primary purpose of VisualDSP++ Updates is to address problems and stabilize the release. Significant

new functionality is not expected to be introduced in an Update. However, incremental support (i.e.,

emulation, example programs, header files, default LDF, errata accommodations, EZ-KIT Lite software,

etc.) for new semiconductor products will be added as these products become available and gain support
within the VisualDSP++ tools.

In this release:

1. Blackfin ADSP-21367/8/9

Support for silicon revision 0.2 has been added.

2. Addition of __VISUALDSPVERSION__ Predefined Macro

The __VISUALDSPVERSION__ macro enables code to be configured for multiple versions of

VisualDSP++. It was introduced in VisualDSP++ 5.0 and is available in VisualDSP++ 4.5

beginning at Update 6.

The compilers and assemblers predefine the VisualDSP++ version as:

-D__VISUALDSPVERSION__=0xMMmmUUxx

Where
MM VersionMajor

mm VersionMinor

UU VersionPatch (Update)

xx Reserved for Future Use (always 00 initially)

Examples:

0x04050600 VisualDSP++ 4.5 Update 6

0x05000100 VisualDSP++ 5.0 Update 1

0xffffffff Unexpected problem, unable to determine version

!defined(__VISUALDSPVERSION__) VisualDSP++ 4.5 Update 5 or earlier (not available)

Here is a C language example:

#if __VISUALDSPVERSION__ >= 0x04050600

/* Code relying on feature in VisualDSP++ 4.5 Update 6 or later */

#elif

/* Legacy code */

#endif

Here is an Assembly example:

#if __VISUALDSPVERSION__ == 0x04050600

.VAR VersionBuildString[] = 'VisualDSP++ 4.5 Update 6 Build';

#endif

Changes to Existing Behaviors, Projects, and Source Code

When addressing problems, we attempt to make any changes backward compatible with existing projects.

However, depending on the nature of a problem, compatibility issues are sometimes unavoidable. This

section highlights any changes in the Update that may require the modification of “working” projects or

otherwise influence existing behavior.

In this release:

1. TAR 33304: ADSP-21367/8/9, 21371, 21375 macro SDCTL definition changed

The definition of the macro defined for bit 20 in the SDCTL register has been changed in the

following files from “FAR” to “FARF”

2. Silicon anomaly 05-00-0371 workaround: Possible RETS Register Corruption when Subroutine Is

under 5 Cycles in Duration

The Blackfin C/C++ compiler has been enhanced to include workarounds for anomaly 05-00-0371

"Possible RETS Register Corruption when Subroutine Is under 5 Cycles in Duration". The

anomaly happens (very rarely) when calling functions with an RTS within 5 instructions from the

start of the function. The C/C++ compiler workaround is to avoid generating such functions in the

assembly it produces, these would typically result from stub function code. The workaround

involves inserting NOP instructions or an unconditional JUMP instruction before the RTS. The
JUMP workaround variant is used when optimizing for code-size (-Os) and there would be more

than two NOPs otherwise required.

To enable this compiler workaround manually the -workaround avoid-quick-rts-371 switch can be

used. When the workaround is enabled the macro

__WORKAROUND_AVOID_QUICK_RTS_371 is defined at compile, assemble and link stages.

The runtime libraries and VDK support linked when building for impacted parts and silicon

revisions have been modified to avoid the anomaly.

3. Silicon anomaly 05-00-0323 workaround: Erroneous GPIO Flag Pin Operations under Specific

Sequences

Include file sys/05000323.h is now supplied with VisualDSP++ 4.5. It contains a group of macros

for reading and writing MMRs applicable to this anomaly; if the anomaly applies for the current

value of the silicon revision of your target, these macros will ensure that the read or write is safe

against anomaly 05-00-0323. When building for parts and silicon revisions that require the

anomaly 05-00-0323 workaround, the macro __WORKAROUND_FLAGS_MMR_ANOM_323 is

defined at compile, assemble, and link stages. To enable the workaround manually you can define

use the -D__WORKAROUND_FLAGS_MMR_ANOM_323 switch. See comments in the new

file (<VisualDSP++ 4.5 Install>\Blackfin\include\sys\05000323.h) for further details.

Problems Addressed

The following table is a list of the problems addressed in this Update. Details on any particular problem

can be found on the Tools Anomaly web page. The URL is:

http://www.analog.com/processors/tools/anomalies

Processor

Family

Problem

Number

Tool Description

Blackfin 32910 Compiler Buffer overrun detected error message from linker

Blackfin 34040 LDF -p1 and -p2 do not work with default LDFs

Blackfin 32911 Run Time
Libraries

mulfl64.asm in release not same as used to build
library

Blackfin 34139 Run Time
Libraries

BF561 - Memory initializer will not initialize ext SDRAM

SHARC 33621 Simulator reg modify then write to ext mem writes old reg value

SHARC 33780 Run Time
Libraries

External memory functions can fail when optimization is
used

SHARC 33781 Simulator read from initialized data in 16 or 8 bit memory reads
wrong value

SHARC 33788 Simulator Write to an address in 16 or 8 bit external memory
cannot be read.

SHARC 33304 Run Time
Libraries

def files macro FAR changing to FARF

http://www.analog.com/processors/tools/anomalies

VisualDSP++ 4.5 (Updated June 2007) Release Note

The following release note concerns the June 2007 Update to the VisualDSP++ 4.5 release. This release is

inclusive of previous Updates. The release notes for past Updates are appended to the end of this release

note.

Identifying Which Update Is Currently Installed on Your System

The Update level is identified in three places:

13. The Add/Remove Programs Control Panel entry for VisualDSP++ 4.5.

14. The VisualDSP++ GUI’s About box, located at “Help” > “About VisualDSP++”.

15. In the file …\System\VisualDSP.ini, in the ProductName key.

Installing an Update

The procedure for installing an Update to VisualDSP++ is described below. Note that with VisualDSP++’s

support for installing multiple instances of itself, it is possible to “trial” an Update in a new directory before

switching over your “golden” tools installation to the Update.

25. Use the Start Menu to navigate to VisualDSP++’s “Maintain this Installation” item.

26. Select “Go to the Analog Devices website” and click “Next”. This will launch your web browser

and navigate it to the proper URL to download Updates from.

27. Download the VisualDSP++ Update file (.VDU) of interest to your hard disk. Note that these files

have a .VDU file extension and cannot be executed directly.

28. Navigate to “Maintain this Installation” again. If you have multiple installations of VisualDSP++

on your computer, be doubly sure you are navigating to the installation you wish to Update.
29. Select “Apply a downloaded Update” and click “Next”. Click the “…” browser button and

navigate to the .VDU file that you downloaded in step 3. Click “OK”, then “Next”.

30. Follow the on-screen prompts to complete the installation of the Update.

Significant Additions

The primary purpose of VisualDSP++ Updates is to address problems and stabilize the release. Significant
new functionality is not expected to be introduced in an Update. However, incremental support (i.e.,

emulation, example programs, header files, default LDF, errata accommodations, EZ-KIT Lite software,

etc.) for new semiconductor products will be added as these products become available and gain support

within the VisualDSP++ tools.

In this release:

Blackfin ADSP-BF54x:

As in the previous VisualDSP++ 4.5 Update, the Blackfin processor ADSP-BF54x family has

emulation, compiler, assembler, linker and IDDE / debugging support, with additional bug fixes

available as of this Update. The loader and System Services are not available in this Update. The
ADSP-BF54x processors, including loader and System Services, are fully supported in the

upcoming major release.

Changes to Existing Behaviors, Projects, and Source Code

When addressing problems, we attempt to make any changes backward compatible with existing projects.

However, depending on the nature of a problem, compatibility issues are sometimes unavoidable. This

section highlights any changes in the Update that may require the modification of “working” projects or

otherwise influence existing behavior.

In this release:

1. TAR 31816: Incorrect memory mapping for ADSP-21375

The memory map for the ADSP-21375 has been corrected throughout the tools, including the

linker and the default LDFs. There are three consequences to these changes:

1 -- Any LDF that is heavily derived from a default LDF of a version of VisualDSP++ prior to this

Update may result in linker error el2011 "Invalid memory range and/or width for memory" when

linking. In this situation, the LDF must be corrected to reflect the actual memory map of the

ADSP-21375 target.

2 -- Any application that uses the default LDF and more memory than available on the ADSP-

21375 part memory map will cause linker errors li1040 "Out of memory in output section". In

previous Updates the link of such applications may have succeeded. In this situation it will be

necessary to reduce memory usage or build for a part with more memory available.

3 – Out of the box, the VDK-21375.ldf will get a linker error li1040 for “Out of memory in output

section 'seg_pmco' in processor”. VDK is too large for the ADSP-21375 to fit in internal memory.

To use VDK in an ADSP-21375 processor, external memory must be used.

The data sheets for these parts has corrected memory map information and can be downloaded

from www.analog.com by doing a search for the required part number (e.g. ADSP-21375).

2. The SPI flash on the ADSP-21262 and ADSP-21364 EZ-KIT Lite has been changed from the

Atmel AT25F2048 to the STMicroelectronics M25P20. The flash programmer and associated

device drivers have been updated accordingly. The flash programmer will automatically

determine which driver to use, no special intervention on the part of the user should be required.

However, any user application that is heavily derived from an older version of the flash
programmer and/or underlying driver may need to be updated to ensure correct operation on newer

EZ-KIT Lite boards.

The following examples are no longer applicable to the newer boards:

<install-dir>\212xx\Examples\ADSP-21262 EZ-KIT Lite\Atmel SPI Flash Programmer (ASM)

<install-dir>\213xx\Examples\ADSP-21364 EZ-KIT Lite\Atmel SPI Flash Programmer (ASM)

The following new example is included.

<install-dir>\212xx\Examples\ADSP-21262 EZ-KIT Lite\STMicro SPI Flash Programmer (ASM)

There is no ADSP-21364 STMicro SPI Flash Programmer (ASM) example available at this time.

3. Because of difficulties found with the reschedule interrupt in SHARC processors, VDK now

reserves the SFT2I and SFT3I interrupts for the reschedule interrupt. These interrupts cannot be

used in any other manner.

4. TAR 32344 : Former workaround for 05-00-0311 is not safe

file:///C:\Documents%20and%20Settings\mweiner\My%20Documents\SharePoint%20Drafts\www.analog.com

New information regarding anomaly 05-00-0311 has moved the scope of this anomaly beyond the

realm of a VisualDSP++ Blackfin compiler workaround and into the region of application-specific

behavior.

In the VisualDSP++ 4.5 February 2007 Update the Blackfin compiler, runtime, VDK and SSL

libraries automatically included a new workaround for hardware anomaly 05-00-0311. The
VisualDSP++ 4.5 February 2007 Update C/C++ compiler also automatically enabled this

workaround when building for parts and silicon revisions that require it.

New information about anomaly 05-00-0311 reveals that it is necessary to temporarily disable

interrupts during MMR accesses, which is a decision the compiler should not be making as it

could be disabling interrupts for far too long or during a critical moment when the code relies on

receiving one. For this reason the implementation of the workaround has been changed for the

VisualDSP++ 4.5 June 2007 Update.

In the VisualDSP++ 4.5 June 2007 Update the Blackfin compiler, runtime, VDK and SSL libraries

no longer workaround hardware anomaly 05-00-0311. Instead, an include file called

sys/05000311.h is supplied and contains a group of macros for reading and writing the MMRs; if

the anomaly applies for the current value of the silicon revision of your target, the macro will

ensure that the read or write is safe against anomaly 05-00-0311.

When building for parts and silicon revisions that require anomaly 05-00-0311 workaround the

macro __WORKAROUND_FLAGS_MMR_ANOM_311 is defined at compile, assemble and link

stages.

05-00-0311 –

The anomaly is seen when an access of a System MMR Flag register is followed by an access of a

specific MMR. The result of the anomaly can be that flag pins configured as outputs that are "set"

can erroneously transition to "clear". The anomaly impacts all revisions of ADSP-BF53[123] and

ADSP-BF561 parts.

"Given some sample application code, such as:"

 int accessMMR()

 {

 unsigned short w, x, y, z;

 x = *pFIO_FLAG_D;

 y = *pFIO_MASKA_D;

 z = x & y;

 *pFIO_FLAG_C = z;

 w = *pFIO_EDGE;

 *pFIO_DIR = 0;

 ...

 }

 then the anomaly-safe code would be:

 #include <sys/05000311.h>

 ...

 int accessMMR()

 {

 unsigned short w, x, y, z;

 FIO_ANOM_0311_FLAG_R(x, pFIO_FLAG_D);

 FIO_ANOM_0311_MASKA_R(y, pFIO_MASKA_D);

 z = x & y;

 FIO_ANOM_0311_FLAG_W(z, pFIO_FLAG_C);

 FIO_ANOM_0311_EDGE_R(w);

 FIO_ANOM_0311_DIR_W(0);

 ...

 }

For more information on anomaly 05-00-0311 please see the appropriate errata sheet which can be

downloaded from <http://www.analog.com/processors/blackfin/support/ICanomalies.html>.

5. System Builder Template Changes

If you have a project that was generated with System Builder, loading the project after installing

this Update will result in a popup requesting regeneration of the code/LDF. Regenerating is

recommended to keep current with the latest template changes. This affects three files:

 1. LDF
 2. basiccrt.s

 3. heaptab.c

After regenerating, you are current with the latest improvements. No further action is needed.

If you didn’t use System Builder, refer to:

 Tar 31774: C++ exceptions do not work with generated multicore ldfs

 Tar 31555: Generated cplbtab file uses undefined macro CACHE_MEM_MODE

6. SDRAM Differences Between ADSP-533 EZ-KIT Board Versions

(Note for Tar 32480: adi_pwr_SetFreq causes VDK exception on BF533)

The SDRAM configuration setup when loading an ADSP-BF533 EZ-KIT from VisualDSP++ with

the emulator target option Use XML Reset Values selected sets the EBIU_SDBCTL register for

32MB of SDRAM. This is the correct setting for EZ-KIT Revisions 1.6 and lower. If using an EZ-

KIT Revision 1.7 or above there is actually 64MB of SDRAM available. However the

EBIU_SDBCTL will remain the same as for the earlier revisions when loading through

VisualDSP++. The effect of this is that attempts to use the memory over 32MB will result in

runtime errors or hardware exceptions.

To enable the full 64MB, edit <install-dir>\System\ArchDef\ADSP-BF533-proc.xml and modify

the EBIU_SDBCTL register reset value located within the <register-reset-definitions> block near
the end of the file. Change:

<!-- For BF533 EZ-KIT Lite's rev 1.7 and above use 0x25 -->

 <!-- register name="EBIU_SDBCTL" reset-value="0x25" core="Common" / -->

 <!-- For BF533 EZ-KIT Lite's rev 1.6 and below use 0x13 -->

 <register name="EBIU_SDBCTL" reset-value="0x13" core="Common" />

 to:

 <!-- For BF533 EZ-KIT Lite's rev 1.7 and above use 0x25 -->

 <register name="EBIU_SDBCTL" reset-value="0x25" core="Common" />

<!-- For BF533 EZ-KIT Lite's rev 1.6 and below use 0x13 -->

<!--register name="EBIU_SDBCTL" reset-value="0x13" core="Common" / -->

Then disconnect and reconnect to the target at which point the changes will take effect.

7. Loader is Packing External Memory PM for SHARC LX3/LX4 Processors

The loader was updated to pack the external memory PM data in the ADSP-2136x and ADSP-

2137x processors without requiring the PACKING() command in the project .ldf file. This was in

response to Tar 30900: Elfloader drops 16 bits when creating 48-bit image file.

http://www.analog.com/processors/blackfin/support/ICanomalies.html

Prior to this update, you were required to use the PACKING() command in the project .ldf file to

get the external data packed in the .dxe file, before the loader generated a loader file from the .dxe

file. The loader was also updated to transfer the logical addresses to the physical addresses for the

external packed data. The following is a simple example of the packing scheme taken by the

loader:

In .dxe file:

External logical address instruction
0x200000 0x112233445566

0x200001 0x778899aabbcc

In loader file:
0x300000 0x33445566

0x300001 0xbbcc1122

0x300002 0x778899aa

8. Loader Switches

In response to customer problems, the following loader switches were introduced:

1. The –NoZeroBlock switch directs the SHARC loader not to compress zero data

(VisualDSP++ 4.5 June Update)

2. The -NoSecondStageKernel and -NoFinalTag switches were introduced for the ADSP-BF561.

They can be used when the boot ROM is expected to be used to boot two cores without a

second stage kernel involved. (VisualDSP++ 4.5 November Update)

Problems Addressed

The following table is a list of the problems addressed in this Update. Details on any particular problem

can be found on the Tools Anomaly web page. The URL is:

http://www.analog.com/processors/tools/anomalies

Processor

Family

Problem

Number

Tool Description

All 30957 Compiler Assertion failed: v->storage_class != sc_auto

All 32181 Compiler Internal error (brilops.c:536) building with -force-circbuf

All 32270 Run Time

Libraries

A value that is just less than 0.1 may print as 0.0 with %f

Blackfin 31407 Compiler __builtin_cmplx_mul fault when the optimization is enabled

Blackfin 32344 Compiler Former workaround for 05-00-0311 not safe

Blackfin 31555 LDFGen generated cplbtab file uses undefined macro

CACHE_MEM_MODE

Blackfin 31774 LDFGen C++ exceptions do not work with generated multicore ldfs

Blackfin 29507 Run Time

Libraries

libdsp functions cabs_fr16, cartesian_fr16 fail for input

0x8000

Blackfin 30779 Run Time

Libraries

CPLB function declarations not guarded with extern "C"

Blackfin 31806 Run Time
Libraries

math_const.h defines long doubles that can result in larger
code

Blackfin 30854 Simulator DMA in 2D mode and AUTO fails with interrupt

Blackfin 30909 Simulator Array Mode in a DMA transfer does not advance to the next

desc

Blackfin 30955 Simulator Second DMA does not occur correctly

Blackfin 31859 Utilities Using -meminit results in error about missing map file

SHARC 29877 ADspCommon

XML Files

USTAT3 and USTAT4 do not appear in the ADSP-21160

USTAT register window

SHARC 29948 ADspCommon

XML Files

ADSP-21160 does not allow 4 column window for external

memory

SHARC 31777 Assembler Anomaly warnings incorrectly enabled for 08-00-0014

SHARC 23536 Assembler Floating point cannot appear in "discarded" conditional asm

block

SHARC 22335 Assembler Assembler accepts multiply with m reg destination

SHARC 28090 Assembler Assembling without specifying processor now produces

error

SHARC 30677 Emulator Some loads to external 16-bit memory fail

SHARC 31498 Emulator Inactive PEy Register set does not display correctly

SHARC 31393 Emulator EMUCTL_NOBOOT is incorrectly set to '0' for all

processors

SHARC 32170 Flash

Programmer

ADSP-21262 and ADSP-21364 EZ-KIT Serial flash will

change

SHARC 30877 LDF LDF needs to include packing() for DMAONLY sections

SHARC 31816 LDF Incorrect memory mapping for ADSP-21375

SHARC 30878 Loader Loader needs to process packed data from DMAONLY

sections

SHARC 30900 Loader Elfloader drops 16 bits when creating 48-bit image file

SHARC 30513 Run Time

Libraries

SIMD DSP functions ifft() and cfft() not interrupt safe

SHARC 31633 Run Time

Libraries

logd and log10d not safe for negative input

http://www.analog.com/processors/tools/anomalies

SHARC 31058 Run Time

Libraries

pragma interrupt dispatcher should return with RTS(LR)

SHARC 29816 Simulator External memory data not loaded correctly when WIDTH(8)

SHARC 32607 Simulator DM words mapped to external 16-bit segment truncated

SHARC 32608 Simulator External data symbols not visible in Data(DM)/Two Column

window

SHARC 31333 VDK Link warning with 2137X VDK projects using si revision

'any'

SHARC 30862 VDK Hardware clears VDK kernel IRPTL bit when at kernel level

The following table is a list of problems that were addressed in the February update but had not been

included in the February Release notes.

SHARC 13790 Assembler Float point multiply with fixed-point result register becomes
fixed-point multiply

SHARC 15704 Assembler Instruction sequence error in included file reported against

the wrong file

SHARC 29914 Assembler Hex initializers with an odd number of digits > 8 right shifted

SHARC 30414 Assembler Incorrect report of missing stall after MODE1 write for

ADSP-21367

SHARC 29364 Simulator ADSP-2137x simulator does not execute from external

memory

VisualDSP++ 4.5 (Updated February 2007) Release Note

The following release note concerns the February 2007 Update to the VisualDSP++ 4.5 release. This

release is inclusive of previous Updates. The contents of future Updates will be inclusive of all previous

Updates. The release notes for past Updates are appended to the end of this release note.

Identifying Which Update Is Currently Installed on Your System

The Update level is identified in three places:

1. The Add/Remove Programs Control Panel entry for VisualDSP++ 4.5.

2. The VisualDSP++ GUI’s About box, located at “Help” > “About VisualDSP++”.

3. In the file …\System\VisualDSP.ini, in the ProductName key.

Installing an Update

The procedure for installing an Update to VisualDSP++ is described below. Note that with VisualDSP++’s

support for installing multiple instances of itself, it is possible to “trial” an Update in a new directory before

switching over your “golden” tools installation to the Update.

1. Use the Start Menu to navigate to VisualDSP++’s “Maintain this Installation” item.

2. Select “Go to the Analog Devices website” and click “Next”. This will launch your web browser

and navigate it to the proper URL to download Updates from.

3. Download the VisualDSP++ Update file (.VDU) of interest to your hard disk. Note that these files

have a .VDU file extension and cannot be executed directly.

4. Navigate to “Maintain this Installation” again. If you have multiple installations of VisualDSP++

on your computer, be doubly sure you are navigating to the installation you wish to Update.
5. Select “Apply a downloaded Update” and click “Next”. Click the “…” browser button and

navigate to the .VDU file that you downloaded in step 3. Click “OK”, then “Next”.

6. Follow the on-screen prompts to complete the installation of the Update.

Significant Additions

The primary purpose of VisualDSP++ Updates is to address problems and stabilize the release. Significant
new functionality is not expected to be introduced in an Update. However, incremental support (i.e.,

emulation, example programs, header files, default LDF, errata accommodations, EZ-KIT Lite software,

etc.) for new semiconductor products will be added as these products become available and gain support

within the VisualDSP++ tools.

In this release:

1. Emulation support for the ADSP-BF54x family has been added.

2. Support for ADSP-BF538|9 revision 0.4 has been added.

3. The Blackfin compiler, runtime, VDK, and SSL libraries include new workarounds for hardware

anomalies 05-00-0311 and 05-00-0312. The C/C++ compiler will automatically enable these

workarounds when building for parts and silicon revisions that require them. Alternatively they

can be enabled using the -workaround switch. The Blackfin assembler has a new warning to

indicate potential instances of anomaly 05-00-0312.

05-00-0311 –

The anomaly is seen when an access of a System MMR Flag register is followed by an access of a

specific MMR. The result of the anomaly can be that flag pins configured as outputs that are "set"

can erroneously transition to "clear". The anomaly impacts all revisions of ADSP-BF53[123] and

ADSP-BF561 parts.

The compiler works around the anomaly:

1. By adding a load of the CHIPID MMR at the start of code generated for C defined event

handlers. System Services’ handlers and VDK’s interrupt templates make similar

accommodations. The related workaround for 05-00-0283 will be used if it is enabled at the same

time as this workaround.

2. By identifying accesses, or potential accesses, of any of the various System MMR Flag registers

associated with the errata and generating a load of CHIPID after each such access. The compiler
relies on use of literal addressing of MMRs to identify these accesses, such as using the various

p<MMR> macros defined in the cdef<PART>.h include files. Any loads and stores that do not

use literal addresses and the type of the access is defined qualified as volatile, will be assumed

to be flag MMR accesses, unless the -no-assume-vols-are-mmrs switch is used. If the

-no-assume-vols-are-mmrs compiler switch is used the compiler will apply the

workaround for suitable literal address accesses only and will make no assumptions for non-literal

loads and stores even if volatile.

To enable this compiler workaround manually the -workaround flags-mmr-anom-311

switch can be used. When the workaround is enabled the macro

__WORKAROUND_FLAGS_MMR_ANOM_311 is defined at compile, assemble and link stages.

05-00-0312 -

The anomaly is seen when SSYNC, CSYNC instructions or loads of registers LCx, LTx, and LBx

are interrupted. The anomaly impacts all Blackfin parts and revisions except ADSP-BF535.

The compiler workarounds are as follows:

1. When the workaround is enabled the compiler builtin functions __builtin_ssync() and

__builtin_csync() have been modified to ensure that interrupts are disabled before the

sync/csync instruction and enabled after.

2. New ssync and csync builtins have been provided that do not disable interrupts. These can

be used in place of the existing builtins for code that has been manually verified as safe against the

anomaly. These new builtins are called __builtin_ssync_int() and

__builtin_csync_int().

3. When the workaround is enabled the compiler will ensure that any loads of the LBx, LTx and

LCx registers are executed with interrupts disabled. It does this by inserting a CLI instruction

before such loads and an STI instruction after. The workaround is not required for hardware loop

LSETUP instructions.

4. The compiler will arrange to save and restore the loop registers (LBx, LTx and LCx) while

interrupts are disabled for C/C++ nested interrupt handlers defined using the

sys/exception.h EX_REENTRANT_HANDLER macro.

The assembler has been modified to include a warning which when enabled will identify potential

causes of the anomaly. This warning can be enabled using the -anomaly-warn 05-00-0312

switch. The warning can be suppressed in assembly code ranges which have manually been

determined to be safe against the anomaly using the assembler’s .MESSAGE directive. The

warning id to use when this is required is 5515.

To enable this compiler workaround manually the -workaround sync-loop-anom-312

switch can be used. When the workaround is enabled the macro

__WORKAROUND_SYNC_LOOP_ANOM_312 is defined at compile, assemble and link stages.

For more information on these anomaly please see the appropriate errata sheets which can be
downloaded from http://www.analog.com/processors/blackfin/support/ICanomalies.html.

Changes to Existing Behaviors, Projects, and Source Code

When addressing problems, we attempt to make any changes backward compatible with existing projects.

However, depending on the nature of a problem, compatibility issues are sometimes unavoidable. This
section highlights any changes in the Update that may require the modification of “working” projects or

otherwise influence existing behavior.

In this release, no changes have been identified.

http://www.analog.com/processors/blackfin/support/ICanomalies.html

Problems Addressed

The following table is a list of the problems addressed in this Update. Details on any particular problem

can be found on the Tools Anomaly web page. The URL is:

http://www.analog.com/processors/tools/anomalies

Processor

Family

Problem

Number

Tool Description

All 17307 Utilities MEMINIT implementation makes part of .map file useless

All 27177 Compiler Adding start up code to project breaks build

All 29624 Compiler -pch -eh crashes compiler - unoptimised and optimised

All 29838 VDK Destroying a periodic semaphore can damage the time queue

All 30048 VDK UserHistoryLog called incorrectly during context switch

All 30181 Compiler Register locked too many times

All 30351 Compiler assoc_source_line_modif: bad address

Blackfin 29221 Run Time

Libraries

multicore runtime libraries always link in I/O library

Blackfin 29552 Emulator Remove setting PF12 on BF533 USB example

Blackfin 29717 Run Time

Libraries

rms_fr16 can return a negative result

Blackfin 29833 Loader Page needs to support SPI Slave for 561 Rev 0.5

Blackfin 29834 Compiler Internal error "Cannot locate Reg to be Released" at call

Blackfin 29841 CRTGen BF52x proj with start up code & Ldf do not build

Blackfin 29917 VDK VDK exception handler could corrupt P1

Blackfin 29955 Run Time

Libraries

Link error with multi-theaded C library and setlocale

Blackfin 30049 Run Time

Libraries

C++ streams broken for multicore applications

Blackfin 30112 LDFGen I/O from both cores of multi-core app fails with cache enabled

Blackfin 30118 Emulator cache not flushed when emulator performs a write of 1

Blackfin 30164 Emulator External memory read error at address x200FFFFF -
x20100000

Blackfin 30220 Linker Linker miscalculates program size for EZ-KIT restriction

SHARC 29236 IDDE Server License expires 'n' days after validation when compiling

SHARC 29726 VDK Sharc thread level context switches not interrupt safe

SHARC 29742 Emulator Usage of Parallel port interrupt restricted

SHARC 29761 Simulator 2136[7,8,9] sysctl incorrect

SHARC 29819 LDF LDFs contain unnecessary macros to deal with EZ-kit monitors

SHARC 29828 Run Time

Libraries

ADSP-2136x CRT need support for new LX3 interrupts

SHARC 29829 Compiler circindex returns wrong index when constant 0 used fails –Og

SHARC 29856 Run Time

Libraries

213xx\lib\2136x_any\libcppeh37x.dlb should be

libcpp37xeh.dlb

SHARC 29898 Run Time

Libraries

The ifftf() function can generate wrong results

SHARC 29916 Assembler Hex init < 15 digits for LW space is left-justfied with no warn

SHARC 30123 Loader Loader does not convert PROM non-zero address from Hex to

S3

SHARC 30126 Loader Loader fails to add 0x00000000 to an odd SPI 48-bit block

SHARC 30410 Assembler Check for anomaly 08000002 absent for 21368/9

SHARC 30411 Assembler Check for anomaly 07000010 absent for 21362, 21366

SHARC 30415 Assembler Assembler not checking for anomaly 08000001 on 21367/8/9

TigerSHARC 29792 Run Time strtod may convert floating-point hex constants incorrectly

http://www.analog.com/processors/tools/anomalies

Libraries

TigerSHARC 29801 Run Time

Libraries

Link Buffer Registers macros defined incorrectly in defts201.h

TigerSHARC 29830 Run Time

Libraries

Floating point comparison routine clobbers an unexpected reg

TigerSHARC 30029 Run Time

Libraries

The conv2d function can generate wrong results

VisualDSP++ 4.5 (Updated November 2006) Release Note

The following release note concerns the November 2006 Update to the VisualDSP++ 4.5 release. This

release is inclusive of previous Updates. The contents of future Updates will be inclusive of all previous

Updates. The release notes for past Updates are appended to the end of this release note.

Identifying Which Update Is Currently Installed on Your System

The Update level is identified in three places:

1. The Add/Remove Programs Control Panel entry for VisualDSP++ 4.5.

2. The VisualDSP++ GUI’s About box, located at “Help” > “About VisualDSP++”.

3. In the file …\System\VisualDSP.ini, in the ProductName key.

Installing an Update

The procedure for installing an Update to VisualDSP++ is described below. Note that with VisualDSP++’s

support for installing multiple instances of itself, it is possible to “trial” an Update in a new directory before

switching over your “golden” tools installation to the Update.

1. Use the Start Menu to navigate to VisualDSP++’s “Maintain this Installation” item.

2. Select “Go to the Analog Devices website” and click “Next”. This will launch your web browser

and navigate it to the proper URL to download Updates from.

3. Download the VisualDSP++ Update file (.VDU) of interest to your hard disk. Note that these files

have a .VDU file extension and cannot be executed directly.

4. Navigate to “Maintain this Installation” again. If you have multiple installations of VisualDSP++

on your computer, be doubly sure you are navigating to the installation you wish to Update.
5. Select “Apply a downloaded Update” and click “Next”. Click the “…” browser button and

navigate to the .VDU file that you downloaded in step 3. Click “OK”, then “Next”.

6. Follow the on-screen prompts to complete the installation of the Update.

Significant Additions

The primary purpose of VisualDSP++ Updates is to address problems and stabilize the release. Significant
new functionality is not expected to be introduced in an Update. However, incremental support (i.e.,

emulation, example programs, header files, default LDF, errata accommodations, EZ-KIT Lite software,

etc.) for new semiconductor products will be added as these products become available and gain support

within the VisualDSP++ tools.

In this release:

1. Compiler, assembler, and linker support for a new Blackfin processor family, the ADSP-BF54x,

has been added. The loader and System Services are not yet available and will be added in a

future release.

2. This Update has been broadly tested under Windows Vista Beta 2 (5308) and is believed to be

fully operational. While the base release of VisualDSP++ 4.5 installs successfully, changes were

required to avoid run-time operational problems. Versions of VisualDSP++ prior to this Update

will generally not be operational under Vista and are not supported. It is possible that the final

“gold” release of Window Vista will change and require further (minor) modification of

VisualDSP++. Future Update release notes will discuss this topic as required.

Note that, at this time, the emulator and EZ-KIT Lite Windows device drivers are not digitally

signed. Windows will pop up a warning message for each driver installed. Confirm the

installation of each driver during base and/or Update installation.

Changes to Existing Behaviors, Projects, and Source Code

When addressing problems, we attempt to make any changes backward compatible with existing projects.

However, depending on the nature of a problem, compatibility issues are sometimes unavoidable. This

section highlights any changes in the Update that may require the modification of “working” projects or

otherwise influence existing behavior.

In this release:

1. The VDK libraries included in this update now flag an additional value used as a timeout in Pend

APIs (PendSemaphore, PendMessage, PendEvent, PendDeviceFlag) as being invalid.

Passing the value (0 | kNoTimeoutError) as the timeout will now result in a

kInvalidTimeout error. In previous versions of VDK the value was silently accepted.

However, specifying that no error should be dispatched in the event of a timeout, but also that the

Pend call should never timeout, has never been a useful thing to do. It was also ambiguous as to

what the result would be. The issuing of an error in this case will now draw attention to this fact.

2. For Blackfin processors, the assembler keyword LOOP was incorrectly also defined as a macro in

Blackfin header files (for UART loopback enablement). This has been corrected in this Update.

Any code that uses LOOP in its macro form may now fail to build and must be updated to use

LOOP_ENA instead.

1. For Blackfin processors, the user interface management of the -pFlag parameter to the loader

has been revised. It is now dynamically managed and varies with processor, silicon revision, boot

mode, and width. The loader now generates new warnings for illegal combinations.

After application of this Update, any Blackfin project using -pFlag should be verified to ensure

that the correct setting is being used. This setting should also be verified whenever the processor,

silicon revision, boot mode, or width is changed in VisualDSP++.

The following tables show the allowed values for –pFlag:

ADSP-BF531/2/3

Revision 0.0-0.2 0.3-0.5

Width 8 16 8 16

Flash NONE NONE NONE NONE

SPI NONE NONE

SPI slave 1-15

PF1-15

ADSP-BF538/9

Revision 0.0-0.3

Width 8 16

Flash NONE NONE

SPI NONE

SPI slave 1-15

PF1-15

ADSP-BF534/6/7

Revision 0.0 0.1-0.2 0.3

Width 8 16 8 16 8 16

Flash NONE NONE NONE

PF0-15

PG0-15

PH0-15

NONE

PF0-15

PG0-15

PH0-15

NONE

PF0-15

PG0-15

PH0-15

NONE

PF0-15

PG0-15

PH0-15

SPI NONE NONE

PF0-9

PF15

PG0-15

PH0-15

 NONE

PF0-9

PF15

PG0-15

PH0-15

SPI slave 1-15

PF1-15

 NONE

PF0-10

PF15

PG0-15

PH0-15

 NONE

PF0-10

PF15

PG0-15

PH0-15

TWI NONE NONE

PF0-15

PG0-15

PH0-15

 NONE

PF0-15

PG0-15

PH0-15

TWI

slave

NONE NONE

PF0-15

PG0-15

PH0-15

 NONE

PF0-15

PG0-15

PH0-15

UART 2-15

PF2-15

 NONE

PF2-15

PG0-15

PH0-15

 NONE

PF2-15

PG0-15

PH0-15

FIFO NONE

PF0

PF2-15

PG0-15

PH0-15

Notes:

1. Blank fields indicate not supported boot modes.

2. BF533/4/6/7/8/9 always has the RESVECT bit (bit #2 in block header flag word) set.

3. BF531/2 have always RESVECT bit (bit #2 in block header flag word) cleared.

4. VisualDSP++ property page provides a “NONE” option in the pflag pull-down menu.

When chosen, no –pflag switch goes to the command line and the PPORT and PFLAG

fields in the block header flag word are zero.

Problems Addressed

The following table is a list of the problems addressed in this Update. Details on any particular problem

can be found on the Tools Anomaly web page. The URL is:

http://www.analog.com/processors/tools/anomalies

Processor

Family

Problem

Number

Tool Description

All 23803 IDDE Floating License expires warning with permanent license string

All 29233 Run Time

Libraries

Wrong file positions may be returned for a text stream

All 29234 Run Time

Libraries

scanf does not input data of the form .d{dddd}edd correctly

All 29576 Compiler circindex returns wrong index when constant 0 used

Blackfin 28080 Linker False -si-rev incompatibilities when build from command line

Blackfin 29070 Simulator DMA Descriptor Array uses NXT_DESC not CURR_DESC

Blackfin 29112 Debug

Agent

cache flush functions fail on blackfin ez-kits

Blackfin 29163 Config freqency selection in Icetest doesn't work with HPUSB

Blackfin 29164 Config Icetest scan test fails on MP targets using HPUSB/USB

Blackfin 29235 Run Time

Libraries

signal() will never return SIG_IGN

Blackfin 29258 Compiler P0 clobbered in -ieee-fp compiler support function

Blackfin 29308 LDFGen Custom SDRAM setting can make the LDF unusable

Blackfin 29320 System
Services

printf before and after adi_pwr_Init causes lockup in Rel on
538

Blackfin 29352 Run Time

Libraries

si-revision 'any' builds result in linker warning li2152

Blackfin 29363 Run Time

Libraries

defBFXXX.h files #define LOOP, keyword in Blackfin

assembly

Blackfin 29434 Flash

Program

0 sectors in a flash programmer drivers crashes IDDE

Blackfin 29513 System

Services

adi_pwr_SetFreq() disables CLKBUFOE bit in VR_CTL

Blackfin 29524 Assembler Assembler rejects source file name without .suffix

Blackfin 29648 CRTGen Customising clock settings can cause the CRT not to compile

Blackfin 29652 Compiler circptr builtin may fail especially without -O

Blackfin 29662 Run Time

Libraries

__var_wa_06000047 undefined when linking for BF561 rev

0.5

Blackfin 29672 Simulator Signed/Unsigned Integer 8-bit format not properly handled

SHARC 29059 Loader change in PLL setup in example codes

SHARC 29236 IDDE Server License expires 'n' days after validation when compiling

SHARC 29267 Compiler two more cases that can lead to anomaly #4 for ADSP-2126x

DSPs

SHARC 29451 Run Time

Libraries

The FFTs from filter.h may loop forever

SHARC 29518 Run Time

Libraries

Interrupt handler does not restore multiplier regs properly

SHARC 29602 Run Time

Libraries

Some interrupt handlers are called with an incorrect parameter

SHARC 29706 Compiler 2nd switch statement not reached

TigerSHARC 29382 VDK “Run Total Time (cycles)” calculation is incorrect

http://www.analog.com/processors/tools/anomalies

VisualDSP++ 4.5 (Updated September 2006) Release Note

The following release note concerns the September 2006 Update to the VisualDSP++ 4.5 release. This

release is inclusive of previous Updates. The contents of future Updates will be inclusive of all previous

Updates. The release notes for past Updates are appended to the end of this release note.

Identifying Which Update Is Currently Installed on Your System

The Update level is identified in three places:

1. The Add/Remove Programs Control Panel entry for VisualDSP++ 4.5.

2. The VisualDSP++ GUI’s About box, located at “Help” > “About VisualDSP++”.

3. In the file …\System\VisualDSP.ini, in the ProductName key.

Installing an Update

The procedure for installing an Update to VisualDSP++ is described below. Note that with VisualDSP++’s

support for installing multiple instances of itself, it is possible to “trial” an Update in a new directory before

switching over your “golden” tools installation to the Update.

1. Use the Start Menu to navigate to VisualDSP++’s “Maintain this Installation” item.

2. Select “Go to the Analog Devices website” and click “Next”. This will launch your web browser

and navigate it to the proper URL to download Updates from.

3. Download the VisualDSP++ Update file (.VDU) of interest to your hard disk. Note that these files

have a .VDU file extension and cannot be executed directly.

4. Navigate to “Maintain this Installation” again. If you have multiple installations of VisualDSP++

on your computer, be doubly sure you are navigating to the installation you wish to Update.
5. Select “Apply a downloaded Update” and click “Next”. Click the “…” browser button and

navigate to the .VDU file that you downloaded in step 3. Click “OK”, then “Next”.

6. Follow the on-screen prompts to complete the installation of the Update.

Significant Additions

The primary purpose of VisualDSP++ Updates is to address problems and stabilize the release. Significant
new functionality is not expected to be introduced in an Update. However, incremental support (i.e.,

emulation, example programs, header files, default LDF, errata accommodations, EZ-KIT Lite software,

etc.) for new semiconductor products will be added as these products become available and gain support

within the VisualDSP++ tools.

In this release:

1. Software support for the ADSP-BF538F EZ-KIT Lite has been added. This includes debug

connectivity via the on-board USB debug agent, the flash programmer (both GUI support and

underlying drivers), and LwIP (Ethernet) drivers. Flash drivers are provided for both the on-chip

flash found on the ADSP-BF538F and the off-chip flash device on the EZ-KIT Lite. The on-line
help system has been updated to include this product.

2. The System Service Library (SSL) has been enhanced to support ADSP-BF538 Blackfin

processor. Included in this Update is support for the EBIU, Dynamic Power Management, DMA,

Interrupt, Deferred Callback, Timer, Flag and Port Control system services for the ADSP-BF538

processor. The default LDFs have been updated to link against SSL.

3. Blackfin device drivers have been updated. The adi_ad1836a_ii and adi_ad1938_ii codec drivers

now support automatic SPORT configuration. PPI, UART, SPI, TWI and SPORT device drivers

for the ADSP-BF538 processor have been introduced.

4. Software support for the ADSP-21375 EZ-KIT Lite has been added. This includes debug

connectivity via the on-board USB debug agent, and well as flash programmer GUI support and

underlying drivers. Execution from external memory is now supported in simulator, emulator, and

EZ-KIT Lite debugging sessions. The on-line help system has been updated to include this

product.

Changes to Existing Behaviors, Projects, and Source Code

When addressing problems, we attempt to make any changes backward compatible with existing projects.

However, depending on the nature of a problem, compatibility issues are sometimes unavoidable. This

section highlights any changes in the Update that may require the modification of “working” projects or

otherwise influence existing behavior.

In this release:

1. Within the Blackfin DMA Manager’s include file, adi_dma.h, an additional field named

CallbackFlag has been added to the data structures that describe large and small model

descriptors, ADI_DMA_DESCRIPTOR_LARGE and ADI_DMA_DESCRIPTOR_SMALL

respectively. This field should be set to TRUE, if a callback is requested after the descriptor has

been processed or FALSE if no callback is requested after the descriptor has been processed.

Previously, the DI_EN bit within the configuration register of the descriptor was used to trigger a

callback.

This change affects only user code that explicitly calls the adi_dma_Queue() function.

2. Source code files that make calls into the System Services (code that includes the file

“services.h”) should be rebuilt after installation of this update.

Problems Addressed

The following table is a list of the problems addressed in this Update. Details on any particular problem

can be found on the Tools Anomaly web page. Note that after the Issues headings in the top half of the

Tools Anomaly web page, problems are detailed in numeric order. The URL is:

http://www.analog.com/processors/tools/anomalies

Processor

Family

Problem

Number

Tool Description

All 28661 Install FYI Norton Internet Security prevents installation

All 28799 Run Time

Libraries

fread may signal EOF prematurely

All 28849 Compiler Compiler driver+LDF requires dummy.c file

All 28895 Run Time

Libraries

C++ runtime support for alternative heaps fails to link (li1021)

All 28948 Compiler loop pragmas don't work on C++ loops with embedded

declarations

All 29012 VDK VDK kThreadSwitched history events don't call

UserHistoryLog

All 29090 IDDE -g is added when convert project from 4.0 to 4.5 with -g>0 in th

All 29378 VDK Incorrect behaviour following VDK timequeue wraparound

Blackfin 25362 Emulator Emulator returns unknown family when targeting BF534 rev

0.2

Blackfin 26646 CRTGen Rev 1.7 BF533 EZ-KIT not properly supported in generated

CRT

Blackfin 28335 Simulator C++ exceptions cannot be used on single core BF561 simulator

Blackfin 28339 Simulator Simulator not updating registers correctly

Blackfin 28595 IDDE Additional include directories not always added to command

line

Blackfin 28764 System

Services

1836A_ii codec device driver fails in TDM mode

Blackfin 28819 IDDE Adding file to project with user defined config cause error

Blackfin 28823 Compiler 3-byte structs returned from functions incorrectly when -O used

Blackfin 28839 IDDE impossible sclk value in Project wizard

Blackfin 28875 Run Time

Libraries

Typo in cdefBF532.h - voild instead of void

Blackfin 28967 Configura

tor

configurator doesn't handle more than 11 devices properly

Blackfin 29025 VDK The placement of TMK and VDK libraries can cause link

errors

Blackfin 29072 IDDE Blackfin processors not listed in EL Global Properties dialog

Blackfin 29177 Run Time

Libraries

SIC_IMASK set with bad bit before DMA transfer (meminit)

Blackfin 29231 Loader BF533 rev 0.5 loader files add a zero byte for each data byte

SHARC 28857 Emulator primes for 21061 does not run

SHARC 28882 Run Time

Libraries

SIMD libdsp function vecdotf() might fail

TigerSHARC 28720 Compiler TigerSHARC wrapper generation/regs_clobbered not saving K

conds

TigerSHARC 28736 Splitter The splitter counts one more byte per word in .stk format

TigerSHARC 28752 Run Time
Libraries

TigerSHARC fread can incorrectly return 0 in byte-address
mode

TigerSHARC 28907 VDK TIMER0H register not set when Timer interrupt is set to None

http://www.analog.com/processors/tools/anomalies

TigerSHARC 29032 IDDE Can't load Annotations

TigerSHARC 29043 Assembler invalid warning about mult instruction option

TigerSHARC 29227 VDK VDK API level check can cause false positive Kernel Panics

VisualDSP++ 4.5 (Updated July 2006) Release Note

The following release note concerns the July 2006 Update to the VisualDSP++ 4.5 release. This is the first

in what is anticipated to be a series of Updates. The contents of future product Updates will be inclusive of

all previous Updates. At that time, the release notes for past Updates will be appended to the end of the

current release note.

Identifying Which Update Is Currently Installed on Your System

The Update level is identified in three places:

1. The Add/Remove Programs Control Panel entry for VisualDSP++ 4.5.

2. The VisualDSP++ GUI’s About box, located at “Help” > “About VisualDSP++”.

3. In the file …\System\VisualDSP.ini, in the ProductName key.

Installing an Update

The procedure for installing an Update to VisualDSP++ is described below. Note that with VisualDSP++’s

support for installing multiple instances of itself, it is possible to “trial” an Update in a new directory before

switching over your “golden” tools installation to the Update.

1. Use the Start Menu to navigate to VisualDSP++’s “Maintain this Installation” item.

2. Select “Go to the Analog Devices website” and click “Next”. This will launch your web browser

and navigate it to the proper URL to download Updates from.

3. Download the VisualDSP++ Update file (.VDU) of interest to your hard disk. Note that these files

have a .VDU file extension and cannot be executed directly.

4. Navigate to “Maintain this Installation” again. If you have multiple installations of VisualDSP++
on your computer, be doubly sure you are navigating to the installation you wish to Update.

5. Select “Apply a downloaded Update” and click “Next”. Click the “…” browser button and

navigate to the .VDU file that you downloaded in step 3. Click “OK”, then “Next”.

6. Follow the on-screen prompts to complete the installation of the Update.

Significant Additions

The primary purpose of VisualDSP++ Updates is to address problems and stabilize the release. Significant

new functionality is not expected to be introduced in an Update. However, incremental support (i.e.,

emulation, example programs, header files, default LDF, errata accommodations, EZ-KIT Lite software,

etc.) for new semiconductor products will be added as these products become available and gain support

within the VisualDSP++ tools.

In this release:

1. The Blackfin compiler, runtime, VDK, and SSL libraries include new workarounds for hardware

anomalies 05-00-0189 and 05-00-0283. The compiler will automatically enable these workaround

when building for parts and silicon revisions that require them. Alternatively they can be enabled

using the -workaround switch.

 05-00-0283 –

One part of the workaround is to include a code sequence in all event handlers. The

sequence makes a mispredicted jump over a dummy MMR read. This must be done

before any SSYNCs in the handler. This sequence is generated by the compiler for

C/C++ based event handlers that use #pragma interrupt or sys/exception.h

defined macros such as EX_INTERRUPT_HANDLER. The two handlers affected in the

runtime libraries are _cplb_hdr and the interrupt dispatcher _despint which have

been modified to include the workaround.

The second part of the workaround is to avoid system MMR writes in the two

instructions after a not-predicted conditional jump. The compiler will insert nop

instructions to avoid this when it identifies the problem sequence.

These workarounds can be enabled using the -workaround stalled-mmr-

write-283 switch. When the workaround is enabled the macro

__WORKAROUND_STALLED_MMR_WRITE_283 is defined at compile, assemble and

link stages

 05-00-0198 –

A workaround for this anomaly was already available in the compiler. However the

conditions which cause anomaly have changed to include a new code sequence. The

compiler has been modified to identify this new sequence. The anomaly may occur

where MMR reads or writes occur immediately after a stalled memory read. The

compiler will avoid such code being generated for C/C++ compiled code. The runtime

libraries are safe against this anomaly.

This workaround can be enabled using the -workaround sdram-mmr-read switch.

When the workaround is enabled the macro __WORKAROUND_SDRAM_MMR_READ is

defined at compile, assemble and link stages.

2. There has been a change of compiler behavior relating to MMR (Memory Mapped Register)

accesses and volatile variables. The new switch -no-assume-vols-are-mmrs has been

added.

There are various MMR related hardware errata that the compiler supports workarounds for; 05-

00-0122, 05-00-0157, 05-00-0198, 05-00-0283. Previously the compiler would only implement

these workaround for accesses that it could absolutely determine were to MMRs. This in practice

meant that only literal MMR addresses accesses could be determined accurately. More complex

accesses, for example using addresses stored in variables, might not be identifiable as MMR

accesses and could therefore result in the various anomalies being hit.

The compiler has been modified to try and avoid missing these more complex MMR accesses. If

there is an access to a variable that is defined as volatile, and the compiler cannot determine

that the access is not to an MMR, the compiler will now assume it is an access to an MMR unless

the new switch -no-assume-vols-are-mmrs is used.

Changes to Existing Behaviors, Projects, and Source Code

When addressing problems, we attempt to make any changes backward compatible with existing projects.

However, depending on the nature of a problem, compatibility issues are sometimes unavoidable. This

section highlights any changes in the Update that may require the modification of “working” projects or

otherwise influence existing behavior.

In this release no changes have been identified.

Problems Addressed

The following table is a list of the problems addressed in this Update. Details on any particular problem

can be found on the Tools Anomaly web page. The URL is:

http://www.analog.com/processors/tools/anomalies

Processor

Family

Reference

Number

Tool Description

All 28180 Compiler modena test c0527101 fails byte addressing when compiled –eh

All 28225 Compiler C++ exceptions thrown from inline virtual functions may fail

All 28244 VDK Issue with dynamically created VDK components at startup

All 28271 Run Time

Libraries

Increase in code size for printf

All 28341 Run Time

Libraries

attributes missing in libx dojs

All 28399 Compiler static C++ classes can cause bad debug

All 28876 Assembler Cannot perform source-level debug of assembly source files

All 28929 Emulator USB-ICE inoperable when updating to 4.5 while connected

All 28935 VDK User's timer interrupt settings can be overwritten

All 29140 Emulator RoHS USB-ICE does not work with base 4.5 install

Blackfin 28043 Loader Loader supports different default Rev #s from what it should.

Blackfin 28229 IDDE Annotations left in source pane after they are turned off

Blackfin 28287 Loader Zero padding to booting stream

Blackfin 28297 Compiler Compiler internal error (macdefs.c:1162) with –O

Blackfin 28305 Run Time

Libraries

ftell() with -full-io in text mode can return incorrect position

Blackfin 28309 Compiler Non-interrupt safe prologue code generated for BF535

Blackfin 28338 Compiler INTERNAL COMPILER ERROR: No switch note found

Blackfin 28383 Assembler .inc/binary produces corrupted doj

Blackfin 28410 Run Time

Libraries

Cache flushing on BF535 and wireless parts doesn't work

Blackfin 28445 IDDE If I add cplbtable and then disable cache project does not link

Blackfin 28450 IDDE configurator screen not coming to front

Blackfin 28467 IDDE errors and other issues removing configurations

Blackfin 28472 Run Time
Libraries

Possibility of erroneous result computed by fir_decima_fr16()

Blackfin 28487 Run Time

Libraries

Wrong comment in the source of the radix2 FFT library

functions

Blackfin 28497 Run Time

Libraries

Incorrect macro in defBF534.h and defBF538.h

Blackfin 28517 LDFGen Possible link error with generated BF561 LDF and mem init

Blackfin 28521 LDF OTHERCORE not implemented correctly in default multi-core

LDFs

Blackfin 28588 Compiler bad compare of unsigned short and unsigned literals –O

Blackfin 28600 Loader Loader does not work with Rev 0.3 for 539.

Blackfin 28679 Loader Remove the ignore block from loader files.

Blackfin 28686 LDFGen Single core generated LDF uses $OBJECTS before definition

Blackfin 28688 Run Time

Libraries

Instance of speed path anomaly 05-00-0209 in cache flush func

Blackfin 28689 LDFGen LDFGen does not always use the correct CPLB table

Blackfin 28710 Loader Loader need to support Rev. 0.5 for 531/2/3

Blackfin 28765 IDDE project not restored after starting connection-less IDDE

Blackfin 28779 Run Time defbf534.h has incorrect PFDE_UART macro definitions

http://www.analog.com/processors/tools/anomalies

Libraries

Blackfin 28994 VDK Potential for excessive stack usage on Blackfin processors

SHARC 28283 LDF The section "seg_int_code" has grown unnecessarily

SHARC 28569 VDK Sharc li2152 link warnings when using earlier Si Revision

SHARC 28692 Run Time

Libraries

0.0 2126x libraries built with an inappropriate silicon revision

SHARC 28761 Run Time

Libraries

No SRU header files

TigerSHARC 28263 Compiler long long to double conversion fails in byte-addressing mode

TigerSHARC 28267 Compiler Assertion failure: bril/zp/macdefs.c:2747 with -O -never-inline

TigerSHARC 28295 VDK Cannot view system stack usage in the expert linker

TigerSHARC 28490 VDK CCNTx register is read in the wrong order

TigerSHARC 28880 VDK TS20x Idle thread prevents scheduling of user threads

VisualDSP++ 4.5 Product Release Bulletin 2-1

2 VISUALDSP++ 4.5 NEW
FEATURES AND
ENHANCEMENTS
VisualDSP++ 4.5 has new features and enhancements designed to increase

productivity and shorten application development cycles. This chapter

describes the features and enhancements introduced in VisualDSP++ 4.5.

The information is presented as follows.

• “VisualDSP++ IDDE” on page 2-2

• “Assembler” on page 2-11

• “Features Common to All Compilers and Libraries” on page 2-15

• “Compiler and Library for Blackfin Processors” on page 2-21

• “Compiler and Library for SHARC Processors” on page 2-24

• “Compiler and Library for TigerSHARC Processors” on page 2-28

• “Linker and Utilities” on page 2-29

• “Loader and Utilities for Blackfin and SHARC Processors” on

page 2-31

• “VDK” on page 2-36

